WO2019184367A1 - 光学系统 - Google Patents

光学系统 Download PDF

Info

Publication number
WO2019184367A1
WO2019184367A1 PCT/CN2018/114512 CN2018114512W WO2019184367A1 WO 2019184367 A1 WO2019184367 A1 WO 2019184367A1 CN 2018114512 W CN2018114512 W CN 2018114512W WO 2019184367 A1 WO2019184367 A1 WO 2019184367A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
optical axis
source side
image source
Prior art date
Application number
PCT/CN2018/114512
Other languages
English (en)
French (fr)
Inventor
黄林
娄琪琪
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2019184367A1 publication Critical patent/WO2019184367A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/16Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present application relates to an optical system and, more particularly, to an optical system comprising five lenses.
  • the three-dimensional depth camera can obtain the three-dimensional position and size information of the target object, which is of great significance in the application of augmented reality (AR) technology.
  • AR augmented reality
  • Coding structured light technology is one of the important branches of deep recognition technology. Its technical principle is: using a projection lens module to project a specially coded image onto a target object; using an imaging receiving module to receive the reflected image information; Process the depth information of the target object.
  • the projection lens as the core component of the coded structure light depth recognition technology directly affects the recognition range and accuracy of depth recognition.
  • Conventional projection lenses usually eliminate various aberrations and increase resolution by increasing the number of lenses.
  • increasing the number of lenses causes an increase in the total optical length of the projection lens, which is disadvantageous for miniaturization of the lens.
  • the general large-angle projection lens also has many problems such as large distortion and poor image quality, which cannot meet the requirements of the projection structure light depth recognition technology for the projection lens.
  • the present application provides an optical system, such as a projection lens, that is applicable to a portable electronic product that can at least solve or partially address at least one of the above disadvantages of the prior art.
  • the present application provides an optical system including, in order from the imaging side to the image source side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens .
  • the first lens may have a positive power
  • the near image source side may be a concave surface
  • the second lens may have a positive power
  • the near image source side may be a convex surface
  • the third lens may have a negative power, which is near
  • the image source side may be a convex surface
  • the fourth lens has a power
  • the near image side may be a concave surface
  • the fifth lens has a power.
  • the effective focal length f2 of the second lens and the total effective focal length f of the optical system can satisfy 0 ⁇ f2/f ⁇ 1.
  • the distance Tr5r8 of the near-image side of the third lens to the near-source side of the fourth lens on the optical axis and the center thickness CT5 of the fifth lens on the optical axis may satisfy 1.2 ⁇ Tr5r8/CT5 ⁇ 2.3.
  • the separation distance T23 of the second lens and the third lens on the optical axis and the separation distance T34 of the third lens and the fourth lens on the optical axis may satisfy 0.2 ⁇ T23/T34 ⁇ 0.7.
  • the radius of curvature R4 of the near image source side of the second lens and the radius of curvature R5 of the near imaging side of the third lens may satisfy
  • the radius of curvature R8 of the near image source side of the fourth lens and the total effective focal length f of the optical system may satisfy -1 ⁇ R8 / f ⁇ 0.
  • the intersection of the near-imaging side and the optical axis of the fourth lens to the maximum effective half-caliber apex of the near-imaging side of the fourth lens is on the optical axis from the intersection of the SAG41 and the near-source source side and the optical axis of the fourth lens to
  • the maximum effective half-caliber apex of the side surface of the fourth lens near image source can satisfy 0.45 ⁇ SAG41/SAG42 ⁇ 1 on the optical axis by the distance SAG42.
  • the intersection of the near-imaging side and the optical axis of the fifth lens to the maximum effective half-caliber apex of the near-imaging side of the fifth lens is on the optical axis from the intersection of the SAG 51 and the near-source side and the optical axis of the fifth lens to
  • the maximum effective half-caliber apex of the fifth lens near-source side can satisfy 0 ⁇ SAG51/SAG52 ⁇ 0.6 on the optical axis by the distance SAG52.
  • the intersection of the near-source source side and the optical axis of the fifth lens to the maximum effective half-caliber apex of the fifth lens near-image source side is at a distance from the SAG 52 on the optical axis and a center thickness CT5 of the fifth lens on the optical axis.
  • the edge thickness ET5 of the fifth lens and the center thickness CT5 of the fifth lens on the optical axis may satisfy 0 ⁇ ET5/CT5 ⁇ 0.5.
  • the maximum incident angle CRA of the chief ray of the optical system, the distance from the near imaging side of the first lens to the image source surface of the optical system on the optical axis is half the length IH of the diagonal of the image source diameter. 2 ⁇ (1+TAN(CRA)) ⁇ TTL/IH ⁇ 2.5 is satisfied.
  • the object side numerical aperture NA of the optical system can satisfy NA ⁇ 0.19.
  • the optical system may have a light transmittance of greater than 85% in a wavelength band of 800 nm to 1000 nm.
  • the effective half aperture DT42 of the near image source side of the lens and the effective half aperture DT52 of the near image source side of the fifth lens can satisfy DT12 ⁇ DT22 ⁇ DT32 ⁇ DT42 ⁇ DT52.
  • the present application provides an optical system including, in order from the imaging side to the image source side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
  • the first lens may have a positive power
  • the near image source side may be a concave surface
  • the second lens may have a positive power
  • the near image source side may be a convex surface
  • the third lens may have a negative power, which is near
  • the image source side may be a convex surface
  • the fourth lens has a power
  • the near image side may be a concave surface
  • the fifth lens has a power.
  • the edge thickness ET5 of the fifth lens and the center thickness CT5 of the fifth lens on the optical axis may satisfy 0 ⁇ ET5/CT5 ⁇ 0.5.
  • the present application provides an optical system including, in order from the imaging side to the image source side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
  • the first lens may have a positive power
  • the near image source side may be a concave surface
  • the second lens may have a positive power
  • the near image source side may be a convex surface
  • the third lens may have a negative power, which is near
  • the image source side may be a convex surface
  • the fourth lens has a power
  • the near image side may be a concave surface
  • the fifth lens has a power.
  • the intersection of the near-source source side and the optical axis of the fifth lens to the maximum effective half-caliber apex of the fifth lens near-image source side is equal to the center thickness CT5 of the SAG52 on the optical axis and the fifth lens on the optical axis. ⁇ SAG52/CT5 ⁇ -0.8.
  • the present application uses a plurality of (for example, five) lenses, which are made by rationally selecting the lens materials and rationally distributing the power, the surface shape, the center thickness of each lens, and the on-axis spacing between the lenses.
  • the optical system has at least one beneficial effect of a large field of view, miniaturization, and the ability to meet depth recognition projection requirements.
  • FIG. 1 is a schematic structural view of an optical system according to Embodiment 1 of the present application.
  • 2A to 2C respectively show an astigmatism curve, a distortion curve, and a phase contrast curve of the optical system of Embodiment 1;
  • FIG. 3 is a schematic structural view of an optical system according to Embodiment 2 of the present application.
  • 4A to 4C respectively show an astigmatism curve, a distortion curve, and a phase contrast curve of the optical system of Embodiment 2;
  • FIG. 5 is a schematic structural view of an optical system according to Embodiment 3 of the present application.
  • 6A to 6C respectively show an astigmatism curve, a distortion curve, and a contrast curve of the optical system of Embodiment 3;
  • FIG. 7 is a schematic structural view of an optical system according to Embodiment 4 of the present application.
  • 8A to 8C respectively show an astigmatism curve, a distortion curve, and a phase contrast curve of the optical system of Embodiment 4.
  • FIG. 9 is a schematic structural view of an optical system according to Embodiment 5 of the present application.
  • 10A to 10C respectively show an astigmatism curve, a distortion curve, and a phase contrast curve of the optical system of Embodiment 5;
  • Figure 11 is a block diagram showing the structure of an optical system according to Embodiment 6 of the present application.
  • 12A to 12C respectively show an astigmatism curve, a distortion curve, and a phase contrast curve of the optical system of Example 6;
  • Figure 13 is a block diagram showing the structure of an optical system according to Embodiment 7 of the present application.
  • 14A to 14C respectively show an astigmatism curve, a distortion curve, and a phase contrast curve of the optical system of Example 7.
  • first, second, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
  • first lens discussed below may also be referred to as a second lens
  • second lens may also be referred to as a first lens, without departing from the teachings of the present application.
  • the thickness, size, and shape of the lens have been somewhat exaggerated for convenience of explanation.
  • the spherical or aspherical shape shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspherical surface is not limited to the spherical or aspherical shape shown in the drawings.
  • the drawings are only examples and are not to scale.
  • a paraxial region refers to a region near the optical axis. If the surface of the lens is convex and the position of the convex surface is not defined, it indicates that the surface of the lens is convex at least in the paraxial region; if the surface of the lens is concave and the position of the concave surface is not defined, it indicates that the surface of the lens is at least in the paraxial region. Concave.
  • the surface of each lens near the image source side is referred to as the near image source side of the lens, and the surface of each lens near the imaging side is referred to as the near imaging side of the lens.
  • the optical system according to an exemplary embodiment of the present application may include, for example, five lenses having powers, that is, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
  • the five lenses are sequentially arranged along the optical axis from the imaging side to the image source side.
  • the first lens may have a positive power with a near-source side being a concave surface; the second lens may have a positive power, the near-image source side may be a convex surface; and the third lens may have a negative optical focus
  • the side of the near image source may be a convex surface; the fourth lens has a positive power or a negative power, and the near imaging side may be a concave surface; and the fifth lens has a positive power or a negative power.
  • the near imaging side of the first lens may be convex.
  • the near imaging side of the third lens may be concave.
  • the near image source side of the fourth lens may be convex.
  • the optical system of the present application may satisfy the conditional expression 0 ⁇ f2/f ⁇ 1, where f2 is the effective focal length of the second lens and f is the total effective focal length of the optical system. More specifically, f2 and f can further satisfy 0.5 ⁇ f2 / f ⁇ 1, for example, 0.63 ⁇ f2 / f ⁇ 0.90.
  • Reasonable power and surface configuration help to ensure the compact structure of the optical system, effectively astigmatize the system, ensure the image quality balance in both the meridional and sagittal directions, and improve the image quality.
  • the optical system of the present application may satisfy conditional formula 2 ⁇ (1+TAN(CRA)) ⁇ TTL/IH ⁇ 2.5, where CRA is the maximum incident angle of the chief ray of the optical system, and the TTL is the first The on-axis distance from the near imaging side of the lens to the image source side of the optical system, IH is half the length of the source diameter diagonal. More specifically, CRA, TTL, and IH may further satisfy 2.1 ⁇ (1 + TAN (CRA)) ⁇ TTL / IH ⁇ 2.3, for example, 2.12 ⁇ (1 + TAN (CRA)) ⁇ TTL / IH ⁇ 2.28.
  • the conditional expression 2 ⁇ (1+TAN(CRA)) ⁇ TTL/IH ⁇ 2.5 is satisfied, which is advantageous for obtaining a larger angle of view and a shorter TTL, thereby satisfying the requirement of large depth recognition range and miniaturization of the projection module.
  • the optical system of the present application may satisfy the conditional formula NA ⁇ 0.19, where NA is the object-side numerical aperture of the optical system. More specifically, the NA can further satisfy 0.16 ⁇ NA ⁇ 0.18. Satisfying the conditional expression NA ⁇ 0.19 is beneficial to obtain better imaging quality under the condition of satisfying the field of view and the relative contrast.
  • the optical system of the present application may satisfy the conditional expression 1.2 ⁇ Tr5r8/CT5 ⁇ 2.3, where Tr5r8 is the on-axis distance from the near-imaging side of the third lens to the near-source side of the fourth lens, CT5 It is the center thickness of the fifth lens on the optical axis. More specifically, Tr5r8 and CT5 can further satisfy 1.24 ⁇ Tr5r8 / CT5 ⁇ 2.21. Satisfying the conditional formula 1.2 ⁇ Tr5r8/CT5 ⁇ 2.3 is beneficial to reducing the thickness sensitivity of the lens and meeting the requirements of lens processability.
  • the optical system of the present application may satisfy the conditional expression 0.2 ⁇ T23/T34 ⁇ 0.7, where T23 is the separation distance of the second lens and the third lens on the optical axis, and T34 is the third lens and the The separation distance of the four lenses on the optical axis. More specifically, T23 and T34 can further satisfy 0.23 ⁇ T23 / T34 ⁇ 0.60. Satisfying the conditional formula 0.2 ⁇ T23/T34 ⁇ 0.7, it is beneficial to reduce the thickness sensitivity of the lens and meet the requirements of lens miniaturization and workability.
  • the optical system of the present application may satisfy the conditional expression
  • the optical system of the present application may satisfy the conditional expression -1 ⁇ R8 / f ⁇ 0, where R8 is the radius of curvature of the near image source side of the fourth lens, and f is the total effective focal length of the optical system. More specifically, R8 and f may further satisfy -0.8 ⁇ R8 / f ⁇ -0.3, for example, -0.70 ⁇ R8 / f ⁇ -0.37. Satisfying the conditional expression -1 ⁇ R8/f ⁇ 0, the chief ray angle CRA of the optical system can be ensured, and it is advantageous to correct the curvature of field of the system.
  • the optical system of the present application may satisfy conditional formula 0.45 ⁇ SAG41/SAG42 ⁇ 1, wherein SAG41 is the most effective half of the intersection of the near imaging side and the optical axis of the fourth lens to the near imaging side of the fourth lens.
  • the on-axis distance of the apex of the aperture, SAG42 is the on-axis distance of the intersection of the near-source side of the fourth lens and the optical axis to the apex of the largest effective half-caliber of the fourth lens near-source side.
  • SAG41 and SAG42 can further satisfy 0.46 ⁇ SAG41 / SAG42 ⁇ 0.79.
  • the optical system of the present application may satisfy the conditional expression 0 ⁇ ET5/CT5 ⁇ 0.5, where ET5 is the edge thickness of the fifth lens and CT5 is the center thickness of the fifth lens on the optical axis. More specifically, ET5 and CT5 can further satisfy 0.3 ⁇ ET5 / CT5 ⁇ 0.5, for example, 0.35 ⁇ ET5 / CT5 ⁇ 0.42. Satisfying the conditional expression 0 ⁇ ET5 / CT5 ⁇ 0.5, the matching of the system chief ray angle CRA can be ensured, and the field curvature can be effectively eliminated.
  • the optical system of the present application may satisfy the conditional expression 0 ⁇ SAG51/SAG52 ⁇ 0.6, wherein the SAG51 is the most effective half of the intersection of the near imaging side and the optical axis of the fifth lens to the near imaging side of the fifth lens.
  • the on-axis distance of the apex of the aperture, SAG52 is the on-axis distance of the intersection of the near-source side of the fifth lens and the optical axis to the apex of the most effective half-caliber of the fifth lens near-source side.
  • SAG51 and SAG52 may further satisfy 0.2 ⁇ SAG51/SAG52 ⁇ 0.6, for example, 0.24 ⁇ SAG51/SAG52 ⁇ 0.58.
  • the optical system of the present application may satisfy the conditional expression -1.5 ⁇ SAG52/CT5 ⁇ -0.8, wherein the SAG 52 is the intersection of the near image source side and the optical axis of the fifth lens to the fifth lens near image source side.
  • the on-axis distance of the maximum effective half-caliber apex, CT5 is the center thickness of the fifth lens on the optical axis.
  • SAG52 and CT5 can further satisfy -1.36 ⁇ SAG52/CT5 ⁇ -0.82. Satisfying the conditional expression -1.5 ⁇ SAG52/CT5 ⁇ -0.8, the matching of the system chief ray angle CRA can be ensured, and the spherical aberration can be effectively eliminated.
  • the optical system of the present application has a light transmittance of greater than 85% in a light wave band of from about 800 nm to about 1000 nm. Such an arrangement is advantageous for obtaining a high-brightness projection picture and reducing the aperture requirement for the receiving lens.
  • the optical system of the present application may satisfy the conditional expression DT12 ⁇ DT22 ⁇ DT32 ⁇ DT42 ⁇ DT52, where DT12 is the effective half aperture of the near image source side of the first lens, and DT22 is the near side of the second lens.
  • the effective half-caliber of the source side DT32 is the effective half-diameter of the near-source side of the third lens
  • DT42 is the effective half-diameter of the near-source side of the fourth lens
  • DT52 is effective for the near-source side of the fifth lens.
  • Half caliber The conditional formula DT12 ⁇ DT22 ⁇ DT32 ⁇ DT42 ⁇ DT52 is satisfied, which can better ensure the structural feasibility and reduce the influence of the assembly tolerance.
  • the optical system described above may further include at least one aperture to enhance the imaging quality of the system.
  • an aperture may be disposed between the imaging side and the first lens.
  • optical system described above may also include other well known optical projection elements such as prisms, field mirrors, and the like.
  • the optical system according to the above embodiment of the present application can employ, for example, five lenses, by reasonably selecting the material of the lens and rationally distributing the power, the face shape, the center thickness of each lens, and the on-axis spacing between the lenses.
  • the optical system has a large field of view, miniaturization, and can well meet the needs of depth recognition projection requirements.
  • an aspherical mirror surface is often used for each lens.
  • the aspherical lens is characterized by a continuous change in curvature from the center of the lens to the periphery of the lens. Unlike a spherical lens having a constant curvature from the center of the lens to the periphery of the lens, the aspherical lens has better curvature radius characteristics, and has the advantages of improving distortion and improving astigmatic aberration. With an aspherical lens, the aberrations that occur during imaging can be eliminated as much as possible, improving image quality.
  • optical system is not limited to including five lenses.
  • the optical system can also include other numbers of lenses if desired.
  • FIG. 1 is a schematic view showing the structure of an optical system according to Embodiment 1 of the present application.
  • an optical system sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the imaging side to the image source side.
  • the first lens E1 has a positive refractive power
  • the near imaging side surface S1 is a convex surface
  • the near image source side surface S2 is a concave surface
  • the second lens E2 has a positive refractive power
  • the near imaging side surface S3 is a concave surface
  • the near image source side surface S4 is a convex surface
  • the third lens E3 has a negative refractive power
  • the near imaging side surface S5 is a concave surface
  • the near image source side surface S6 is a convex surface
  • the fourth lens E4 has a positive refractive power
  • the near imaging side surface S7 is a concave surface
  • the near image source side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power
  • the near imaging side surface S9 is a convex surface
  • the near image source side surface S10 is a concave surface.
  • the optical system has a light transmittance of more than 85%. Light from the source surface S11 sequentially passes through the respective surfaces S10 to S1 and is finally projected onto a target object in space (not shown).
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical system of Example 1, in which the unit of curvature radius and thickness are both millimeters (mm).
  • the near-imaging side and the near-source side of any one of the first lens E1 to the fifth lens E5 are aspherical.
  • the face shape x of each aspherical lens can be defined by using, but not limited to, the following aspherical formula:
  • x is the distance of the aspherical surface at height h from the optical axis, and the distance from the aspherical vertex is high;
  • k is the conic coefficient (given in Table 1);
  • Ai is the correction coefficient of the a-th order of the aspherical surface.
  • Table 2 gives the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 which can be used for the respective aspherical mirror faces S1 - S10 in the embodiment 1.
  • Table 3 gives the total effective focal length f of the optical system in Example 1, the effective focal lengths f1 to f5 of the respective lenses, and the object-side numerical aperture NA of the optical system.
  • F2/f 0.63, where f2 is the effective focal length of the second lens E2, and f is the total effective focal length of the optical system;
  • Tr5r8/CT5 1.77, wherein Tr5r8 is the on-axis distance of the near-image side S8 of the third lens E3 to the near-source side S8 of the fourth lens E4, and CT5 is the center thickness of the fifth lens E5 on the optical axis;
  • T23/T34 0.40, wherein T23 is a separation distance of the second lens E2 and the third lens E3 on the optical axis, and T34 is a separation distance of the third lens E3 and the fourth lens E4 on the optical axis;
  • R4 is the radius of curvature of the near image source side surface S4 of the second lens E2
  • R5 is the radius of curvature of the near image side surface S5 of the third lens E3
  • R8/f -0.45, where R8 is the radius of curvature of the near image source side S8 of the fourth lens E4, and f is the total effective focal length of the optical system;
  • SAG41/SAG42 0.62
  • SAG41 is the on-axis distance from the intersection of the near-imaging side S7 of the fourth lens E4 and the optical axis to the maximum effective half-caliber apex of the fourth lens E4 near the imaging side S7
  • SAG42 is the fourth lens E4.
  • ET5/CT5 0.35, wherein ET5 is the edge thickness of the fifth lens E5, and CT5 is the center thickness of the fifth lens E5 on the optical axis;
  • SAG51/SAG52 0.37, wherein SAG51 is the on-axis distance from the intersection of the near-imaging side S9 of the fifth lens E5 and the optical axis to the apex of the maximum effective half-caliber of the fifth lens E5 near the imaging side S9, and SAG52 is the fifth lens E5.
  • SAG52/CT5 -1.02, wherein SAG52 is the on-axis distance from the intersection of the near-source side S10 of the fifth lens E5 and the optical axis to the maximum effective half-caliber apex of the near-source side S10 of the fifth lens E5, and CT5 is the fifth The center thickness of the lens E5 on the optical axis;
  • DT12 ⁇ DT22 ⁇ DT32 ⁇ DT42 ⁇ DT52 where DT12 is the effective half-diameter of the near-source side S2 of the first lens E1, DT22 is the effective half-diameter of the near-source side S4 of the second lens E2, and DT32 is the third
  • DT42 is the effective half diameter of the near image source side surface S8 of the fourth lens E4
  • DT52 is the effective half diameter of the near image source side surface S10 of the fifth lens E5.
  • FIG. 2A shows an astigmatism curve of the optical system of Embodiment 1, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 2B shows a distortion curve of the optical system of Embodiment 1, which represents distortion magnitude values at different image source heights.
  • Fig. 2C shows a phase contrast curve of the optical system of Embodiment 1, which shows the degree of contrast corresponding to the height of different image sources. 2A and 2C, the optical system given in Embodiment 1 can achieve good image quality.
  • FIG. 3 is a schematic view showing the structure of an optical system according to Embodiment 2 of the present application.
  • an optical system sequentially includes an aperture STO, a first lens E1, a second lens E2, a third lens E3, and an order from an imaging side to an image source side along an optical axis.
  • the first lens E1 has a positive power
  • the near imaging side surface S1 is a convex surface
  • the near image source side surface S2 is a concave surface
  • the second lens E2 has a positive power
  • the near imaging side surface S3 is a convex surface
  • the near image source side surface S4 is a convex surface
  • the third lens E3 has a negative refractive power
  • the near imaging side surface S5 is a concave surface
  • the near image source side surface S6 is a convex surface
  • the fourth lens E4 has a negative refractive power
  • the near imaging side surface S7 is a concave surface
  • the near image source side surface S8 is a concave lens.
  • the convex surface; the fifth lens E5 has a negative refractive power, the near imaging side surface S9 is a convex surface, and the near image source side surface S10 is a concave surface.
  • the optical system In the optical wave band of about 800 nm to about 1000 nm, the optical system has a light transmittance of more than 85%. Light from the source surface S11 sequentially passes through the respective surfaces S10 to S1 and is finally projected onto a target object in space (not shown).
  • Table 4 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical system of Example 2, in which the unit of curvature radius and thickness are both millimeters (mm).
  • the near-imaging side surface and the near-image source side surface of any one of the first lens E1 to the fifth lens E5 are aspherical.
  • Table 5 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 2, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 6 gives the total effective focal length f of the optical system in Example 2, the effective focal lengths f1 to f5 of the respective lenses, and the object-side numerical aperture NA of the optical system.
  • FIG. 4A shows an astigmatism curve of the optical system of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 4B shows a distortion curve of the optical system of Embodiment 2, which shows distortion magnitude values at different image source heights.
  • Fig. 4C shows a phase contrast curve of the optical system of Embodiment 2, which shows the degree of contrast corresponding to the height of the different image sources. 4A and 4C, the optical system given in Embodiment 2 can achieve good image quality.
  • FIG. 5 is a view showing the structure of an optical system according to Embodiment 3 of the present application.
  • an optical system sequentially includes an aperture STO, a first lens E1, a second lens E2, a third lens E3, and an order from an imaging side to an image source side along an optical axis.
  • the first lens E1 has a positive refractive power
  • the near imaging side surface S1 is a convex surface
  • the near image source side surface S2 is a concave surface
  • the second lens E2 has a positive power
  • the near imaging side surface S3 is a concave surface
  • the near image source side surface S4 is a convex surface
  • the third lens E3 has a negative refractive power
  • the near imaging side surface S5 is a concave surface
  • the near image source side surface S6 is a convex surface
  • the fourth lens E4 has a positive refractive power
  • the near imaging side surface S7 is a concave surface
  • the near image source side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power
  • the near imaging side surface S9 is a concave surface
  • the near image source side surface S10 is a concave surface.
  • the optical system has a light transmittance of more than 85%. Light from the source surface S11 sequentially passes through the respective surfaces S10 to S1 and is finally projected onto a target object in space (not shown).
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical system of Example 3, wherein the unit of curvature radius and thickness are all millimeters (mm).
  • the near-imaging side surface and the near-image source side surface of any one of the first lens E1 to the fifth lens E5 are aspherical.
  • Table 8 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 3, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 9 gives the total effective focal length f of the optical system in Example 3, the effective focal lengths f1 to f5 of the respective lenses, and the object-side numerical aperture NA of the optical system.
  • Fig. 6A shows an astigmatism curve of the optical system of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 6B shows a distortion curve of the optical system of Embodiment 3, which shows distortion magnitude values at different image source heights.
  • Fig. 6C shows a phase contrast curve of the optical system of Embodiment 3, which shows the degree of contrast corresponding to the height of different image sources. 6A and 6C, the optical system given in Embodiment 3 can achieve good image quality.
  • FIG. 7 is a view showing the configuration of an optical system according to Embodiment 4 of the present application.
  • an optical system sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3 along the optical axis from the imaging side to the image source side.
  • the first lens E1 has a positive refractive power
  • the near imaging side surface S1 is a convex surface
  • the near image source side surface S2 is a concave surface
  • the second lens E2 has a positive refractive power
  • the near imaging side surface S3 is a concave surface
  • the near image source side surface S4 is a convex surface
  • the third lens E3 has a negative refractive power
  • the near imaging side surface S5 is a concave surface
  • the near image source side surface S6 is a convex surface
  • the fourth lens E4 has a negative refractive power
  • the near imaging side surface S7 is a concave surface
  • the near image source side surface S8 is a concave lens.
  • the convex surface; the fifth lens E5 has a positive power, the near imaging side surface S9 is a convex surface, and the near image source side surface S10 is a convex surface.
  • the optical system In the optical wave band of about 800 nm to about 1000 nm, the optical system has a light transmittance of more than 85%. Light from the image source surface S11 sequentially passes through the respective surfaces S10 to S1 and is finally projected onto a target object in space (not shown).
  • Table 10 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical system of Example 4, wherein the units of the radius of curvature and the thickness are all in millimeters (mm).
  • the near-imaging side surface and the near-image source side surface of any one of the first lens E1 to the fifth lens E5 are aspherical.
  • Table 11 shows the high order coefficient which can be used for each aspherical mirror in Embodiment 4, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 12 gives the total effective focal length f of the optical system in Example 4, the effective focal lengths f1 to f5 of the respective lenses, and the object-side numerical aperture NA of the optical system.
  • Fig. 8A shows an astigmatism curve of the optical system of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 8B shows a distortion curve of the optical system of Embodiment 4, which shows distortion magnitude values at different image source heights.
  • Fig. 8C shows a phase contrast curve of the optical system of Embodiment 4, which shows the relative illuminance corresponding to the height of the different image sources. 8A and 8C, the optical system given in Embodiment 4 can achieve good image quality.
  • FIG. 9 is a block diagram showing the structure of an optical system according to Embodiment 5 of the present application.
  • an optical system sequentially includes an aperture STO, a first lens E1, a second lens E2, a third lens E3, and an order from an imaging side to an image source side along an optical axis.
  • the first lens E1 has a positive power
  • the near imaging side surface S1 is a convex surface
  • the near image source side surface S2 is a concave surface
  • the second lens E2 has a positive power
  • the near imaging side surface S3 is a convex surface
  • the near image source side surface S4 is a convex surface
  • the third lens E3 has a negative refractive power
  • the near imaging side surface S5 is a concave surface
  • the near image source side surface S6 is a convex surface
  • the fourth lens E4 has a positive refractive power
  • the near imaging side surface S7 is a concave surface
  • the near image source side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power
  • the near imaging side surface S9 is a concave surface
  • the near image source side surface S10 is a concave surface.
  • the optical system has a light transmittance of more than 85%. Light from the source surface S11 sequentially passes through the respective surfaces S10 to S1 and is finally projected onto a target object in space (not shown).
  • Table 13 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical system of Example 5, in which the unit of curvature radius and thickness are both millimeters (mm).
  • the near-imaging side surface and the near-image source side surface of any one of the first lens E1 to the fifth lens E5 are aspherical.
  • Table 14 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 5, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 15 gives the total effective focal length f of the optical system in Example 5, the effective focal lengths f1 to f5 of the respective lenses, and the object-side numerical aperture NA of the optical system.
  • Fig. 10A shows an astigmatism curve of the optical system of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 10B shows a distortion curve of the optical system of Embodiment 5, which shows distortion magnitude values at different image source heights.
  • Fig. 10C shows a phase contrast curve of the optical system of Embodiment 5, which shows the degree of contrast corresponding to the height of different image sources. 10A and 10C, the optical system given in Embodiment 5 can achieve good image quality.
  • FIG. 11 is a view showing the configuration of an optical system according to Embodiment 6 of the present application.
  • an optical system sequentially includes an aperture STO, a first lens E1, a second lens E2, a third lens E3, and an order from an imaging side to an image source side along an optical axis.
  • the first lens E1 has a positive power
  • the near imaging side surface S1 is a convex surface
  • the near image source side surface S2 is a concave surface
  • the second lens E2 has a positive power
  • the near imaging side surface S3 is a convex surface
  • the near image source side surface S4 is a convex surface
  • the third lens E3 has a negative refractive power
  • the near imaging side surface S5 is a concave surface
  • the near image source side surface S6 is a convex surface
  • the fourth lens E4 has a positive refractive power
  • the near imaging side surface S7 is a concave surface
  • the near image source side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power
  • the near imaging side surface S9 is a concave surface
  • the near image source side surface S10 is a convex surface.
  • the optical system has a light transmittance of more than 85%. Light from the source surface S11 sequentially passes through the respective surfaces S10 to S1 and is finally projected onto a target object in space (not shown).
  • Table 16 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical system of Example 6, wherein the units of the radius of curvature and the thickness are all in millimeters (mm).
  • the near-imaging side surface and the near-image source side surface of any one of the first lens E1 to the fifth lens E5 are aspherical.
  • Table 17 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 6, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 18 gives the total effective focal length f of the optical system in Example 6, the effective focal lengths f1 to f5 of the respective lenses, and the object-side numerical aperture NA of the optical system.
  • Fig. 12A shows an astigmatism curve of the optical system of Embodiment 6, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 12B shows a distortion curve of the optical system of Embodiment 6, which shows distortion magnitude values at different image source heights.
  • Fig. 12C shows a phase contrast curve of the optical system of Example 6, which shows the relative illuminance corresponding to the height of the different image sources. 12A and 12C, the optical system given in Embodiment 6 can achieve good image quality.
  • FIG. 13 is a view showing the configuration of an optical system according to Embodiment 7 of the present application.
  • an optical system sequentially includes an aperture STO, a first lens E1, a second lens E2, a third lens E3, and an order from an imaging side to an image source side along an optical axis.
  • the first lens E1 has a positive refractive power
  • the near imaging side surface S1 is a convex surface
  • the near image source side surface S2 is a concave surface
  • the second lens E2 has a positive refractive power
  • the near imaging side surface S3 is a concave surface
  • the near image source side surface S4 is a convex surface
  • the third lens E3 has a negative refractive power
  • the near imaging side surface S5 is a concave surface
  • the near image source side surface S6 is a convex surface
  • the fourth lens E4 has a positive refractive power
  • the near imaging side surface S7 is a concave surface
  • the near image source side surface S8 is a convex surface.
  • the fifth lens E5 has a positive power
  • the near imaging side surface S9 is a concave surface
  • the near image source side surface S10 is a convex surface.
  • the optical system has a light transmittance of more than 85%. Light from the source surface S11 sequentially passes through the respective surfaces S10 to S1 and is finally projected onto a target object in space (not shown).
  • Table 19 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical system of Example 7, in which the unit of curvature radius and thickness are all millimeters (mm).
  • the near-imaging side surface and the near-image source side surface of any one of the first lens E1 to the fifth lens E5 are aspherical.
  • Table 20 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 7, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 21 gives the total effective focal length f of the optical system in Example 7, the effective focal lengths f1 to f5 of the respective lenses, and the object-side numerical aperture NA of the optical system.
  • Fig. 14A shows an astigmatism curve of the optical system of Embodiment 7, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 14B shows a distortion curve of the optical system of Embodiment 7, which shows distortion magnitude values at different image source heights.
  • Fig. 14C shows a phase contrast curve of the optical system of Example 7, which shows the relative illuminance corresponding to the height of the different image sources. 14A and 14C, the optical system given in Embodiment 7 can achieve good image quality.
  • Embodiments 1 to 7 respectively satisfy the relationship shown in Table 22.

Abstract

本申请公开了一种光学系统,该光学系统沿光轴由成像侧至像源侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。其中,第一透镜具有正光焦度,其近像源侧面为凹面;第二透镜具有正光焦度,其近像源侧面为凸面;第三透镜具有负光焦度,其近像源侧面为凸面;第四透镜具有光焦度,其近成像侧面为凹面;第五透镜具有光焦度。第二透镜的有效焦距f2与光学系统的总有效焦距f满足0<f2/f<1。

Description

光学系统
相关申请的交叉引用
本申请要求于2018年3月30日提交于中国国家知识产权局(CNIPA)的、专利申请号为201810297721.1的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种光学系统,更具体地,本申请涉及一种包括五片透镜的光学系统。
背景技术
近年来,随着深度识别技术的快速发展,利用三维深度相机便可以获得目标对象的三维位置及尺寸信息,这在增强现实(AR)技术应用中具有重要意义。
编码结构光技术作为深度识别技术的重要分支之一,其技术原理是:利用投影镜头模块将经过特殊编码的图像投射到目标对象上;利用成像接收模块接收反射回来的图像信息;通过后端算法处理得到目标对象的深度信息。其中,投影镜头作为编码结构光深度识别技术的核心元件,直接影响了深度识别的识别范围和精确度。
而传统投影镜头,通常通过采用增加透镜数量的方式来消除各种像差并提高分辨率。但是,增加透镜数量会导致投影镜头的光学总长度增加,不利于镜头的小型化。另外,一般的大视场角投影镜头还会存在畸变量大,成像质量差等诸多问题,无法满足编码结构光深度识别技术对投影镜头的要求。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学系统,例如,投影镜头。
一方面,本申请提供了这样一种光学系统,该光学系统沿着光轴 由成像侧至像源侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。其中,第一透镜可具有正光焦度,其近像源侧面可为凹面;第二透镜可具有正光焦度,其近像源侧面可为凸面;第三透镜可具有负光焦度,其近像源侧面可为凸面;第四透镜具有光焦度,其近成像侧面可为凹面;第五透镜具有光焦度。其中,第二透镜的有效焦距f2与光学系统的总有效焦距f可满足0<f2/f<1。
在一个实施方式中,第三透镜的近成像侧面至第四透镜的近像源侧面在光轴上的间隔距离Tr5r8与第五透镜于光轴上的中心厚度CT5可满足1.2<Tr5r8/CT5<2.3。
在一个实施方式中,第二透镜和第三透镜在光轴上的间隔距离T23与第三透镜和第四透镜在光轴上的间隔距离T34可满足0.2<T23/T34<0.7。
在一个实施方式中,第二透镜的近像源侧面的曲率半径R4与第三透镜的近成像侧面的曲率半径R5可满足|R4-R5|/|R4+R5|<0.5。
在一个实施方式中,第四透镜的近像源侧面的曲率半径R8与光学系统的总有效焦距f可满足-1<R8/f<0。
在一个实施方式中,第四透镜的近成像侧面和光轴的交点至第四透镜近成像侧面的最大有效半口径顶点在光轴上距离SAG41与第四透镜的近像源侧面和光轴的交点至第四透镜近像源侧面的最大有效半口径顶点在光轴上距离SAG42可满足0.45<SAG41/SAG42<1。
在一个实施方式中,第五透镜的近成像侧面和光轴的交点至第五透镜近成像侧面的最大有效半口径顶点在光轴上距离SAG51与第五透镜的近像源侧面和光轴的交点至第五透镜近像源侧面的最大有效半口径顶点在光轴上距离SAG52可满足0<SAG51/SAG52<0.6。
在一个实施方式中,第五透镜的近像源侧面和光轴的交点至第五透镜近像源侧面的最大有效半口径顶点在光轴上距离SAG52与第五透镜于光轴上的中心厚度CT5可满足-1.5<SAG52/CT5<-0.8。
在一个实施方式中,第五透镜的边缘厚度ET5与第五透镜于光轴上的中心厚度CT5可满足0<ET5/CT5<0.5。
在一个实施方式中,光学系统的主光线最大入射角度CRA、第一 透镜的近成像侧面至光学系统的像源面在光轴上的间隔距离TTL与像源直径对角线长的一半IH可满足2<(1+TAN(CRA))×TTL/IH<2.5。
在一个实施方式中,光学系统的物方数值孔径NA可满足NA<0.19。
在一个实施方式中,光学系统在800nm至1000nm的光波波段中,光线透过率可大于85%。
在一个实施方式中,第一透镜的近像源侧面的有效半口径DT12、第二透镜的近像源侧面的有效半口径DT22、第三透镜的近像源侧面的有效半口径DT32、第四透镜的近像源侧面的有效半口径DT42以及第五透镜的近像源侧面的有效半口径DT52可满足DT12<DT22<DT32<DT42<DT52。
另一方面,本申请提供了这样一种光学系统,该光学系统沿着光轴由成像侧至像源侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。其中,第一透镜可具有正光焦度,其近像源侧面可为凹面;第二透镜可具有正光焦度,其近像源侧面可为凸面;第三透镜可具有负光焦度,其近像源侧面可为凸面;第四透镜具有光焦度,其近成像侧面可为凹面;第五透镜具有光焦度。其中,第五透镜的边缘厚度ET5与第五透镜于光轴上的中心厚度CT5可满足0<ET5/CT5<0.5。
又一方面,本申请提供了这样一种光学系统,该光学系统沿着光轴由成像侧至像源侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。其中,第一透镜可具有正光焦度,其近像源侧面可为凹面;第二透镜可具有正光焦度,其近像源侧面可为凸面;第三透镜可具有负光焦度,其近像源侧面可为凸面;第四透镜具有光焦度,其近成像侧面可为凹面;第五透镜具有光焦度。其中,第五透镜的近像源侧面和光轴的交点至第五透镜近像源侧面的最大有效半口径顶点在光轴上距离SAG52与第五透镜于光轴上的中心厚度CT5可满足-1.5<SAG52/CT5<-0.8。
本申请采用了多片(例如,五片)透镜,通过合理选用透镜材质以及合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜 之间的轴上间距等,使得上述光学系统具有大视场、小型化、能够满足深度识别投影需求等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学系统的结构示意图;
图2A至图2C分别示出了实施例1的光学系统的象散曲线、畸变曲线以及相对照度曲线;
图3示出了根据本申请实施例2的光学系统的结构示意图;
图4A至图4C分别示出了实施例2的光学系统的象散曲线、畸变曲线以及相对照度曲线;
图5示出了根据本申请实施例3的光学系统的结构示意图;
图6A至图6C分别示出了实施例3的光学系统的象散曲线、畸变曲线以及相对照度曲线;
图7示出了根据本申请实施例4的光学系统的结构示意图;
图8A至图8C分别示出了实施例4的光学系统的象散曲线、畸变曲线以及相对照度曲线;
图9示出了根据本申请实施例5的光学系统的结构示意图;
图10A至图10C分别示出了实施例5的光学系统的象散曲线、畸变曲线以及相对照度曲线;
图11示出了根据本申请实施例6的光学系统的结构示意图;
图12A至图12C分别示出了实施例6的光学系统的象散曲线、畸变曲线以及相对照度曲线;
图13示出了根据本申请实施例7的光学系统的结构示意图;
图14A至图14C分别示出了实施例7的光学系统的象散曲线、畸变曲线以及相对照度曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更 详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜,第二透镜也可被称作第一透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中靠近像源侧的表面称为该透镜的近像源侧面,每个透镜中靠近成像侧的表面称为该透镜的近成像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例 中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学系统可包括例如五片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。这五片透镜沿着光轴由成像侧至像源侧依序排列。
在示例性实施方式中,第一透镜可具有正光焦度,其近像源侧面为凹面;第二透镜可具有正光焦度,其近像源侧面可为凸面;第三透镜可具有负光焦度,其近像源侧面可为凸面;第四透镜具有正光焦度或负光焦度,其近成像侧面可为凹面;第五透镜具有正光焦度或负光焦度。
在示例性实施方式中,第一透镜的近成像侧面可为凸面。
在示例性实施方式中,第三透镜的近成像侧面可为凹面。
在示例性实施方式中,第四透镜的近像源侧面可为凸面。
在示例性实施方式中,本申请的光学系统可满足条件式0<f2/f<1,其中,f2为第二透镜的有效焦距,f为光学系统的总有效焦距。更具体地,f2和f进一步可满足0.5<f2/f<1,例如,0.63≤f2/f≤0.90。合理的光焦度与面型配置,有利于保证光学系统的结构紧凑,可以有效地系统的象散,保证子午和弧矢两个方向的像质平衡,提升成像品质。
在示例性实施方式中,本申请的光学系统可满足条件式2<(1+TAN(CRA))×TTL/IH<2.5,其中,CRA为光学系统的主光线最大入射角度,TTL为第一透镜的近成像侧面至光学系统的像源面的轴上距离,IH为像源直径对角线长的一半。更具体地,CRA、TTL和IH进一步可满足2.1<(1+TAN(CRA))×TTL/IH<2.3,例如,2.12≤(1+TAN(CRA))×TTL/IH≤2.28。满足条件式2<(1+TAN(CRA))×TTL/IH<2.5,有利于获得较大的视场角和较短的TTL,从而满足大深度识别范围和投影模块小型化的需求。
在示例性实施方式中,本申请的光学系统可满足条件式NA< 0.19,其中,NA为光学系统的物方数值孔径。更具体地,NA进一步可满足0.16≤NA≤0.18。满足条件式NA<0.19,有利于在满足视场和相对照度的条件下,获得较好的成像质量。
在示例性实施方式中,本申请的光学系统可满足条件式1.2<Tr5r8/CT5<2.3,其中,Tr5r8为第三透镜的近成像侧面至第四透镜的近像源侧面的轴上距离,CT5为第五透镜于光轴上的中心厚度。更具体地,Tr5r8和CT5进一步可满足1.24≤Tr5r8/CT5≤2.21。满足条件式1.2<Tr5r8/CT5<2.3,有利于降低镜头的厚度敏感性,满足镜头可加工性的要求。
在示例性实施方式中,本申请的光学系统可满足条件式0.2<T23/T34<0.7,其中,T23为第二透镜和第三透镜在光轴上的间隔距离,T34为第三透镜和第四透镜在光轴上的间隔距离。更具体地,T23和T34进一步可满足0.23≤T23/T34≤0.60。满足条件式0.2<T23/T34<0.7,有利于降低镜头的厚度敏感性,满足镜头小型化和可加工性的要求。
在示例性实施方式中,本申请的光学系统可满足条件式|R4-R5|/|R4+R5|<0.5,其中,R4为第二透镜的近像源侧面的曲率半径,R5为第三透镜的近成像侧面的曲率半径。更具体地,R4和R5进一步可满足0.01≤|R4-R5|/|R4+R5|≤0.48。满足条件式|R4-R5|/|R4+R5|<0.5,可以有效地矫正彗差,降低镜头的偏心敏感性,提升成像品质。
在示例性实施方式中,本申请的光学系统可满足条件式-1<R8/f<0,其中,R8为第四透镜的近像源侧面的曲率半径,f为光学系统的总有效焦距。更具体地,R8和f进一步可满足-0.8<R8/f<-0.3,例如,-0.70≤R8/f≤-0.37。满足条件式-1<R8/f<0,可以保证光学系统的主光线角CRA,并有利于矫正系统的场曲。
在示例性实施方式中,本申请的光学系统可满足条件式0.45<SAG41/SAG42<1,其中,SAG41为第四透镜的近成像侧面和光轴的交点至第四透镜近成像侧面的最大有效半口径顶点的轴上距离,SAG42为第四透镜的近像源侧面和光轴的交点至第四透镜近像源侧面的最大有效半口径顶点的轴上距离。更具体地,SAG41和SAG42 进一步可满足0.46≤SAG41/SAG42≤0.79。满足条件式0.45<SAG41/SAG42<1,可以有效地消除系统球差,获得高清晰度的图像。
在示例性实施方式中,本申请的光学系统可满足条件式0<ET5/CT5<0.5,其中,ET5为第五透镜的边缘厚度,CT5为第五透镜于光轴上的中心厚度。更具体地,ET5和CT5进一步可满足0.3<ET5/CT5<0.5,例如,0.35≤ET5/CT5≤0.42。满足条件式0<ET5/CT5<0.5,可以确保系统主光线角CRA的匹配,并可以有效地消除场曲。
在示例性实施方式中,本申请的光学系统可满足条件式0<SAG51/SAG52<0.6,其中,SAG51为第五透镜的近成像侧面和光轴的交点至第五透镜近成像侧面的最大有效半口径顶点的轴上距离,SAG52为第五透镜的近像源侧面和光轴的交点至第五透镜近像源侧面的最大有效半口径顶点的轴上距离。更具体地,SAG51和SAG52进一步可满足0.2<SAG51/SAG52<0.6,例如,0.24≤SAG51/SAG52≤0.58。满足条件式0<SAG51/SAG52<0.6,可以有效地消除系统球差,获得高清晰度的图像。
在示例性实施方式中,本申请的光学系统可满足条件式-1.5<SAG52/CT5<-0.8,其中,SAG52为第五透镜的近像源侧面和光轴的交点至第五透镜近像源侧面的最大有效半口径顶点的轴上距离,CT5为第五透镜于光轴上的中心厚度。更具体地,SAG52和CT5进一步可满足-1.36≤SAG52/CT5≤-0.82。满足条件式-1.5<SAG52/CT5<-0.8,可以确保系统主光线角CRA的匹配,并可以有效地消除球差。
在示例性实施方式中,本申请的光学系统在约800nm至约1000nm的光波波段中,光线透过率大于85%。这样的设置有利于获得高亮度的投影画面,并降低对接收镜头的光圈要求。
在示例性实施方式中,本申请的光学系统可满足条件式DT12<DT22<DT32<DT42<DT52,其中,DT12为第一透镜的近像源侧面的有效半口径,DT22为第二透镜的近像源侧面的有效半口径,DT32为第三透镜的近像源侧面的有效半口径,DT42为第四透镜的近像源侧面的有效半口径,DT52为第五透镜的近像源侧面的有效半口径。满足条件式DT12<DT22<DT32<DT42<DT52,可以更好地保证结构上 的可行性,降低组配公差的影响。
在示例性实施方式中,上述光学系统还可包括至少一个光阑,以提升系统的成像质量。可选地,光阑可设置在成像侧与第一透镜之间。
可选地,上述光学系统还可包括其他公知的光学投影元件,例如,棱镜、场镜等。
根据本申请的上述实施方式的光学系统可采用例如五片透镜,通过合理选取透镜的材质并合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得光学系统具有大视场、小型化、能够很好地满足深度识别投影需求等有益效果。
在本申请的实施方式中,各透镜多采用非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学系统的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以五个透镜为例进行了描述,但是该光学系统不限于包括五个透镜。如果需要,该光学系统还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学系统的具体实施例。
实施例1
以下参照图1至图2C描述根据本申请实施例1的光学系统。图1示出了根据本申请实施例1的光学系统的结构示意图。
如图1所示,根据本申请示例性实施方式的光学系统沿光轴由成像侧至像源侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4和第五透镜E5。
第一透镜E1具有正光焦度,其近成像侧面S1为凸面,近像源侧 面S2为凹面;第二透镜E2具有正光焦度,其近成像侧面S3为凹面,近像源侧面S4为凸面;第三透镜E3具有负光焦度,其近成像侧面S5为凹面,近像源侧面S6为凸面;第四透镜E4具有正光焦度,其近成像侧面S7为凹面,近像源侧面S8为凸面;第五透镜E5具有负光焦度,其近成像侧面S9为凸面,近像源侧面S10为凹面。在约800nm至约1000nm光波波段中,该光学系统的光线透过率大于85%。来自像源面S11的光依序穿过各表面S10至S1并最终投射至空间中的目标物体上(未示出)。
表1示出了实施例1的光学系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018114512-appb-000001
表1
由表1可知,第一透镜E1至第五透镜E5中任意一个透镜的近成像侧面和近像源侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2018114512-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上 表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S10的高次项系数A 4、A 6、A 8、A 10、A 12、A 14和A 16
面号 A4 A6 A8 A10 A12 A14 A16
S1 1.0197E-01 -4.5422E-01 2.5461E+01 -2.9024E+02 1.4751E+03 -3.4301E+03 2.9854E+03
S2 5.5465E-01 2.1911E-01 5.4055E+00 -4.4218E+01 3.5345E+02 -1.3419E+03 2.4547E+03
S3 -7.0381E-01 3.3415E+00 -5.6566E+01 8.1592E+01 1.3153E+03 -6.2806E+03 8.7888E+03
S4 -9.1505E-01 5.7198E+01 -6.2349E+02 3.3874E+03 -1.0636E+04 1.8346E+04 -1.3033E+04
S5 -2.5013E+00 1.1302E+02 -1.0869E+03 5.5842E+03 -1.7402E+04 3.0429E+04 -2.2325E+04
S6 -4.1469E+00 4.3171E+01 -1.8223E+02 3.8984E+02 -4.3848E+02 2.4570E+02 -5.3427E+01
S7 -5.2475E+00 1.9337E+01 -2.8812E+01 2.1691E+01 -7.7923E+00 7.7722E-01 1.3442E-01
S8 -2.2668E+00 8.0036E+00 -2.0805E+01 3.5687E+01 -3.2986E+01 1.5034E+01 -2.6577E+00
S9 -8.4623E-01 1.5993E+00 -1.9278E+00 1.4440E+00 -6.3131E-01 1.4896E-01 -1.4782E-02
S10 -6.6916E-01 1.1481E+00 -1.6415E+00 1.4726E+00 -7.7444E-01 2.1681E-01 -2.4633E-02
表2
表3给出实施例1中光学系统的总有效焦距f、各透镜的有效焦距f1至f5以及光学系统的物方数值孔径NA。
参数 f(mm) f1(mm) f2(mm) f3(mm) f4(mm) f5(mm) NA
数值 1.76 3.12 1.10 -2.84 11.36 -4.44 0.18
表3
实施例1中的光学系统满足:
f2/f=0.63,其中,f2为第二透镜E2的有效焦距,f为光学系统的总有效焦距;
(1+TAN(CRA))×TTL/IH=2.12,其中,CRA为主光线的最大入射角度,TTL为第一透镜E1的近成像侧面S1至光学系统的像源面S11的轴上距离,IH为像源直径对角线长的一半;
Tr5r8/CT5=1.77,其中,Tr5r8为第三透镜E3的近成像侧面S5至第四透镜E4的近像源侧面S8的轴上距离,CT5为第五透镜E5于光轴上的中心厚度;
T23/T34=0.40,其中,T23为第二透镜E2和第三透镜E3在光轴上的间隔距离,T34为第三透镜E3和第四透镜E4在光轴上的间隔距离;
|R4-R5|/|R4+R5|=0.04,其中,R4为第二透镜E2的近像源侧面S4 的曲率半径,R5为第三透镜E3的近成像侧面S5的曲率半径;
R8/f=-0.45,其中,R8为第四透镜E4的近像源侧面S8的曲率半径,f为光学系统的总有效焦距;
SAG41/SAG42=0.62,其中,SAG41为第四透镜E4的近成像侧面S7和光轴的交点至第四透镜E4近成像侧面S7的最大有效半口径顶点的轴上距离,SAG42为第四透镜E4的近像源侧面S8和光轴的交点至第四透镜E4近像源侧面S8的最大有效半口径顶点的轴上距离;
ET5/CT5=0.35,其中,ET5为第五透镜E5的边缘厚度,CT5为第五透镜E5于光轴上的中心厚度;
SAG51/SAG52=0.37,其中,SAG51为第五透镜E5的近成像侧面S9和光轴的交点至第五透镜E5近成像侧面S9的最大有效半口径顶点的轴上距离,SAG52为第五透镜E5的近像源侧面S10和光轴的交点至第五透镜E5近像源侧面S10的最大有效半口径顶点的轴上距离;
SAG52/CT5=-1.02,其中,SAG52为第五透镜E5的近像源侧面S10和光轴的交点至第五透镜E5近像源侧面S10的最大有效半口径顶点的轴上距离,CT5为第五透镜E5于光轴上的中心厚度;
DT12<DT22<DT32<DT42<DT52,其中,DT12为第一透镜E1的近像源侧面S2的有效半口径,DT22为第二透镜E2的近像源侧面S4的有效半口径,DT32为第三透镜E3的近像源侧面S6的有效半口径,DT42为第四透镜E4的近像源侧面S8的有效半口径,DT52为第五透镜E5的近像源侧面S10的有效半口径。
图2A示出了实施例1的光学系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2B示出了实施例1的光学系统的畸变曲线,其表示不同像源高度处的畸变大小值。图2C示出了实施例1的光学系统的相对照度曲线,其表示不同像源高度所对应的相对照度。根据图2A和图2C可知,实施例1所给出的光学系统能够实现良好的成像品质。
实施例2
以下参照图3至图4C描述根据本申请实施例2的光学系统。在 本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学系统的结构示意图。
如图3所示,根据本申请示例性实施方式的光学系统沿光轴由成像侧至像源侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4和第五透镜E5。
第一透镜E1具有正光焦度,其近成像侧面S1为凸面,近像源侧面S2为凹面;第二透镜E2具有正光焦度,其近成像侧面S3为凸面,近像源侧面S4为凸面;第三透镜E3具有负光焦度,其近成像侧面S5为凹面,近像源侧面S6为凸面;第四透镜E4具有负光焦度,其近成像侧面S7为凹面,近像源侧面S8为凸面;第五透镜E5具有负光焦度,其近成像侧面S9为凸面,近像源侧面S10为凹面。在约800nm至约1000nm光波波段中,该光学系统的光线透过率大于85%。来自像源面S11的光依序穿过各表面S10至S1并最终投射至空间中的目标物体上(未示出)。
表4示出了实施例2的光学系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018114512-appb-000003
表4
由表4可知,在实施例2中,第一透镜E1至第五透镜E5中任意一个透镜的近成像侧面和近像源侧面均为非球面。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上 述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 -8.8351E-02 -1.6492E+00 3.3912E+01 -3.0416E+02 1.4745E+03 -3.4328E+03 2.9852E+03
S2 2.4884E-01 -1.3435E+00 7.2369E+00 -6.7510E+01 3.5218E+02 -1.3399E+03 2.4548E+03
S3 -6.1444E-01 7.7230E-02 -2.2215E+01 -4.8409E+01 1.3155E+03 -6.2816E+03 8.7886E+03
S4 -1.3175E+00 5.7526E+01 -6.2546E+02 3.3858E+03 -1.0637E+04 1.8273E+04 -1.3065E+04
S5 -3.3017E+00 1.1491E+02 -1.0838E+03 5.5766E+03 -1.7431E+04 3.0427E+04 -2.2264E+04
S6 -4.0453E+00 4.3272E+01 -1.8201E+02 3.9006E+02 -4.3838E+02 2.4543E+02 -5.4062E+01
S7 -5.2403E+00 1.9364E+01 -2.8766E+01 2.1730E+01 -7.7524E+00 8.0032E-01 7.5983E-02
S8 -2.2526E+00 8.0189E+00 -2.0853E+01 3.5646E+01 -3.3000E+01 1.5041E+01 -2.6385E+00
S9 -8.2147E-01 1.5994E+00 -1.9286E+00 1.4433E+00 -6.3163E-01 1.4893E-01 -1.4716E-02
S10 -6.6980E-01 1.1515E+00 -1.6402E+00 1.4728E+00 -7.7462E-01 2.1671E-01 -2.4665E-02
表5
表6给出实施例2中光学系统的总有效焦距f、各透镜的有效焦距f1至f5以及光学系统的物方数值孔径NA。
参数 f(mm) f1(mm) f2(mm) f3(mm) f4(mm) f5(mm) NA
数值 2.01 6.32 1.48 -76.24 -1373.97 -6.26 0.16
表6
图4A示出了实施例2的光学系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4B示出了实施例2的光学系统的畸变曲线,其表示不同像源高度处的畸变大小值。图4C示出了实施例2的光学系统的相对照度曲线,其表示不同像源高度所对应的相对照度。根据图4A和图4C可知,实施例2所给出的光学系统能够实现良好的成像品质。
实施例3
以下参照图5至图6C描述了根据本申请实施例3的光学系统。图5示出了根据本申请实施例3的光学系统的结构示意图。
如图5所示,根据本申请示例性实施方式的光学系统沿光轴由成像侧至像源侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4和第五透镜E5。
第一透镜E1具有正光焦度,其近成像侧面S1为凸面,近像源侧面S2为凹面;第二透镜E2具有正光焦度,其近成像侧面S3为凹面, 近像源侧面S4为凸面;第三透镜E3具有负光焦度,其近成像侧面S5为凹面,近像源侧面S6为凸面;第四透镜E4具有正光焦度,其近成像侧面S7为凹面,近像源侧面S8为凸面;第五透镜E5具有负光焦度,其近成像侧面S9为凹面,近像源侧面S10为凹面。在约800nm至约1000nm光波波段中,该光学系统的光线透过率大于85%。来自像源面S11的光依序穿过各表面S10至S1并最终投射至空间中的目标物体上(未示出)。
表7示出了实施例3的光学系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018114512-appb-000004
表7
由表7可知,在实施例3中,第一透镜E1至第五透镜E5中任意一个透镜的近成像侧面和近像源侧面均为非球面。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 1.5450E-01 -1.1909E+00 3.1754E+01 -2.9049E+02 1.4772E+03 -3.4104E+03 3.0018E+03
S2 4.5276E-01 -9.0672E-01 6.6948E+00 -5.3278E+01 3.6300E+02 -1.3315E+03 2.5855E+03
S3 -6.0379E-01 4.3441E+00 -5.8689E+01 -2.2293E+01 1.3345E+03 -6.2788E+03 8.7888E+03
S4 -6.1561E-01 5.6837E+01 -6.2400E+02 3.3817E+03 -1.0640E+04 1.8375E+04 -1.2754E+04
S5 -2.1471E+00 1.1198E+02 -1.0840E+03 5.5943E+03 -1.7398E+04 3.0414E+04 -2.2567E+04
S6 -4.3976E+00 4.3727E+01 -1.8137E+02 3.8952E+02 -4.3996E+02 2.4405E+02 -5.4092E+01
S7 -5.5618E+00 1.9223E+01 -2.8697E+01 2.1970E+01 -7.5878E+00 6.6180E-01 -5.1039E-01
S8 -2.3281E+00 8.0755E+00 -2.0789E+01 3.5628E+01 -3.3029E+01 1.5030E+01 -2.6404E+00
S9 -7.1178E-01 1.5927E+00 -1.9357E+00 1.4417E+00 -6.3172E-01 1.4904E-01 -1.4617E-02
S10 -6.8061E-01 1.1507E+00 -1.6393E+00 1.4731E+00 -7.7443E-01 2.1668E-01 -2.4752E-02
表8
表9给出实施例3中光学系统的总有效焦距f、各透镜的有效焦距f1至f5以及光学系统的物方数值孔径NA。
参数 f(mm) f1(mm) f2(mm) f3(mm) f4(mm) f5(mm) NA
数值 1.93 2.11 1.29 -2.17 2.23 -2.12 0.17
表9
图6A示出了实施例3的光学系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6B示出了实施例3的光学系统的畸变曲线,其表示不同像源高度处的畸变大小值。图6C示出了实施例3的光学系统的相对照度曲线,其表示不同像源高度所对应的相对照度。根据图6A和图6C可知,实施例3所给出的光学系统能够实现良好的成像品质。
实施例4
以下参照图7至图8C描述了根据本申请实施例4的光学系统。图7示出了根据本申请实施例4的光学系统的结构示意图。
如图7所示,根据本申请示例性实施方式的光学系统沿光轴由成像侧至像源侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4和第五透镜E5。
第一透镜E1具有正光焦度,其近成像侧面S1为凸面,近像源侧面S2为凹面;第二透镜E2具有正光焦度,其近成像侧面S3为凹面,近像源侧面S4为凸面;第三透镜E3具有负光焦度,其近成像侧面S5为凹面,近像源侧面S6为凸面;第四透镜E4具有负光焦度,其近成像侧面S7为凹面,近像源侧面S8为凸面;第五透镜E5具有正光焦度,其近成像侧面S9为凸面,近像源侧面S10为凸面。在约800nm至约1000nm光波波段中,该光学系统的光线透过率大于85%。来自像源面S11的光依序穿过各表面S10至S1并最终投射至空间中的目 标物体上(未示出)。
表10示出了实施例4的光学系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018114512-appb-000005
表10
由表10可知,在实施例4中,第一透镜E1至第五透镜E5中任意一个透镜的近成像侧面和近像源侧面均为非球面。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 1.2577E-01 -6.3929E-01 2.3402E+01 -2.5220E+02 1.4751E+03 -3.4301E+03 2.9854E+03
S2 3.9633E-01 -1.3348E+00 1.7632E+01 -1.1230E+02 3.5345E+02 -1.3419E+03 2.4547E+03
S3 -3.8375E-02 -1.5780E+00 -6.1350E+00 1.7530E+01 1.3153E+03 -6.2806E+03 8.7888E+03
S4 -7.7898E-01 5.5541E+01 -6.1963E+02 3.3976E+03 -1.0619E+04 1.8350E+04 -1.3411E+04
S5 -4.0907E+00 1.1677E+02 -1.0910E+03 5.5824E+03 -1.7407E+04 3.0416E+04 -2.2274E+04
S6 -4.3854E+00 4.3057E+01 -1.8136E+02 3.8934E+02 -4.3961E+02 2.4529E+02 -5.2284E+01
S7 -5.3108E+00 1.9240E+01 -2.8723E+01 2.1741E+01 -7.8605E+00 6.8195E-01 1.5065E-01
S8 -2.7833E+00 8.7104E+00 -2.0862E+01 3.5438E+01 -3.3105E+01 1.5052E+01 -2.5608E+00
S9 -8.5221E-01 1.6200E+00 -1.9270E+00 1.4421E+00 -6.3218E-01 1.4898E-01 -1.4657E-02
S10 -4.7748E-01 1.0360E+00 -1.6262E+00 1.4802E+00 -7.7446E-01 2.1637E-01 -2.4730E-02
表11
表12给出实施例4中光学系统的总有效焦距f、各透镜的有效焦距f1至f5以及光学系统的物方数值孔径NA。
参数 f(mm) f1(mm) f2(mm) f3(mm) f4(mm) f5(mm) NA
数值 1.90 2.00 1.30 -3.68 -2.40 2.39 0.17
表12
图8A示出了实施例4的光学系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8B示出了实施例4的光学系统的畸变曲线,其表示不同像源高度处的畸变大小值。图8C示出了实施例4的光学系统的相对照度曲线,其表示不同像源高度所对应的相对照度。根据图8A和图8C可知,实施例4所给出的光学系统能够实现良好的成像品质。
实施例5
以下参照图9至图10C描述了根据本申请实施例5的光学系统。图9示出了根据本申请实施例5的光学系统的结构示意图。
如图9所示,根据本申请示例性实施方式的光学系统沿光轴由成像侧至像源侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4和第五透镜E5。
第一透镜E1具有正光焦度,其近成像侧面S1为凸面,近像源侧面S2为凹面;第二透镜E2具有正光焦度,其近成像侧面S3为凸面,近像源侧面S4为凸面;第三透镜E3具有负光焦度,其近成像侧面S5为凹面,近像源侧面S6为凸面;第四透镜E4具有正光焦度,其近成像侧面S7为凹面,近像源侧面S8为凸面;第五透镜E5具有负光焦度,其近成像侧面S9为凹面,近像源侧面S10为凹面。在约800nm至约1000nm光波波段中,该光学系统的光线透过率大于85%。来自像源面S11的光依序穿过各表面S10至S1并最终投射至空间中的目标物体上(未示出)。
表13示出了实施例5的光学系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018114512-appb-000006
Figure PCTCN2018114512-appb-000007
表13
由表13可知,在实施例5中,第一透镜E1至第五透镜E5中任意一个透镜的近成像侧面和近像源侧面均为非球面。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 -7.9095E-02 -7.9257E-01 2.7958E+01 -2.9281E+02 1.4386E+03 -3.3809E+03 3.0874E+03
S2 6.7312E-02 -1.6523E+00 1.1232E+01 -7.6056E+01 3.5904E+02 -1.4135E+03 2.1145E+03
S3 -4.2363E-01 -8.3369E-01 -2.3858E+01 -5.1200E+01 1.3396E+03 -6.1546E+03 9.1490E+03
S4 -1.2298E+00 5.7261E+01 -6.2525E+02 3.3809E+03 -1.0650E+04 1.8276E+04 -1.2844E+04
S5 -3.0085E+00 1.1570E+02 -1.0863E+03 5.5739E+03 -1.7433E+04 3.0426E+04 -2.2222E+04
S6 -3.8979E+00 4.3139E+01 -1.8165E+02 3.9020E+02 -4.3893E+02 2.4387E+02 -5.6190E+01
S7 -5.6525E+00 1.9444E+01 -2.8566E+01 2.2214E+01 -7.2931E+00 6.8834E-01 -2.5454E+00
S8 -2.0259E+00 7.8858E+00 -2.0795E+01 3.5692E+01 -3.2980E+01 1.5043E+01 -2.6561E+00
S9 -7.6132E-01 1.6002E+00 -1.9315E+00 1.4421E+00 -6.3184E-01 1.4891E-01 -1.4647E-02
S10 -7.0028E-01 1.1526E+00 -1.6386E+00 1.4724E+00 -7.7437E-01 2.1669E-01 -2.4691E-02
表14
表15给出实施例5中光学系统的总有效焦距f、各透镜的有效焦距f1至f5以及光学系统的物方数值孔径NA。
参数 f(mm) f1(mm) f2(mm) f3(mm) f4(mm) f5(mm) NA
数值 1.98 3.75 1.78 -25.41 1.90 -1.97 0.16
表15
图10A示出了实施例5的光学系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10B示出了实施例5的光学系统的畸变曲线,其表示不同像源高度处的畸变大小值。图10C示出了实施例5的光学系统的相对照度曲线,其表示不同像源高度所对应的相对照度。根据 图10A和图10C可知,实施例5所给出的光学系统能够实现良好的成像品质。
实施例6
以下参照图11至图12C描述了根据本申请实施例6的光学系统。图11示出了根据本申请实施例6的光学系统的结构示意图。
如图11所示,根据本申请示例性实施方式的光学系统沿光轴由成像侧至像源侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4和第五透镜E5。
第一透镜E1具有正光焦度,其近成像侧面S1为凸面,近像源侧面S2为凹面;第二透镜E2具有正光焦度,其近成像侧面S3为凸面,近像源侧面S4为凸面;第三透镜E3具有负光焦度,其近成像侧面S5为凹面,近像源侧面S6为凸面;第四透镜E4具有正光焦度,其近成像侧面S7为凹面,近像源侧面S8为凸面;第五透镜E5具有负光焦度,其近成像侧面S9为凹面,近像源侧面S10为凸面。在约800nm至约1000nm光波波段中,该光学系统的光线透过率大于85%。来自像源面S11的光依序穿过各表面S10至S1并最终投射至空间中的目标物体上(未示出)。
表16示出了实施例6的光学系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018114512-appb-000008
表16
由表16可知,在实施例6中,第一透镜E1至第五透镜E5中任意一个透镜的近成像侧面和近像源侧面均为非球面。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 -1.2505E-01 -3.4315E-01 2.8324E+01 -3.0121E+02 1.4235E+03 -3.1363E+03 2.5738E+03
S2 5.5156E-02 -1.5158E+00 1.2922E+01 -7.2277E+01 3.5429E+02 -1.5147E+03 2.5382E+03
S3 -9.8428E-02 -3.1893E+00 -1.8758E+01 -3.9951E+01 1.3186E+03 -6.2798E+03 9.5542E+03
S4 -6.9913E-01 5.7111E+01 -6.2645E+02 3.3743E+03 -1.0658E+04 1.8275E+04 -1.2785E+04
S5 -2.4824E+00 1.1459E+02 -1.0859E+03 5.5768E+03 -1.7444E+04 3.0391E+04 -2.2116E+04
S6 -4.1654E+00 4.4080E+01 -1.8078E+02 3.8954E+02 -4.4142E+02 2.4166E+02 -4.9662E+01
S7 -5.7951E+00 1.8850E+01 -2.8883E+01 2.3094E+01 -5.6934E+00 1.2713E+00 -5.7797E+00
S8 -2.0351E+00 7.6721E+00 -2.0682E+01 3.5721E+01 -3.3005E+01 1.5038E+01 -2.6464E+00
S9 -7.0727E-01 1.5936E+00 -1.9334E+00 1.4419E+00 -6.3190E-01 1.4895E-01 -1.4567E-02
S10 -5.3295E-01 1.0764E+00 -1.6362E+00 1.4766E+00 -7.7336E-01 2.1674E-01 -2.4804E-02
表17
表18给出实施例6中光学系统的总有效焦距f、各透镜的有效焦距f1至f5以及光学系统的物方数值孔径NA。
参数 f(mm) f1(mm) f2(mm) f3(mm) f4(mm) f5(mm) NA
数值 2.02 3.82 1.55 -3.22 1.86 -2.58 0.16
表18
图12A示出了实施例6的光学系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12B示出了实施例6的光学系统的畸变曲线,其表示不同像源高度处的畸变大小值。图12C示出了实施例6的光学系统的相对照度曲线,其表示不同像源高度所对应的相对照度。根据图12A和图12C可知,实施例6所给出的光学系统能够实现良好的成像品质。
实施例7
以下参照图13至图14C描述了根据本申请实施例7的光学系统。图13示出了根据本申请实施例7的光学系统的结构示意图。
如图13所示,根据本申请示例性实施方式的光学系统沿光轴由成 像侧至像源侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4和第五透镜E5。
第一透镜E1具有正光焦度,其近成像侧面S1为凸面,近像源侧面S2为凹面;第二透镜E2具有正光焦度,其近成像侧面S3为凹面,近像源侧面S4为凸面;第三透镜E3具有负光焦度,其近成像侧面S5为凹面,近像源侧面S6为凸面;第四透镜E4具有正光焦度,其近成像侧面S7为凹面,近像源侧面S8为凸面;第五透镜E5具有正光焦度,其近成像侧面S9为凹面,近像源侧面S10为凸面。在约800nm至约1000nm光波波段中,该光学系统的光线透过率大于85%。来自像源面S11的光依序穿过各表面S10至S1并最终投射至空间中的目标物体上(未示出)。
表19示出了实施例7的光学系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018114512-appb-000009
表19
由表19可知,在实施例7中,第一透镜E1至第五透镜E5中任意一个透镜的近成像侧面和近像源侧面均为非球面。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 1.5885E-01 -1.1095E+00 2.9188E+01 -2.5757E+02 1.3402E+03 -3.4104E+03 3.0018E+03
S2 4.5647E-01 -9.1291E-01 7.1021E+00 -2.6044E+01 1.7700E+02 -1.3315E+03 2.5855E+03
S3 -3.4479E-01 5.4693E+00 -5.5412E+01 6.0501E+00 1.4744E+03 -6.2788E+03 8.7888E+03
S4 -5.9523E-01 5.6404E+01 -6.1852E+02 3.3757E+03 -1.0664E+04 1.8360E+04 -1.2510E+04
S5 -1.6232E+00 1.1100E+02 -1.0862E+03 5.6049E+03 -1.7373E+04 3.0424E+04 -2.2728E+04
S6 -4.4440E+00 4.3718E+01 -1.8059E+02 3.8959E+02 -4.4055E+02 2.4351E+02 -5.5087E+01
S7 -5.6405E+00 1.9259E+01 -2.8701E+01 2.2040E+01 -7.5889E+00 6.4142E-01 -4.1747E-01
S8 -2.2438E+00 7.8190E+00 -2.0722E+01 3.5707E+01 -3.2999E+01 1.5028E+01 -2.6723E+00
S9 -6.8580E-01 1.5900E+00 -1.9354E+00 1.4418E+00 -6.3175E-01 1.4910E-01 -1.4605E-02
S10 -5.8668E-01 1.1189E+00 -1.6428E+00 1.4748E+00 -7.7379E-01 2.1689E-01 -2.4721E-02
表20
表21给出实施例7中光学系统的总有效焦距f、各透镜的有效焦距f1至f5以及光学系统的物方数值孔径NA。
参数 f(mm) f1(mm) f2(mm) f3(mm) f4(mm) f5(mm) NA
数值 1.90 2.14 1.29 -1.89 2.13 1.52 0.17
表21
图14A示出了实施例7的光学系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14B示出了实施例7的光学系统的畸变曲线,其表示不同像源高度处的畸变大小值。图14C示出了实施例7的光学系统的相对照度曲线,其表示不同像源高度所对应的相对照度。根据图14A和图14C可知,实施例7所给出的光学系统能够实现良好的成像品质。
综上,实施例1至实施例7分别满足表22中所示的关系。
条件式\实施例 1 2 3 4 5 6 7
f2/f 0.63 0.74 0.67 0.68 0.90 0.77 0.68
(1+TAN(CRA))×TTL/IH 2.12 2.27 2.12 2.16 2.20 2.28 2.20
NA 0.18 0.16 0.17 0.17 0.16 0.16 0.17
Tr5r8/CT5 1.77 2.08 2.06 1.24 2.20 2.21 1.98
T23/T34 0.40 0.50 0.32 0.23 0.56 0.60 0.38
|R4-R5|/|R4+R5| 0.04 0.37 0.01 0.17 0.44 0.48 0.07
R8/f -0.45 -0.50 -0.45 -0.70 -0.37 -0.43 -0.48
SAG41/SAG42 0.62 0.46 0.55 0.79 0.59 0.55 0.54
ET5/CT5 0.35 0.38 0.38 0.38 0.39 0.40 0.42
SAG51/SAG52 0.37 0.27 0.54 0.24 0.52 0.54 0.58
SAG52/CT5 -1.02 -0.85 -1.35 -0.82 -1.28 -1.32 -1.36
表22
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (39)

  1. 光学系统,沿光轴由成像侧至像源侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,其特征在于,
    所述第一透镜具有正光焦度,其近像源侧面为凹面;
    所述第二透镜具有正光焦度,其近像源侧面为凸面;
    所述第三透镜具有负光焦度,其近像源侧面为凸面;
    所述第四透镜具有光焦度,其近成像侧面为凹面;
    所述第五透镜具有光焦度;
    所述第二透镜的有效焦距f2与所述光学系统的总有效焦距f满足0<f2/f<1。
  2. 根据权利要求1所述的光学系统,其特征在于,所述第三透镜的近成像侧面至所述第四透镜的近像源侧面在所述光轴上的间隔距离Tr5r8与所述第五透镜于所述光轴上的中心厚度CT5满足1.2<Tr5r8/CT5<2.3。
  3. 根据权利要求1所述的光学系统,其特征在于,所述第二透镜和所述第三透镜在所述光轴上的间隔距离T23与所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34满足0.2<T23/T34<0.7。
  4. 根据权利要求1所述的光学系统,其特征在于,所述第二透镜的近像源侧面的曲率半径R4与所述第三透镜的近成像侧面的曲率半径R5满足|R4-R5|/|R4+R5|<0.5。
  5. 根据权利要求1所述的光学系统,其特征在于,所述第四透镜的近像源侧面的曲率半径R8与所述光学系统的总有效焦距f满足-1<R8/f<0。
  6. 根据权利要求1所述的光学系统,其特征在于,所述第四透镜 的近成像侧面和所述光轴的交点至所述第四透镜近成像侧面的最大有效半口径顶点在所述光轴上距离SAG41与所述第四透镜的近像源侧面和所述光轴的交点至所述第四透镜近像源侧面的最大有效半口径顶点在所述光轴上距离SAG42满足0.45<SAG41/SAG42<1。
  7. 根据权利要求1所述的光学系统,其特征在于,所述第五透镜的近成像侧面和所述光轴的交点至所述第五透镜近成像侧面的最大有效半口径顶点在所述光轴上距离SAG51与所述第五透镜的近像源侧面和所述光轴的交点至所述第五透镜近像源侧面的最大有效半口径顶点在所述光轴上距离SAG52满足0<SAG51/SAG52<0.6。
  8. 根据权利要求7所述的光学系统,其特征在于,所述第五透镜的近像源侧面和所述光轴的交点至所述第五透镜近像源侧面的最大有效半口径顶点在所述光轴上距离SAG52与所述第五透镜于所述光轴上的中心厚度CT5满足-1.5<SAG52/CT5<-0.8。
  9. 根据权利要求8所述的光学系统,其特征在于,所述第五透镜的边缘厚度ET5与所述第五透镜于所述光轴上的中心厚度CT5满足0<ET5/CT5<0.5。
  10. 根据权利要求1至9中任一项所述的光学系统,其特征在于,所述光学系统的主光线最大入射角度CRA、所述第一透镜的近成像侧面至所述光学系统的像源面在所述光轴上的间隔距离TTL与所述像源直径对角线长的一半IH满足2<(1+TAN(CRA))×TTL/IH<2.5。
  11. 根据权利要求1至9中任一项所述的光学系统,其特征在于,所述光学系统的物方数值孔径NA满足NA<0.19。
  12. 根据权利要求1至9中任一项所述的光学系统,其特征在于,在800nm至1000nm的光波波段中,所述光学系统的光线透过率大于 85%。
  13. 根据权利要求1至9中任一项所述的光学系统,其特征在于,所述第一透镜的近像源侧面的有效半口径DT12、所述第二透镜的近像源侧面的有效半口径DT22、所述第三透镜的近像源侧面的有效半口径DT32、所述第四透镜的近像源侧面的有效半口径DT42以及所述第五透镜的近像源侧面的有效半口径DT52满足DT12<DT22<DT32<DT42<DT52。
  14. 光学系统,沿光轴由成像侧至像源侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,其特征在于,
    所述第一透镜具有正光焦度,其近像源侧面为凹面;
    所述第二透镜具有正光焦度,其近像源侧面为凸面;
    所述第三透镜具有负光焦度,其近像源侧面为凸面;
    所述第四透镜具有光焦度,其近成像侧面为凹面;
    所述第五透镜具有光焦度;
    所述第五透镜的边缘厚度ET5与所述第五透镜于所述光轴上的中心厚度CT5满足0<ET5/CT5<0.5。
  15. 根据权利要求14所述的光学系统,其特征在于,所述第三透镜的近成像侧面至所述第四透镜的近像源侧面在所述光轴上的间隔距离Tr5r8与所述第五透镜于所述光轴上的中心厚度CT5满足1.2<Tr5r8/CT5<2.3。
  16. 根据权利要求14所述的光学系统,其特征在于,所述第五透镜的近像源侧面和所述光轴的交点至所述第五透镜近像源侧面的最大有效半口径顶点在所述光轴上距离SAG52与所述第五透镜于所述光轴上的中心厚度CT5满足-1.5<SAG52/CT5<-0.8。
  17. 根据权利要求14所述的光学系统,其特征在于,所述第四透 镜的近成像侧面和所述光轴的交点至所述第四透镜近成像侧面的最大有效半口径顶点在所述光轴上距离SAG41与所述第四透镜的近像源侧面和所述光轴的交点至所述第四透镜近像源侧面的最大有效半口径顶点在所述光轴上距离SAG42满足0.45<SAG41/SAG42<1。
  18. 根据权利要求14或17所述的光学系统,其特征在于,所述第五透镜的近成像侧面和所述光轴的交点至所述第五透镜近成像侧面的最大有效半口径顶点在所述光轴上距离SAG51与所述第五透镜的近像源侧面和所述光轴的交点至所述第五透镜近像源侧面的最大有效半口径顶点在所述光轴上距离SAG52满足0<SAG51/SAG52<0.6。
  19. 根据权利要求14所述的光学系统,其特征在于,所述第二透镜的近像源侧面的曲率半径R4与所述第三透镜的近成像侧面的曲率半径R5满足|R4-R5|/|R4+R5|<0.5。
  20. 根据权利要求14所述的光学系统,其特征在于,所述第四透镜的近像源侧面的曲率半径R8与所述光学系统的总有效焦距f满足-1<R8/f<0。
  21. 根据权利要求19或20所述的光学系统,其特征在于,所述第二透镜和所述第三透镜在所述光轴上的间隔距离T23与所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34满足0.2<T23/T34<0.7。
  22. 根据权利要求14所述的光学系统,其特征在于,所述第二透镜的有效焦距f2与所述光学系统的总有效焦距f满足0<f2/f<1。
  23. 根据权利要求14所述的光学系统,其特征在于,所述第一透镜的近像源侧面的有效半口径DT12、所述第二透镜的近像源侧面的有效半口径DT22、所述第三透镜的近像源侧面的有效半口径DT32、所 述第四透镜的近像源侧面的有效半口径DT42以及所述第五透镜的近像源侧面的有效半口径DT52满足DT12<DT22<DT32<DT42<DT52。
  24. 根据权利要求23所述的光学系统,其特征在于,在800nm至1000nm的光波波段中,所述光学系统的光线透过率大于85%。
  25. 根据权利要求23所述的光学系统,其特征在于,所述光学系统的物方数值孔径NA满足NA<0.19。
  26. 根据权利要求23所述的光学系统,其特征在于,所述光学系统的主光线最大入射角度CRA、所述第一透镜的近成像侧面至所述光学系统的像源面在所述光轴上的间隔距离TTL与所述像源直径对角线长的一半IH满足2<(1+TAN(CRA))×TTL/IH<2.5。
  27. 光学系统,沿光轴由成像侧至像源侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,其特征在于,
    所述第一透镜具有正光焦度,其近像源侧面为凹面;
    所述第二透镜具有正光焦度,其近像源侧面为凸面;
    所述第三透镜具有负光焦度,其近像源侧面为凸面;
    所述第四透镜具有光焦度,其近成像侧面为凹面;
    所述第五透镜具有光焦度;
    所述第五透镜的近像源侧面和所述光轴的交点至所述第五透镜近像源侧面的最大有效半口径顶点在所述光轴上距离SAG52与所述第五透镜于所述光轴上的中心厚度CT5满足-1.5<SAG52/CT5<-0.8。
  28. 根据权利要求27所述的光学系统,其特征在于,所述第三透镜的近成像侧面至所述第四透镜的近像源侧面在所述光轴上的间隔距离Tr5r8与所述第五透镜于所述光轴上的中心厚度CT5满足1.2<Tr5r8/CT5<2.3。
  29. 根据权利要求28所述的光学系统,其特征在于,所述第四透镜的近像源侧面的曲率半径R8与所述光学系统的总有效焦距f满足-1<R8/f<0。
  30. 根据权利要求28所述的光学系统,其特征在于,所述第二透镜和所述第三透镜在所述光轴上的间隔距离T23与所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34满足0.2<T23/T34<0.7。
  31. 根据权利要求30所述的光学系统,其特征在于,所述第二透镜的近像源侧面的曲率半径R4与所述第三透镜的近成像侧面的曲率半径R5满足|R4-R5|/|R4+R5|<0.5。
  32. 根据权利要求31所述的光学系统,其特征在于,所述第二透镜的有效焦距f2与所述光学系统的总有效焦距f满足0<f2/f<1。
  33. 根据权利要求27所述的光学系统,其特征在于,所述第五透镜的近成像侧面和所述光轴的交点至所述第五透镜近成像侧面的最大有效半口径顶点在所述光轴上距离SAG51与所述第五透镜的近像源侧面和所述光轴的交点至所述第五透镜近像源侧面的最大有效半口径顶点在所述光轴上距离SAG52满足0<SAG51/SAG52<0.6。
  34. 根据权利要求33所述的光学系统,其特征在于,所述第五透镜的边缘厚度ET5与所述第五透镜于所述光轴上的中心厚度CT5满足0<ET5/CT5<0.5。
  35. 根据权利要求27所述的光学系统,其特征在于,所述第四透镜的近成像侧面和所述光轴的交点至所述第四透镜近成像侧面的最大有效半口径顶点在所述光轴上距离SAG41与所述第四透镜的近像源侧面和所述光轴的交点至所述第四透镜近像源侧面的最大有效半口径 顶点在所述光轴上距离SAG42满足0.45<SAG41/SAG42<1。
  36. 根据权利要求27至35中任一项所述的光学系统,其特征在于,所述第一透镜的近像源侧面的有效半口径DT12、所述第二透镜的近像源侧面的有效半口径DT22、所述第三透镜的近像源侧面的有效半口径DT32、所述第四透镜的近像源侧面的有效半口径DT42以及所述第五透镜的近像源侧面的有效半口径DT52满足DT12<DT22<DT32<DT42<DT52。
  37. 根据权利要求36所述的光学系统,其特征在于,所述光学系统的主光线最大入射角度CRA、所述第一透镜的近成像侧面至所述光学系统的像源面在所述光轴上的间隔距离TTL与所述像源直径对角线长的一半IH满足2<(1+TAN(CRA))×TTL/IH<2.5。
  38. 根据权利要求36所述的光学系统,其特征在于,所述光学系统的物方数值孔径NA满足NA<0.19。
  39. 根据权利要求36所述的光学系统,其特征在于,在800nm至1000nm的光波波段中,所述光学系统的光线透过率大于85%。
PCT/CN2018/114512 2018-03-30 2018-11-08 光学系统 WO2019184367A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810297721.1A CN108388006B (zh) 2018-03-30 2018-03-30 光学系统
CN201810297721.1 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019184367A1 true WO2019184367A1 (zh) 2019-10-03

Family

ID=63072420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114512 WO2019184367A1 (zh) 2018-03-30 2018-11-08 光学系统

Country Status (2)

Country Link
CN (2) CN108388006B (zh)
WO (1) WO2019184367A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023019125A1 (en) * 2021-08-11 2023-02-16 Zygo Corporation Optical module

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108388006B (zh) * 2018-03-30 2023-06-16 浙江舜宇光学有限公司 光学系统
CN110275278A (zh) * 2019-07-23 2019-09-24 浙江舜宇光学有限公司 光学成像镜头
CN110412750A (zh) * 2019-09-05 2019-11-05 浙江舜宇光学有限公司 光学成像系统
CN114779449B (zh) * 2022-04-26 2023-09-08 东莞晶彩光学有限公司 一种近距离拍摄用广视角镜头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1949017A (zh) * 2006-11-08 2007-04-18 中国科学院上海技术物理研究所 一种用于动态测角仪的投影光学系统
CN103955046A (zh) * 2014-03-20 2014-07-30 苏州佳世达光电有限公司 投影镜头及投影装置
CN205067851U (zh) * 2015-09-01 2016-03-02 深圳市三优光电有限公司 一种远心投影镜头
CN107436474A (zh) * 2016-05-26 2017-12-05 信泰光学(深圳)有限公司 投影镜头
CN108388006A (zh) * 2018-03-30 2018-08-10 浙江舜宇光学有限公司 光学系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221367B1 (zh) * 1971-02-10 1977-06-10
KR20100002623A (ko) * 2008-06-30 2010-01-07 삼성전기주식회사 이미지 렌즈
JP5654384B2 (ja) * 2011-02-28 2015-01-14 カンタツ株式会社 撮像レンズ
CN103412396B (zh) * 2013-04-12 2015-12-09 玉晶光电(厦门)有限公司 光学成像镜头及应用此镜头的电子装置
JP2014044443A (ja) * 2013-11-28 2014-03-13 Hitachi Maxell Ltd 撮像レンズ系
KR101659140B1 (ko) * 2014-02-27 2016-09-22 삼성전기주식회사 렌즈 모듈
KR101659165B1 (ko) * 2014-09-30 2016-09-22 삼성전기주식회사 촬상 광학계
TWI553335B (zh) * 2014-10-07 2016-10-11 先進光電科技股份有限公司 光學成像系統
TWI537587B (zh) * 2014-11-04 2016-06-11 先進光電科技股份有限公司 光學成像系統
TWI591374B (zh) * 2015-01-06 2017-07-11 先進光電科技股份有限公司 光學成像系統(二)
KR102314437B1 (ko) * 2015-11-23 2021-10-19 삼성전기주식회사 카메라 모듈

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1949017A (zh) * 2006-11-08 2007-04-18 中国科学院上海技术物理研究所 一种用于动态测角仪的投影光学系统
CN103955046A (zh) * 2014-03-20 2014-07-30 苏州佳世达光电有限公司 投影镜头及投影装置
CN205067851U (zh) * 2015-09-01 2016-03-02 深圳市三优光电有限公司 一种远心投影镜头
CN107436474A (zh) * 2016-05-26 2017-12-05 信泰光学(深圳)有限公司 投影镜头
CN108388006A (zh) * 2018-03-30 2018-08-10 浙江舜宇光学有限公司 光学系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023019125A1 (en) * 2021-08-11 2023-02-16 Zygo Corporation Optical module

Also Published As

Publication number Publication date
CN108388006A (zh) 2018-08-10
CN109358406B (zh) 2020-11-03
CN108388006B (zh) 2023-06-16
CN109358406A (zh) 2019-02-19

Similar Documents

Publication Publication Date Title
WO2019169889A1 (zh) 投影镜头
WO2019210739A1 (zh) 光学成像镜头
WO2019184367A1 (zh) 光学系统
WO2019114366A1 (zh) 光学成像镜头
WO2020073703A1 (zh) 光学透镜组
CN110208928B (zh) 投影镜头
WO2019233040A1 (zh) 摄像透镜组
WO2019056817A1 (zh) 光学成像系统
WO2019137055A1 (zh) 摄像透镜系统
WO2019052220A1 (zh) 光学成像镜头
WO2019192160A1 (zh) 光学成像镜头
WO2019218628A1 (zh) 光学成像镜头
WO2021036554A1 (zh) 光学成像镜头
WO2019233159A1 (zh) 光学成像镜头
WO2018218889A1 (zh) 光学成像系统
WO2018209890A1 (zh) 成像镜头
WO2019062136A1 (zh) 摄像透镜组
WO2018223651A1 (zh) 摄像镜头
WO2019007065A1 (zh) 光学成像镜头
WO2019000986A1 (zh) 光学成像系统
WO2020107934A1 (zh) 光学透镜组
WO2019210701A1 (zh) 光学成像系统
CN107831630B (zh) 投影镜头
WO2019037420A1 (zh) 摄像透镜组
WO2019019625A1 (zh) 摄像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911631

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18911631

Country of ref document: EP

Kind code of ref document: A1