WO2019000986A1 - 光学成像系统 - Google Patents

光学成像系统 Download PDF

Info

Publication number
WO2019000986A1
WO2019000986A1 PCT/CN2018/077207 CN2018077207W WO2019000986A1 WO 2019000986 A1 WO2019000986 A1 WO 2019000986A1 CN 2018077207 W CN2018077207 W CN 2018077207W WO 2019000986 A1 WO2019000986 A1 WO 2019000986A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging system
optical imaging
focal length
effective focal
Prior art date
Application number
PCT/CN2018/077207
Other languages
English (en)
French (fr)
Inventor
张凯元
贾远林
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710506294.9A external-priority patent/CN107121756B/zh
Priority claimed from CN201720763034.5U external-priority patent/CN206960762U/zh
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Priority to US16/226,205 priority Critical patent/US10901185B2/en
Publication of WO2019000986A1 publication Critical patent/WO2019000986A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only

Definitions

  • the present application relates to an optical imaging system and, more particularly, to a wide-angle imaging system comprising six lenses.
  • optical imaging systems In addition to the need for higher resolution, current optical imaging systems place higher demands on the range of their field of view. Since optical imaging systems with large field of view can contain more object-side information when imaging, imaging lenses with large fields of view have become a trend.
  • the lens is required to have ultra-wide angle, high resolution, and high image quality under the premise of miniaturization and weight reduction.
  • the present application provides an optical imaging system that can be adapted for use in a portable electronic product that can at least solve or partially address at least one of the above disadvantages of the prior art.
  • An aspect of the present application provides an optical imaging system including, in order from an object side to an image side along an optical axis, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a first Six lenses.
  • the first lens and the fourth lens may each have a negative power;
  • the second lens and the sixth lens may each have a positive power or a negative power;
  • the effective focal length f3 of the third lens and the effective focal length f5 of the fifth lens may be Satisfying 0 ⁇ f3/f5 ⁇ 0.8.
  • Another aspect of the present application provides an optical imaging system having a total effective focal length f and sequentially including from the object side to the image side along the optical axis: a first lens, a second lens, a third lens, and a fourth a lens, a fifth lens, and a sixth lens.
  • the first lens may have a negative power; the second lens and the sixth lens may each have a positive power or a negative power; and the combined power of the third lens, the fourth lens, and the fifth lens may be a positive power
  • at least one of the third lens, the fourth lens, and the fifth lens may have negative power, and the combined power f345 of the third lens, the fourth lens, and the fifth lens may satisfy 0.5 ⁇ f/f345 ⁇ 0.9.
  • Another aspect of the present application also provides an optical imaging system including a first lens, a second lens, a third lens, and a fourth lens having powers sequentially from the object side to the image side along the optical axis.
  • the first lens and the fourth lens may both have negative power; the third lens and the fifth lens may each have positive power; at least one of the second lens and the sixth lens may have positive power, and the sixth lens
  • the center height CT6 of the vector side at the maximum radius and the center thickness CT6 of the sixth lens on the optical axis can satisfy
  • the combined power of the third lens, the fourth lens, and the fifth lens may be positive power.
  • the third lens and the fifth lens each have positive power.
  • the fourth lens can have a negative power.
  • the maximum half angle of view HFOV of the optical imaging system may satisfy Tan (HFOV/2) ⁇ 0.9.
  • the effective focal length f3 of the third lens and the effective focal length f5 of the fifth lens may satisfy 0 ⁇ f3/f5 ⁇ 0.8.
  • the combined effective focal length f of the optical imaging system and the combined focal length f345 of the third, fourth, and fifth lenses may satisfy 0.5 ⁇ f/f 345 ⁇ 0.9.
  • the total effective focal length f of the optical imaging system and the effective focal length f2 of the second lens may satisfy f/f2 ⁇ 0.2.
  • the total effective focal length f of the optical imaging system and the effective focal length f4 of the fourth lens may satisfy -1.5 ⁇ f / f4 ⁇ - 0.5.
  • the effective focal length f1 of the first lens and the effective focal length f6 of the sixth lens may satisfy
  • the edge thickness ET6 of the sixth lens at the maximum radius and the center thickness CT6 of the sixth lens on the optical axis may satisfy 1 < ET6 / CT6 <
  • the center height CT6 of the object side of the sixth lens at the maximum radius and the center thickness CT6 of the sixth lens on the optical axis may satisfy
  • the center thickness CT6 of the sixth lens on the optical axis and the center thickness CT1 of the first lens on the optical axis may satisfy 0.5 ⁇ CT6/CT1 ⁇ 1.0.
  • the sum of the air distance T56 of the fifth lens and the sixth lens on the optical axis and the distance between the adjacent lenses of the first lens to the sixth lens on the optical axis ⁇ AT can satisfy 0.1 ⁇ T56 / ⁇ AT ⁇ 0.5.
  • the total effective focal length f of the optical imaging system and the radius of curvature R3 of the object side of the second lens may satisfy f/
  • the radius of curvature R7 of the side surface of the fourth lens object and the radius of curvature R8 of the side surface of the fourth lens image may satisfy -5.0 ⁇ R7 / R8 ⁇ 0.
  • the total effective focal length f of the optical imaging system and the entrance pupil diameter EPD of the optical imaging system may satisfy f/EPD ⁇ 2.2.
  • a plurality of (for example, six) lenses are used, and the optical imaging system can be made to have the following by rationally distributing the power of each lens, the surface shape, the center thickness of each lens, and the on-axis spacing between the lenses.
  • FIG. 1 is a schematic structural view of an optical imaging system according to Embodiment 1 of the present application.
  • 2A to 2D respectively show an axial chromatic aberration curve, an astigmatism curve, a magnification chromatic aberration curve, and a phase contrast curve of the optical imaging system of Embodiment 1;
  • FIG. 3 is a schematic structural view of an optical imaging system according to Embodiment 2 of the present application.
  • 4A to 4D respectively show axial chromatic aberration curves, astigmatism curves, magnification chromatic aberration curves, and phase contrast curves of the optical imaging system of Embodiment 2.
  • FIG. 5 is a schematic structural view of an optical imaging system according to Embodiment 3 of the present application.
  • 6A to 6D respectively show an axial chromatic aberration curve, an astigmatism curve, a magnification chromatic aberration curve, and a phase contrast curve of the optical imaging system of Embodiment 3.
  • FIG. 7 is a schematic structural view of an optical imaging system according to Embodiment 4 of the present application.
  • 8A to 8D respectively show an axial chromatic aberration curve, an astigmatism curve, a magnification chromatic aberration curve, and a phase contrast curve of the optical imaging system of Embodiment 4;
  • FIG. 9 is a schematic structural view of an optical imaging system according to Embodiment 5 of the present application.
  • 10A to 10D respectively show an axial chromatic aberration curve, an astigmatism curve, a magnification chromatic aberration curve, and a phase contrast curve of the optical imaging system of Embodiment 5;
  • Figure 11 is a block diagram showing the structure of an optical imaging system according to Embodiment 6 of the present application.
  • 12A to 12D respectively show an axial chromatic aberration curve, an astigmatism curve, a magnification chromatic aberration curve, and a phase contrast curve of the optical imaging system of Embodiment 6;
  • Figure 13 is a block diagram showing the structure of an optical imaging system according to Embodiment 7 of the present application.
  • 14A to 14D respectively show an axial chromatic aberration curve, an astigmatism curve, a magnification chromatic aberration curve, and a phase contrast curve of the optical imaging system of Embodiment 7;
  • Figure 15 is a block diagram showing the structure of an optical imaging system according to Embodiment 8 of the present application.
  • 16A to 16D respectively show an axial chromatic aberration curve, an astigmatism curve, a magnification chromatic aberration curve, and a phase contrast curve of the optical imaging system of Embodiment 8.
  • first, second, third, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
  • first lens discussed below may also be referred to as a second lens or a third lens without departing from the teachings of the present application.
  • the thickness, size, and shape of the lens have been somewhat exaggerated for convenience of explanation.
  • the spherical or aspherical shape shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspherical surface is not limited to the spherical or aspherical shape shown in the drawings.
  • the drawings are only examples and are not to scale.
  • a paraxial region refers to a region near the optical axis. If the surface of the lens is convex and the position of the convex surface is not defined, it indicates that the surface of the lens is convex at least in the paraxial region; if the surface of the lens is concave and the position of the concave surface is not defined, it indicates that the surface of the lens is at least in the paraxial region. Concave.
  • the surface closest to the object in each lens is referred to as the object side, and the surface of each lens closest to the image plane is referred to as the image side.
  • An optical imaging system includes, for example, six lenses having powers, that is, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens.
  • the six lenses are sequentially arranged from the object side to the image side along the optical axis.
  • the optical imaging system according to an exemplary embodiment of the present application may further include an electronic photosensitive element disposed on the imaging surface.
  • the first lens may have a negative power; the second lens may have a positive power or a negative power; the third lens may have a positive power; the fourth lens may have a negative power; and the fifth lens may have a positive power And the sixth lens may have a positive power or a negative power.
  • the maximum half angle of view HFOV of the optical imaging system satisfies Tan (HFOV/2) ⁇ 0.9, and more specifically, HFOV can further satisfy 0.99 ⁇ Tan (HFOV/2) ⁇ 1.00.
  • Tan Tan (HFOV/2) ⁇ 0.9
  • HFOV can further satisfy 0.99 ⁇ Tan (HFOV/2) ⁇ 1.00.
  • f3 and f5 can further satisfy 0.36 ⁇ f3 / f5 ⁇ 0.63.
  • the total effective focal length f of the optical imaging system and the combined focal length f345 of the third lens, the fourth lens and the fifth lens may satisfy 0.5 ⁇ f/f345 ⁇ 0.9, and more specifically, f and f345 may further satisfy 0.58 ⁇ f/ F345 ⁇ 0.78.
  • the three lenses can assume reasonable power and meet the requirements of the imaging field of view.
  • the total effective focal length f of the optical imaging system and the effective focal length f2 of the second lens may satisfy f/f2 ⁇ 0.2, and more specifically, f and f2 may further satisfy 0.07 ⁇ f / f2 ⁇ 0.15.
  • the second lens has a reasonable ability to balance spherical aberration and coma, thereby effectively improving the imaging quality of the system.
  • the total effective focal length f of the optical imaging system and the effective focal length f4 of the fourth lens may satisfy -1.5 ⁇ f / f4 ⁇ -0.5, and more specifically, f and f4 may further satisfy -1.36 ⁇ f / f4 ⁇ -0.83.
  • the fourth lens produces a positive spherical aberration that can be used to balance the spherical aberration of the system, thereby providing the system with good imaging quality.
  • the first lens and the sixth lens can be made to have a reasonable distortion range.
  • the edge thickness ET6 of the sixth lens at the maximum radius and the center thickness CT6 of the sixth lens on the optical axis may satisfy 1 ⁇ ET6/CT6 ⁇ 2, and more specifically, ET6 and CT6 may further satisfy 1.16 ⁇ ET6/CT6. ⁇ 1.67.
  • the sixth lens has good workability by defining a range of the edge thickness and the center thickness of the sixth lens.
  • the object side of the sixth lens may satisfy
  • the sixth lens can be made to have good workability and reduce machining errors.
  • the center thickness CT6 of the sixth lens on the optical axis and the center thickness CT1 of the first lens on the optical axis may satisfy 0.5 ⁇ CT6/CT1 ⁇ 1.0, and more specifically, CT6 and CT1 may further satisfy 0.55 ⁇ CT6/CT1. ⁇ 0.85.
  • the distortion of the sixth lens and the first lens in different directions is controlled such that the distortion distribution of the large field of view system is within a reasonable range.
  • the air gap T56 of the fifth lens and the sixth lens on the optical axis may satisfy 0.1 ⁇ T56/ ⁇ AT ⁇ between the sum of the distances of the distances of any two adjacent lenses of the first lens to the sixth lens on the optical axis ⁇ AT ⁇ 0.5, more specifically, T56 and ⁇ AT further satisfy 0.13 ⁇ T56 / ⁇ AT ⁇ 0.31.
  • the astigmatism of the system can be adjusted to control the astigmatism of the system within a reasonable range, so that the system has good imaging quality and excellent performance. Resolution ability.
  • the total effective focal length f of the optical imaging system and the radius of curvature R3 of the object side of the second lens may satisfy f/
  • f and R3 may further satisfy 0.11 ⁇ f/
  • the radius of curvature R7 of the side surface of the fourth lens object and the radius of curvature R8 of the side surface of the fourth lens image may satisfy -5.0 ⁇ R7/R8 ⁇ 0, and more specifically, R7 and R8 may further satisfy -3.54 ⁇ R7/R8 ⁇ - 0.85.
  • the fourth lens can have a good balance of axial chromatic aberration. The ability to achieve good imaging quality over a range of imaging band bandwidths for optical imaging systems.
  • the total effective focal length f of the optical imaging system and the entrance pupil diameter EPD of the optical imaging system may satisfy f/EPD ⁇ 2.2, and more specifically, f and EPD may further satisfy 1.8 ⁇ f / EPD ⁇ 2.2.
  • the ratio of the total effective focal length f to the entrance pupil diameter EPD ie, the F-number of the system
  • the system is able to achieve good image quality in dim light conditions.
  • the reasonable F number can be reasonably improved, and the design value of the system can be reasonably improved, so that the optical system is designed to ensure good image quality.
  • a stop for limiting the beam may be provided between, for example, the second lens and the third lens to enhance the imaging quality of the optical imaging system.
  • the aperture may be an aperture stop.
  • the optical imaging system described above may further comprise a filter for correcting color deviation and/or a cover glass for protecting the photosensitive element on the imaging surface.
  • plastic lenses can be used for each lens in the above optical imaging system.
  • aspherical lenses have better curvature radius characteristics, have the advantages of improving distortion and improving astigmatic aberration.
  • an aspherical lens may be employed to eliminate as much as possible the aberrations that occur during imaging, thereby further improving the imaging quality of the optical imaging system.
  • the use of an aspherical lens not only can significantly improve the image quality, reduce the aberration, but also reduce the number of lenses and reduce the size of the lens.
  • optical imaging system is not limited to including six lenses.
  • the optical imaging system can also include other numbers of lenses if desired.
  • FIG. 1 is a block diagram showing the structure of an optical imaging system according to Embodiment 1 of the present application.
  • the optical imaging system sequentially includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens from the object side to the imaging side along the optical axis. E6 and imaging plane S15.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are both spherical surfaces.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a concave surface
  • the image side surface S4 is a convex surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are aspherical surfaces.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are aspherical surfaces.
  • the fourth lens E4 has a negative refractive power, the object side surface S7 is a concave surface, the image side surface S8 is a concave surface, and the object side surface S7 and the image side surface S8 of the fourth lens E4 are both aspherical surfaces.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface
  • the object side surface S9 and the image side surface S10 of the fifth lens E5 are aspherical surfaces.
  • the sixth lens E6 has a positive refractive power, the object side surface S11 is a convex surface, the image side surface S12 is a concave surface, and the object side surface S11 and the image side surface S12 of the sixth lens E6 are aspherical surfaces.
  • the optical imaging system may further include a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a stop STO for limiting the light beam may also be provided between, for example, the second lens E2 and the third lens E3 to improve the imaging quality of the optical imaging system.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging system of Example 1, in which the unit of curvature radius and thickness are both millimeters (mm).
  • each aspherical surface type x is defined by the following formula:
  • x is the position of the aspherical surface at height h in the direction of the optical axis, and the distance from the aspherical vertex is high;
  • k is the conic coefficient (given in Table 1 above);
  • Ai is the correction coefficient of the a-th order of the aspheric surface.
  • Table 2 below gives the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 which can be used for each aspherical mirror surface S3-S12 in the embodiment 1. .
  • Table 3 shown below gives the effective focal lengths f1 to f6 of the lenses in the optical imaging system of Embodiment 1, the total effective focal length f of the optical imaging system, and the optical total length TTL of the optical imaging system (i.e., from the first lens E1) The distance from the object side S1 to the imaging plane S15 on the optical axis).
  • the object side S11 of E6 satisfies
  • /CT6 0.74 between the vector height SAG61 at the maximum radius and the center thickness CT6 of the sixth lens E6 on the optical axis; the total effective focal length f of the optical imaging system and the entrance of the optical imaging system
  • 2A shows an axial chromatic aberration curve of the optical imaging system of Embodiment 1, which indicates that light of different wavelengths is deflected by a focus point after passing through the optical system.
  • 2B shows an astigmatism curve of the optical imaging system of Embodiment 1, which shows meridional field curvature and sagittal image plane curvature.
  • 2C shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 1, which shows the deviation of different image heights on the imaging plane after the light passes through the optical imaging system.
  • 2D shows a phase contrast curve of the optical imaging system of Example 1, which shows the relative illuminance corresponding to different image heights on the imaging surface.
  • the optical imaging system given in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 is a block diagram showing the structure of an optical imaging system according to Embodiment 2 of the present application.
  • the optical imaging system sequentially includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens from the object side to the imaging side along the optical axis. E6 and imaging plane S15.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are both spherical surfaces.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a concave surface
  • the image side surface S4 is a convex surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are aspherical surfaces.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are aspherical surfaces.
  • the fourth lens E4 has a negative refractive power, the object side surface S7 is a concave surface, the image side surface S8 is a concave surface, and the object side surface S7 and the image side surface S8 of the fourth lens E4 are both aspherical surfaces.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface
  • the object side surface S9 and the image side surface S10 of the fifth lens E5 are aspherical surfaces.
  • the sixth lens E6 has a positive refractive power, the object side surface S11 is a convex surface, the image side surface S12 is a concave surface, and the object side surface S11 and the image side surface S12 of the sixth lens E6 are aspherical surfaces.
  • the optical imaging system may further include a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a stop STO for limiting the light beam may also be provided between, for example, the second lens E2 and the third lens E3 to improve the imaging quality of the optical imaging system.
  • Table 4 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging system of Example 2, in which the unit of curvature radius and thickness are both millimeters (mm).
  • Table 5 shows the high order term coefficients that can be used for each of the aspherical mirrors in Example 2.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Table 6 shows the effective focal lengths f1 to f6 of the lenses in the optical imaging system of Example 2, the total effective focal length f of the optical imaging system, and the optical total length TTL of the optical imaging system.
  • 4A shows an axial chromatic aberration curve of the optical imaging system of Embodiment 2, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • 4B shows an astigmatism curve of the optical imaging system of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
  • 4C shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 2, which shows the deviation of different image heights on the imaging plane after the light passes through the optical imaging system.
  • 4D shows a phase contrast curve of the optical imaging system of Example 2, which shows the relative illuminance corresponding to different image heights on the imaging surface.
  • the optical imaging system given in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 is a block diagram showing the structure of an optical imaging system according to Embodiment 3 of the present application.
  • the optical imaging system sequentially includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens from the object side to the imaging side along the optical axis. E6 and imaging plane S15.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are both spherical surfaces.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a concave surface
  • the image side surface S4 is a convex surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are aspherical surfaces.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are aspherical surfaces.
  • the fourth lens E4 has a negative refractive power, the object side surface S7 is a concave surface, the image side surface S8 is a concave surface, and the object side surface S7 and the image side surface S8 of the fourth lens E4 are both aspherical surfaces.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface
  • the object side surface S9 and the image side surface S10 of the fifth lens E5 are aspherical surfaces.
  • the sixth lens E6 has a negative refractive power, the object side surface S11 is a convex surface, the image side surface S12 is a concave surface, and the object side surface S11 and the image side surface S12 of the sixth lens E6 are both aspherical surfaces.
  • the optical imaging system may further include a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a stop STO for limiting the light beam may also be provided between, for example, the second lens E2 and the third lens E3 to improve the imaging quality of the optical imaging system.
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging system of Example 3, wherein the units of the radius of curvature and the thickness are all in millimeters (mm).
  • Table 8 shows the high order term coefficients that can be used for each aspherical mirror in Example 3.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Table 9 shows the effective focal lengths f1 to f6 of the lenses in the optical imaging system of Embodiment 3, the total effective focal length f of the optical imaging system, and the optical total length TTL of the optical imaging system.
  • 6A shows an axial chromatic aberration curve of the optical imaging system of Embodiment 3, which indicates that light of different wavelengths is deviated from a focus point after passing through the optical system.
  • Fig. 6B shows an astigmatism curve of the optical imaging system of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • 6C shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 3, which shows the deviation of different image heights on the imaging plane after the light passes through the optical imaging system.
  • Fig. 6D shows a phase contrast curve of the optical imaging system of Example 3, which shows the relative illuminance corresponding to different image heights on the imaging surface. 6A to 6D, the optical imaging system given in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 is a block diagram showing the structure of an optical imaging system according to Embodiment 4 of the present application.
  • the optical imaging system sequentially includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens from the object side to the imaging side along the optical axis. E6 and imaging plane S15.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are both spherical surfaces.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a concave surface
  • the image side surface S4 is a convex surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are aspherical surfaces.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are aspherical surfaces.
  • the fourth lens E4 has a negative refractive power, the object side surface S7 is a concave surface, the image side surface S8 is a concave surface, and the object side surface S7 and the image side surface S8 of the fourth lens E4 are both aspherical surfaces.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface
  • the object side surface S9 and the image side surface S10 of the fifth lens E5 are aspherical surfaces.
  • the sixth lens E6 has a positive refractive power, the object side surface S11 is a convex surface, the image side surface S12 is a concave surface, and the object side surface S11 and the image side surface S12 of the sixth lens E6 are aspherical surfaces.
  • the optical imaging system may further include a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a stop STO for limiting the light beam may also be provided between, for example, the second lens E2 and the third lens E3 to improve the imaging quality of the optical imaging system.
  • Table 10 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging system of Example 4, in which the unit of curvature radius and thickness are both millimeters (mm).
  • Table 11 shows the high order term coefficients that can be used for each aspherical mirror in Example 4.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Table 12 shows the effective focal lengths f1 to f6 of the lenses in the optical imaging system of Embodiment 4, the total effective focal length f of the optical imaging system, and the optical total length TTL of the optical imaging system.
  • Fig. 8A shows an axial chromatic aberration curve of the optical imaging system of Embodiment 4, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 8B shows an astigmatism curve of the optical imaging system of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 8C shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 4, which shows the deviation of different image heights on the imaging plane after the light passes through the optical imaging system.
  • Fig. 8D shows a phase contrast curve of the optical imaging system of Example 4, which shows the relative illuminance corresponding to different image heights on the imaging surface. 8A to 8D, the optical imaging system given in Embodiment 4 can achieve good image quality.
  • FIG. 9 is a block diagram showing the structure of an optical imaging system according to Embodiment 5 of the present application.
  • the optical imaging system sequentially includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens from the object side to the imaging side along the optical axis. E6 and imaging plane S15.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are both spherical surfaces.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a concave surface
  • the image side surface S4 is a convex surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are aspherical surfaces.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are aspherical surfaces.
  • the fourth lens E4 has a negative refractive power, the object side surface S7 is a concave surface, the image side surface S8 is a concave surface, and the object side surface S7 and the image side surface S8 of the fourth lens E4 are both aspherical surfaces.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface
  • the object side surface S9 and the image side surface S10 of the fifth lens E5 are aspherical surfaces.
  • the sixth lens E6 has a negative refractive power, the object side surface S11 is a convex surface, the image side surface S12 is a concave surface, and the object side surface S11 and the image side surface S12 of the sixth lens E6 are both aspherical surfaces.
  • the optical imaging system may further include a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a stop STO for limiting the light beam may also be provided between, for example, the second lens E2 and the third lens E3 to improve the imaging quality of the optical imaging system.
  • Table 13 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging system of Example 5, in which the unit of curvature radius and thickness are both millimeters (mm).
  • Table 14 shows the high order term coefficients that can be used for each aspherical mirror in Example 5.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Table 15 shows the effective focal lengths f1 to f6 of the lenses in the optical imaging system of Embodiment 5, the total effective focal length f of the optical imaging system, and the optical total length TTL of the optical imaging system.
  • Fig. 10A shows an axial chromatic aberration curve of the optical imaging system of Embodiment 5, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 10B shows an astigmatism curve of the optical imaging system of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 10C shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 5, which shows the deviation of different image heights on the imaging plane after the light passes through the optical imaging system.
  • Fig. 10D shows a phase contrast curve of the optical imaging system of Example 5, which shows the relative illuminance corresponding to different image heights on the imaging surface. 10A to 10D, the optical imaging system given in Embodiment 5 can achieve good imaging quality.
  • FIGS. 11 through 12D An optical imaging system according to Embodiment 6 of the present application is described below with reference to FIGS. 11 through 12D.
  • Figure 11 is a block diagram showing the structure of an optical imaging system according to Embodiment 6 of the present application.
  • the optical imaging system sequentially includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens from the object side to the imaging side along the optical axis. E6 and imaging plane S15.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are both spherical surfaces.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a concave surface
  • the image side surface S4 is a convex surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are aspherical surfaces.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are aspherical surfaces.
  • the fourth lens E4 has a negative refractive power, the object side surface S7 is a concave surface, the image side surface S8 is a concave surface, and the object side surface S7 and the image side surface S8 of the fourth lens E4 are both aspherical surfaces.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface
  • the object side surface S9 and the image side surface S10 of the fifth lens E5 are aspherical surfaces.
  • the sixth lens E6 has a positive refractive power, the object side surface S11 is a convex surface, the image side surface S12 is a concave surface, and the object side surface S11 and the image side surface S12 of the sixth lens E6 are aspherical surfaces.
  • the optical imaging system may further include a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a stop STO for limiting the light beam may also be provided between, for example, the second lens E2 and the third lens E3 to improve the imaging quality of the optical imaging system.
  • Table 16 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging system of Example 6, wherein the unit of curvature radius and thickness are both millimeters (mm).
  • Table 17 shows the high order term coefficients that can be used for each aspherical mirror in Example 6.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Table 18 shows the effective focal lengths f1 to f6 of the lenses in the optical imaging system of Example 6, the total effective focal length f of the optical imaging system, and the optical total length TTL of the optical imaging system.
  • Fig. 12A shows an axial chromatic aberration curve of the optical imaging system of Example 6, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 12B shows an astigmatism curve of the optical imaging system of Embodiment 6, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 12C shows a magnification chromatic aberration curve of the optical imaging system of Example 6, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging system.
  • Fig. 12D shows a phase contrast curve of the optical imaging system of Example 6, which shows the relative illuminance corresponding to different image heights on the imaging surface. 12A to 12D, the optical imaging system given in Embodiment 6 can achieve good imaging quality.
  • FIG. 13 is a block diagram showing the structure of an optical imaging system according to Embodiment 7 of the present application.
  • the optical imaging system sequentially includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens from the object side to the imaging side along the optical axis. E6 and imaging plane S15.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are both spherical surfaces.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a concave surface
  • the image side surface S4 is a convex surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are aspherical surfaces.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are aspherical surfaces.
  • the fourth lens E4 has a negative refractive power, the object side surface S7 is a concave surface, the image side surface S8 is a concave surface, and the object side surface S7 and the image side surface S8 of the fourth lens E4 are both aspherical surfaces.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface
  • the object side surface S9 and the image side surface S10 of the fifth lens E5 are aspherical surfaces.
  • the sixth lens E6 has a positive refractive power, the object side surface S11 is a convex surface, the image side surface S12 is a concave surface, and the object side surface S11 and the image side surface S12 of the sixth lens E6 are aspherical surfaces.
  • the optical imaging system may further include a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a stop STO for limiting the light beam may also be provided between, for example, the second lens E2 and the third lens E3 to improve the imaging quality of the optical imaging system.
  • Table 19 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging system of Example 7, in which the unit of curvature radius and thickness are both millimeters (mm).
  • Table 20 shows the high order term coefficients that can be used for each aspherical mirror in Example 7.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Table 21 shows the effective focal lengths f1 to f6 of the lenses in the optical imaging system of Embodiment 7, the total effective focal length f of the optical imaging system, and the optical total length TTL of the optical imaging system.
  • FIG. 14A shows an axial chromatic aberration curve of the optical imaging system of Embodiment 7, which indicates that light of different wavelengths is deviated from a focus point after passing through the optical system.
  • Fig. 14B shows an astigmatism curve of the optical imaging system of Embodiment 7, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 14C shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 7, which shows the deviation of different image heights on the imaging plane after the light passes through the optical imaging system.
  • Figure 14D shows a phase contrast curve for the optical imaging system of Example 7, which shows the relative illuminance corresponding to different image heights on the imaging surface. 14A to 14D, the optical imaging system given in Embodiment 7 can achieve good imaging quality.
  • FIG. 15 is a view showing the configuration of an optical imaging system according to Embodiment 8 of the present application.
  • the optical imaging system sequentially includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens from the object side to the imaging side along the optical axis. E6 and imaging plane S15.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are both spherical surfaces.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a concave surface
  • the image side surface S4 is a convex surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are aspherical surfaces.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are aspherical surfaces.
  • the fourth lens E4 has a negative refractive power, the object side surface S7 is a concave surface, the image side surface S8 is a concave surface, and the object side surface S7 and the image side surface S8 of the fourth lens E4 are both aspherical surfaces.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface
  • the object side surface S9 and the image side surface S10 of the fifth lens E5 are aspherical surfaces.
  • the sixth lens E6 has a positive refractive power, the object side surface S11 is a convex surface, the image side surface S12 is a concave surface, and the object side surface S11 and the image side surface S12 of the sixth lens E6 are aspherical surfaces.
  • the optical imaging system may further include a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a stop STO for limiting the light beam may also be provided between, for example, the second lens E2 and the third lens E3 to improve the imaging quality of the optical imaging system.
  • Table 22 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging system of Example 7, in which the unit of curvature radius and thickness are both millimeters (mm).
  • Table 23 shows the high order term coefficients that can be used for each aspherical mirror in Example 7.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Table 24 shows the effective focal lengths f1 to f6 of the lenses in the optical imaging system of Example 7, the total effective focal length f of the optical imaging system, and the optical total length TTL of the optical imaging system.
  • Fig. 16A shows an axial chromatic aberration curve of the optical imaging system of Example 8, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 16B shows an astigmatism curve of the optical imaging system of Embodiment 8, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 16C shows a magnification chromatic aberration curve of the optical imaging system of Example 8, which shows the deviation of different image heights on the imaging plane after the light passes through the optical imaging system.
  • Fig. 16D shows a phase contrast curve of the optical imaging system of Example 8, which shows the relative illuminance corresponding to different image heights on the imaging surface. 16A to 16D, the optical imaging system given in Embodiment 8 can achieve good imaging quality.
  • Embodiments 1 to 8 respectively satisfy the relationships shown in Table 25 below.
  • the present application also provides an image forming apparatus whose electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the imaging device may be a stand-alone imaging device such as a digital camera, or an imaging module integrated on a mobile electronic device such as a mobile phone.
  • the imaging device is equipped with the optical imaging system described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像系统,该光学成像系统沿着光轴由物侧至像侧依序包括:第一透镜(E1)、第二透镜(E2)、第三透镜(E3)、第四透镜(E4)、第五透镜(E5)和第六透镜(E6)。其中,第一透镜(E1)和第四透镜(E4)均可具有负光焦度;第二透镜(E2)和第六透镜(E6)均可具有正光焦度或负光焦度;第三透镜(E3)的有效焦距f3与第五透镜(E5)的有效焦距f5可满足0<f3/f5<0.8。

Description

光学成像系统
相关申请的交叉引用
本申请要求于2017年6月28日提交于中国国家知识产权局(SIPO)的、专利申请号为201710506294.9的中国专利申请以及于2017年6月28日提交至SIPO的、专利申请号为201720763034.5的中国专利申请的优先权和权益,以上中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种光学成像系统,更具体地,本申请涉及一种包括六片透镜的广角成像系统。
背景技术
目前的光学成像系统除了需要具有较高的分辨率,对其视场角的范围也提出了更高的要求。由于大视场角的光学成像系统在成像时能够包含更多的物方信息,因此具有大视场的成像镜头已成为一种趋势。
同时,由于便携式电子产品的日益发展,对镜头的小型化、轻量化提出了相应的要求。因此,需要镜头在满足小型化和轻量化的前提条件下,具有超广角化、高分辨率以及高成像质量等性能。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学成像系统。
本申请的一个方面提供了这样一种光学成像系统,其沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。第一透镜和第四透镜均可具有负光焦度;第二透镜和第六透镜均可具有正光焦度或负光焦度;第三透镜的有效焦距f3与第五透镜的有效焦距f5可满足0<f3/f5<0.8。
本申请的另一个方面提供了这样一种光学成像系统,其具有总有 效焦距f并沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。第一透镜可具有负光焦度;第二透镜和第六透镜均可具有正光焦度或负光焦度;第三透镜、第四透镜和第五透镜的组合光焦度可为正光焦度,其中,第三透镜、第四透镜和第五透镜中的至少一个可具有负光焦度,且第三透镜、第四透镜和第五透镜的组合焦度f345可满足0.5<f/f345<0.9。
本申请的另一个方面还提供了这样一种光学成像系统,其沿着光轴由物侧至像侧依序包括具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。第一透镜和第四透镜均可具有负光焦度;第三透镜和第五透镜均可具有正光焦度;第二透镜和第六透镜中的至少一个可具有正光焦度,以及第六透镜的物侧面在最大半径处的矢高SAG61与第六透镜于光轴上的中心厚度CT6可满足|SAG61|/CT6<1。
在一个实施方式中,第三透镜、第四透镜和第五透镜的组合光焦度可为正光焦度。
在一个实施方式中,第三透镜和所述第五透镜均具有正光焦度。
在一个实施方式中,第四透镜可具有负光焦度。
在一个实施方式中,光学成像系统的最大半视场角HFOV可满足Tan(HFOV/2)≥0.9。
在一个实施方式中,第三透镜的有效焦距f3与第五透镜的有效焦距f5可满足0<f3/f5<0.8。
在一个实施方式中,光学成像系统的总有效焦距f与第三透镜、第四透镜和第五透镜的组合焦距f345可满足0.5<f/f345<0.9。
在一个实施方式中,光学成像系统的总有效焦距f与第二透镜的有效焦距f2可满足f/f2≤0.2。
在一个实施方式中,光学成像系统的总有效焦距f与第四透镜的有效焦距f4可满足-1.5<f/f4<-0.5。
在一个实施方式中,第一透镜的有效焦距f1与第六透镜的有效焦距f6可满足|f1/f6|<0.5。
在一个实施方式中,第六透镜在最大半径处的边缘厚度ET6与第 六透镜于光轴上的中心厚度CT6可满足1<ET6/CT6<2。
在一个实施方式中,第六透镜的物侧面在最大半径处的矢高SAG61与第六透镜于光轴上的中心厚度CT6可满足|SAG61|/CT6<1。
在一个实施方式中,第六透镜于光轴上的中心厚度CT6与第一透镜于光轴上的中心厚度CT1可满足0.5<CT6/CT1<1.0。
在一个实施方式中,第五透镜和第六透镜于光轴上的空气间隔T56与第一透镜至第六透镜中任意相邻两透镜在光轴上的间隔距离的总和ΣAT可满足0.1<T56/∑AT<0.5。
在一个实施方式中,光学成像系统的总有效焦距f与第二透镜的物侧面的曲率半径R3可满足f/|R3|<0.3。
在一个实施方式中,第四透镜物侧面的曲率半径R7与第四透镜像侧面的曲率半径R8可满足-5.0<R7/R8<0。
在一个实施方式中,光学成像系统的总有效焦距f与光学成像系统的入瞳直径EPD可满足f/EPD≤2.2。
本申请采用了多片(例如,六片)透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可使光学成像系统具有以下至少一个优点:
有效扩大成像系统的视场角;
缩短成像系统总长度;
校正了各类像差;以及
提高镜头的分辨率与成像品质。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学成像系统的结构示意图;
图2A至图2D分别示出了实施例1的光学成像系统的轴上色差曲线、象散曲线、倍率色差曲线以及相对照度曲线;
图3示出了根据本申请实施例2的光学成像系统的结构示意图;
图4A至图4D分别示出了实施例2的光学成像系统的轴上色差曲 线、象散曲线、倍率色差曲线以及相对照度曲线;
图5示出了根据本申请实施例3的光学成像系统的结构示意图;
图6A至图6D分别示出了实施例3的光学成像系统的轴上色差曲线、象散曲线、倍率色差曲线以及相对照度曲线;
图7示出了根据本申请实施例4的光学成像系统的结构示意图;
图8A至图8D分别示出了实施例4的光学成像系统的轴上色差曲线、象散曲线、倍率色差曲线以及相对照度曲线;
图9示出了根据本申请实施例5的光学成像系统的结构示意图;
图10A至图10D分别示出了实施例5的光学成像系统的轴上色差曲线、象散曲线、倍率色差曲线以及相对照度曲线;
图11示出了根据本申请实施例6的光学成像系统的结构示意图;
图12A至图12D分别示出了实施例6的光学成像系统的轴上色差曲线、象散曲线、倍率色差曲线以及相对照度曲线;
图13示出了根据本申请实施例7的光学成像系统的结构示意图;
图14A至图14D分别示出了实施例7的光学成像系统的轴上色差曲线、象散曲线、倍率色差曲线以及相对照度曲线;
图15示出了根据本申请实施例8的光学成像系统的结构示意图;
图16A至图16D分别示出了实施例8的光学成像系统的轴上色差曲线、象散曲线、倍率色差曲线以及相对照度曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像系统包括例如六个具有光焦度的透镜,即第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。这六个透镜沿着光轴从物侧至像侧依序排列。根据本申请示例性实施方式的光学成像系统还可包括设置于成像面的电子感 光元件。
第一透镜可具有负光焦度;第二透镜可具有正光焦度或负光焦度;第三透镜可具有正光焦度;第四透镜可具有负光焦度;第五透镜可具有正光焦度;以及第六透镜可具有正光焦度或负光焦度。
光学成像系统的最大半视场角HFOV满足Tan(HFOV/2)≥0.9,更具体地,HFOV进一步可满足0.99≤Tan(HFOV/2)≤1.00。通过合理的光焦度分配和视场角的限定,使得系统在保证优良的成像质量的前提下,获得较大的视场角。
第三透镜的有效焦距f3与第五透镜的有效焦距f5之间满足0<f3/f5<0.8,更具体地,f3和f5进一步可满足0.36≤f3/f5≤0.63。通过对第三透镜和第五透镜的光焦度的进行合理范围的限定,能够使得系统具有良好的平衡象散的能力。
光学成像系统的总有效焦距f与第三透镜、第四透镜和第五透镜的组合焦距f345之间可满足0.5<f/f345<0.9,更具体地,f和f345进一步可满足0.58≤f/f345≤0.78。通过将第三透镜、第四透镜和第五透镜的组合光焦度限定于合理的范围内,使得这三片透镜可以承担合理的光焦度,并满足成像视场的需求。
光学成像系统的总有效焦距f与第二透镜的有效焦距f2之间可满足f/f2≤0.2,更具体地,f和f2进一步可满足0.07≤f/f2≤0.15。通过约束第二透镜的有效焦距f2的数值范围,使得第二透镜具有合理的平衡球差和慧差的能力,从而能够有效地提升系统的成像质量。
光学成像系统的总有效焦距f与第四透镜的有效焦距f4之间可满足-1.5<f/f4<-0.5,更具体地,f和f4进一步可满足-1.36≤f/f4≤-0.83。通过限定第四透镜的负光焦度的范围,使得第四透镜产生可用来平衡系统球差的正的球差,从而使得系统具有良好的成像质量。
第一透镜的有效焦距f1与第六透镜的有效焦距f6之间可满足|f1/f6|<0.5,更具体地,f1和f6进一步可满足0.03≤|f1/f6|≤0.40。通过限定第一透镜和第六透镜的光焦度范围,能够使得第一透镜和第六透镜具有合理的畸变范围。
第六透镜在最大半径处的边缘厚度ET6与第六透镜于光轴上的中 心厚度CT6之间可满足1<ET6/CT6<2,更具体地,ET6和CT6进一步可满足1.16≤ET6/CT6≤1.67。通过限定第六透镜的边缘厚度和中心厚度的范围,使得第六透镜具有良好的加工性。
第六透镜的物侧面在最大半径处的矢高SAG61与第六透镜于光轴上的中心厚度CT6之间可满足|SAG61|/CT6<1,更具体地,SAG61和CT6进一步可满足0.02≤|SAG61|/CT6≤0.74。通过限定第六透镜的最大矢高,能够使得第六透镜具有良好的加工性,减小加工误差。
第六透镜于光轴上的中心厚度CT6与第一透镜于光轴上的中心厚度CT1之间可满足0.5<CT6/CT1<1.0,更具体地,CT6和CT1进一步可满足0.55≤CT6/CT1≤0.85。通过限定第六透镜和第一透镜的中心厚度的范围,以控制第六透镜和第一透镜在不同方向的畸变大小,从而使得该大视场系统的畸变分布在合理的范围内。
第五透镜和第六透镜于光轴上的空气间隔T56与第一透镜至第六透镜中任意相邻两透镜在光轴上的间隔距离的总和ΣAT之间可满足0.1<T56/∑AT<0.5,更具体地,T56和∑AT进一步可满足0.13≤T56/∑AT≤0.31。通过对第五透镜和第六透镜之间的间隔距离的限定,能调节系统的象散量,以将系统的像散量控制在合理的范围内,从而使得系统具有良好的成像质量和优异的解像能力。
光学成像系统的总有效焦距f与第二透镜的物侧面的曲率半径R3之间可满足f/|R3|<0.3,更具体地,f和R3进一步可满足0.11≤f/|R3|≤0.21。通过控制第二透镜物侧面的曲率半径(当光阑布置于第二透镜与第三透镜之间时,第二透镜物侧面的曲率半径即为在孔径光阑位置附近的透镜的曲率),能够合理的调节和控制系统的球差,从而在该光学成像系统的轴上及轴上附近视场中获得良好的成像质量。
第四透镜物侧面的曲率半径R7与第四透镜像侧面的曲率半径R8之间可满足-5.0<R7/R8<0,更具体地,R7和R8进一步可满足-3.54≤R7/R8≤-0.85。通过合理控制第四透镜物侧面和像侧面的曲率半径的范围,即对第四透镜物侧面和像侧面的弯曲方向和弯曲大小进行合理控制,能够使得第四透镜具有良好的平衡轴向色差的能力,从而使得光学成像系统在一定的成像波段带宽范围内获得良好的成像质量。
光学成像系统的总有效焦距f与光学成像系统的入瞳直径EPD之间可满足f/EPD≤2.2,更具体地,f和EPD进一步可满足1.8≤f/EPD≤2.2。通过控制总有效焦距f与入瞳直径EPD的比值(即,系统的F数),使得系统能够在暗光条件下获得良好的成像质量。另外,在足够的设计自由度的前提下,限定合理的F数,能够合理的提升系统的传函设计值,从而使得光学系统在设计上确保获得良好的成像质量。
在示例性实施方式中,可在例如第二透镜与第三透镜之间设置用于限制光束的光阑,以提升光学成像系统的成像质量。可选地,该光阑可为孔径光阑。
可选地,上述光学成像系统还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上感光元件的保护玻璃。
为了满足小型化和轻量化的要求,在上述光学成像系统中的各透镜均可采用塑料镜片。
另外,如本领域技术人员已知的,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。在本申请的实施方式中,可采用非球面透镜,以尽可能地消除在成像的时候出现的像差,从而进一步提升光学成像系统的成像品质。非球面透镜的使用,不仅可以显著的提高像质,减小像差,还可以减少镜头的镜片数量,缩小体积。
本领域的技术人员还应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像系统的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以六个透镜为例进行了描述,但是该光学成像系统不限于包括六个透镜。如果需要,该光学成像系统还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像系统的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的光学成像系统。图1示出了根据本申请实施例1的光学成像系统的结构示意图。
如图1所示,光学成像系统沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面,并且第一透镜E1的物侧面S1和像侧面S2均为球面。
第二透镜E2具有正光焦度,其物侧面S3为凹面,像侧面S4为凸面,并且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面,并且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面,并且第四透镜E4的物侧面S7和像侧面S8均为非球面。
第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面,并且第五透镜E5的物侧面S9和像侧面S10均为非球面。
第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面,并且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像系统还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
在本实施例的光学成像系统中,还可在例如第二透镜E2与第三透镜E3之间设置用于限制光束的光阑STO,以提升光学成像系统的成像质量。
表1示出了实施例1的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018077207-appb-000001
Figure PCTCN2018077207-appb-000002
表1
由表1可知,第四透镜E4的物侧面S7的曲率半径R7与第四透镜的像侧面S8的曲率半径R8之间满足R7/R8=-2.03;第六透镜E6于光轴上的中心厚度CT6与第一透镜E1于光轴上的中心厚度CT1之间满足CT6/CT1=0.60;第五透镜E5和第六透镜E6在光轴上的间隔距离T56与第一透镜E1至第六透镜E6中任意相邻两透镜在光轴上的间隔距离的总和ΣAT之间满足T56/ΣAT=0.29。
本实施例采用了六片透镜作为示例,通过合理分配各透镜的焦距、各透镜的面型、各透镜的中心厚度以及各透镜之间的间隔距离,在保证成像系统小型化的同时,扩大成像系统的视场角、提高成像系统的分辨率并提升成像系统的成像品质。在本实施例中,各非球面面型x由以下公式限定:
Figure PCTCN2018077207-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在上表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S3-S12的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S3 -1.7553E-01 1.3183E-01 -1.5464E+00 1.1707E+01 -5.1788E+01 1.4358E+02 -2.4500E+02 2.3585E+02 -9.7920E+01
S4 -3.1499E-01 3.4848E-01 5.5349E+00 -4.8811E+01 1.7812E+02 -2.0732E+01 -2.1502E+03 7.0216E+03 -7.4311E+03
S5 -2.6728E-01 1.0314E+00 -5.8917E+00 5.7324E+01 -4.5220E+02 2.2966E+03 -6.9708E+03 1.1466E+04 -7.8298E+03
S6 -3.3988E-02 -2.0410E-01 -9.0532E+00 1.6861E+02 -1.2779E+03 5.4214E+03 -1.3488E+04 1.8360E+04 -1.0520E+04
S7 -4.2177E-01 3.3253E+00 -4.5561E+01 4.5464E+02 -2.7433E+03 1.0220E+04 -2.3267E+04 2.9723E+04 -1.6279E+04
S8 -8.9820E-01 8.2369E+00 -5.9849E+01 3.1949E+02 -1.1649E+03 2.8198E+03 -4.3439E+03 3.8527E+03 -1.4944E+03
S9 -8.9636E-01 7.3677E+00 -4.4222E+01 1.9499E+02 -5.9649E+02 1.2511E+03 -1.7183E+03 1.3826E+03 -4.9125E+02
S10 -9.1872E-01 3.4563E+00 -6.6826E+00 -5.9963E+00 9.2279E+01 -2.9552E+02 4.8786E+02 -4.1815E+02 1.4573E+02
S11 -2.0497E-01 -4.7345E-01 1.5047E+00 -2.2506E+00 2.3143E+00 -1.8114E+00 1.0024E+00 -3.0411E-01 2.8014E-02
S12 -6.5593E-01 1.2997E-01 1.1861E+00 -2.8995E+00 3.9187E+00 -3.4197E+00 1.8808E+00 -5.8525E-01 7.7585E-02
表2
以下所示的表3给出实施例1的光学成像系统中各透镜的有效焦距f1至f6、光学成像系统的总有效焦距f以及光学成像系统的光学总长度TTL(即,从第一透镜E1的物侧面S1至成像面S15在光轴上的距离)。
参数 f1(mm) f2(mm) f3(mm) f4(mm) f5(mm) f6(mm)
数值 -1.56 7.43 1.09 -1.17 2.48 7.44
参数 f(mm) TTL(mm)        
数值 1.13 5.00        
表3
由表3可得,第一透镜E1的有效焦距f1与第六透镜E6的有效焦距f6之间满足|f1/f6|=0.21;第三透镜E3的有效焦距f3与第五透镜E5的有效焦距f5之间满足f3/f5=0.44;光学成像系统的总有效焦距f与第二透镜E2的有效焦距f2之间满足f/f2=0.15;光学成像系统的总有效焦距f与第四透镜E4的有效焦距f4之间满足f/f4=-0.97。结合表1与表3可得,光学成像系统的总有效焦距f与第二透镜E2的物侧面的曲率半径R3之间满足f/|R3|=0.14。
在本实施例中,光学成像系统的最大半视场角HFOV满足Tan(HFOV/2)=0.99;光学成像系统的总有效焦距f与第三透镜E3、第四透镜E4和第五透镜E5的组合焦度f345之间满足f/f345=0.64;第六透镜E6在最大半径处的边缘厚度ET6与第六透镜E6于光轴上的中心厚度CT6之间满足ET6/CT6=1.18;第六透镜E6的物侧面S11在最大半径处的矢高SAG61与第六透镜E6于光轴上的中心厚度CT6之间满足|SAG61|/CT6=0.74;光学成像系统的总有效焦距f与光学成像系统 的入瞳直径EPD之间满足f/EPD=2.1。
图2A示出了实施例1的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图2B示出了实施例1的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。图2D示出了实施例1的光学成像系统的相对照度曲线,其表示成像面上不同像高所对应的相对照度。根据图2A至图2D可知,实施例1所给出的光学成像系统能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述了根据本申请实施例2的光学成像系统。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像系统的结构示意图。
如图3所示,光学成像系统沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面,并且第一透镜E1的物侧面S1和像侧面S2均为球面。
第二透镜E2具有正光焦度,其物侧面S3为凹面,像侧面S4为凸面,并且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面,并且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面,并且第四透镜E4的物侧面S7和像侧面S8均为非球面。
第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面,并且第五透镜E5的物侧面S9和像侧面S10均为非球面。
第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面,并且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像系统还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
在本实施例的光学成像系统中,还可在例如第二透镜E2与第三透镜E3之间设置用于限制光束的光阑STO,以提升光学成像系统的成像质量。
表4示出了实施例2的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表5示出了可用于实施例2中各非球面镜面的高次项系数。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表6示出了实施例2的光学成像系统中各透镜的有效焦距f1至f6、光学成像系统的总有效焦距f以及光学成像系统的光学总长度TTL。
Figure PCTCN2018077207-appb-000004
表4
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S3 -1.2162E-01 1.8849E-01 -1.5211E+00 7.5199E+00 -2.2215E+01 4.0669E+01 -4.3886E+01 2.5016E+01 -5.3709E+00
S4 -3.4969E-01 5.4336E-01 -3.2627E+00 6.2363E+01 -6.0900E+02 3.2671E+03 -9.9395E+03 1.6140E+04 -1.0884E+04
S5 -2.0378E-01 3.2852E-02 1.0041E+00 -6.4533E+00 2.0050E+01 -2.0390E+01 -3.8759E+01 1.1667E+02 -7.7554E+01
S6 1.1024E+00 -1.5869E+01 1.1787E+02 -5.8169E+02 1.9839E+03 -4.5826E+03 6.8212E+03 -5.9036E+03 2.2676E+03
S7 1.2959E+00 -2.1182E+01 1.6181E+02 -8.2867E+02 2.9733E+03 -7.2782E+03 1.1485E+04 -1.0493E+04 4.2140E+03
S8 4.8189E-01 -9.8620E+00 7.7021E+01 -3.6649E+02 1.1380E+03 -2.3034E+03 2.9207E+03 -2.1028E+03 6.5468E+02
S9 -1.9894E-03 -2.7700E+00 2.5870E+01 -1.2059E+02 3.3379E+02 -5.6423E+02 5.6340E+02 -2.9658E+02 5.8853E+01
S10 -1.9917E-01 6.8777E-01 6.5421E-01 -8.1660E+00 2.9627E+01 -6.7880E+01 9.9202E+01 -8.0247E+01 2.6532E+01
S11 -4.6199E-01 3.7327E-01 -2.0280E-01 -1.5536E+00 5.0672E+00 -9.0639E+00 9.4133E+00 -5.0115E+00 8.6763E-01
S12 -1.9763E-01 -2.8461E-01 1.3506E+00 -3.4902E+00 5.8410E+00 -6.5492E+00 4.7350E+00 -1.9827E+00 3.6236E-01
表5
参数 f1(mm) f2(mm) f3(mm) f4(mm) f5(mm) f6(mm)
数值 -1.67 12.13 1.28 -1.40 2.24 35.06
参数 f(mm) TTL(mm)        
数值 1.20 6.00        
表6
图4A示出了实施例2的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图4B示出了实施例2的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。图4D示出了实施例2的光学成像系统的相对照度曲线,其表示成像面上不同像高所对应的相对照度。根据图4A至图4D可知,实施例2所给出的光学成像系统能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的光学成像系统。图5示出了根据本申请实施例3的光学成像系统的结构示意图。
如图5所示,光学成像系统沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面,并且第一透镜E1的物侧面S1和像侧面S2均为球面。
第二透镜E2具有正光焦度,其物侧面S3为凹面,像侧面S4为凸面,并且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面,并且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面,并且第四透镜E4的物侧面S7和像侧面S8均为非球面。
第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面,并且第五透镜E5的物侧面S9和像侧面S10均为非球面。
第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面,并且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像系统还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
在本实施例的光学成像系统中,还可在例如第二透镜E2与第三透镜E3之间设置用于限制光束的光阑STO,以提升光学成像系统的成像质量。
表7示出了实施例3的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表8示出了可用于实施例3中各非球面镜面的高次项系数。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表9示出了实施例3的光学成像系统中各透镜的有效焦距f1至f6、光学成像系统的总有效焦距f以及光学成像系统的光学总长度TTL。
Figure PCTCN2018077207-appb-000005
Figure PCTCN2018077207-appb-000006
表7
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S3 -1.6875E-01 1.9864E-01 -1.8547E+00 9.8054E+00 -3.0923E+01 6.0330E+01 -7.0627E+01 4.5378E+01 -1.2246E+01
S4 -3.4875E-01 -7.2990E-01 3.5333E+01 -4.4785E+02 3.3986E+03 -1.6136E+04 4.6810E+04 -7.5788E+04 5.2465E+04
S5 -3.1828E-01 9.8056E-01 -2.4878E+00 -2.3513E+00 7.4021E+01 -3.6995E+02 9.1548E+02 -1.1362E+03 5.6350E+02
S6 1.0116E+00 -1.9995E+01 1.9396E+02 -1.2041E+03 4.9992E+03 -1.3741E+04 2.3903E+04 -2.3746E+04 1.0248E+04
S7 7.6091E-01 -1.8941E+01 1.8101E+02 -1.0648E+03 4.1911E+03 -1.1009E+04 1.8414E+04 -1.7649E+04 7.3508E+03
S8 -3.9193E-01 2.9521E-01 6.6474E+00 -3.4360E+01 7.9671E+01 -7.2315E+01 -6.1182E+01 1.8764E+02 -1.1668E+02
S9 -6.1351E-01 3.9952E+00 -2.4327E+01 1.2317E+02 -4.4233E+02 1.0607E+03 -1.5878E+03 1.3320E+03 -4.7782E+02
S10 -7.0551E-01 1.9410E+00 -2.5130E+00 -8.3553E+00 6.1465E+01 -1.6908E+02 2.4926E+02 -1.8898E+02 5.7177E+01
S11 -2.0519E-01 -1.6878E+00 6.6116E+00 -1.4638E+01 2.2279E+01 -2.3200E+01 1.5565E+01 -5.9550E+00 9.6594E-01
S12 -7.6140E-01 3.5263E-01 1.1257E+00 -3.2315E+00 4.3315E+00 -3.4662E+00 1.6710E+00 -4.4627E-01 5.0512E-02
表8
参数 f1(mm) f2(mm) f3(mm) f4(mm) f5(mm) f6(mm)
数值 -2.04 16.47 1.09 -1.21 2.45 -28.16
参数 f(mm) TTL(mm)        
数值 1.26 5.42        
表9
图6A示出了实施例3的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图6B示出了实施例3的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。图6D示出了实施例3的光学成像系统的相对照度曲线,其表示成像面上不同像高所对应的相对照度。根据图6A至图6D可知,实施例3所给出的光学成像系统能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的光学成像系统。图7示出了根据本申请实施例4的光学成像系统的结构示意图。
如图7所示,光学成像系统沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、 第六透镜E6和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面,并且第一透镜E1的物侧面S1和像侧面S2均为球面。
第二透镜E2具有正光焦度,其物侧面S3为凹面,像侧面S4为凸面,并且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面,并且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面,并且第四透镜E4的物侧面S7和像侧面S8均为非球面。
第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面,并且第五透镜E5的物侧面S9和像侧面S10均为非球面。
第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面,并且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像系统还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
在本实施例的光学成像系统中,还可在例如第二透镜E2与第三透镜E3之间设置用于限制光束的光阑STO,以提升光学成像系统的成像质量。
表10示出了实施例4的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表11示出了可用于实施例4中各非球面镜面的高次项系数。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表12示出了实施例4的光学成像系统中各透镜的有效焦距f1至f6、光学成像系统的总有效焦距f以及光学成像系统的光学总长度TTL。
Figure PCTCN2018077207-appb-000007
Figure PCTCN2018077207-appb-000008
表10
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S3 -9.8723E-02 -1.6030E-01 6.7445E-01 -7.5105E-02 -9.6099E+00 4.1525E+01 -8.2963E+01 8.2408E+01 -3.2719E+01
S4 -2.2667E-01 -1.2518E+00 3.9107E+01 -3.8552E+02 1.9682E+03 -4.6512E+03 1.1072E+03 1.3913E+04 -1.6819E+04
S5 -2.7251E-01 1.7208E+00 -2.5223E+01 3.2145E+02 -2.7804E+03 1.5109E+04 -4.9831E+04 9.0347E+04 -6.8610E+04
S6 1.9199E+00 -2.1534E+01 1.5776E+02 -9.1766E+02 4.1340E+03 -1.3392E+04 2.8173E+04 -3.3804E+04 1.7423E+04
S7 9.7723E-01 -1.4612E+01 8.1274E+01 -2.4446E+02 3.4300E+02 3.3224E+02 -3.0699E+03 7.1577E+03 -6.1190E+03
S8 -8.7971E-01 8.8871E+00 -6.5963E+01 3.3416E+02 -1.1297E+03 2.5532E+03 -3.7557E+03 3.2752E+03 -1.2864E+03
S9 -1.1781E+00 1.0465E+01 -6.0959E+01 2.5295E+02 -7.6055E+02 1.6531E+03 -2.4298E+03 2.1181E+03 -8.1690E+02
S10 -9.9933E-01 4.4231E+00 -2.5009E+01 1.2971E+02 -4.4886E+02 9.8722E+02 -1.3347E+03 1.0278E+03 -3.4830E+02
S11 -4.0599E-01 1.8400E+00 -1.7043E+01 6.4576E+01 -1.3202E+02 1.5895E+02 -1.1268E+02 4.3588E+01 -7.1141E+00
S12 3.1380E-01 -3.7091E+00 8.8798E+00 -1.2177E+01 1.0479E+01 -5.8431E+00 2.1001E+00 -4.4991E-01 4.3036E-02
表11
参数 f1(mm) f2(mm) f3(mm) f4(mm) f5(mm) f6(mm)
数值 -2.04 14.36 0.85 -0.78 2.35 5.13
参数 f(mm) TTL(mm)        
数值 1.06 5.35        
表12
图8A示出了实施例4的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图8B示出了实施例4的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。图8D示出了实施例4的光学成像系统的相对照度曲线,其表示成像面上不同像高所对应的相对照度。根据图8A至图8D可知,实施例4所给出的 光学成像系统能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的光学成像系统。图9示出了根据本申请实施例5的光学成像系统的结构示意图。
如图9所示,光学成像系统沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面,并且第一透镜E1的物侧面S1和像侧面S2均为球面。
第二透镜E2具有正光焦度,其物侧面S3为凹面,像侧面S4为凸面,并且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面,并且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面,并且第四透镜E4的物侧面S7和像侧面S8均为非球面。
第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面,并且第五透镜E5的物侧面S9和像侧面S10均为非球面。
第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面,并且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像系统还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
在本实施例的光学成像系统中,还可在例如第二透镜E2与第三透镜E3之间设置用于限制光束的光阑STO,以提升光学成像系统的成像质量。
表13示出了实施例5的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表14示出了可用于实施例5中各非球面镜面的高次项系数。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表 15示出了实施例5的光学成像系统中各透镜的有效焦距f1至f6、光学成像系统的总有效焦距f以及光学成像系统的光学总长度TTL。
Figure PCTCN2018077207-appb-000009
表13
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S3 -1.1514E-01 -8.2836E-02 5.6436E-01 -2.7003E+00 8.9478E+00 -1.8649E+01 2.3647E+01 -1.6570E+01 4.9131E+00
S4 -2.8358E-01 3.8919E-01 -9.8077E-02 4.9521E+00 -5.1662E+01 2.1788E+02 -4.4709E+02 4.1895E+02 -1.2048E+02
S5 -1.3351E-01 4.6584E-01 -1.0582E+00 9.5335E-01 1.3738E+00 -6.8517E+00 1.2160E+01 -9.9216E+00 3.0296E+00
S6 3.4618E-01 -3.1393E+00 1.5483E+01 -4.5413E+01 7.6783E+01 -6.8273E+01 2.3364E+01 4.6909E+00 -3.8539E+00
S7 -4.2176E-01 -7.8134E-01 6.2939E+00 -6.1480E+00 -4.6416E+01 1.8219E+02 -2.8220E+02 2.0498E+02 -5.7620E+01
S8 -5.1492E-01 2.4199E+00 -9.0804E+00 2.9204E+01 -6.7946E+01 1.0419E+02 -9.7652E+01 4.9836E+01 -1.0439E+01
S9 -1.2224E-03 4.2957E-01 -1.8805E+00 4.4941E+00 -6.6836E+00 5.8956E+00 -2.7810E+00 5.2559E-01 9.9603E-03
S10 -1.7121E-01 4.5804E-01 -5.3934E-01 3.6806E-01 -1.6329E-01 4.8407E-02 -9.3029E-03 1.0475E-03 -5.2227E-05
S11 -2.9609E-01 -1.0103E+00 3.7338E+00 -6.3381E+00 6.3954E+00 -4.0020E+00 1.4989E+00 -3.0116E-01 2.3913E-02
S12 -5.6924E-01 6.8234E-01 -5.8200E-01 3.6829E-01 -2.1595E-01 1.1457E-01 -4.3746E-02 9.2694E-03 -7.8604E-04
表14
参数 f1(mm) f2(mm) f3(mm) f4(mm) f5(mm) f6(mm)
数值 -2.04 10.80 1.18 -1.31 1.95 -5.33
参数 f(mm) TTL(mm)        
数值 1.27 5.44        
表15
图10A示出了实施例5的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图10B示出了实施例5的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。图10D示出了实施例5的光学成像系统的相对照度曲线,其表示成像面上不同像高所对应的相对照度。根据图10A至图10D可知,实施例5所给出的光学成像系统能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的光学成像系统。图11示出了根据本申请实施例6的光学成像系统的结构示意图。
如图11所示,光学成像系统沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面,并且第一透镜E1的物侧面S1和像侧面S2均为球面。
第二透镜E2具有正光焦度,其物侧面S3为凹面,像侧面S4为凸面,并且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面,并且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面,并且第四透镜E4的物侧面S7和像侧面S8均为非球面。
第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面,并且第五透镜E5的物侧面S9和像侧面S10均为非球面。
第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面,并且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像系统还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
在本实施例的光学成像系统中,还可在例如第二透镜E2与第三透镜E3之间设置用于限制光束的光阑STO,以提升光学成像系统的成像质量。
表16示出了实施例6的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表17示出了可用于实施例6中各非球面镜面的高次项系数。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表18示出了实施例6的光学成像系统中各透镜的有效焦距f1至f6、光学成像系统的总有效焦距f以及光学成像系统的光学总长度TTL。
Figure PCTCN2018077207-appb-000010
表16
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S3 -2.3715E-01 2.8998E+00 -2.6937E+01 1.3984E+02 -4.4808E+02 9.0459E+02 -1.1174E+03 7.6919E+02 -2.2556E+02
S4 -2.9932E-01 6.5824E-01 1.3484E+00 -1.5908E+01 5.7242E+01 -1.0476E+02 1.0061E+02 -4.6554E+01 7.8041E+00
S5 -1.6956E-01 8.6321E-01 -2.5301E+00 5.1704E+00 -7.7453E+00 8.0878E+00 -5.3068E+00 1.9092E+00 -2.8297E-01
S6 4.6964E-01 -3.1061E+00 1.5383E+01 -5.3560E+01 1.1602E+02 -1.5163E+02 1.1667E+02 -4.8690E+01 8.4867E+00
S7 -3.8695E-01 -3.4158E-01 4.2379E-01 1.2263E+01 -5.6461E+01 1.2408E+02 -1.5043E+02 9.5195E+01 -2.4510E+01
S8 -1.7506E-01 -2.0675E+00 2.2967E+01 -1.1321E+02 3.3141E+02 -5.9955E+02 6.5802E+02 -4.0142E+02 1.0417E+02
S9 3.3849E-01 -5.4360E+00 3.3642E+01 -1.2139E+02 2.7687E+02 -4.0615E+02 3.6815E+02 -1.8596E+02 3.9829E+01
S10 1.8769E-01 -2.0154E+00 5.6205E+00 -6.9038E+00 4.5077E+00 -1.6984E+00 3.7220E-01 -4.4195E-02 2.2034E-03
S11 2.0394E-03 -1.8195E+00 4.8878E+00 -6.4893E+00 5.0780E+00 -2.4349E+00 7.0326E-01 -1.1222E-01 7.5704E-03
S12 2.4382E-02 -5.7384E-02 4.4179E-03 -4.8904E-05 -9.1623E-06 5.4041E-07 -1.3600E-08 1.6773E-10 -8.2752E-13
表17
参数 f1(mm) f2(mm) f3(mm) f4(mm) f5(mm) f6(mm)
数值 -2.04 10.90 1.11 -1.27 1.75 71.85
参数 f(mm) TTL(mm)        
数值 1.05 5.34        
表18
图12A示出了实施例6的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图12B示出了实施例6的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。图12D示出了实施例6的光学成像系统的相对照度曲线,其表示成像面上不同像高所对应的相对照度。根据图12A至图12D可知,实施例6所给出的光学成像系统能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的光学成像系统。图13示出了根据本申请实施例7的光学成像系统的结构示意图。
如图13所示,光学成像系统沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面,并且第一透镜E1的物侧面S1和像侧面S2均为球面。
第二透镜E2具有正光焦度,其物侧面S3为凹面,像侧面S4为凸面,并且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面,并且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面,并且第四透镜E4的物侧面S7和像侧面S8均为非球面。
第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为 凸面,并且第五透镜E5的物侧面S9和像侧面S10均为非球面。
第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面,并且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像系统还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
在本实施例的光学成像系统中,还可在例如第二透镜E2与第三透镜E3之间设置用于限制光束的光阑STO,以提升光学成像系统的成像质量。
表19示出了实施例7的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表20示出了可用于实施例7中各非球面镜面的高次项系数。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表21示出了实施例7的光学成像系统中各透镜的有效焦距f1至f6、光学成像系统的总有效焦距f以及光学成像系统的光学总长度TTL。
Figure PCTCN2018077207-appb-000011
表19
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S3 -1.5441E-01 2.8496E-01 -2.7220E+00 1.5158E+01 -5.2058E+01 1.1227E+02 -1.4721E+02 1.0720E+02 -3.3189E+01
S4 -3.1313E-01 -1.1324E+00 4.5353E+01 -5.9206E+02 4.5819E+03 -2.1927E+04 6.3593E+04 -1.0241E+05 7.0311E+04
S5 -3.0194E-01 9.7125E-01 -4.5104E+00 3.0534E+01 -1.6842E+02 6.1467E+02 -1.3648E+03 1.6726E+03 -8.5142E+02
S6 1.0562E+00 -2.0817E+01 1.9571E+02 -1.1615E+03 4.5977E+03 -1.2127E+04 2.0489E+04 -2.0071E+04 8.6953E+03
S7 8.3253E-01 -2.0310E+01 1.8564E+02 -1.0265E+03 3.7583E+03 -9.1879E+03 1.4446E+04 -1.3225E+04 5.3751E+03
S8 -3.9452E-01 2.1001E-01 4.7414E+00 -8.9018E+00 -5.3153E+01 3.0177E+02 -6.5469E+02 6.8427E+02 -2.8518E+02
S9 -6.7929E-01 4.4959E+00 -2.7563E+01 1.3601E+02 -4.6128E+02 1.0322E+03 -1.4427E+03 1.1334E+03 -3.8122E+02
S10 -7.6844E-01 2.2218E+00 -3.5255E+00 -5.0936E+00 5.2811E+01 -1.5093E+02 2.2453E+02 -1.7196E+02 5.3060E+01
S11 -2.4723E-01 -5.3968E-01 1.9358E+00 -2.6476E+00 1.5893E+00 3.8603E-01 -1.3256E+00 8.5576E-01 -1.9836E-01
S12 -5.9527E-01 7.8865E-02 1.3707E+00 -3.2811E+00 4.2361E+00 -3.4033E+00 1.6824E+00 -4.6663E-01 5.5295E-02
表20
参数 f1(mm) f2(mm) f3(mm) f4(mm) f5(mm) f6(mm)
数值 -1.73 10.87 1.09 -1.16 2.45 20.88
参数 f(mm) TTL(mm)        
数值 1.18 5.44        
表21
图14A示出了实施例7的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图14B示出了实施例7的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。图14D示出了实施例7的光学成像系统的相对照度曲线,其表示成像面上不同像高所对应的相对照度。根据图14A至图14D可知,实施例7所给出的光学成像系统能够实现良好的成像品质。
实施例8
以下参照图15至图16D描述了根据本申请实施例8的光学成像系统。图15示出了根据本申请实施例8的光学成像系统的结构示意图。
如图15所示,光学成像系统沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面,并且第一透镜E1的物侧面S1和像侧面S2均为球面。
第二透镜E2具有正光焦度,其物侧面S3为凹面,像侧面S4为 凸面,并且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面,并且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面,并且第四透镜E4的物侧面S7和像侧面S8均为非球面。
第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面,并且第五透镜E5的物侧面S9和像侧面S10均为非球面。
第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面,并且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像系统还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
在本实施例的光学成像系统中,还可在例如第二透镜E2与第三透镜E3之间设置用于限制光束的光阑STO,以提升光学成像系统的成像质量。
表22示出了实施例7的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表23示出了可用于实施例7中各非球面镜面的高次项系数。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表24示出了实施例7的光学成像系统中各透镜的有效焦距f1至f6、光学成像系统的总有效焦距f以及光学成像系统的光学总长度TTL。
Figure PCTCN2018077207-appb-000012
Figure PCTCN2018077207-appb-000013
表22
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S3 -1.5918E-01 2.8836E-01 -2.7325E+00 1.4854E+01 -4.9213E+01 1.0160E+02 -1.2677E+02 8.7412E+01 -2.5524E+01
S4 -3.5919E-01 -3.4873E-01 3.0268E+01 -3.9473E+02 2.9508E+03 -1.3490E+04 3.7153E+04 -5.6584E+04 3.6637E+04
S5 -3.1217E-01 9.9000E-01 -4.4514E+00 3.1538E+01 -1.8405E+02 6.9557E+02 -1.5708E+03 1.9322E+03 -9.8005E+02
S6 1.0597E+00 -2.0461E+01 1.9097E+02 -1.1312E+03 4.4826E+03 -1.1857E+04 2.0110E+04 -1.9786E+04 8.6098E+03
S7 7.9566E-01 -1.9651E+01 1.7936E+02 -9.8665E+02 3.5902E+03 -8.7233E+03 1.3635E+04 -1.2413E+04 5.0196E+03
S8 -4.1116E-01 1.7073E-01 5.9658E+00 -1.6039E+01 -3.1252E+01 2.6325E+02 -6.1933E+02 6.7344E+02 -2.8823E+02
S9 -6.5934E-01 4.3844E+00 -2.7657E+01 1.4037E+02 -4.8685E+02 1.1080E+03 -1.5687E+03 1.2454E+03 -4.2294E+02
S10 -7.7501E-01 2.0958E+00 -1.8308E+00 -1.5266E+01 8.7968E+01 -2.2461E+02 3.1626E+02 -2.3342E+02 6.9816E+01
S11 -2.5321E-01 -7.4685E-01 2.5727E+00 -3.7881E+00 2.8476E+00 -3.3044E-01 -1.3088E+00 1.0667E+00 -2.8097E-01
S12 -6.2951E-01 7.1374E-02 1.5324E+00 -3.6715E+00 4.7435E+00 -3.8026E+00 1.8719E+00 -5.1646E-01 6.0864E-02
表23
参数 f1(mm) f2(mm) f3(mm) f4(mm) f5(mm) f6(mm)
数值 -1.82 13.45 1.08 -1.16 2.43 26.53
参数 f(mm) TTL(mm)        
数值 1.19 5.41        
表24
图16A示出了实施例8的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图16B示出了实施例8的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。图16D示出了实施例8的光学成像系统的相对照度曲线,其表示成像面上不同像高所对应的相对照度。根据图16A至图16D可知,实施例8所给出的光学成像系统能够实现良好的成像品质。
综上,实施例1至实施例8分别满足以下表25所示的关系。
条件式/实施例 1 2 3 4 5 6 7 8
Tan(HFOV/2) 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00
f3/f5 0.44 0.57 0.44 0.36 0.60 0.63 0.44 0.44
f/f345 0.64 0.68 0.74 0.58 0.78 0.68 0.67 0.69
f/f2 0.15 0.10 0.08 0.07 0.12 0.10 0.11 0.09
f/f4 -0.97 -0.85 -1.04 -1.36 -0.97 -0.83 -1.02 -1.02
|f1/f6| 0.21 0.05 0.07 0.40 0.38 0.03 0.08 0.07
ET6/CT6 1.18 1.16 1.41 1.21 1.67 1.35 1.37 1.39
|SAG61|/CT6 0.74 0.17 0.02 0.24 0.27 0.63 0.31 0.17
CT6/CT1 0.60 0.57 0.85 0.73 0.60 0.55 0.76 0.80
T56/∑AT 0.29 0.13 0.29 0.23 0.31 0.27 0.29 0.28
f/|R3| 0.14 0.15 0.18 0.21 0.17 0.11 0.14 0.15
R7/R8 -2.03 -2.84 -2.26 -0.85 -3.54 -2.49 -2.02 -2.08
f/EPD 2.1 2.1 2.2 2.2 2.2 1.8 2.1 2.0
表25
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立摄像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像系统。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (43)

  1. 光学成像系统,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,
    其特征在于,
    所述第一透镜和所述第四透镜均具有负光焦度;
    所述第二透镜和所述第六透镜均具有正光焦度或负光焦度;
    所述第三透镜的有效焦距f3与所述第五透镜的有效焦距f5满足0<f3/f5<0.8。
  2. 根据权利要求1所述的光学成像系统,其特征在于,所述第三透镜和所述第五透镜均具有正光焦度。
  3. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统的最大半视场角HFOV满足Tan(HFOV/2)≥0.9。
  4. 根据权利要求1或3所述的光学成像系统,其特征在于,满足0.5<f/f345<0.9,
    其中,f为所述光学成像系统的总有效焦距,
    f345为所述第三透镜、所述第四透镜和所述第五透镜的组合焦距。
  5. 根据权利要求1或3所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f与所述第二透镜的有效焦距f2满足f/f2≤0.2。
  6. 根据权利要求1或3所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f与所述第四透镜的有效焦距f4满足-1.5<f/f4<-0.5。
  7. 根据权利要求1或3所述的光学成像系统,其特征在于,所述 第一透镜的有效焦距f1与所述第六透镜的有效焦距f6满足|f1/f6|<0.5。
  8. 根据权利要求1或3所述的光学成像系统,其特征在于,所述第六透镜在最大半径处的边缘厚度ET6与所述第六透镜于所述光轴上的中心厚度CT6满足1<ET6/CT6<2。
  9. 根据权利要求1或3所述的光学成像系统,其特征在于,所述第六透镜的物侧面在最大半径处的矢高SAG61与所述第六透镜于所述光轴上的中心厚度CT6满足|SAG61|/CT6<1。
  10. 根据权利要求1或3所述的光学成像系统,其特征在于,所述第六透镜于所述光轴上的中心厚度CT6与所述第一透镜于所述光轴上的中心厚度CT1满足0.5<CT6/CT1<1.0。
  11. 根据权利要求1或3所述的光学成像系统,其特征在于,满足0.1<T56/∑AT<0.5,
    其中,T56为所述第五透镜和所述第六透镜于所述光轴上的空气间隔,
    ΣAT为所述第一透镜至所述第六透镜中任意相邻两透镜在所述光轴上的间隔距离的总和。
  12. 根据权利要求1或3所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f与所述第二透镜的物侧面的曲率半径R3满足f/|R3|<0.3。
  13. 根据权利要求1或3所述的光学成像系统,其特征在于,所述第四透镜物侧面的曲率半径R7与所述第四透镜像侧面的曲率半径R8满足-5.0<R7/R8<0。
  14. 根据权利要求1至13中任一项所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f与所述光学成像系统的入瞳直径EPD满足f/EPD≤2.2。
  15. 光学成像系统,具有总有效焦距f,所述光学成像系统沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,
    其特征在于,
    所述第一透镜具有负光焦度;
    所述第二透镜和所述第六透镜均具有正光焦度或负光焦度;
    所述第三透镜、所述第四透镜和所述第五透镜的组合光焦度为正光焦度,
    其中,所述第三透镜、所述第四透镜和所述第五透镜中的至少一个具有负光焦度,且所述第三透镜、所述第四透镜和所述第五透镜的组合焦度f345满足0.5<f/f345<0.9。
  16. 根据权利要求15所述的光学成像系统,其特征在于,所述第一透镜的有效焦距f1与所述第六透镜的有效焦距f6满足|f1/f6|<0.5。
  17. 根据权利要求15所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f与所述第二透镜的有效焦距f2满足f/f2≤0.2。
  18. 根据权利要求15所述的光学成像系统,其特征在于,所述第三透镜和所述第五透镜均具有正光焦度。
  19. 根据权利要求18所述的光学成像系统,其特征在于,所述第四透镜具有负光焦度。
  20. 根据权利要求18所述的光学成像系统,其特征在于,所述第 三透镜的有效焦距f3与所述第五透镜的有效焦距f5满足0<f3/f5<0.8。
  21. 根据权利要求19所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f与所述第四透镜的有效焦距f4满足-1.5<f/f4<-0.5。
  22. 根据权利要求15至21中任一项所述的光学成像系统,其特征在于,所述光学成像系统的最大半视场角HFOV满足Tan(HFOV/2)≥0.9。
  23. 根据权利要求22所述的光学成像系统,其特征在于,所述第六透镜在最大半径处的边缘厚度ET6与所述第六透镜于所述光轴上的中心厚度CT6满足1<ET6/CT6<2。
  24. 根据权利要求22所述的光学成像系统,其特征在于,所述第六透镜的物侧面在最大半径处的矢高SAG61与所述第六透镜于所述光轴上的中心厚度CT6满足|SAG61|/CT6<1。
  25. 根据权利要求22所述的光学成像系统,其特征在于,所述第六透镜于所述光轴上的中心厚度CT6与所述第一透镜于所述光轴上的中心厚度CT1满足0.5<CT6/CT1<1.0。
  26. 根据权利要求22所述的光学成像系统,其特征在于,0.1<T56/∑AT<0.5,
    其中,T56为所述第五透镜和所述第六透镜于所述光轴上的空气间隔,
    ΣAT为所述第一透镜至所述第六透镜中任意相邻两透镜在所述光轴上的间隔距离的总和。
  27. 根据权利要求22所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f与所述第二透镜的物侧面的曲率半径R3满足f/|R3|<0.3。
  28. 根据权利要求22所述的光学成像系统,其特征在于,所述第四透镜物侧面的曲率半径R7与所述第四透镜像侧面的曲率半径R8满足-5.0<R7/R8<0。
  29. 根据权利要求22所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f与所述光学成像系统的入瞳直径EPD满足f/EPD≤2.2。
  30. 光学成像系统,沿着光轴由物侧至像侧依序包括具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,
    其特征在于,
    所述第一透镜和所述第四透镜均具有负光焦度;
    所述第三透镜和所述第五透镜均具有正光焦度;
    所述第二透镜和所述第六透镜中的至少一个具有正光焦度,以及
    所述第六透镜的物侧面在最大半径处的矢高SAG61与所述第六透镜于所述光轴上的中心厚度CT6满足|SAG61|/CT6<1。
  31. 根据权利要求30所述的光学成像系统,其特征在于,所述光学成像系统的最大半视场角HFOV满足Tan(HFOV/2)≥0.9。
  32. 根据权利要求30或31所述的光学成像系统,其特征在于,所述第三透镜、所述第四透镜和所述第五透镜的组合光焦度为正光焦度。
  33. 根据权利要求32所述的光学成像系统,其特征在于,所述第三透镜的有效焦距f3与所述第五透镜的有效焦距f5满足0<f3/f5< 0.8。
  34. 根据权利要求32所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f与所述第四透镜的有效焦距f4满足-1.5<f/f4<-0.5。
  35. 根据权利要求32所述的光学成像系统,其特征在于,所述第三透镜、所述第四透镜和所述第五透镜的组合焦度f345满足0.5<f/f345<0.9。
  36. 根据权利要求34所述的光学成像系统,其特征在于,所述第四透镜物侧面的曲率半径R7与所述第四透镜像侧面的曲率半径R8满足-5.0<R7/R8<0。
  37. 根据权利要求30所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f与所述光学成像系统的入瞳直径EPD满足f/EPD≤2.2。
  38. 根据权利要求37所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f与所述第二透镜的物侧面的曲率半径R3满足f/|R3|<0.3。
  39. 根据权利要求37所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f与所述第二透镜的有效焦距f2满足f/f2≤0.2。
  40. 根据权利要求37所述的光学成像系统,其特征在于,所述第一透镜的有效焦距f1与所述第六透镜的有效焦距f6满足|f1/f6|<0.5。
  41. 根据权利要求37所述的光学成像系统,其特征在于,所述第 六透镜在最大半径处的边缘厚度ET6与所述第六透镜于所述光轴上的中心厚度CT6满足1<ET6/CT6<2。
  42. 根据权利要求37所述的光学成像系统,其特征在于,所述第六透镜于所述光轴上的中心厚度CT6与所述第一透镜于所述光轴上的中心厚度CT1满足0.5<CT6/CT1<1.0。
  43. 根据权利要求37所述的光学成像系统,其特征在于,0.1<T56/∑AT<0.5,
    其中,T56为所述第五透镜和所述第六透镜于所述光轴上的空气间隔,
    ΣAT为所述第一透镜至所述第六透镜中任意相邻两透镜在所述光轴上的间隔距离的总和。
PCT/CN2018/077207 2017-06-28 2018-02-26 光学成像系统 WO2019000986A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/226,205 US10901185B2 (en) 2017-06-28 2018-12-19 Optical imaging system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710506294.9 2017-06-28
CN201720763034.5 2017-06-28
CN201710506294.9A CN107121756B (zh) 2017-06-28 2017-06-28 光学成像系统
CN201720763034.5U CN206960762U (zh) 2017-06-28 2017-06-28 光学成像系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/226,205 Continuation US10901185B2 (en) 2017-06-28 2018-12-19 Optical imaging system

Publications (1)

Publication Number Publication Date
WO2019000986A1 true WO2019000986A1 (zh) 2019-01-03

Family

ID=64740347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077207 WO2019000986A1 (zh) 2017-06-28 2018-02-26 光学成像系统

Country Status (2)

Country Link
US (1) US10901185B2 (zh)
WO (1) WO2019000986A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6738470B1 (ja) * 2019-08-07 2020-08-12 エーエーシー コミュニケーション テクノロジーズ(ジョウシュウ)カンパニーリミテッド 撮像レンズ
CN111367053B (zh) * 2020-04-21 2024-07-19 厦门力鼎光电股份有限公司 一种广角高清的光学成像镜头
CN111781702B (zh) * 2020-06-20 2024-05-03 广东弘景光电科技股份有限公司 大光圈超大广角监控光学系统
CN111880286B (zh) * 2020-06-20 2023-12-29 广东弘景光电科技股份有限公司 大光圈超大广角监控摄像模组
CN111929871B (zh) * 2020-09-21 2020-12-18 常州市瑞泰光电有限公司 摄像光学镜头
CN112578538B (zh) * 2020-12-30 2022-02-18 青岛海泰新光科技股份有限公司 一种蓝色激光加工远心F-Theta扫描透镜
TWI821702B (zh) * 2021-07-05 2023-11-11 大陸商信泰光學(深圳)有限公司 廣角鏡頭(三十四)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130088788A1 (en) * 2011-10-10 2013-04-11 Samsung Electro-Mechanics Co., Ltd. Imaging lens unit
US20130286488A1 (en) * 2012-04-30 2013-10-31 Samsung Electro-Mechanics Co., Ltd. Optical system for camera
CN105204143A (zh) * 2015-10-14 2015-12-30 浙江舜宇光学有限公司 超广角镜头
CN105892020A (zh) * 2016-05-25 2016-08-24 浙江舜宇光学有限公司 广角成像镜头
CN105988192A (zh) * 2015-05-08 2016-10-05 浙江舜宇光学有限公司 广角成像镜头
CN106019535A (zh) * 2016-07-12 2016-10-12 浙江舜宇光学有限公司 摄像镜头
CN107121756A (zh) * 2017-06-28 2017-09-01 浙江舜宇光学有限公司 光学成像系统
CN206960762U (zh) * 2017-06-28 2018-02-02 浙江舜宇光学有限公司 光学成像系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007279555A (ja) 2006-04-11 2007-10-25 Nidec Copal Corp 魚眼レンズ
JP2015060201A (ja) 2013-09-20 2015-03-30 日立マクセル株式会社 撮像レンズ系および撮像装置
CN104238083B (zh) * 2014-05-29 2017-02-01 玉晶光电(厦门)有限公司 光学成像镜头及应用该光学成像镜头的电子装置
JP2016188893A (ja) 2015-03-30 2016-11-04 日立マクセル株式会社 撮像レンズ系及び撮像装置
CN105204144B (zh) 2015-10-20 2017-05-31 浙江舜宇光学有限公司 超广角镜头
CN105572850B (zh) 2016-03-07 2019-03-29 北京疯景科技有限公司 一种用于智能终端的辅助成像装置
CN106646835B (zh) 2016-08-08 2018-12-04 浙江舜宇光学有限公司 广角镜头

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130088788A1 (en) * 2011-10-10 2013-04-11 Samsung Electro-Mechanics Co., Ltd. Imaging lens unit
US20130286488A1 (en) * 2012-04-30 2013-10-31 Samsung Electro-Mechanics Co., Ltd. Optical system for camera
CN105988192A (zh) * 2015-05-08 2016-10-05 浙江舜宇光学有限公司 广角成像镜头
CN105204143A (zh) * 2015-10-14 2015-12-30 浙江舜宇光学有限公司 超广角镜头
CN105892020A (zh) * 2016-05-25 2016-08-24 浙江舜宇光学有限公司 广角成像镜头
CN106019535A (zh) * 2016-07-12 2016-10-12 浙江舜宇光学有限公司 摄像镜头
CN107121756A (zh) * 2017-06-28 2017-09-01 浙江舜宇光学有限公司 光学成像系统
CN206960762U (zh) * 2017-06-28 2018-02-02 浙江舜宇光学有限公司 光学成像系统

Also Published As

Publication number Publication date
US20190154993A1 (en) 2019-05-23
US10901185B2 (en) 2021-01-26

Similar Documents

Publication Publication Date Title
WO2019091170A1 (zh) 摄像透镜组
WO2019105139A1 (zh) 光学成像镜头
WO2019100868A1 (zh) 光学成像镜头
WO2019192180A1 (zh) 光学成像镜头
WO2020107962A1 (zh) 光学成像透镜组
WO2020024634A1 (zh) 光学成像镜片组
WO2019134602A1 (zh) 光学成像镜头
WO2019114366A1 (zh) 光学成像镜头
WO2020088022A1 (zh) 光学成像镜片组
WO2019100768A1 (zh) 光学成像镜头
WO2019210739A1 (zh) 光学成像镜头
WO2020119171A1 (zh) 光学成像镜头
WO2019196572A1 (zh) 光学成像系统
WO2020007081A1 (zh) 光学成像镜头
WO2019056758A1 (zh) 摄像透镜组
CN107121756B (zh) 光学成像系统
WO2019233040A1 (zh) 摄像透镜组
WO2019080554A1 (zh) 光学成像镜头
WO2019095865A1 (zh) 光学成像镜头
WO2019052220A1 (zh) 光学成像镜头
WO2020029613A1 (zh) 光学成像镜头
WO2019000986A1 (zh) 光学成像系统
WO2019052144A1 (zh) 光学成像镜头
WO2019037466A1 (zh) 摄像镜头
WO2019169856A1 (zh) 摄像镜头组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18824328

Country of ref document: EP

Kind code of ref document: A1