WO2019019625A1 - 摄像镜头 - Google Patents

摄像镜头 Download PDF

Info

Publication number
WO2019019625A1
WO2019019625A1 PCT/CN2018/077204 CN2018077204W WO2019019625A1 WO 2019019625 A1 WO2019019625 A1 WO 2019019625A1 CN 2018077204 W CN2018077204 W CN 2018077204W WO 2019019625 A1 WO2019019625 A1 WO 2019019625A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
image pickup
optical axis
imaging
image
Prior art date
Application number
PCT/CN2018/077204
Other languages
English (en)
French (fr)
Inventor
贾远林
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201720904063.9U external-priority patent/CN207123643U/zh
Priority claimed from CN201710609936.8A external-priority patent/CN107167901B/zh
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Priority to US16/231,127 priority Critical patent/US11199699B2/en
Publication of WO2019019625A1 publication Critical patent/WO2019019625A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • G02B9/58Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only arranged - + + -

Definitions

  • the present application relates to an imaging lens, and more particularly to an imaging lens composed of four lenses.
  • 3D depth cameras are highly dependent.
  • the 3D depth camera can obtain the depth information of the subject, including the 3D position and size information, in addition to the planar image. Therefore, the entire computing system obtains three-dimensional data of the environment and objects, and can be applied in the fields of human body tracking, three-dimensional reconstruction, human-computer interaction, SLAM (instant positioning and map construction).
  • three-dimensional depth measurement generally has three technical solutions, namely, double-shot, structured light, and TOF.
  • the TOF is an abbreviation of Time of Flight technology, which is to calculate the time of flight of light.
  • TOF technology is widely used because of its fast response, high depth information accuracy, small size, and low environmental sensitivity.
  • the present invention aims to provide an imaging lens that can be applied to a large aperture, a large angle of view, a high resolution, and a high imaging quality that can be applied to various fields, particularly in the field of three-dimensional depth measurement.
  • an image pickup lens having an effective focal length f and an entrance pupil diameter EPD, the image pickup lens sequentially including a first lens and a second from the object side to the image side along the optical axis a lens, a third lens, and a fourth lens, wherein the first lens may have a negative power, the image side is a concave surface; the second lens may have a positive power or a negative power; and the third lens may have a positive power The fourth lens may have a positive power or a negative power, the image side of which is a convex surface; and the effective half diameter DT11 of the object side of the first lens and the diagonal length of the effective pixel area of the electronic photosensitive element of the imaging lens are half ImgH Between: 1.2 ⁇ DT11 / ImgH ⁇ 2.6.
  • an image pickup lens having an effective focal length f and an entrance pupil diameter EPD, the image pickup lens sequentially including a first lens from the object side to the image side along the optical axis, a second lens, a third lens, and a fourth lens, wherein the first lens has a negative power, the image side is a concave surface; the third lens has a positive power; the image side of the fourth lens is a convex surface; the first lens and the first lens The combined power of the two lenses is negative; the combined power of the third lens and the fourth lens is positive; and the effective half diameter DT32 of the image side of the first lens and the effective focal length f3 of the third lens are satisfied. :0.1 ⁇ DT32/f3 ⁇ 0.6.
  • an image pickup lens having an effective focal length f and an entrance pupil diameter EPD, the image pickup lens sequentially including a first lens from the object side to the image side along the optical axis, a second lens, a third lens, and a fourth lens, wherein the first lens has a negative power, the image side is a concave surface; the third lens has a positive power; the image side of the fourth lens is a convex surface; the first lens and the first lens The combined power of the two lenses is negative; the combined power of the third lens and the fourth lens is positive; and 0.9 ⁇ SAG11/CT1 ⁇ 1.75 can be satisfied, for example, 0.93 ⁇ SAG11/CT1 ⁇ 1.71, wherein SAG11 is The distance between the intersection of the side of the first lens object and the optical axis to the apex of the effective half-diameter of the side of the first lens object on the optical axis, and CT1 is the center thickness of the first lens on the optical axis
  • the effective focal length f of the imaging lens and the effective focal length f1 of the first lens may satisfy: -4 ⁇ f1/f ⁇ -2, for example, -2.84 ⁇ f1/f ⁇ -3.22.
  • the effective focal length f of the imaging lens and the entrance pupil diameter EPD of the imaging lens may satisfy: f/EPD ⁇ 1.8, for example, f/EPD ⁇ 1.19.
  • the half of the diagonal length ImgH of the effective pixel area of the imaging lens electronic photosensitive element and the effective focal length f of the imaging lens may satisfy: Imgh/f>1, for example, Imgh/f ⁇ 1.19.
  • the radius of curvature R2 of the image side of the first lens and the effective focal length f of the imaging lens may satisfy: 1 ⁇ R2 / f ⁇ 1.5, for example, 1.06 ⁇ R2 / f ⁇ 1.38.
  • 0.2 ⁇ CT1/(CT2+CT3+CT4) ⁇ 0.5 may be satisfied, for example, 0.23 ⁇ CT1/(CT2+CT3+CT4) ⁇ 0.37, where CT1 is the first lens on the optical axis.
  • CT2 is the center thickness of the second lens on the optical axis
  • CT3 is the center thickness of the third lens on the optical axis
  • CT4 is the center thickness of the fourth lens on the optical axis.
  • it may satisfy: 2 ⁇ T12/T23 ⁇ 4, for example, 2.06 ⁇ T12/T23 ⁇ 3.75, where T12 is the air spacing of the first lens and the second lens on the optical axis, and T23 is the first The air separation of the second lens and the third lens on the optical axis.
  • the effective half-diameter DT11 of the object side of the first lens is equal to half the ImgH of the diagonal length of the effective pixel area of the electronic photosensitive element of the imaging lens: 1.2 ⁇ DT11/ImgH ⁇ 2.6, for example, 1.24 ⁇ DT11 / ImgH ⁇ 2.56.
  • the effective half-diameter DT32 of the image side of the first lens and the effective focal length f3 of the third lens may satisfy: 0.1 ⁇ DT32/f3 ⁇ 0.6, for example, 0.18 ⁇ DT32/f3 ⁇ 0.55.
  • 0.3 ⁇ CT/TTL ⁇ 0.6 may be satisfied, for example, 0.35 ⁇ CT/TTL ⁇ 0.46, where ⁇ CT is the sum of thicknesses of the first lens to the fourth lens on the optical axis, respectively, and The TTL is the distance from the side of the first lens to the optical axis of the imaging surface.
  • 0.9 ⁇ SAG11/CT1 ⁇ 1.75 may be satisfied, for example, 0.93 ⁇ SAG11/CT1 ⁇ 1.71, wherein SAG11 is the effective half-diameter apex of the intersection of the first lens object side and the optical axis to the first lens object side.
  • the distance between the optical axes and CT1 is the center thickness of the first lens on the optical axis.
  • an infrared band pass filter is disposed between the fourth lens and the imaging surface of the imaging lens.
  • the combined power of the first lens and the second lens may be negative; and the combined power of the third lens and the fourth lens may be positive.
  • the second lens can have positive or negative power.
  • the fourth lens may have positive or negative power.
  • the above-configured imaging lens it is possible to further have at least one advantageous effect such as a large aperture, a large angle of view, a high resolution, a wide angle, a miniaturization, a high image quality, and a balance aberration.
  • FIG. 1 is a schematic structural view showing an image pickup lens according to Embodiment 1 of the present application.
  • 2A to 2D respectively show an axial chromatic aberration curve, an astigmatism curve, a magnification chromatic aberration curve, and a phase contrast curve of the imaging lens of Embodiment 1;
  • FIG. 3 is a schematic structural view showing an image pickup lens according to Embodiment 2 of the present application.
  • 4A to 4D respectively show an axial chromatic aberration curve, an astigmatism curve, a magnification chromatic aberration curve, and a phase contrast curve of the imaging lens of Embodiment 2.
  • FIG. 5 is a schematic structural view showing an image pickup lens according to Embodiment 3 of the present application.
  • 6A to 6D respectively show an axial chromatic aberration curve, an astigmatism curve, a magnification chromatic aberration curve, and a phase contrast curve of the image pickup lens of Embodiment 3.
  • FIG. 7 is a schematic structural view showing an image pickup lens according to Embodiment 4 of the present application.
  • 8A to 8D respectively show an axial chromatic aberration curve, an astigmatism curve, a magnification chromatic aberration curve, and a phase contrast curve of the imaging lens of Embodiment 4;
  • FIG. 9 is a schematic structural view showing an image pickup lens according to Embodiment 5 of the present application.
  • 10A to 10D respectively show an axial chromatic aberration curve, an astigmatism curve, a magnification chromatic aberration curve, and a phase contrast curve of the imaging lens of Embodiment 5;
  • FIG. 11 is a schematic structural view showing an image pickup lens according to Embodiment 6 of the present application.
  • 12A to 12D respectively show an axial chromatic aberration curve, an astigmatism curve, a magnification chromatic aberration curve, and a phase contrast curve of the imaging lens of Embodiment 6;
  • FIG. 13 is a schematic structural view showing an image pickup lens according to Embodiment 7 of the present application.
  • 14A to 14D respectively show an axial chromatic aberration curve, an astigmatism curve, a magnification chromatic aberration curve, and a phase contrast curve of the image pickup lens of Example 7.
  • first, second, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
  • first lens discussed below may also be referred to as a second lens without departing from the teachings of the present application.
  • the thickness, size, and shape of the lens have been somewhat exaggerated for convenience of explanation.
  • the spherical or aspherical shape shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspherical surface is not limited to the spherical or aspherical shape shown in the drawings.
  • the drawings are only examples and are not to scale.
  • the paraxial region refers to a region near the optical axis.
  • the first lens is the lens closest to the object and the fourth lens is the lens closest to the photosensitive element.
  • the surface closest to the object in each lens is referred to as the object side, and the surface of each lens closest to the image plane is referred to as the image side.
  • the image pickup lens according to an exemplary embodiment of the present application has, for example, four lenses, that is, a first lens, a second lens, a third lens, and a fourth lens.
  • the four lenses are sequentially arranged from the object side to the image side along the optical axis.
  • the first lens may have a negative power, the image side is a concave surface; the second lens may have a positive power or a negative power; the third lens may have a positive power; the fourth lens may It has a positive power or a negative power, and its image side is convex.
  • the wide-angle imaging lens adopts an anti-distance optical structure, the refractive power of the lens group I (first lens, second lens) is negative, and the power of the lens group II (third lens, fourth lens) is positive, the axis After the external light passes through the divergence of the negative lens of the first group, the dip angle of the lens passing through the group II lens is significantly smaller, so that it bears a smaller field of view, which is advantageous for the correction of the off-axis aberration of the subsequent component, and the corresponding negative lens Group I assumes a larger field of view.
  • the imaging lens can obtain superior imaging quality, and the ultra-thin and large aperture characteristics can be realized.
  • an effective half-diameter DT11 of the object side of the first lens and a half ImgH of the diagonal length of the effective pixel area of the electronic photosensitive element of the imaging lens may satisfy: 1.2 ⁇ DT11/ImgH ⁇ 2.6, more specific Ground, can further satisfy 1.24 ⁇ DT11 / ImgH ⁇ 2.56. With such a configuration, the first lens aperture is reduced, and the processing performance of the first lens of the wide-angle lens is improved.
  • the effective focal length f of the imaging lens and the effective focal length f1 of the first lens may satisfy: -4 ⁇ f1/f ⁇ -2, and more specifically, may further satisfy -2.84 ⁇ f1/f ⁇ -2.32.
  • the effective focal length f of the imaging lens and the entrance pupil diameter EPD of the imaging lens may satisfy: f/EPD ⁇ 1.8, and more specifically, f/EPD ⁇ 1.19 may be further satisfied.
  • the energy density of the imaging surface can be effectively improved on the imaging surface, which is advantageous for improving the signal-to-noise ratio of the image side sensor output signal, that is, the accuracy of the measurement depth.
  • the half of the diagonal length ImgH of the effective pixel area of the imaging lens electronic photosensitive element and the effective focal length f of the imaging lens may satisfy: Imgh/f>1, and more specifically, may further satisfy Imgh/ f ⁇ 1.19.
  • the radius of curvature R2 of the image side of the first lens and the effective focal length f of the imaging lens may satisfy: 1 ⁇ R2 / f ⁇ 1.5, and more specifically, may further satisfy 1.06 ⁇ R2 / f ⁇ 1.38.
  • 0.2 ⁇ CT1/(CT2+CT3+CT4) ⁇ 0.5 may be satisfied, and more specifically, 0.23 ⁇ CT1/(CT2+CT3+CT4) ⁇ 0.37 may be further satisfied, wherein CT1 is the first The center thickness of the lens on the optical axis, CT2 is the center thickness of the second lens on the optical axis, CT3 is the center thickness of the third lens on the optical axis, and CT4 is the center thickness of the fourth lens on the optical axis.
  • CT1 is the first The center thickness of the lens on the optical axis
  • CT2 is the center thickness of the second lens on the optical axis
  • CT3 is the center thickness of the third lens on the optical axis
  • CT4 is the center thickness of the fourth lens on the optical axis.
  • 2 ⁇ T12/T23 ⁇ 4 may be satisfied, and more specifically, 2.06 ⁇ T12/T23 ⁇ 3.75 may be further satisfied, where T12 is the air of the first lens and the second lens on the optical axis.
  • the spacing, and T23 is the air separation of the second lens and the third lens on the optical axis.
  • a larger air gap is allocated between the first lens and the second lens, on the one hand, because the first lens image has a high side curvature and a high vector height, and the assembly structure is required; the other side can reduce the light entering the second lens.
  • the angle of incidence is good for the balance of aberrations.
  • the effective half-diameter DT32 of the image side of the first lens and the effective focal length f3 of the third lens may satisfy: 0.1 ⁇ DT32/f3 ⁇ 0.6, and more specifically, may further satisfy 0.18 ⁇ DT32/ F3 ⁇ 0.55.
  • 0.3 ⁇ CT/TTL ⁇ 0.6 may be satisfied, and more specifically, 0.35 ⁇ CT/TTL ⁇ 0.46 may be further satisfied, wherein ⁇ CT is the first lens to the fourth lens respectively on the optical axis
  • ⁇ CT is the first lens to the fourth lens respectively on the optical axis
  • the sum of the thicknesses above, and the TTL is the distance from the side of the first lens to the optical axis of the imaging surface.
  • 0.9 ⁇ SAG11/CT1 ⁇ 1.75 may be satisfied, and more specifically, 0.93 ⁇ SAG11/CT1 ⁇ 1.71 may be further satisfied, wherein SAG11 is the intersection of the first lens object side and the optical axis to the first lens object.
  • the distance between the apex of the effective half-caliber on the optical axis, and CT1 is the center thickness of the first lens on the optical axis.
  • an infrared band pass filter is disposed between the fourth lens and the imaging surface of the imaging lens.
  • the bandpass filter is in a certain band, only a small segment in the middle is a high transmittance passband, and on both sides of the passband is a high reflectance cutoff band.
  • the proper passage of the infrared band can help the system not to introduce the influence of chromatic aberration, control the diameter of the diffuse spot, and the infrared band is beneficial to eliminate the interference of ambient visible light, thereby improving the imaging quality of the lens. With such a configuration, effective recognition of the imaging lens within the effective spectral range is ensured.
  • the infrared band is beneficial to the system to introduce chromatic aberration and control the diameter of the diffuse spot. At the same time, the infrared band is beneficial to reduce the interference of ambient visible light and improve the signal-to-noise ratio of the output signal of the image side sensor.
  • the imaging lens may also be provided with an aperture STO for limiting the light beam, adjusting the amount of light entering, and improving the imaging quality.
  • the image pickup lens according to the above embodiment of the present application may employ a plurality of lenses, such as the four described above. By properly distributing the power, the surface shape, the center thickness of each lens, and the on-axis spacing between the lenses, the aperture of the imaging lens can be effectively enlarged, the system sensitivity can be reduced, the lens can be miniaturized, and imaging can be improved. The quality makes the camera lens more advantageous for production processing and can be applied to portable electronic products.
  • at least one of the mirror faces of each lens is an aspherical mirror.
  • Aspherical lenses are characterized by a continuous change in curvature from the center of the lens to the periphery. Unlike a spherical lens having a constant curvature from the center of the lens to the periphery, the aspherical lens has a better curvature radius characteristic, has an advantage of improving distortion and improving astigmatic aberration, and can make the field of view larger and more realistic. With an aspherical lens, the aberrations that occur during imaging can be eliminated as much as possible, improving image quality. In addition, the use of aspherical lenses can also effectively reduce the number of lenses in an optical system.
  • the various results and advantages described in this specification can be obtained without varying the number of lenses that make up the lens without departing from the technical solutions claimed herein.
  • the image pickup lens is not limited to including four lenses.
  • the camera lens can also include other numbers of lenses if desired.
  • FIG. 1 is a block diagram showing the structure of an image pickup lens according to Embodiment 1 of the present application.
  • the imaging lens includes four lenses L1-L4 which are sequentially arranged from the object side to the imaging side along the optical axis.
  • the first lens L1 has an object side surface S1 and an image side surface S2;
  • the second lens L2 has an object side surface S3 and an image side surface S4;
  • the third lens L3 has an object side surface S5 and an image side surface S6;
  • the fourth lens L4 has an object side surface S7 and an image Side S8.
  • the first lens L1 may have a negative power, the image side thereof is a concave surface; the second lens L2 may have a negative power; the third lens L3 may have a positive power; the fourth lens L4 may have Positive power, the image side is convex.
  • the aperture STO provided between the second lens and the third lens for limiting the light beam is further included.
  • the image pickup lens according to Embodiment 1 may include an infrared band pass filter L5 having an object side surface S9 and an image side surface S10, and the filter sheet L5 may be used to correct color deviation. Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the image pickup lens of Example 1.
  • each lens is used as an example.
  • the aperture of the lens is effectively enlarged, the total length of the lens is shortened, the large aperture and miniaturization of the lens are ensured, and various aberrations are corrected at the same time.
  • the resolution and image quality of the lens is defined by the following formula:
  • x is the position of the aspherical surface at height h in the direction of the optical axis, and the distance from the aspherical vertex is high;
  • k is the conic coefficient (given in Table 1 above);
  • Ai is the correction coefficient of the a-th order of the aspheric surface.
  • Table 2 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 which can be used for each of the mirror faces S1 - S8 in Embodiment 1.
  • Table 3 shown below shows the effective focal lengths f1 to f4 of the lenses of Embodiment 1, the effective focal length f of the imaging lens, the half of the diagonal length of the effective pixel area of the imaging lens electronic photosensitive element, ImgH, and the first lens.
  • the distance between the effective half-caliber vertices on the optical axis, and CT1 is the center thickness of the first lens on the
  • 2A shows an axial chromatic aberration curve of the imaging lens of Embodiment 1, which indicates that light beams of different wavelengths are deviated from a focus point after passing through the imaging lens.
  • 2B shows an astigmatism curve of the imaging lens of Embodiment 1, which shows meridional field curvature and sagittal image plane curvature.
  • 2C shows a magnification chromatic aberration curve of the imaging lens of Embodiment 1, which shows a deviation of different image heights on the imaging plane after the light passes through the imaging lens.
  • Fig. 2D shows a phase contrast curve of the optical imaging system of Embodiment 1, which shows the degree of brightness of the image on the optical axis of the lens, that is, the center of the screen. 2A to 2D, the imaging lens given in Embodiment 1 can achieve good imaging quality.
  • Embodiment 2 of the present application is described below with reference to FIGS. 3 to 4D.
  • the imaging lens described in the embodiment is the same as the imaging lens described in Embodiment 1. For the sake of brevity, a description similar to that of Embodiment 1 will be omitted.
  • FIG. 3 is a block diagram showing the structure of an image pickup lens according to Embodiment 2 of the present application.
  • the imaging lens according to Embodiment 2 includes first to fourth lenses L1 - L4 having an object side and an image side, respectively.
  • the first lens L1 may have a negative power, the image side thereof is a concave surface; the second lens L2 may have a negative power; the third lens L3 may have a positive power; the fourth lens L4 may have Positive power, the image side is convex.
  • Table 4 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the image pickup lens of Example 2.
  • Table 5 shows the high order term coefficients of the respective aspherical mirrors in Example 2.
  • Table 6 shows the effective focal lengths f1 to f4 of the lenses of Embodiment 2, the effective focal length f of the imaging lens, the half ImgH of the diagonal length of the effective pixel area of the imaging lens electronic photosensitive element, and the object side S1 of the first lens L1.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • 4A is a graph showing an axial chromatic aberration curve of the image pickup lens of Embodiment 2, which shows that light beams of different wavelengths are deviated from a focus point after passing through the image pickup lens.
  • 4B shows an astigmatism curve of the imaging lens of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
  • 4C shows a magnification chromatic aberration curve of the imaging lens of Embodiment 2, which shows deviations of different image heights on the imaging plane after the light passes through the imaging lens.
  • Fig. 4D shows a phase contrast curve of the optical imaging system of Embodiment 2, which shows the degree of brightness of the image on the optical axis of the lens, that is, the center of the screen. 4A to 4D, the imaging lens given in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 is a block diagram showing the structure of an image pickup lens according to Embodiment 3 of the present application.
  • the imaging lens according to Embodiment 3 includes first to fourth lenses L1 - L4 having an object side and an image side, respectively.
  • the first lens L1 may have a negative power, the image side thereof is a concave surface; the second lens L2 may have a negative power; the third lens L3 may have a positive power; the fourth lens L4 may have Positive power, the image side is convex.
  • Table 7 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the image pickup lens of Example 3.
  • Table 8 shows the high order term coefficients of the respective aspherical mirrors in the third embodiment.
  • Table 9 shows the effective focal lengths f1 to f4 of the lenses of Embodiment 3, the effective focal length f of the imaging lens, half of the diagonal length ImgH of the effective pixel area of the imaging lens electronic photosensitive element, and the object side S1 of the first lens L1.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 6A shows an axial chromatic aberration curve of the imaging lens of Embodiment 3, which shows that the light of different wavelengths is deviated from the focus point after passing through the imaging lens.
  • Fig. 6B shows an astigmatism curve of the image pickup lens of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • 6C shows a magnification chromatic aberration curve of the imaging lens of Embodiment 3, which shows deviations of different image heights on the imaging surface after the light passes through the imaging lens.
  • Fig. 6D shows a phase contrast curve of the optical imaging system of Embodiment 3, which shows the degree of brightness of the image on the optical axis of the lens, that is, the center of the screen. 6A to 6D, the imaging lens given in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 is a block diagram showing the structure of an image pickup lens according to Embodiment 4 of the present application.
  • the imaging lens according to Embodiment 4 includes first to fourth lenses L1 - L4 having an object side and an image side, respectively.
  • the first lens L1 may have a negative power, the image side thereof is a concave surface; the second lens L2 may have a positive power; the third lens L3 may have a positive power; and the fourth lens L4 may have a positive light
  • the power of the image is convex on the side.
  • Table 10 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the image pickup lens of Example 4.
  • Table 11 shows the high order term coefficients of the respective aspherical mirrors in Example 4.
  • Table 12 shows the effective focal lengths f1 to f4 of the lenses of Embodiment 4, the effective focal length f of the imaging lens, half of the diagonal length ImgH of the effective pixel area of the imaging lens electronic photosensitive element, and the object side S1 of the first lens L1.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 8A shows an axial chromatic aberration curve of the imaging lens of Embodiment 4, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the imaging lens.
  • Fig. 8B shows an astigmatism curve of the image pickup lens of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 8C is a graph showing the magnification chromatic aberration curve of the imaging lens of Embodiment 4, which shows the deviation of the different image heights on the imaging plane after the light rays pass through the imaging lens.
  • 8D shows a phase contrast curve of the optical imaging system of Embodiment 4, which shows the degree of brightness of the image on the optical axis of the lens, that is, the center of the screen. 8A to 8D, the imaging lens given in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 is a block diagram showing the structure of an image pickup lens according to Embodiment 5 of the present application.
  • the imaging lens according to Embodiment 5 includes first to fourth lenses L1 - L4 having an object side and an image side, respectively.
  • the first lens L1 may have a negative power, the image side thereof is a concave surface; the second lens L2 may have a negative power; the third lens L3 may have a positive power; the fourth lens L4 may have Positive power, the image side is convex.
  • Table 13 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the image pickup lens of Example 5.
  • Table 14 shows the high order term coefficients of the respective aspherical mirrors in Example 5.
  • Table 15 shows the effective focal lengths f1 to f4 of the lenses of Embodiment 5, the effective focal length f of the imaging lens, half of the diagonal length ImgH of the effective pixel area of the imaging lens electronic photosensitive element, and the object side S1 of the first lens L1.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 10A is a view showing an axial chromatic aberration curve of the image pickup lens of Embodiment 5, which shows that light rays of different wavelengths are deviated from a focus point after passing through the image pickup lens.
  • Fig. 10B shows an astigmatism curve of the imaging lens of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 10C is a graph showing the chromatic aberration of magnification of the imaging lens of Embodiment 5, which shows the deviation of the different image heights on the imaging plane after the light passes through the imaging lens.
  • Fig. 10A is a view showing an axial chromatic aberration curve of the image pickup lens of Embodiment 5, which shows that light rays of different wavelengths are deviated from a focus point after passing through the image pickup lens.
  • Fig. 10B shows an astigmatism curve of the imaging lens of Embodiment 5, which shows meridional field curvature and sagit
  • 10D shows a phase contrast curve of the optical imaging system of Embodiment 5, which shows the degree of brightness of the image on the optical axis of the lens, that is, the center of the screen.
  • the imaging lens given in Embodiment 5 can achieve good imaging quality.
  • FIG. 11 is a block diagram showing the structure of an image pickup lens according to Embodiment 6 of the present application.
  • the imaging lens according to Embodiment 6 includes first to fourth lenses L1 - L4 having an object side and an image side, respectively.
  • the first lens L1 may have a negative power, the image side thereof is a concave surface; the second lens L2 may have a positive power; the third lens L3 may have a positive power; and the fourth lens L4 may have a positive light
  • the power of the image is convex on the side.
  • Table 16 below shows the surface type, curvature radius, thickness, material, and conical coefficient of each lens of the image pickup lens of Example 6.
  • Table 17 shows the high order term coefficients of the respective aspherical mirrors in Example 6.
  • Table 18 shows the effective focal lengths f1 to f4 of the lenses of Embodiment 6, the effective focal length f of the imaging lens, half of the diagonal length ImgH of the effective pixel area of the imaging lens electronic photosensitive element, and the object side S1 of the first lens L1.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 12A is a view showing an axial chromatic aberration curve of the image pickup lens of Example 6, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the image pickup lens.
  • Fig. 12B shows an astigmatism curve of the image pickup lens of Embodiment 6, which shows the meridional field curvature and the sagittal image plane curvature.
  • Fig. 12C is a graph showing the magnification chromatic aberration curve of the image pickup lens of Example 6, which shows the deviation of the different image heights on the image plane after the light rays pass through the image pickup lens.
  • Fig. 12A is a view showing an axial chromatic aberration curve of the image pickup lens of Example 6, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the image pickup lens.
  • Fig. 12B shows an astigmatism curve of the image pickup lens of Embodiment 6, which shows the meridional field curvature and the sagit
  • 12D shows a phase contrast curve of the optical imaging system of Embodiment 6, which shows the degree of brightness of the image on the optical axis of the lens, that is, the center of the screen. 12A to 12D, the imaging lens given in Embodiment 6 can achieve good imaging quality.
  • FIG. 13 is a block diagram showing the structure of an image pickup lens according to Embodiment 7 of the present application.
  • the imaging lens according to Embodiment 7 includes first to fourth lenses L1 - L4 having an object side and an image side, respectively.
  • the first lens L1 may have a negative power, the image side thereof is a concave surface; the second lens L2 may have a positive power; the third lens L3 may have a positive power; and the fourth lens L4 may have a positive light
  • the power of the image is convex on the side.
  • Table 19 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the image pickup lens of Example 7.
  • Table 20 shows the high order term coefficients of the respective aspherical mirrors in Example 7.
  • Table 21 shows the effective focal lengths f1 to f4 of the lenses of Embodiment 7, the effective focal length f of the imaging lens, the half ImgH of the diagonal length of the effective pixel area of the imaging lens electronic photosensitive element, and the object side S1 of the first lens L1.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 14A is a view showing an axial chromatic aberration curve of the image pickup lens of Embodiment 7, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the image pickup lens.
  • Fig. 14B shows an astigmatism curve of the image pickup lens of Embodiment 7, which shows the meridional field curvature and the sagittal image plane curvature.
  • Fig. 14C shows a magnification chromatic aberration curve of the image pickup lens of Example 7, which shows the deviation of the different image heights on the image plane after the light rays pass through the image pickup lens.
  • Fig. 14A is a view showing an axial chromatic aberration curve of the image pickup lens of Embodiment 7, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the image pickup lens.
  • Fig. 14B shows an astigmatism curve of the image pickup lens of Embodiment 7, which shows the meridional field curvature and the
  • 14D shows a phase contrast curve of the optical imaging system of Embodiment 7, which shows the degree of brightness of the image on the optical axis of the lens, that is, the center of the screen. 14A to 14D, the imaging lens given in Embodiment 7 can achieve good imaging quality.
  • Embodiments 1 to 7 respectively satisfy the relationships shown in Table 22 below.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Lenses (AREA)

Abstract

一种摄像镜头,具有有效焦距f和入瞳直径EPD,并沿着光轴由物侧至像侧依序包括第一透镜(L1)、第二透镜(L2)、第三透镜(L3)和第四透镜(L4),其中,第一透镜(L1)可具有负光焦度,其像侧面(S2)为凹面;第二透镜(L2)可具有正光焦度或负光焦度;第三透镜(L3)可具有正光焦度;第四透镜(L4)可具有正光焦度或负光焦度,其像侧面(S8)为凸面;以及第一透镜(L1)的物侧面(S1)的有效半口径DT11与摄像镜头电子光感元件有效像素区域对角线长的一半ImgH之间满足:1.2<DT11/ImgH<2.6。

Description

摄像镜头
相关申请的交叉引用
本申请要求于2017年07月25日提交于中国国家知识产权局(SIPO)的、专利申请号为201710609936.8和201720904063.9的两个中国专利申请的优先权和权益,这两个中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种摄像镜头,更具体地,涉及一种由四片镜片组成的摄像镜头。
背景技术
近年来,在VR/AR(虚拟现实/增强现实)、机器人、安防、自动驾驶等前沿运用领域,三维深度摄像头备受依赖。与普通摄像头相比,三维深度摄像头除了能够获取平面图像,还可以获得拍摄对象的深度信息,包括三维位置和尺寸信息。于是整个计算系统就获得了环境和对象的三维立体数据,可以运用在人体跟踪、三维重建、人机交互、SLAM(即时定位与地图构建)等技术领域。
目前,三维深度测量一般有三种技术方案,分别是双摄、结构光以及TOF,其中TOF是飞行时间(Time of Flight)技术的缩写,即计算光线飞行的时间。TOF技术因其具有响应速度快,深度信息精度高,结构尺寸小、不容易受环境光线干扰等优点,而被广泛运用。
因此,本发明旨在提供一种可应用于多领域,特别是三维深度测量领域的大孔径、大视场角、高解像力、高成像品质的摄像镜头。
发明内容
本申请提供的技术方案至少部分地解决了以上所述的技术问题。
根据本申请的一个方面,提供了这样一种摄像镜头,该摄像镜头具有有效焦距f和入瞳直径EPD,该摄像镜头沿着光轴由物侧至像侧依序包括第一透镜、第二透镜、第三透镜和第四透镜,其中,第一透镜可具有负光焦度,其像侧面为凹面;第二透镜可具有正光焦度或负光焦度;第三透镜可具有正光焦度;第四透镜可具有正光焦度或负光焦度,其像侧面为凸面;以及第一透镜的物侧面的有效半口径DT11与摄像镜头电子光感元件有效像素区域对角线长的一半ImgH之间满足:1.2<DT11/ImgH<2.6。
根据本申请的另一个方面,还提供了这样一种摄像镜头,该摄像镜头具有有效焦距f和入瞳直径EPD,该摄像镜头沿着光轴由物侧至像侧依序包括第一透镜、第二透镜、第三透镜和第四透镜,其中第一透镜具有负光焦度,其像侧面为凹面;第三透镜具有正光焦度;第四透镜的像侧面为凸面;第一透镜与第二透镜的组合光焦度为负;第三透镜与第四透镜的组合光焦度为正;以及第一透镜的像侧面的有效半口径DT32与所述第三透镜的有效焦距f3之间满足:0.1<DT32/f3<0.6。
根据本申请的另一个方面,还提供了这样一种摄像镜头,该摄像镜头具有有效焦距f和入瞳直径EPD,该摄像镜头沿着光轴由物侧至像侧依序包括第一透镜、第二透镜、第三透镜和第四透镜,其中第一透镜具有负光焦度,其像侧面为凹面;第三透镜具有正光焦度;第四透镜的像侧面为凸面;第一透镜与第二透镜的组合光焦度为负;第三透镜与第四透镜的组合光焦度为正;以及可满足0.9<SAG11/CT1<1.75,例如,0.93≤SAG11/CT1≤1.71,其中,SAG11为第一透镜物侧面和光轴的交点至第一透镜物侧面的有效半口径顶点之间在光轴上的距离,以及CT1为第一透镜在光轴上的中心厚度。
在一个实施方式中,摄像镜头的有效焦距f与第一透镜的有效焦距f1之间可满足:-4<f1/f<-2,例如,-2.84≤f1/f≤-2.32。
在一个实施方式中,摄像镜头的有效焦距f与摄像镜头的入瞳直径EPD之间可满足:f/EPD≤1.8,例如,f/EPD≤1.19。
在一个实施方式中,摄像镜头电子光感元件有效像素区域对角线长的一半ImgH与摄像镜头的有效焦距f之间可满足:Imgh/f>1,例如, Imgh/f≥1.19。
在一个实施方式中,第一透镜的像侧面的曲率半径R2与摄像镜头的有效焦距f之间可满足:1<R2/f<1.5,例如,1.06≤R2/f≤1.38。
在一个实施方式中,可满足0.2<CT1/(CT2+CT3+CT4)<0.5,例如,0.23≤CT1/(CT2+CT3+CT4)≤0.37,其中,CT1为第一透镜在光轴上的中心厚度,CT2为第二透镜在光轴上的中心厚度,CT3为第三透镜在光轴上的中心厚度,以及CT4为第四透镜在光轴上的中心厚度。
在一个实施方式中,可满足:2<T12/T23<4,例如,2.06≤T12/T23≤3.75,其中,T12为第一透镜和第二透镜在光轴上的空气间隔,以及T23为第二透镜和第三透镜在光轴上的空气间隔。
在一个实施方式中,第一透镜的物侧面的有效半口径DT11与摄像镜头电子光感元件有效像素区域对角线长的一半ImgH之间可满足:1.2<DT11/ImgH<2.6,例如,1.24≤DT11/ImgH≤2.56。
在一个实施方式中,第一透镜的像侧面的有效半口径DT32与第三透镜的有效焦距f3之间可满足:0.1<DT32/f3<0.6,例如,0.18≤DT32/f3≤0.55。
在一个实施方式中,可满足0.3<∑CT/TTL<0.6,例如,0.35≤∑CT/TTL≤0.46,其中,∑CT为第一透镜至第四透镜分别于光轴上的厚度总和,以及TTL为第一透镜物侧面至成像面在光轴上的距离。
在一个实施方式中,可满足0.9<SAG11/CT1<1.75,例如,0.93≤SAG11/CT1≤1.71,其中,SAG11为第一透镜物侧面和光轴的交点至第一透镜物侧面的有效半口径顶点之间在光轴上的距离,以及CT1为第一透镜在光轴上的中心厚度。
在一个实施方式中,第四透镜与摄像镜头的成像面之间设置有红外带通滤光片。
在一个实施方式中,第一透镜与第二透镜的组合光焦度可为负;以及第三透镜与第四透镜的组合光焦度可为正。
在一个实施方式中,第二透镜可具有正光焦度或负光焦度。
在一个实施方式中,第四透镜可具有正光焦度或负光焦度。
通过上述配置的摄像镜头,还可进一步具有大孔径、大视场角、 高解像力、广角化、小型化、高成像品质、平衡像差等至少一个有益效果。
附图说明
通过参照以下附图所作出的详细描述,本申请的实施方式的以上及其它优点将变得显而易见,附图旨在示出本申请的示例性实施方式而非对其进行限制。在附图中:
图1为示出根据本申请实施例1的摄像镜头的结构示意图;
图2A至图2D分别示出了实施例1的摄像镜头的轴上色差曲线、象散曲线、倍率色差曲线和相对照度曲线;
图3为示出根据本申请实施例2的摄像镜头的结构示意图;
图图4A至图4D分别示出了实施例2的摄像镜头的轴上色差曲线、象散曲线、倍率色差曲线和相对照度曲线;
图5为示出根据本申请实施例3的摄像镜头的结构示意图;
图6A至图6D分别示出了实施例3的摄像镜头的轴上色差曲线、象散曲线、倍率色差曲线和相对照度曲线;
图7为示出根据本申请实施例4的摄像镜头的结构示意图;
图8A至图8D分别示出了实施例4的摄像镜头的轴上色差曲线、象散曲线、倍率色差曲线和相对照度曲线;
图9为示出根据本申请实施例5的摄像镜头的结构示意图;
图10A至图10D分别示出了实施例5的摄像镜头的轴上色差曲线、象散曲线、倍率色差曲线和相对照度曲线;
图11为示出根据本申请实施例6的摄像镜头的结构示意图;
图12A至图12D分别示出了实施例6的摄像镜头的轴上色差曲线、象散曲线、倍率色差曲线和相对照度曲线;
图13为示出根据本申请实施例7的摄像镜头的结构示意图;
图14A至图14D分别示出了实施例7的摄像镜头的轴上色差曲线、象散曲线、倍率色差曲线和相对照度曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或附加有一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
如在本文中使用的,用语“基本上”、“大约”以及类似的用语用作表近似的用语,而不用作表程度的用语,并且旨在说明将由本领域普通技术人员认识到的、测量值或计算值中的固有偏差。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
此外,近轴区域是指光轴附近的区域。第一透镜是最靠近物体的 透镜而第四透镜是最靠近感光元件的透镜。在本文中,每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下结合具体实施例进一步描述本申请。
根据本申请示例性实施方式的摄像镜头具有例如四个透镜,即第一透镜、第二透镜、第三透镜和第四透镜。这四个透镜沿着光轴从物侧至像侧依序排列。
在示例性实施方式中,第一透镜可具有负光焦度,其像侧面为凹面;第二透镜可具有正光焦度或负光焦度;第三透镜可具有正光焦度;第四透镜可具有正光焦度或负光焦度,其像侧面为凸面。该广角摄像镜头采用反远距光学结构,透镜组I(第一透镜、第二透镜)的光焦度为负,透镜组II(第三透镜、第四透镜)的光焦度为正,轴外光线经过第I组负透镜的发散之后,使得通过第II组透镜光线倾角明显变小,使其承担较小的视场,有利于后续组元的轴外像差校正,而相应的负透镜I组则承担较大的视场。通过合理的控制各个透镜的正负光焦度分配,不仅可有效地平衡控制系统的低阶像差,使得摄像镜头获得较优的成像品质,而且可实现超薄大孔径的特性。
在示例性实施方式中,第一透镜的物侧面的有效半口径DT11与摄像镜头电子光感元件有效像素区域对角线长的一半ImgH之间可满足:1.2<DT11/ImgH<2.6,更具体地,可进一步满足1.24≤DT11/ImgH≤2.56。通过这样的配置,减小第一透镜口径,提高广角镜头第一透镜的加工性能。
在示例性实施方式中,摄像镜头的有效焦距f与第一透镜的有效焦距f1之间可满足:-4<f1/f<-2,更具体地,可进一步满足-2.84≤f1/f≤-2.32。通过这样的配置,有利于提高透镜对视场的分担,减小后续透镜光线倾角,有利于像差校正。
在示例性实施方式中,摄像镜头的有效焦距f与摄像镜头的入瞳 直径EPD之间可满足:f/EPD≤1.8,更具体地,可进一步满足f/EPD≤1.19。通过这样的配置,可在成像面有效提高成像面能量密度,有利于提高像侧传感器输出信号信躁比,即测量深度的精度。
在示例性实施方式中,摄像镜头电子光感元件有效像素区域对角线长的一半ImgH与摄像镜头的有效焦距f之间可满足:Imgh/f>1,更具体地,可进一步满足Imgh/f≥1.19。通过这样的配置,在保证小型化的同时还可以提高视场角,实现广角的特性,提高深度测量范围,并且有效修正各类像差,从而提升摄像镜头的成像品质。
在示例性实施方式中,第一透镜的像侧面的曲率半径R2与摄像镜头的有效焦距f之间可满足:1<R2/f<1.5,更具体地,可进一步满足1.06≤R2/f≤1.38。通过这样的配置,不仅能保证摄像镜头具有良好的加工性,同时还能有效的承担更大视场,使得广角视场光线经过第一透镜后光线的倾角明显减小,从而有利于像差的校正。
在示例性实施方式中,可满足0.2<CT1/(CT2+CT3+CT4)<0.5,更具体地,可进一步满足0.23≤CT1/(CT2+CT3+CT4)≤0.37,其中,CT1为第一透镜在光轴上的中心厚度,CT2为第二透镜在光轴上的中心厚度,CT3为第三透镜在光轴上的中心厚度,以及CT4为第四透镜在光轴上的中心厚度。通过合理的分配各透镜的中心厚度,能有效的保证镜片的加工工艺,特别是对于第一透镜,像侧面弯曲度高,镜片加工性能不易保证,通过合理配置其中心厚度,可以减小该镜片的厚薄比,优化加工性。
在示例性实施方式中,可满足:2<T12/T23<4,更具体地,可进一步满足2.06≤T12/T23≤3.75,其中,T12为第一透镜和第二透镜在光轴上的空气间隔,以及T23为第二透镜和第三透镜在光轴上的空气间隔。为第一透镜和第二透镜之间分配更大的空气间隙,一方面是由于第一透镜像侧面弯曲度高,矢高大,装配结构的需要;另一方又可减小进入第二透镜光线的入射角度,有利于像差的平衡。
在示例性实施方式中,第一透镜的像侧面的有效半口径DT32与第三透镜的有效焦距f3之间可满足:0.1<DT32/f3<0.6,更具体地,可进一步满足0.18≤DT32/f3≤0.55。通过这样的配置,有利于提高透镜 三对全视场口径像差的校正,从而提高成像质量。
在示例性实施方式中,可满足0.3<∑CT/TTL<0.6,更具体地,可进一步满足0.35≤∑CT/TTL≤0.46,其中,∑CT为第一透镜至第四透镜分别于光轴上的厚度总和,以及TTL为第一透镜物侧面至成像面在光轴上的距离。通过这样的配置,有利于降低系统整体长度,同时透镜之间的距离增加有利于降低公差敏感性,提升批量生产镜头品质与一致性。
在示例性实施方式中,可满足0.9<SAG11/CT1<1.75,更具体地,可进一步满足0.93≤SAG11/CT1≤1.71,其中,SAG11为第一透镜物侧面和光轴的交点至第一透镜物侧面的有效半口径顶点之间在光轴上的距离,以及CT1为第一透镜在光轴上的中心厚度。通过合理的配置第一透镜物侧面矢高和其中心厚度,有利于提高第一透镜的加工性。
在示例性实施方式中,第四透镜与摄像镜头的成像面之间设置有红外带通滤光片。带通滤光片在一定的波段内,只有中间一小段是高透射率的通带,而在通带的两侧,是高反射率的截止带。红外波段的适当通过,可有利于系统不引入色差的影响,控制弥散斑直径,同时红外波段有利于消除环境可见光的干扰,从而提升镜头的成像品质。通过这样的配置,保证了摄像镜头在有效光谱范围内的有效识别。
红外波段有利于系统不引入色差,控制弥散斑直径,同时红外波段有利于减少环境可见光的干扰,提高像侧传感器输出信号信躁比。
在示例性实施方式中,摄像镜头还可设置有用于限制光束的光圈STO,调节进光量,提高成像品质。根据本申请的上述实施方式的摄像镜头可采用多片镜片,例如上文所述的四片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效扩大摄像镜头的孔径、降低系统敏感度、保证镜头的小型化并提高成像质量,从而使得摄像镜头更有利于生产加工并且可适用于便携式电子产品。在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:曲率从透镜中心到周边是连续变化的。与从透镜中心到周边有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优 点,能够使得视野变得更大而真实。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。另外,非球面透镜的使用还可有效地减少光学系统中的透镜个数。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以四个透镜为例进行了描述,但是该摄像镜头不限于包括四个透镜。如果需要,该摄像镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的摄像镜头的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的摄像镜头。
图1示出了根据本申请实施例1的摄像镜头的结构示意图。如图1所示,摄像镜头沿着光轴包括从物侧至成像侧依序排列的四个透镜L1-L4。第一透镜L1具有物侧面S1和像侧面S2;第二透镜L2具有物侧面S3和像侧面S4;第三透镜L3具有物侧面S5和像侧面S6;以及第四透镜L4具有物侧面S7和像侧面S8。
在该实施例中,第一透镜L1可具有负光焦度,其像侧面为凹面;第二透镜L2可具有负光焦度;第三透镜L3可具有正光焦度;第四透镜L4可具有正光焦度,其像侧面为凸面。
在本实施例的摄像镜头中,还包括用于限制光束的、设置在第二透镜与第三透镜之间的光圈STO。根据实施例1的摄像镜头可包括具有物侧面S9和像侧面S10的红外带通滤光片L5,滤光片L5可用于校正色彩偏差。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表1示出了实施例1的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。
表1
Figure PCTCN2018077204-appb-000001
由表1可得,满足CT1/(CT2+CT3+CT4)=0.37,其中,CT1为第一透镜在光轴上的中心厚度,CT2为第二透镜在光轴上的中心厚度,CT3为第三透镜在光轴上的中心厚度,以及CT4为第四透镜在光轴上的中心厚度;满足T12/T23=2.38,其中,T12为第一透镜和第二透镜在光轴上的空气间隔,以及T23为第二透镜和第三透镜在光轴上的空气间隔;满足∑CT/TTL=0.37,其中,∑CT为第一透镜至第四透镜分别于光轴上的厚度总和,以及TTL为第一透镜物侧面至成像面在光轴上的距离。
本实施例采用了四片透镜作为示例,通过合理分配各镜片的焦距与面型,有效扩大镜头的孔径,缩短镜头总长度,保证镜头的大孔径与小型化;同时校正各类像差,提高了镜头的解析度与成像品质。各非球面面型x由以下公式限定:
Figure PCTCN2018077204-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在上表1中已给出);Ai是非球面第i-th阶的修正系数。下表2示出了实施例1中可用于各镜 面S1-S8的高次项系数A 4、A 6、A 8、A 10、A 12、A 14和A 16
表2
面号 A4 A6 A8 A10 A12 A14 A16
S1 9.0896E-03 -1.8572E-03 2.2576E-04 -1.6382E-05 6.9608E-07 -1.5659E-08 1.3773E-10
S2 6.6559E-02 1.1050E-02 -1.1686E-02 1.5893E-03 1.3646E-03 -5.3140E-04 5.1939E-05
S3 -1.5764E-02 7.6595E-02 -1.0538E-01 9.1548E-02 -4.5284E-02 1.1060E-02 -1.0276E-03
S4 3.6271E-02 3.5495E-02 2.4384E-02 -9.8866E-02 1.3796E-01 -8.1950E-02 1.8408E-02
S5 -3.4757E-03 -2.3235E-03 9.9880E-03 -1.1401E-02 5.8129E-03 -1.3271E-03 1.0943E-04
S6 -1.9772E-03 -4.8667E-03 9.1691E-05 1.1064E-03 -7.0374E-04 3.6071E-05 2.8070E-05
S7 8.4778E-03 6.7589E-04 -4.8631E-04 5.0058E-04 -2.1360E-04 3.9971E-05 -3.0084E-06
S8 2.6080E-02 -1.0049E-03 1.0938E-03 -1.9456E-04 5.4199E-05 -1.5228E-05 1.2409E-06
以下所示出的表3示出了实施例1的各透镜的有效焦距f1至f4、摄像镜头的有效焦距f、摄像镜头电子光感元件有效像素区域对角线长的一半ImgH以及第一透镜L1的物侧面S1至摄像镜头的成像面S11在光轴上的距离TTL。
表3
Figure PCTCN2018077204-appb-000003
根据表3可知,摄像镜头的有效焦距f与第一透镜的有效焦距f1满足f1/f=-2.32;以及摄像镜头电子光感元件有效像素区域对角线长的一半ImgH与摄像镜头的有效焦距f满足Imgh/f=1.96。
结合上表1、表3,在该实施例中,摄像镜头的有效焦距f与摄像镜头的入瞳直径EPD满足f/EPD=1.19;第一透镜的像侧面的曲率半径R2与摄像镜头的有效焦距f之间满足R2/f=1.06;第一透镜的物侧面的有效半口径DT11与摄像镜头电子光感元件有效像素区域对角线长的一半ImgH满足DT11/ImgH=1.81;第一透镜的像侧面的有效半口径DT32与第三透镜的有效焦距f3满足DT32/f3=0.38;以及满足SAG11/CT1=1.42,其中,SAG11为第一透镜物侧面和光轴的交点至第一透镜物侧面的有效半口径顶点之间在光轴上的距离,以及CT1为第一透镜在光轴上的中心厚度。
图2A示出了实施例1的摄像镜头的轴上色差曲线,其表示不同波长的光线经由摄像镜头后的会聚焦点偏离。图2B示出了实施例1的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的摄像镜头的倍率色差曲线,其表示光线经由摄像镜头后在成像面上的不同的像高的偏差。图2D示出了实施例1的光学成像系统的相对照度曲线,其表示在镜头的光轴上,也就是画面中心的影像的明亮程度。根据图2A至图2D可知,实施例1所给出的摄像镜头能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述了根据本申请实施例2的摄像镜头。除了摄像镜头的各镜片的参数之外,例如除了各镜片的曲率半径、厚度、圆锥系数、有效焦距、轴上间距、各镜面的高次项系数等之外,在本实施例2及以下各实施例中描述的摄像镜头与实施例1中描述的摄像镜头的布置结构相同。为简洁起见,将省略部分与实施例1相似的描述。
图3示出了根据本申请实施例2的摄像镜头的结构示意图。如图3所示,根据实施例2的摄像镜头包括分别具有物侧面和像侧面的第一至第四透镜L1-L4。
在该实施例中,第一透镜L1可具有负光焦度,其像侧面为凹面;第二透镜L2可具有负光焦度;第三透镜L3可具有正光焦度;第四透镜L4可具有正光焦度,其像侧面为凸面。
下表4示出了实施例2的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表5示出了实施例2中各非球面镜面的高次项系数。表6示出了实施例2的各透镜的有效焦距f1至f4、摄像镜头的有效焦距f、摄像镜头电子光感元件有效像素区域对角线长的一半ImgH以及第一透镜L1的物侧面S1至摄像镜头的成像面S11在光轴上的距离TTL。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表4
Figure PCTCN2018077204-appb-000004
表5
面号 A4 A6 A8 A10 A12 A14 A16
S1 3.2513E-03 -4.5464E-04 4.2215E-05 -2.4388E-06 8.5923E-08 -1.6933E-09 1.4186E-11
S2 4.9848E-02 -1.3412E-02 1.0110E-02 -5.0566E-03 1.4037E-03 -1.9848E-04 1.0821E-05
S3 -1.4665E-02 9.9528E-03 -4.6862E-03 2.5192E-03 -8.7415E-04 1.4724E-04 -9.1191E-06
S4 6.2869E-03 2.7600E-02 -3.7309E-02 4.0859E-02 -2.0944E-02 4.4792E-03 -7.9166E-05
S5 -9.0817E-03 2.7329E-03 1.0834E-04 -8.7680E-04 4.4106E-04 -8.5540E-05 5.5642E-06
S6 2.8477E-03 -1.5243E-03 -1.4190E-03 1.5157E-03 -6.4996E-04 1.2563E-04 -9.1310E-06
S7 7.4740E-03 -3.1040E-04 4.1243E-05 7.9709E-05 -3.6761E-05 5.9184E-06 -3.6407E-07
S8 1.7515E-02 -1.3089E-03 1.2461E-03 -4.1902E-04 9.5175E-05 -1.3557E-05 7.5094E-07
表6
Figure PCTCN2018077204-appb-000005
图4A示出了实施例2的摄像镜头的轴上色差曲线,其表示不同波长的光线经由摄像镜头后的会聚焦点偏离。图4B示出了实施例2的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的摄像镜头的倍率色差曲线,其表示光线经由摄像镜头后在成像面上的不同的像高的偏差。图4D示出了实施例2的光学成像系统的相对照度曲线,其表示在镜头的光轴上,也就是画面中心的影像的明亮程度。根据图4A至图4D可知,实施例2所给出的摄像镜头能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的摄像镜头。
图5示出了根据本申请实施例3的摄像镜头的结构示意图。如图5所示,根据实施例3的的摄像镜头包括分别具有物侧面和像侧面的第一至第四透镜L1-L4。
在该实施例中,第一透镜L1可具有负光焦度,其像侧面为凹面;第二透镜L2可具有负光焦度;第三透镜L3可具有正光焦度;第四透镜L4可具有正光焦度,其像侧面为凸面。
下表7示出了实施例3的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表8示出了实施例3中各非球面镜面的高次项系数。表9示出了实施例3的各透镜的有效焦距f1至f4、摄像镜头的有效焦距f、摄像镜头电子光感元件有效像素区域对角线长的一半ImgH以及第一透镜L1的物侧面S1至摄像镜头的成像面S11在光轴上的距离TTL。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表7
Figure PCTCN2018077204-appb-000006
表8
面号 A4 A6 A8 A10 A12 A14 A16
S1 3.0639E-03 -4.2897E-04 3.6579E-05 -1.8891E-06 5.7210E-08 -9.2621E-10 6.1598E-12
S2 3.3020E-02 2.1438E-02 -1.7283E-02 6.3738E-03 -1.2765E-03 1.2743E-04 -4.9399E-06
S3 -2.8101E-03 4.3988E-03 -6.2575E-04 -9.6177E-05 5.1653E-05 -6.9934E-06 3.1522E-07
S4 3.2139E-02 -2.5600E-02 5.9625E-02 -5.6882E-02 3.2139E-02 -9.7884E-03 1.3494E-03
S5 -4.5855E-03 4.7866E-03 -3.4627E-03 7.0056E-04 2.4138E-04 -1.3439E-04 1.7204E-05
S6 7.0539E-03 -8.9427E-03 5.4854E-03 -2.3146E-03 5.6748E-04 -7.4668E-05 4.0973E-06
S7 1.0550E-02 -4.4393E-03 2.6367E-03 -9.6763E-04 2.0214E-04 -2.2522E-05 1.0174E-06
S8 3.4444E-02 -8.0495E-03 5.5222E-03 -2.0976E-03 4.4774E-04 -5.3310E-05 2.6785E-06
表9
Figure PCTCN2018077204-appb-000007
图6A示出了实施例3的摄像镜头的轴上色差曲线,其表示不同波长的光线经由摄像镜头后的会聚焦点偏离。图6B示出了实施例3的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的摄像镜头的倍率色差曲线,其表示光线经由摄像镜头后在成像面上的不同的像高的偏差。图6D示出了实施例3的光学成像系统的相对照度曲线,其表示在镜头的光轴上,也就是画面中心的影像的明亮程度。根据图6A至图6D可知,实施例3所给出的摄像镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的摄像镜头。
图7示出了根据本申请实施例4的摄像镜头的结构示意图。如图7所示,根据实施例4的摄像镜头包括分别具有物侧面和像侧面的第一至第四透镜L1-L4。
在该实施例中,第一透镜L1可具有负光焦度,其像侧面为凹面;第二透镜L2可具有正光焦度;第三透镜L3可具有正光焦度;第四透镜L4可具有正光焦度,其像侧面为凸面。
下表10示出了实施例4的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表11示出了实施例4中各非球面镜面的高次项系数。表12示出了实施例4的各透镜的有效焦距f1至f4、摄像镜头的有效焦距f、摄像镜头电子光感元件有效像素区域对角线长的一半ImgH以及第一透镜L1的物侧面S1至摄像镜头的成像面S11在 光轴上的距离TTL。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表10
Figure PCTCN2018077204-appb-000008
表11
面号 A4 A6 A8 A10 A12 A14 A16
S1 2.1999E-02 -3.5837E-03 4.4780E-04 -3.6898E-05 1.8079E-06 -4.7334E-08 4.6952E-10
S2 3.7302E-02 1.7924E-02 -1.5643E-02 6.1205E-03 -1.2507E-03 1.2179E-04 -4.4498E-06
S3 -4.1544E-03 1.3172E-02 -1.3595E-02 7.9776E-03 -2.5793E-03 4.1258E-04 -2.5205E-05
S4 2.0329E-02 8.3805E-03 -1.1321E-02 1.3447E-02 -6.5679E-03 1.3356E-03 -3.4014E-05
S5 -4.5739E-04 5.1435E-03 -4.9727E-03 2.3755E-03 -6.7083E-04 1.0378E-04 -6.5718E-06
S6 2.2160E-03 -3.0827E-03 1.6944E-03 -9.2409E-04 2.3715E-04 -3.0226E-05 1.8193E-06
S7 8.4882E-03 8.3795E-04 7.4303E-05 -6.8348E-05 -1.4920E-06 3.1640E-06 -5.0240E-07
S8 2.2216E-02 -1.9216E-03 2.7897E-03 -1.2830E-03 3.4575E-04 -5.2337E-05 3.1082E-06
表12
Figure PCTCN2018077204-appb-000009
图8A示出了实施例4的摄像镜头的轴上色差曲线,其表示不同波长的光线经由摄像镜头后的会聚焦点偏离。图8B示出了实施例4的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的摄像镜头的倍率色差曲线,其表示光线经由摄像镜头后在成像面上的不同的像高的偏差。图8D示出了实施例4的光学 成像系统的相对照度曲线,其表示在镜头的光轴上,也就是画面中心的影像的明亮程度。根据图8A至图8D可知,实施例4所给出的摄像镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的摄像镜头。
图9示出了根据本申请实施例5的摄像镜头的结构示意图。如图9所示,根据实施例5的摄像镜头包括分别具有物侧面和像侧面的第一至第四透镜L1-L4。
在该实施例中,第一透镜L1可具有负光焦度,其像侧面为凹面;第二透镜L2可具有负光焦度;第三透镜L3可具有正光焦度;第四透镜L4可具有正光焦度,其像侧面为凸面。
下表13示出了实施例5的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表14示出了实施例5中各非球面镜面的高次项系数。表15示出了实施例5的各透镜的有效焦距f1至f4、摄像镜头的有效焦距f、摄像镜头电子光感元件有效像素区域对角线长的一半ImgH以及第一透镜L1的物侧面S1至摄像镜头的成像面S11在光轴上的距离TTL。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表13
Figure PCTCN2018077204-appb-000010
表14
面号 A4 A6 A8 A10 A12 A14 A16
S1 2.1384E-03 -2.2186E-04 1.6081E-05 -7.2246E-07 1.9544E-08 -2.9176E-10 1.8335E-12
S2 4.9694E-02 -1.8166E-02 1.0744E-02 -4.0936E-03 8.7618E-04 -9.6852E-05 4.2168E-06
S3 3.0641E-03 6.0570E-03 5.2056E-03 -6.4292E-03 2.7779E-03 -5.6026E-04 4.2898E-05
S4 4.1470E-02 5.4833E-02 -1.5873E-01 3.7294E-01 -4.2781E-01 2.4066E-01 -5.1376E-02
S5 -7.3072E-03 1.4736E-02 -3.1459E-02 3.1680E-02 -1.6989E-02 4.6970E-03 -5.2720E-04
S6 6.5842E-03 -1.0501E-02 1.0133E-02 -6.6365E-03 2.3348E-03 -4.1229E-04 2.8803E-05
S7 6.2176E-03 -6.7460E-04 7.0277E-05 -1.1874E-05 -1.4441E-06 8.0554E-07 -6.5654E-08
S8 2.4820E-02 -4.3100E-04 9.1191E-05 1.2726E-04 -9.6160E-05 1.9715E-05 -1.3048E-06
表15
Figure PCTCN2018077204-appb-000011
图10A示出了实施例5的摄像镜头的轴上色差曲线,其表示不同波长的光线经由摄像镜头后的会聚焦点偏离。图10B示出了实施例5的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的摄像镜头的倍率色差曲线,其表示光线经由摄像镜头后在成像面上的不同的像高的偏差。图10D示出了实施例5的光学成像系统的相对照度曲线,其表示在镜头的光轴上,也就是画面中心的影像的明亮程度。根据图10A至图10D可知,实施例5所给出的摄像镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的摄像镜头。
图11示出了根据本申请实施例6的摄像镜头的结构示意图。如图11所示,根据实施例6的摄像镜头包括分别具有物侧面和像侧面的第一至第四透镜L1-L4。
在该实施例中,第一透镜L1可具有负光焦度,其像侧面为凹面;第二透镜L2可具有正光焦度;第三透镜L3可具有正光焦度;第四透镜L4可具有正光焦度,其像侧面为凸面。
下表16示出了实施例6的摄像镜头的各透镜的表面类型、曲率半 径、厚度、材料及圆锥系数。表17示出了实施例6中各非球面镜面的高次项系数。表18示出了实施例6的各透镜的有效焦距f1至f4、摄像镜头的有效焦距f、摄像镜头电子光感元件有效像素区域对角线长的一半ImgH以及第一透镜L1的物侧面S1至摄像镜头的成像面S11在光轴上的距离TTL。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表16
Figure PCTCN2018077204-appb-000012
表17
面号 A4 A6 A8 A10 A12 A14 A16
S1 2.8326E-03 -3.8322E-04 3.0792E-05 -1.5285E-06 4.5787E-08 -7.5440E-10 5.2004E-12
S2 3.0314E-02 9.3579E-03 -6.1721E-03 1.6901E-03 -2.1926E-04 8.9511E-06 1.6549E-07
S3 -1.1786E-02 8.4173E-03 -6.8939E-03 3.3622E-03 -9.1495E-04 1.2473E-04 -6.5343E-06
S4 1.0962E-02 2.7741E-02 -2.6194E-02 -2.7232E-03 3.8351E-02 -3.0724E-02 7.8680E-03
S5 -1.7652E-02 6.3507E-03 -1.0055E-02 9.3664E-03 -5.2212E-03 1.4764E-03 -1.5336E-04
S6 1.7395E-02 -3.1350E-02 3.6916E-02 -2.8163E-02 1.2375E-02 -2.9380E-03 2.8134E-04
S7 1.0345E-04 -4.2773E-04 9.7356E-05 -4.0435E-05 6.2739E-22 1.3153E-24 2.7568E-27
S8 7.9194E-03 1.5622E-03 -5.8276E-04 1.8911E-04 -2.9855E-05 1.6626E-06 1.6721E-08
表18
Figure PCTCN2018077204-appb-000013
图12A示出了实施例6的摄像镜头的轴上色差曲线,其表示不同 波长的光线经由摄像镜头后的会聚焦点偏离。图12B示出了实施例6的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的摄像镜头的倍率色差曲线,其表示光线经由摄像镜头后在成像面上的不同的像高的偏差。图12D示出了实施例6的光学成像系统的相对照度曲线,其表示在镜头的光轴上,也就是画面中心的影像的明亮程度。根据图12A至图12D可知,实施例6所给出的摄像镜头能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的摄像镜头。
图13示出了根据本申请实施例7的摄像镜头的结构示意图。如图13所示,根据实施例7的摄像镜头包括分别具有物侧面和像侧面的第一至第四透镜L1-L4。
在该实施例中,第一透镜L1可具有负光焦度,其像侧面为凹面;第二透镜L2可具有正光焦度;第三透镜L3可具有正光焦度;第四透镜L4可具有正光焦度,其像侧面为凸面。
下表19示出了实施例7的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表20示出了实施例7中各非球面镜面的高次项系数。表21示出了实施例7的各透镜的有效焦距f1至f4、摄像镜头的有效焦距f、摄像镜头电子光感元件有效像素区域对角线长的一半ImgH以及第一透镜L1的物侧面S1至摄像镜头的成像面S11在光轴上的距离TTL。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表19
Figure PCTCN2018077204-appb-000014
Figure PCTCN2018077204-appb-000015
表20
面号 A4 A6 A8 A10 A12 A14 A16
S1 1.6078E-03 -9.4060E-05 1.6946E-07 2.2964E-07 -1.1524E-08 2.4903E-10 -2.1076E-12
S2 2.8880E-02 3.5396E-04 2.3023E-03 -1.4583E-03 3.5786E-04 -4.3033E-05 2.0259E-06
S3 -1.1629E-02 1.7868E-03 1.4356E-03 -7.1308E-04 1.5202E-04 -1.5733E-05 6.3215E-07
S4 6.5089E-03 -7.9948E-03 2.2589E-02 -2.0025E-02 9.0602E-03 -2.0435E-03 1.8278E-04
S5 -4.6352E-03 4.2142E-02 -6.8807E-02 6.0973E-02 -3.1156E-02 8.8413E-03 -1.1013E-03
S6 1.7626E-02 -1.5255E-02 1.6510E-02 -1.0828E-02 3.8139E-03 -6.6279E-04 4.4242E-05
S7 -9.8144E-03 1.2765E-02 -6.9785E-03 2.5035E-03 -5.1719E-04 5.3968E-05 -2.2004E-06
S8 2.1108E-02 6.0356E-03 -4.7701E-03 2.9616E-03 -9.6797E-04 1.6782E-04 -1.2035E-05
表21
Figure PCTCN2018077204-appb-000016
图14A示出了实施例7的摄像镜头的轴上色差曲线,其表示不同波长的光线经由摄像镜头后的会聚焦点偏离。图14B示出了实施例7的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的摄像镜头的倍率色差曲线,其表示光线经由摄像镜头后在成像面上的不同的像高的偏差。图14D示出了实施例7的光学成像系统的相对照度曲线,其表示在镜头的光轴上,也就是画面中心的影像的明亮程度。根据图14A至图14D可知,实施例7所给出的摄像镜头能够实现良好的成像品质。
综上,实施例1至实施例7分别满足以下表22所示的关系。
表22
条件式\实施例 1 2 3 4 5 6 7
f/EPD 1.19 1.19 0.99 1.19 1.19 1.19 1.19
f1/f -2.32 -2.40 -2.75 -2.62 -2.84 -2.49 -2.51
ImgH/f 1.96 1.84 2.22 1.19 2.28 1.79 1.97
R2/f 1.06 1.13 1.21 1.11 1.38 1.17 1.20
CT1/(CT2+CT3+CT4) 0.37 0.25 0.23 0.31 0.24 0.27 0.24
T12/T23 2.38 2.92 2.06 2.50 2.33 3.75 3.40
DT11/ImgH 1.81 2.15 2.23 1.24 2.56 2.35 2.42
DT32/f3 0.38 0.50 0.49 0.45 0.55 0.43 0.18
∑CT/TTL 0.37 0.42 0.45 0.35 0.46 0.40 0.43
SAG11/CT1 1.42 1.22 1.71 0.93 1.68 1.10 1.14
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (41)

  1. 摄像镜头,具有有效焦距f和入瞳直径EPD,并沿着光轴由物侧至像侧依序包括第一透镜、第二透镜、第三透镜和第四透镜,
    其特征在于,
    所述第一透镜具有负光焦度,其像侧面为凹面;
    所述第二透镜具有正光焦度或负光焦度;
    所述第三透镜具有正光焦度;
    所述第四透镜具有正光焦度或负光焦度,其像侧面为凸面;以及
    所述第一透镜的物侧面的有效半口径DT11与所述摄像镜头的电子光感元件有效像素区域对角线长的一半ImgH之间满足:1.2<DT11/ImgH<2.6。
  2. 根据权利要求1所述的摄像镜头,其特征在于,所述摄像镜头的有效焦距f与所述摄像镜头的入瞳直径EPD之间满足:f/EPD≤1.8。
  3. 根据权利要求1所述的摄像镜头,其特征在于,所述摄像镜头的有效焦距f与所述第一透镜的有效焦距f1之间满足:-4<f1/f<-2。
  4. 根据权利要求1至3中任一项所述的摄像镜头,其特征在于,所述摄像镜头的电子光感元件有效像素区域对角线长的一半ImgH与所述摄像镜头的有效焦距f之间满足:Imgh/f>1。
  5. 根据权利要求4所述的摄像镜头,其特征在于,所述第一透镜的像侧面的曲率半径R2与所述摄像镜头的有效焦距f之间满足:1<R2/f<1.5。
  6. 根据权利要求4所述的摄像镜头,其特征在于,满足0.2<CT1/(CT2+CT3+CT4)<0.5,
    其中,CT1为所述第一透镜在所述光轴上的中心厚度,
    CT2为所述第二透镜在所述光轴上的中心厚度,
    CT3为所述第三透镜在所述光轴上的中心厚度,以及
    CT4为所述第四透镜在所述光轴上的中心厚度。
  7. 根据权利要求6所述的摄像镜头,其特征在于,满足:2<T12/T23<4,
    其中,T12为所述第一透镜和所述第二透镜在所述光轴上的空气间隔,以及
    T23为所述第二透镜和所述第三透镜在所述光轴上的空气间隔。
  8. 根据权利要求4所述的摄像镜头,其特征在于,所述第一透镜的像侧面的有效半口径DT32与所述第三透镜的有效焦距f3之间满足:0.1<DT32/f3<0.6。
  9. 根据权利要求4所述的摄像镜头,其特征在于,满足0.3<∑CT/TTL<0.6,
    其中,∑CT为所述第一透镜至所述第四透镜分别于所述光轴上的厚度总和,以及
    TTL为所述第一透镜物侧面至成像面在所述光轴上的距离。
  10. 根据权利要求4所述的摄像镜头,其特征在于,满足0.9<SAG11/CT1<1.75,
    其中,SAG11为所述第一透镜物侧面和所述光轴的交点至所述第一透镜物侧面的有效半口径顶点之间在所述光轴上的距离,以及
    CT1为所述第一透镜在所述光轴上的中心厚度。
  11. 根据权利要求4所述的摄像镜头,其特征在于,所述第四透镜与所述摄像镜头的成像面之间设置有红外带通滤光片。
  12. 摄像镜头,具有有效焦距f和入瞳直径EPD,并沿着光轴由 物侧至像侧依序包括第一透镜、第二透镜、第三透镜和第四透镜,
    其特征在于,
    所述第一透镜具有负光焦度,其像侧面为凹面;
    所述第三透镜具有正光焦度;
    所述第四透镜的像侧面为凸面;
    所述第一透镜与所述第二透镜的组合光焦度为负;
    所述第三透镜与所述第四透镜的组合光焦度为正;以及
    所述第一透镜的像侧面的有效半口径DT32与所述第三透镜的有效焦距f3之间满足:0.1<DT32/f3<0.6。
  13. 根据权利要求12所述的摄像镜头,其特征在于,所述第二透镜具有正光焦度。
  14. 根据权利要求12所述的摄像镜头,其特征在于,所述第二透镜具有负光焦度。
  15. 根据权利要求12所述的摄像镜头,其特征在于,所述第四透镜具有正光焦度。
  16. 根据权利要求12所述的摄像镜头,其特征在于,所述第四透镜具有负光焦度。
  17. 根据权利要求12至16中任一项所述的摄像镜头,其特征在于,所述摄像镜头的所述有效焦距f与所述第一透镜的有效焦距f1之间满足:-4<f1/f<-2。
  18. 根据权利要求17所述的摄像镜头,其特征在于,所述摄像镜头的所述有效焦距f与所述摄像镜头的所述入瞳直径EPD之间满足:f/EPD≤1.8。
  19. 根据权利要求17所述的摄像镜头,其特征在于,所述第一透 镜的像侧面的曲率半径R2与所述摄像镜头的有效焦距f之间满足:1<R2/f<1.5。
  20. 根据权利要求17所述的摄像镜头,其特征在于,满足0.2<CT1/(CT2+CT3+CT4)<0.5,
    其中,CT1为所述第一透镜在所述光轴上的中心厚度,
    CT2为所述第二透镜在所述光轴上的中心厚度,
    CT3为所述第三透镜在所述光轴上的中心厚度,以及
    CT4为所述第四透镜在所述光轴上的中心厚度。
  21. 根据权利要求20所述的摄像镜头,其特征在于,满足:2<T12/T23<4,
    其中,T12为所述第一透镜和所述第二透镜在所述光轴上的空气间隔,以及
    T23为所述第二透镜和所述第三透镜在所述光轴上的空气间隔。
  22. 根据权利要求17所述的摄像镜头,其特征在于,所述第一透镜的物侧面的有效半口径DT11与所述摄像镜头的电子光感元件有效像素区域对角线长的一半ImgH之间满足:1.2<DT11/ImgH<2.6。
  23. 根据权利要求17所述的摄像镜头,其特征在于,所述摄像镜头的电子光感元件有效像素区域对角线长的一半ImgH与所述摄像镜头的有效焦距f之间满足:Imgh/f>1。
  24. 根据权利要求17所述的摄像镜头,其特征在于,满足0.3<∑CT/TTL<0.6,
    其中,∑CT为所述第一透镜至所述第四透镜分别于所述光轴上的厚度总和,以及
    TTL为所述第一透镜物侧面至成像面在所述光轴上的距离。
  25. 根据权利要求17所述的摄像镜头,其特征在于,满足0.9<SAG11/CT1<1.75,
    其中,SAG11为所述第一透镜物侧面和所述光轴的交点至所述第一透镜物侧面的有效半口径顶点之间在所述光轴上的距离,以及
    CT1为所述第一透镜在所述光轴上的中心厚度。
  26. 根据权利要求17所述的摄像镜头,其特征在于,所述第四透镜与所述摄像镜头的成像面之间设置有红外带通滤光片。
  27. 摄像镜头,具有有效焦距f和入瞳直径EPD,并沿着光轴由物侧至像侧依序包括第一透镜、第二透镜、第三透镜和第四透镜,
    其特征在于,
    所述第一透镜具有负光焦度,其像侧面为凹面;
    所述第三透镜具有正光焦度;
    所述第四透镜的像侧面为凸面;
    所述第一透镜与所述第二透镜的组合光焦度为负;
    所述第三透镜与所述第四透镜的组合光焦度为正;以及
    满足0.9<SAG11/CT1<1.75,
    其中,SAG11为所述第一透镜物侧面和所述光轴的交点至所述第一透镜物侧面的有效半口径顶点之间在所述光轴上的距离,以及
    CT1为所述第一透镜在所述光轴上的中心厚度。
  28. 根据权利要求27所述的摄像镜头,其特征在于,所述第二透镜具有正光焦度。
  29. 根据权利要求27所述的摄像镜头,其特征在于,所述第二透镜具有负光焦度。
  30. 根据权利要求27所述的摄像镜头,其特征在于,所述第四透镜具有正光焦度。
  31. 根据权利要求27所述的摄像镜头,其特征在于,所述第四透镜具有负光焦度。
  32. 根据权利要求27至31中任一项所述的摄像镜头,其特征在于,所述摄像镜头的所述有效焦距f与所述摄像镜头的所述入瞳直径EPD之间满足:f/EPD≤1.8。
  33. 根据权利要求32所述的摄像镜头,其特征在于,所述摄像镜头的所述有效焦距f与所述第一透镜的有效焦距f1之间满足:-4<f1/f<-2。
  34. 根据权利要求32所述的摄像镜头,其特征在于,所述第一透镜的像侧面的曲率半径R2与所述摄像镜头的有效焦距f之间满足:1<R2/f<1.5。
  35. 根据权利要求32所述的摄像镜头,其特征在于,满足0.2<CT1/(CT2+CT3+CT4)<0.5,
    其中,CT1为所述第一透镜在所述光轴上的中心厚度,
    CT2为所述第二透镜在所述光轴上的中心厚度,
    CT3为所述第三透镜在所述光轴上的中心厚度,以及
    CT4为所述第四透镜在所述光轴上的中心厚度。
  36. 根据权利要求35所述的摄像镜头,其特征在于,满足:2<T12/T23<4,
    其中,T12为所述第一透镜和所述第二透镜在所述光轴上的空气间隔,以及
    T23为所述第二透镜和所述第三透镜在所述光轴上的空气间隔。
  37. 根据权利要求32所述的摄像镜头,其特征在于,所述第一透镜的物侧面的有效半口径DT11与所述摄像镜头的电子光感元件有效 像素区域对角线长的一半ImgH之间满足:1.2<DT11/ImgH<2.6。
  38. 根据权利要求32所述的摄像镜头,其特征在于,所述摄像镜头的电子光感元件有效像素区域对角线长的一半ImgH与所述摄像镜头的有效焦距f之间满足:Imgh/f>1。
  39. 根据权利要求32所述的摄像镜头,其特征在于,满足0.3<∑CT/TTL<0.6,
    其中,∑CT为所述第一透镜至所述第四透镜分别于所述光轴上的厚度总和,以及
    TTL为所述第一透镜物侧面至成像面在所述光轴上的距离。
  40. 根据权利要求32所述的摄像镜头,其特征在于,所述第一透镜的像侧面的有效半口径DT32与所述第三透镜的有效焦距f3之间满足:0.1<DT32/f3<0.6。
  41. 根据权利要求32所述的摄像镜头,其特征在于,所述第四透镜与所述摄像镜头的成像面之间设置有红外带通滤光片。
PCT/CN2018/077204 2017-07-25 2018-02-26 摄像镜头 WO2019019625A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/231,127 US11199699B2 (en) 2017-07-25 2018-12-21 Camera lens assembly

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201720904063.9U CN207123643U (zh) 2017-07-25 2017-07-25 摄像镜头
CN201710609936.8A CN107167901B (zh) 2017-07-25 2017-07-25 摄像镜头
CN201710609936.8 2017-07-25
CN201720904063.9 2017-07-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/231,127 Continuation US11199699B2 (en) 2017-07-25 2018-12-21 Camera lens assembly

Publications (1)

Publication Number Publication Date
WO2019019625A1 true WO2019019625A1 (zh) 2019-01-31

Family

ID=65039949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077204 WO2019019625A1 (zh) 2017-07-25 2018-02-26 摄像镜头

Country Status (2)

Country Link
US (1) US11199699B2 (zh)
WO (1) WO2019019625A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI687733B (zh) 2018-12-20 2020-03-11 大立光電股份有限公司 成像鏡片系統、辨識模組及電子裝置
TWI730517B (zh) 2019-11-29 2021-06-11 大立光電股份有限公司 透鏡系統及電子裝置
CN112188065B (zh) * 2020-09-30 2022-02-15 维沃移动通信有限公司 摄像装置及电子设备
KR102433563B1 (ko) * 2020-10-22 2022-08-18 주식회사 세코닉스 Tof용 소형 렌즈 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003029142A (ja) * 2001-07-19 2003-01-29 Pentax Corp 内視鏡対物レンズ系
CN103777315A (zh) * 2013-11-15 2014-05-07 浙江舜宇光学有限公司 微型广角成像镜头
CN104142565A (zh) * 2014-07-22 2014-11-12 浙江舜宇光学有限公司 近红外交互式投影镜头
CN206178233U (zh) * 2016-07-18 2017-05-17 先进光电科技股份有限公司 可见光与红外光两用的低焦平面偏移量光学成像系统
CN106842549A (zh) * 2017-03-03 2017-06-13 东莞市宇光光电科技有限公司 内窥用摄像物镜光学系统
CN107167901A (zh) * 2017-07-25 2017-09-15 浙江舜宇光学有限公司 摄像镜头

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6047701B2 (ja) * 2012-11-30 2016-12-21 株式会社オプトロジック 撮像レンズ
TWI592683B (zh) * 2015-07-13 2017-07-21 先進光電科技股份有限公司 光學成像系統
TWI620952B (zh) * 2016-04-28 2018-04-11 先進光電科技股份有限公司 光學成像系統
TWI596374B (zh) * 2016-08-26 2017-08-21 大立光電股份有限公司 影像鏡頭、取像裝置及電子裝置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003029142A (ja) * 2001-07-19 2003-01-29 Pentax Corp 内視鏡対物レンズ系
CN103777315A (zh) * 2013-11-15 2014-05-07 浙江舜宇光学有限公司 微型广角成像镜头
CN104142565A (zh) * 2014-07-22 2014-11-12 浙江舜宇光学有限公司 近红外交互式投影镜头
CN206178233U (zh) * 2016-07-18 2017-05-17 先进光电科技股份有限公司 可见光与红外光两用的低焦平面偏移量光学成像系统
CN106842549A (zh) * 2017-03-03 2017-06-13 东莞市宇光光电科技有限公司 内窥用摄像物镜光学系统
CN107167901A (zh) * 2017-07-25 2017-09-15 浙江舜宇光学有限公司 摄像镜头

Also Published As

Publication number Publication date
US11199699B2 (en) 2021-12-14
US20190121127A1 (en) 2019-04-25

Similar Documents

Publication Publication Date Title
CN107167901B (zh) 摄像镜头
WO2020093725A1 (zh) 摄像光学系统
WO2020001066A1 (zh) 摄像镜头
WO2019091170A1 (zh) 摄像透镜组
WO2019210739A1 (zh) 光学成像镜头
WO2020107936A1 (zh) 光学成像系统
WO2019210740A1 (zh) 光学成像镜头
WO2020007081A1 (zh) 光学成像镜头
WO2019233040A1 (zh) 摄像透镜组
WO2019056817A1 (zh) 光学成像系统
WO2021042992A1 (zh) 光学成像系统
WO2019137055A1 (zh) 摄像透镜系统
WO2019237776A1 (zh) 光学成像系统
WO2018223651A1 (zh) 摄像镜头
WO2019192160A1 (zh) 光学成像镜头
WO2019169856A1 (zh) 摄像镜头组
WO2019019625A1 (zh) 摄像镜头
WO2018218889A1 (zh) 光学成像系统
WO2019210701A1 (zh) 光学成像系统
WO2019184367A1 (zh) 光学系统
WO2019007065A1 (zh) 光学成像镜头
WO2019210676A1 (zh) 摄像镜头
WO2019205821A1 (zh) 光学成像镜头
WO2018209855A1 (zh) 光学成像系统
WO2021057229A1 (zh) 光学成像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838284

Country of ref document: EP

Kind code of ref document: A1