WO2020107934A1 - 光学透镜组 - Google Patents

光学透镜组 Download PDF

Info

Publication number
WO2020107934A1
WO2020107934A1 PCT/CN2019/099387 CN2019099387W WO2020107934A1 WO 2020107934 A1 WO2020107934 A1 WO 2020107934A1 CN 2019099387 W CN2019099387 W CN 2019099387W WO 2020107934 A1 WO2020107934 A1 WO 2020107934A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
lens group
object side
group according
Prior art date
Application number
PCT/CN2019/099387
Other languages
English (en)
French (fr)
Inventor
娄琪琪
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811424906.0A external-priority patent/CN109212722B/zh
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2020107934A1 publication Critical patent/WO2020107934A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present application relates to an optical lens group, and more particularly, to an optical lens group including six lenses.
  • the wide-angle lens has the advantages of a large field of view and a long depth of field, so it is usually used for shooting a wide range of scenes.
  • ultra-wide-angle lenses are increasingly used in automotive, surveillance, virtual reality/augmented reality (VR/AR) and other fields.
  • VR/AR virtual reality/augmented reality
  • the ultra-wide-angle lens in the prior art has problems such as poor temperature characteristics and low pixels, which severely limits its application in industry, life, and the like.
  • the present application provides an optical lens group applicable to portable electronic products, which can at least solve or partially solve the above-mentioned at least one disadvantage in the prior art.
  • the present application provides an optical lens group which includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, a fifth lens and a first lens Six lenses.
  • the first lens may have negative power; the second lens may have power; the third lens may have power; the fourth lens may have positive power; the fifth lens may have power, and the object side may be convex;
  • the sixth lens may have positive power.
  • the second lens may have negative power
  • the third lens may have positive power
  • the maximum half angle of view semi-FOV of the optical lens group and the maximum incident angle CRAmax of the chief ray incident on the electronic photosensitive component may satisfy 5 ⁇ semi-FOV/CRAmax ⁇ 10.
  • the refractive index N1 of the first lens and the refractive index N4 of the fourth lens may satisfy N1/N4 ⁇ 0.9.
  • the effective focal length f4 of the fourth lens and the effective focal length f1 of the first lens may satisfy -2.5 ⁇ f4/f1 ⁇ -1.
  • the radius of curvature R8 of the image side of the fourth lens and the radius of curvature R10 of the image side of the fifth lens may satisfy -1.2 ⁇ R8/R10 ⁇ -0.7.
  • the curvature radius R11 of the object side of the sixth lens and the total effective focal length f of the optical lens group may satisfy 1 ⁇ R11/f ⁇ 1.5.
  • the sum ⁇ CT of the center thickness of the fourth lens on the optical axis CT4 and the center thickness of the first lens to the sixth lens on the optical axis may satisfy 0.3 ⁇ CT4/ ⁇ CT ⁇ 0.6.
  • the axial separation distance T45 of the fourth lens and the fifth lens and the axial separation distance T56 of the fifth lens and the sixth lens may satisfy 0 ⁇ T45/T56 ⁇ 0.7.
  • the effective half aperture DT11 of the object side of the first lens and the effective half aperture DT62 of the image side of the sixth lens satisfy 1 ⁇ DT11/DT62 ⁇ 1.5.
  • the effective half-aperture DT62 of the image side of the sixth lens and the effective pixel area of the electronic photosensitive element of the optical lens group, which is half the diagonal length of ImgH, can satisfy 0.5 ⁇ DT62/ImgH ⁇ 1.
  • the effective half aperture DT31 of the object side of the third lens and the effective half aperture DT42 of the image side of the fourth lens may satisfy 0.4 ⁇ DT31/DT42 ⁇ 0.8.
  • the axial distance between the intersection of the object side of the sixth lens and the optical axis to the vertex of the maximum effective half-aperture of the object side of the sixth lens SAG61 and the center thickness of the sixth lens on the optical axis CT6 can satisfy 0.4 SAG61/CT6 ⁇ 0.8.
  • the edge thickness ET4 of the fourth lens, the edge thickness ET5 of the fifth lens, and the edge thickness ET6 of the sixth lens may satisfy 1.5 ⁇ ET4/(ET5+ET6) ⁇ 2.1.
  • the effective half-aperture of the first lens, the second lens, and the third lens may be sequentially decreased, and the effective half-aperture of the fourth lens, the fifth lens, and the sixth lens may be sequentially increased.
  • the use band of the optical lens group may range from 800 nm to 1000 nm.
  • This application uses six lenses.
  • the above-mentioned optical lens group has a miniaturization, temperature drift, At least one beneficial effect such as ultra-wide angle and high imaging quality.
  • FIGS. 2A to 2C respectively show astigmatism curves, F-theta distortion curves, and relative illuminance curves of the optical lens group of Example 1.
  • FIG. 3 shows a schematic structural diagram of an optical lens group according to Example 2 of the present application
  • FIGS. 4A to 4C respectively show astigmatism curves, F-theta distortion curves, and relative illuminance curves of the optical lens group of Example 2;
  • FIG. 5 shows a schematic structural diagram of an optical lens group according to Example 3 of the present application
  • FIGS. 6A to 6C respectively show astigmatism curves, F-theta distortion curves, and relative illuminance curves of the optical lens group of Example 3;
  • FIG. 7 shows a schematic structural diagram of an optical lens group according to Example 4 of the present application
  • FIGS. 8A to 8C respectively show astigmatism curves, F-theta distortion curves, and relative illuminance curves of the optical lens group of Example 4;
  • FIGS. 10A to 10C respectively show astigmatism curves, F-theta distortion curves, and relative illuminance curves of the optical lens group of Example 5;
  • FIG. 11 shows a schematic structural diagram of an optical lens group according to Example 6 of the present application
  • FIGS. 12A to 12C respectively show astigmatism curves, F-theta distortion curves, and relative illuminance curves of the optical lens group of Example 6;
  • FIG. 13 shows a schematic structural diagram of an optical lens group according to Example 7 of the present application
  • FIGS. 14A to 14C respectively show astigmatism curves, F-theta distortion curves, and relative illuminance curves of the optical lens group of Example 7;
  • FIG. 15 shows a schematic structural diagram of an optical lens group according to Example 8 of the present application
  • FIGS. 16A to 16C respectively show astigmatism curves, F-theta distortion curves, and relative illuminance curves of the optical lens group of Example 8.
  • FIG. 16A to 16C respectively show astigmatism curves, F-theta distortion curves, and relative illuminance curves of the optical lens group of Example 8.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not represent any limitation on the feature. Therefore, without departing from the teachings of the present application, the first lens discussed below may also be referred to as a second lens or a third lens.
  • the thickness, size, and shape of the lens have been slightly exaggerated for ease of explanation.
  • the shape of the spherical surface or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical surface or aspherical surface is not limited to the shape of the spherical surface or aspherical surface shown in the drawings.
  • the drawings are only examples and are not strictly drawn to scale.
  • the paraxial region refers to the region near the optical axis. If the lens surface is convex and the convex position is not defined, it means that the lens surface is convex at least in the paraxial area; if the lens surface is concave and the concave position is not defined, it means that the lens surface is at least in the paraxial area. Concave. The surface closest to the subject in each lens is called the object side of the lens, and the surface closest to the imaging plane in each lens is called the image side of the lens.
  • the optical lens group according to the exemplary embodiment of the present application may include, for example, six lenses having optical power, that is, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens.
  • the six lenses are arranged in order from the object side to the image side along the optical axis.
  • any two adjacent lenses may have an air gap.
  • the first lens may have negative power; the second lens may have positive power or negative power; the third lens may have positive power or negative power; the fourth lens may have positive power Degree; the fifth lens has positive power or negative power, the object side may be convex; the sixth lens may have positive power.
  • Reasonable distribution of the optical power and surface shape of each lens is conducive to improving the imaging quality of the optical system.
  • the object side of the first lens may be convex, and the image side may be concave.
  • the second lens may have negative power, and its image side may be concave.
  • the third lens may have positive power.
  • the effective half-aperture of the first lens, the second lens, and the third lens may be sequentially decreased, and the effective half-aperture of the fourth lens, the fifth lens, and the sixth lens may be sequentially increased.
  • the reasonable combination of the effective half-aperture of the front and rear group lenses can better achieve the requirements of ultra-wide angle, small CRA, and short TTL, thereby fundamentally improving the imaging quality of the lens group.
  • the optical lens group of the present application may satisfy the conditional expression 5 ⁇ semi-FOV/CRAmax ⁇ 10, where semi-FOV is the maximum half angle of view of the optical lens group, and CRAmax is the principal of the optical lens group The maximum incident angle of light incident on the electronic photosensitive component. More specifically, semi-FOV and CRAmax can further satisfy 5 ⁇ semi-FOV/CRAmax ⁇ 8, for example, 5.45 ⁇ semi-FOV/CRAmax ⁇ 6.01. While ensuring a small CRA, the optical system has a larger field of view to meet the ultra-wide-angle characteristics of the system.
  • the optical lens group of the present application may satisfy the conditional expression -2.5 ⁇ f4/f1 ⁇ -1, where f4 is the effective focal length of the fourth lens and f1 is the effective focal length of the first lens. More specifically, f4 and f1 may further satisfy -2.2 ⁇ f4/f1 ⁇ -1.5, for example, -2.09 ⁇ f4/f1 ⁇ -1.60.
  • f4 and f1 may further satisfy -2.2 ⁇ f4/f1 ⁇ -1.5, for example, -2.09 ⁇ f4/f1 ⁇ -1.60.
  • N1/N4 the refractive index
  • the reasonable distribution of the refractive index helps to improve the temperature drift characteristics of the system and the environmental adaptability of the system.
  • the optical lens group of the present application may satisfy the conditional expression -1.2 ⁇ R8/R10 ⁇ -0.7, where R8 is the curvature radius of the image side of the fourth lens and R10 is the image side of the fifth lens Radius of curvature. More specifically, R8 and R10 can further satisfy -1.02 ⁇ R8/R10 ⁇ -0.78. The reasonable matching of the radius of curvature helps to improve the CRA matching degree of the system and the chip under the premise of satisfying the temperature drift performance.
  • the image side of the fourth lens may be convex, and the image side of the fifth lens may be concave.
  • the optical lens group of the present application may satisfy the conditional expression 1 ⁇ R11/f ⁇ 1.5, where R11 is the radius of curvature of the object side of the sixth lens, and f is the total effective focal length of the optical lens group. More specifically, R11 and f can further satisfy 1.02 ⁇ R11/f ⁇ 1.22. Satisfying the conditional expression 1 ⁇ R11/f ⁇ 1.5 helps to reduce F-THETA distortion and helps to improve the optical performance of the system.
  • the object side of the sixth lens may be convex.
  • the optical lens group of the present application may satisfy the conditional expression 0.3 ⁇ CT4/ ⁇ CT ⁇ 0.6, where CT4 is the center thickness of the fourth lens on the optical axis and ⁇ CT is the first lens to the sixth The total thickness of the center of the lens on the optical axis. More specifically, CT4 and ⁇ CT can further satisfy 0.3 ⁇ CT4/ ⁇ CT ⁇ 0.4, for example, 0.32 ⁇ CT4/ ⁇ CT ⁇ 0.35. Satisfying the conditional expression 0.3 ⁇ CT4/ ⁇ CT ⁇ 0.6 helps to realize the temperature drift characteristics of the system and shorten the overall length of the system.
  • the optical lens group of the present application may satisfy the conditional expression 0 ⁇ T45/T56 ⁇ 0.7, where T45 is the axial separation distance between the fourth lens and the fifth lens, and T56 is the fifth lens and the sixth lens The distance on the axis of the lens. More specifically, T45 and T56 can further satisfy 0.04 ⁇ T45/T56 ⁇ 0.66. Satisfying the conditional expression 0 ⁇ T45/T56 ⁇ 0.7, helps to reduce the system size and reduce the tolerance sensitivity of the system.
  • the optical lens group of the present application may satisfy the conditional expression 1 ⁇ DT11/DT62 ⁇ 1.5, where DT11 is the effective half aperture of the object side of the first lens and DT62 is the effective side of the image of the sixth lens Half caliber. More specifically, DT11 and DT62 can further satisfy 1.31 ⁇ DT11/DT62 ⁇ 1.42. Satisfying the conditional expression 1 ⁇ DT11/DT62 ⁇ 1.5, helps to achieve the requirements of ultra-wide angle and small CRA, and is beneficial to shorten the total length of the system.
  • the optical lens group of the present application may satisfy the conditional expression 0.5 ⁇ DT62/ImgH ⁇ 1, where DT62 is the effective half aperture of the image side of the sixth lens, and ImgH is that of the electronic photosensitive component of the optical lens group The diagonal length of the effective pixel area is half. More specifically, DT62 and ImgH can further satisfy 0.7 ⁇ DT62/ImgH ⁇ 1, for example, 0.84 ⁇ DT62/ImgH ⁇ 0.95. Satisfying the conditional formula 0.5 ⁇ DT62/ImgH ⁇ 1, helps to match the system and chip CRA, and reduce the size of the system.
  • the optical lens group of the present application may satisfy the conditional expression 0.4 ⁇ DT31/DT42 ⁇ 0.8, where DT31 is the effective half-aperture of the object side of the third lens and DT42 is the effective half-aperture of the image side of the fourth lens Half caliber. More specifically, DT31 and DT42 can further satisfy 0.58 ⁇ DT31/DT42 ⁇ 0.65. Through the reasonable matching of the effective half-aperture of the third lens and the fourth lens, the distribution of the field of view angle can be better achieved and the temperature drift characteristics of the system can be improved.
  • the optical lens group of the present application may satisfy the conditional expression 0.4 ⁇ SAG61/CT6 ⁇ 0.8, where SAG61 is the maximum effective half of the intersection of the object side of the sixth lens and the optical axis to the object side of the sixth lens
  • the axial distance of the vertex of the aperture, CT6 is the central thickness of the sixth lens on the optical axis.
  • SAG61 and CT6 can further satisfy 0.51 ⁇ SAG61/CT6 ⁇ 0.77. Satisfying the conditional expression 0.4 ⁇ SAG61/CT6 ⁇ 0.8, helps to reduce the field curvature and distortion of the system and improve the optical characteristics of the system.
  • the optical lens group of the present application may satisfy the conditional expression 1.5 ⁇ ET4/(ET5+ET6) ⁇ 2.1, where ET4 is the edge thickness of the fourth lens, ET5 is the edge thickness of the fifth lens, ET6 It is the edge thickness of the sixth lens. More specifically, ET4, ET5, and ET6 can further satisfy 1.68 ⁇ ET4/(ET5+ET6) ⁇ 2.05. The reasonable matching of the center thickness of each lens can help reduce coma and astigmatism, and improve the imaging quality of the peripheral field of view.
  • the optical lens group according to the present application uses a near-infrared wavelength range of about 800 nm to 1000 nm.
  • the optical lens group according to the present application can be used in the infrared band, and can be used for eye tracking, motion capture, surveillance camera, and so on.
  • the above-mentioned optical lens group may further include a diaphragm to improve the imaging quality of the lens group.
  • the diaphragm may be disposed between the third lens and the fourth lens.
  • the above-mentioned optical lens group may further include a filter for correcting color deviation and/or a protective glass for protecting the photosensitive element on the imaging surface.
  • the optical lens group according to the above-described embodiment of the present application may employ multiple lenses, such as the six lenses described above.
  • multiple lenses such as the six lenses described above.
  • the volume of the lens group can be effectively reduced, the sensitivity of the lens group can be reduced, and the lens group can be improved.
  • the processability makes the optical lens group more conducive to production and processing and applicable to portable electronic products.
  • the optical lens group with the above configuration can also have beneficial effects such as small size, devitrification drift, ultra-wide angle, and high imaging quality.
  • the mirror surface of each lens is mostly an aspheric mirror surface.
  • the characteristics of aspheric lenses are: from the lens center to the lens periphery, the curvature is continuously changing. Unlike spherical lenses that have a constant curvature from the center of the lens to the periphery of the lens, aspheric lenses have better radius of curvature characteristics, and have the advantages of improving distortion aberrations and improving astigmatic aberrations. With the use of aspheric lenses, the aberrations that occur during imaging can be eliminated as much as possible, thereby improving imaging quality.
  • At least one of the object side and the image side of each of the first lens, the second lens, the third lens, the fifth lens, and the sixth lens may be aspherical. Further, the object side and the image side of each of the first lens, the second lens, the third lens, the fifth lens, and the sixth lens are aspherical.
  • the number of lenses constituting the optical lens group can be changed to obtain various results and advantages described in this specification without departing from the technical solution claimed in this application.
  • the optical lens group is not limited to include six lenses. If necessary, the optical lens group may further include other numbers of lenses.
  • optical lens group applicable to the above-described embodiment.
  • FIG. 1 shows a schematic structural diagram of an optical lens group according to Embodiment 1 of the present application.
  • the optical lens group includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, an aperture STO, a first The four lens E4, the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has negative refractive power, and its object side surface S1 is a convex surface, and its image side surface S2 is a concave surface.
  • the second lens E2 has negative refractive power, and its object side surface S3 is concave and the image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side S5 is convex, and its image side S6 is convex.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is concave and its image side surface S8 is convex.
  • the fifth lens E5 has positive refractive power, and its object side surface S9 is convex, and its image side surface S10 is concave.
  • the sixth lens E6 has positive refractive power, and its object side surface S11 is convex, and its image side surface S12 is concave.
  • the effective half-apertures of the first lens E1, the second lens E2, and the third lens E3 are sequentially decreased, and the effective half-apertures of the fourth lens E4, the fifth lens E5, and the sixth lens E6 are sequentially increased.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the optical lens group in this embodiment uses a near-infrared wavelength band of about 800 nm to about 1000 nm.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical lens group of Example 1, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • each aspheric lens can be defined by, but not limited to, the following aspheric formula:
  • x is the distance from the aspherical apex to the height of the aspherical surface at the height h along the optical axis;
  • k is the conic coefficient (given in Table 1);
  • Ai is the correction coefficient for the i-th order of the aspheric surface.
  • Table 2 shows the high-order coefficients A 4 , A 6 , A 8 , A 10 and A 12 that can be used for the aspheric mirrors S1-S6 and S9-S12 in Example 1.
  • Table 3 shows the distance TTL on the optical axis from the object side S1 of the first lens E1 to the imaging plane S15 in Example 1, the maximum half angle of view of the optical lens group Semi-FOV, the aperture number Fno, and the total effective focal length f and the effective focal length f1 to f6 of each lens.
  • 2A shows the astigmatism curve of the optical lens group of Example 1, which represents meridional image plane curvature and sagittal image plane curvature.
  • 2B shows the F-theta distortion curve of the optical lens group of Example 1, which represents the corresponding distortion magnitude value under different viewing angles.
  • 2C shows the relative illuminance curve of the optical lens group of Example 1, which represents the relative illuminance at different viewing angles.
  • the optical lens group provided in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 shows a schematic structural diagram of an optical lens group according to Embodiment 2 of the present application.
  • the optical lens group includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, an aperture STO, a The four lens E4, the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has negative refractive power, and its object side surface S1 is a convex surface, and its image side surface S2 is a concave surface.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side S5 is convex, and its image side S6 is convex.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is concave and its image side surface S8 is convex.
  • the fifth lens E5 has positive refractive power, and its object side surface S9 is convex, and its image side surface S10 is concave.
  • the sixth lens E6 has positive refractive power, and its object side surface S11 is convex, and its image side surface S12 is concave.
  • the effective half-apertures of the first lens E1, the second lens E2, and the third lens E3 are sequentially decreased, and the effective half-apertures of the fourth lens E4, the fifth lens E5, and the sixth lens E6 are sequentially increased.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the optical lens group in this embodiment uses a near-infrared wavelength band of about 800 nm to about 1000 nm.
  • Table 4 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical lens group of Example 2, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Example 2 the object side and the image side of any one of the first lens E1, the second lens E2, the third lens E3, the fifth lens E5, and the sixth lens E6 are aspherical ;
  • the object side and the image side of the fourth lens E4 are spherical.
  • Table 5 shows the coefficients of higher-order terms that can be used for each aspherical mirror surface in Example 2, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 6 shows the distance TTL on the optical axis from the object side S1 of the first lens E1 to the imaging plane S15 in Example 2, the maximum half angle of view of the optical lens group Semi-FOV, the aperture number Fno, and the total effective focal length f and the effective focal length f1 to f6 of each lens.
  • 4A shows the astigmatism curve of the optical lens group of Example 2, which represents meridional image plane curvature and sagittal image plane curvature.
  • 4B shows the F-theta distortion curve of the optical lens group of Example 2, which represents the corresponding distortion magnitude value under different viewing angles.
  • 4C shows the relative illuminance curve of the optical lens group of Example 2, which represents the relative illuminance at different viewing angles. It can be seen from FIGS. 4A and 4C that the optical lens group provided in Example 2 can achieve good imaging quality.
  • FIG. 5 shows a schematic structural diagram of an optical lens group according to Embodiment 3 of the present application.
  • the optical lens group includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, a diaphragm STO, a The four lens E4, the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has negative refractive power, and its object side surface S1 is a convex surface, and its image side surface S2 is a concave surface.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side S5 is convex, and its image side S6 is convex.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is concave and its image side surface S8 is convex.
  • the fifth lens E5 has positive refractive power, and its object side surface S9 is convex, and its image side surface S10 is concave.
  • the sixth lens E6 has positive refractive power, and its object side surface S11 is convex, and its image side surface S12 is convex.
  • the effective half-apertures of the first lens E1, the second lens E2, and the third lens E3 are sequentially decreased, and the effective half-apertures of the fourth lens E4, the fifth lens E5, and the sixth lens E6 are sequentially increased.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the optical lens group in this embodiment uses a near-infrared wavelength band of about 800 nm to about 1000 nm.
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical lens group of Example 3, where the units of radius of curvature and thickness are both millimeters (mm).
  • Example 7 the object side and image side of any one of the first lens E1, the second lens E2, the third lens E3, the fifth lens E5, and the sixth lens E6 are aspheric ;
  • the object side and the image side of the fourth lens E4 are spherical.
  • Table 8 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 3, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 9 shows the distance TTL on the optical axis from the object side S1 of the first lens E1 to the imaging plane S15 in Example 3, the maximum half angle of view of the optical lens group Semi-FOV, the aperture number Fno, and the total effective focal length f and the effective focal length f1 to f6 of each lens.
  • 6A shows the astigmatism curve of the optical lens group of Example 3, which represents meridional image plane curvature and sagittal image plane curvature.
  • 6B shows the F-theta distortion curve of the optical lens group of Example 3, which represents the corresponding distortion magnitude value under different viewing angles.
  • 6C shows the relative illuminance curve of the optical lens group of Example 3, which represents the relative illuminance at different viewing angles.
  • the optical lens group provided in Example 3 can achieve good imaging quality.
  • FIGS. 7 to 8C shows a schematic structural diagram of an optical lens group according to Example 4 of the present application.
  • the optical lens group includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, an aperture STO, a The four lens E4, the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has negative refractive power, and its object side surface S1 is a convex surface, and its image side surface S2 is a concave surface.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side surface S5 is convex, and its image side surface S6 is concave.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has positive refractive power, and its object side surface S9 is convex, and its image side surface S10 is concave.
  • the sixth lens E6 has positive refractive power, and its object side surface S11 is convex, and its image side surface S12 is convex.
  • the effective half-apertures of the first lens E1, the second lens E2, and the third lens E3 are sequentially decreased, and the effective half-apertures of the fourth lens E4, the fifth lens E5, and the sixth lens E6 are sequentially increased.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the optical lens group in this embodiment uses a near-infrared wavelength band of about 800 nm to about 1000 nm.
  • Table 10 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical lens group of Example 4, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Example 4 the object side and the image side of any one of the first lens E1, the second lens E2, the third lens E3, the fifth lens E5, and the sixth lens E6 are aspheric ;
  • the object side and the image side of the fourth lens E4 are spherical.
  • Table 11 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 4, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 12 shows the distance TTL on the optical axis from the object side S1 of the first lens E1 to the imaging plane S15 in Example 4, the maximum half angle of view of the optical lens group Semi-FOV, the aperture number Fno, and the total effective focal length f and the effective focal length f1 to f6 of each lens.
  • 8A shows the astigmatism curve of the optical lens group of Example 4, which represents meridional image plane curvature and sagittal image plane curvature.
  • 8B shows the F-theta distortion curve of the optical lens group of Example 4, which represents the corresponding distortion magnitude value under different viewing angles.
  • 8C shows the relative illuminance curve of the optical lens group of Example 4, which represents the relative illuminance at different viewing angles.
  • the optical lens group provided in Example 4 can achieve good imaging quality.
  • FIGS. 9 to 10C shows a schematic structural diagram of an optical lens group according to Example 5 of the present application.
  • the optical lens group includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, an aperture STO, a The four lens E4, the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has negative refractive power, and its object side surface S1 is a convex surface, and its image side surface S2 is a concave surface.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side surface S5 is convex, and its image side surface S6 is concave.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is concave and its image side surface S8 is convex.
  • the fifth lens E5 has positive refractive power, and its object side surface S9 is convex, and its image side surface S10 is concave.
  • the sixth lens E6 has positive refractive power, and its object side surface S11 is convex, and its image side surface S12 is convex.
  • the effective half-apertures of the first lens E1, the second lens E2, and the third lens E3 are sequentially decreased, and the effective half-apertures of the fourth lens E4, the fifth lens E5, and the sixth lens E6 are sequentially increased.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the optical lens group in this embodiment uses a near-infrared wavelength band of about 800 nm to about 1000 nm.
  • Table 13 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical lens group of Example 5, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Example 5 the object side and the image side of any one of the first lens E1, the second lens E2, the third lens E3, the fifth lens E5, and the sixth lens E6 are aspheric ;
  • the object side and the image side of the fourth lens E4 are spherical.
  • Table 14 shows the coefficients of higher-order terms that can be used for each aspherical mirror surface in Example 5, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 15 shows the distance TTL on the optical axis from the object side S1 of the first lens E1 to the imaging plane S15 in Example 5, the maximum half angle of view of the optical lens group Semi-FOV, the aperture number Fno, and the total effective focal length f and the effective focal length f1 to f6 of each lens.
  • FIGS. 10A and 10C show the optical lens group provided in Example 5 can achieve good imaging quality.
  • FIGS. 11 to 12C shows a schematic structural diagram of an optical lens group according to Example 6 of the present application.
  • the optical lens group includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, an aperture STO, a Four lens E4, fifth lens E5, sixth lens E6, filter E7, and imaging plane S15.
  • the first lens E1 has negative refractive power, and its object side surface S1 is a convex surface, and its image side surface S2 is a concave surface.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side surface S5 is convex, and its image side surface S6 is concave.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is concave and its image side surface S8 is convex.
  • the fifth lens E5 has positive refractive power, and its object side surface S9 is convex, and its image side surface S10 is concave.
  • the sixth lens E6 has positive refractive power, and its object side surface S11 is convex, and its image side surface S12 is concave.
  • the effective half-apertures of the first lens E1, the second lens E2, and the third lens E3 are sequentially decreased, and the effective half-apertures of the fourth lens E4, the fifth lens E5, and the sixth lens E6 are sequentially increased.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the optical lens group in this embodiment uses a near-infrared wavelength band of about 800 nm to about 1000 nm.
  • Table 16 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical lens group of Example 6, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Example 6 the object side and the image side of any one of the first lens E1, the second lens E2, the third lens E3, the fifth lens E5, and the sixth lens E6 are aspherical ;
  • the object side and the image side of the fourth lens E4 are spherical.
  • Table 17 shows the high-order coefficients that can be used for each aspherical mirror surface in Example 6, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 18 shows the distance TTL on the optical axis from the object side S1 of the first lens E1 to the imaging plane S15 in Example 6, the maximum half angle of view of the optical lens group Semi-FOV, the aperture number Fno, and the total effective focal length f and the effective focal length f1 to f6 of each lens.
  • 12A shows the astigmatism curve of the optical lens group of Example 6, which represents meridional image plane curvature and sagittal image plane curvature.
  • 12B shows the F-theta distortion curve of the optical lens group of Example 6, which represents the corresponding distortion magnitude value under different viewing angles.
  • 12C shows the relative illuminance curve of the optical lens group of Example 6, which represents the relative illuminance at different viewing angles. It can be seen from FIGS. 12A and 12C that the optical lens group provided in Example 6 can achieve good imaging quality.
  • FIGS. 13 to 14C shows a schematic structural diagram of an optical lens group according to Example 7 of the present application.
  • the optical lens group includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, an aperture STO, a The four lens E4, the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has negative refractive power, and its object side surface S1 is a convex surface, and its image side surface S2 is a concave surface.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side surface S5 is convex, and its image side surface S6 is concave.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is convex, and its image side surface S10 is concave.
  • the sixth lens E6 has positive refractive power, and its object side surface S11 is convex, and its image side surface S12 is concave.
  • the effective half-apertures of the first lens E1, the second lens E2, and the third lens E3 are sequentially decreased, and the effective half-apertures of the fourth lens E4, the fifth lens E5, and the sixth lens E6 are sequentially increased.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the optical lens group in this embodiment uses a near-infrared wavelength band of about 800 nm to about 1000 nm.
  • Table 19 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical lens group of Example 7, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Example 7 the object side and the image side of any one of the first lens E1, the second lens E2, the third lens E3, the fifth lens E5, and the sixth lens E6 are aspheric ;
  • the object side and the image side of the fourth lens E4 are spherical.
  • Table 20 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 7, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 21 shows the distance TTL on the optical axis from the object side S1 of the first lens E1 to the imaging plane S15 in Example 7, the maximum half angle of view of the optical lens group Semi-FOV, the aperture number Fno, and the total effective focal length f and the effective focal length f1 to f6 of each lens.
  • 14A shows the astigmatism curve of the optical lens group of Example 7, which represents meridional image plane curvature and sagittal image plane curvature.
  • 14B shows the F-theta distortion curve of the optical lens group of Example 7, which represents the corresponding distortion magnitude value under different viewing angles.
  • 14C shows the relative illuminance curve of the optical lens group of Example 7, which represents the relative illuminance at different viewing angles. It can be seen from FIGS. 14A and 14C that the optical lens group provided in Example 7 can achieve good imaging quality.
  • FIGS. 15 to 16C shows a schematic structural diagram of an optical lens group according to Example 8 of the present application.
  • the optical lens group includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, an aperture STO, The four lens E4, the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has negative refractive power, and its object side surface S1 is a convex surface, and its image side surface S2 is a concave surface.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has a positive refractive power, and its object side surface S5 is a concave surface, and its image side surface S6 is a convex surface.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has positive refractive power, and its object side surface S9 is convex, and its image side surface S10 is concave.
  • the sixth lens E6 has positive refractive power, and its object side surface S11 is convex, and its image side surface S12 is concave.
  • the effective half-apertures of the first lens E1, the second lens E2, and the third lens E3 are sequentially decreased, and the effective half-apertures of the fourth lens E4, the fifth lens E5, and the sixth lens E6 are sequentially increased.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the optical lens group in this embodiment uses a near-infrared wavelength band of about 800 nm to about 1000 nm.
  • Table 22 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical lens group of Example 8, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Example 8 the object side and the image side of any one of the first lens E1, the second lens E2, the third lens E3, the fifth lens E5, and the sixth lens E6 are aspheric ;
  • the object side and the image side of the fourth lens E4 are spherical.
  • Table 23 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 8, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 24 shows the distance TTL on the optical axis from the object side S1 of the first lens E1 to the imaging plane S15 in Example 8, the maximum half angle of view of the optical lens group Semi-FOV, the aperture number Fno, and the total effective focal length f and the effective focal length f1 to f6 of each lens.
  • 16A shows the astigmatism curve of the optical lens group of Example 8, which represents meridional image plane curvature and sagittal image plane curvature.
  • 16B shows the F-theta distortion curve of the optical lens group of Example 8, which represents the corresponding distortion magnitude value under different viewing angles.
  • 16C shows the relative illuminance curve of the optical lens group of Example 8, which represents the relative illuminance at different viewing angles.
  • the optical lens group provided in Example 8 can achieve good imaging quality.
  • Examples 1 to 8 satisfy the relationships shown in Table 25 respectively.
  • the present application also provides an imaging device whose electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the camera device may be an independent camera device such as a digital camera, or a camera module integrated on a mobile electronic device such as a mobile phone or a tablet computer.
  • the imaging device is equipped with the optical lens group described above.

Abstract

本申请公开了一种光学透镜组,该透镜组沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。第一透镜具有负光焦度;第二透镜具有负光焦度;第三透镜具有正光焦度;第四透镜具有正光焦度;第五透镜具有光焦度,其物侧面为凸面;第六透镜具有正光焦度。其中,光学透镜组的最大半视场角semi-FOV与光学透镜组的主光线入射电子感光组件的最大入射角度CRAmax满足5<semi-FOV/CRAmax<10。

Description

光学透镜组
相关申请的交叉引用
本申请要求于2018年11月27日提交于中国国家知识产权局(CNIPA)的、专利申请号为201811424906.0的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种光学透镜组,更具体地,涉及包括六片透镜的光学透镜组。
背景技术
广角镜头具有视场大、景深长的优点,因而通常被用于拍摄宽阔范围的景物。随着市场需求的不断变化,超广角镜头越来越多的应用于车载、监控、虚拟现实技术/增强现实技术(VR/AR)等领域中。然而,现有技术中的超广角镜头存在温度特性差、像素低等问题,严重限制了其在工业、生活等方面的应用。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学透镜组。
本申请一方面提供了这样一种光学透镜组,该透镜组沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。第一透镜可具有负光焦度;第二透镜具有光焦度;第三透镜具有光焦度;第四透镜可具有正光焦度;第五透镜具有光焦度,其物侧面可为凸面;第六透镜可具有正光焦度。
在一个实施方式中,第二透镜可具有负光焦度,第三透镜可具有正光焦度。
在一个实施方式中,光学透镜组的最大半视场角semi-FOV与主光线入射电子感光组件的最大入射角度CRAmax可满足5<semi-FOV/CRAmax<10。
在一个实施方式中,第一透镜的折射率N1与第四透镜的折射率N4可满足N1/N4<0.9。
在一个实施方式中,第四透镜的有效焦距f4与第一透镜的有效焦距f1可满足-2.5<f4/f1<-1。
在一个实施方式中,第四透镜的像侧面的曲率半径R8与第五透镜的像侧面的曲率半径R10可满足-1.2<R8/R10<-0.7。
在一个实施方式中,第六透镜的物侧面的曲率半径R11与光学透镜组的总有效焦距f可满足1<R11/f<1.5。
在一个实施方式中,第四透镜于光轴上的中心厚度CT4与第一透镜至第六透镜分别于光轴上的中心厚度的总和∑CT可满足0.3<CT4/∑CT<0.6。
在一个实施方式中,第四透镜和第五透镜的轴上间隔距离T45与第五透镜和第六透镜的轴上间隔距离T56可满足0<T45/T56<0.7。
在一个实施方式中,第一透镜的物侧面的有效半口径DT11与所述第六透镜的像侧面的有效半口径DT62满足1<DT11/DT62<1.5。
在一个实施方式中,第六透镜的像侧面的有效半口径DT62与光学透镜组的电子感光组件的有效像素区域对角线长的一半ImgH可满足0.5<DT62/ImgH<1。
在一个实施方式中,第三透镜的物侧面的有效半口径DT31与第四透镜的像侧面的有效半口径DT42可满足0.4<DT31/DT42<0.8。
在一个实施方式中,第六透镜的物侧面和光轴的交点至第六透镜的物侧面的最大有效半口径顶点的轴上距离SAG61与第六透镜于光轴上的中心厚度CT6可满足0.4<SAG61/CT6<0.8。
在一个实施方式中,第四透镜的边缘厚度ET4、第五透镜的边缘厚度ET5与第六透镜的边缘厚度ET6可满足1.5<ET4/(ET5+ET6)<2.1。
在一个实施方式中,第一透镜、第二透镜、第三透镜的有效半口径可依次递减,第四透镜、第五透镜、第六透镜的有效半口径可依次递增。
在一个实施方式中,光学透镜组的使用波段范围可为800nm至1000nm。
本申请采用了六片透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学透镜组具有小型化、消温漂、超广角、高成像质量等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学透镜组的结构示意图;图2A至图2C分别示出了实施例1的光学透镜组的象散曲线、F-theta畸变曲线以及相对照度曲线;
图3示出了根据本申请实施例2的光学透镜组的结构示意图;图4A至图4C分别示出了实施例2的光学透镜组的象散曲线、F-theta畸变曲线以及相对照度曲线;
图5示出了根据本申请实施例3的光学透镜组的结构示意图;图6A至图6C分别示出了实施例3的光学透镜组的象散曲线、F-theta畸变曲线以及相对照度曲线;
图7示出了根据本申请实施例4的光学透镜组的结构示意图;图8A至图8C分别示出了实施例4的光学透镜组的象散曲线、F-theta畸变曲线以及相对照度曲线;
图9示出了根据本申请实施例5的光学透镜组的结构示意图;图10A至图10C分别示出了实施例5的光学透镜组的象散曲线、F-theta畸变曲线以及相对照度曲线;
图11示出了根据本申请实施例6的光学透镜组的结构示意图;图12A至图12C分别示出了实施例6的光学透镜组的象散曲线、F-theta畸变曲线以及相对照度曲线;
图13示出了根据本申请实施例7的光学透镜组的结构示意图;图14A至图14C分别示出了实施例7的光学透镜组的象散曲线、F-theta畸变曲线以及相对照度曲线;
图15示出了根据本申请实施例8的光学透镜组的结构示意图;图16A至图16C分别示出了 实施例8的光学透镜组的象散曲线、F-theta畸变曲线以及相对照度曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中最靠近被摄物的表面称为该透镜的物侧面,每个透镜中最靠近成像面的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学透镜组可包括例如六片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。这六片透镜沿着光轴由物侧至像侧依序排列。在第一透镜至第六透镜中,任意两相邻透镜之间均可具有空气间隔。
在示例性实施方式中,第一透镜可具有负光焦度;第二透镜具有正光焦度或负光焦度;第三透镜具有正光焦度或负光焦度;第四透镜可具有正光焦度;第五透镜具有正光焦度或负光焦度,其物侧面可为凸面;第六透镜可具有正光焦度。合理分配各透镜的光焦度与面型,有利于提升光 学系统的成像像质。
在示例性实施方式中,第一透镜的物侧面可为凸面,像侧面可为凹面。
在示例性实施方式中,第二透镜可具有负光焦度,其像侧面可为凹面。
在示例性实施方式中,第三透镜可具有正光焦度。
在示例性实施方式中,第一透镜、第二透镜、第三透镜的有效半口径可依次递减,第四透镜、第五透镜、第六透镜的有效半口径依次递增。前后组透镜的有效半口径的合理搭配,可以更好的实现超广角、小CRA、短TTL的要求,从而从根本上提升透镜组的成像质量。
在示例性实施方式中,本申请的光学透镜组可满足条件式5<semi-FOV/CRAmax<10,其中,semi-FOV为光学透镜组的最大半视场角,CRAmax为光学透镜组的主光线入射电子感光组件的最大入射角度。更具体地,semi-FOV和CRAmax进一步可满足5<semi-FOV/CRAmax<8,例如,5.45≤semi-FOV/CRAmax≤6.01。在保证CRA较小的同时,光学系统具有更大视场角,以满足系统超广角的特性。
在示例性实施方式中,本申请的光学透镜组可满足条件式-2.5<f4/f1<-1,其中,f4为第四透镜的有效焦距,f1为第一透镜的有效焦距。更具体地,f4和f1进一步可满足-2.2≤f4/f1≤-1.5,例如,-2.09≤f4/f1≤-1.60。通过合理分配光焦度,有利于更好的实现超广角视场,提升系统的整体性能。
在示例性实施方式中,本申请的光学透镜组可满足条件式N1/N4<0.9,其中,N1为第一透镜的折射率,N4为第四透镜的折射率。更具体地,N1和N4进一步可满足0.8<N1/N4<0.9,例如,N1/N4=0.84。折射率的合理分配,有助于改善系统的温漂特性,提升系统的环境适应能力。
在示例性实施方式中,本申请的光学透镜组可满足条件式-1.2<R8/R10<-0.7,其中,R8为第四透镜的像侧面的曲率半径,R10为第五透镜的像侧面的曲率半径。更具体地,R8和R10进一步可满足-1.02≤R8/R10≤-0.78。曲率半径的合理搭配,有助于在满足温漂性能的前提下,提升系统和芯片的CRA匹配程度。可选地,第四透镜的像侧面可为凸面,第五透镜的像侧面可为凹面。
在示例性实施方式中,本申请的光学透镜组可满足条件式1<R11/f<1.5,其中,R11为第六透镜的物侧面的曲率半径,f为光学透镜组的总有效焦距。更具体地,R11和f进一步可满足1.02≤R11/f≤1.22。满足条件式1<R11/f<1.5,有助于减小F-THETA畸变,并有助于提升系统的光学性能。可选地,第六透镜的物侧面可为凸面。
在示例性实施方式中,本申请的光学透镜组可满足条件式0.3<CT4/∑CT<0.6,其中,CT4为第四透镜于光轴上的中心厚度,∑CT为第一透镜至第六透镜分别于光轴上的中心厚度的总和。更具体地,CT4和∑CT进一步可满足0.3<CT4/∑CT<0.4,例如,0.32≤CT4/∑CT≤0.35。满足条件式0.3<CT4/∑CT<0.6,有助于实现系统的温漂特性,同时缩短系统的整体长度。
在示例性实施方式中,本申请的光学透镜组可满足条件式0<T45/T56<0.7,其中,T45为第四透镜和第五透镜的轴上间隔距离,T56为第五透镜和第六透镜的轴上间隔距离。更具体地,T45和T56进一步可满足0.04≤T45/T56≤0.66。满足条件式0<T45/T56<0.7,有助于减小系统尺寸,并降低系统的公差敏感性。
在示例性实施方式中,本申请的光学透镜组可满足条件式1<DT11/DT62<1.5,其中,DT11为第一透镜的物侧面的有效半口径,DT62为第六透镜的像侧面的有效半口径。更具体地,DT11和DT62进一步可满足1.31≤DT11/DT62≤1.42。满足条件式1<DT11/DT62<1.5,有助于实现超广角、小CRA的要求,并有利于缩短系统总长。
在示例性实施方式中,本申请的光学透镜组可满足条件式0.5<DT62/ImgH<1,其中,DT62为第六透镜的像侧面的有效半口径,ImgH为光学透镜组的电子感光组件的有效像素区域对角线长的一半。更具体地,DT62和ImgH进一步可满足0.7<DT62/ImgH<1,例如,0.84≤DT62/ImgH≤0.95。满足条件式0.5<DT62/ImgH<1,有助于实现系统和芯片CRA的匹配,并减小系统的尺寸。
在示例性实施方式中,本申请的光学透镜组可满足条件式0.4<DT31/DT42<0.8,其中,DT31为第三透镜的物侧面的有效半口径,DT42为第四透镜的像侧面的有效半口径。更具体地,DT31和DT42进一步可满足0.58≤DT31/DT42≤0.65。通过第三透镜和第四透镜有效半口径的合理搭配,可以更好的实现视场角的分配并有利于改善系统的温漂特性。
在示例性实施方式中,本申请的光学透镜组可满足条件式0.4<SAG61/CT6<0.8,其中,SAG61为第六透镜的物侧面和光轴的交点至第六透镜的物侧面的最大有效半口径顶点的轴上距离,CT6为第六透镜于光轴上的中心厚度。更具体地,SAG61和CT6进一步可满足0.51≤SAG61/CT6≤0.77。满足条件式0.4<SAG61/CT6<0.8,有助于减小系统的场曲和畸变,提升系统的光学特性。
在示例性实施方式中,本申请的光学透镜组可满足条件式1.5<ET4/(ET5+ET6)<2.1,其中,ET4为第四透镜的边缘厚度,ET5为第五透镜的边缘厚度,ET6为第六透镜的边缘厚度。更具体地,ET4、ET5和ET6进一步可满足1.68≤ET4/(ET5+ET6)≤2.05。通过各透镜中心厚度的合理搭配,有助于减小彗差和象散,改善周边视场的成像质量。
根据本申请的光学透镜组的使用波段范围为约800nm至1000nm的近红外波段。根据本申请的光学透镜组可用于红外波段,可用于眼球追踪、动作捕捉、监控摄像等。
在示例性实施方式中,上述光学透镜组还可包括光阑,以提升透镜组的成像质量。光阑可设置在第三透镜与第四透镜之间。
可选地,上述光学透镜组还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的光学透镜组可采用多片镜片,例如上文所述的六片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小透镜组的体积、降低透镜组的敏感度并提高透镜组的可加工性,使得光学透镜组更有利于生产加工并且可适用于便携式电子产品。通过上述配置的光学透镜组还可具有小尺寸、消温漂、超广角、高成像质量等有益效果。
在本申请的实施方式中,各透镜的镜面多采用非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非 球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。可选地,第一透镜、第二透镜、第三透镜、第五透镜和第六透镜中的每个透镜的物侧面和像侧面中的至少一个可为非球面。进一步地,第一透镜、第二透镜、第三透镜、第五透镜和第六透镜中的每个透镜的物侧面和像侧面均为非球面。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学透镜组的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以六个透镜为例进行了描述,但是该光学透镜组不限于包括六个透镜。如果需要,该光学透镜组还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学透镜组的具体实施例。
实施例1
以下参照图1至图2C描述根据本申请实施例1的光学透镜组。图1示出了根据本申请实施例1的光学透镜组的结构示意图。
如图1所示,根据本申请示例性实施方式的光学透镜组沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、光阑STO、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凹面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。第一透镜E1、第二透镜E2、第三透镜E3的有效半口径依次递减,而第四透镜E4、第五透镜E5、第六透镜E6的有效半口径依次递增。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
本实施例中的光学透镜组的使用波段为约800nm至约1000nm的近红外波段。
表1示出了实施例1的光学透镜组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019099387-appb-000001
Figure PCTCN2019099387-appb-000002
表1
由表1可知,第一透镜E1、第二透镜E2、第三透镜E3、第五透镜E5和第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面;第四透镜E4的物侧面和像侧面均为球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2019099387-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S6、S9-S12的高次项系数A 4、A 6、A 8、A 10和A 12
面号 A4 A6 A8 A10 A12
S1 3.2504E-03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 -1.8771E-02 -5.9239E-03 3.7944E-04 0.0000E+00 0.0000E+00
S3 4.7351E-02 -1.2250E-02 0.0000E+00 0.0000E+00 0.0000E+00
S4 1.5360E-01 5.7805E-02 -2.8957E-02 7.6292E-02 -2.2871E-02
S5 1.6932E-02 2.1113E-02 -9.5539E-03 2.3831E-02 0.0000E+00
S6 -6.5278E-03 1.9006E-03 2.3732E-02 8.3538E-03 0.0000E+00
S9 8.6637E-03 -8.5289E-04 -2.1905E-05 -4.4856E-05 0.0000E+00
S10 -4.2006E-02 1.6291E-02 -2.9548E-03 2.4413E-04 0.0000E+00
S11 1.1844E-02 -3.8380E-03 6.4889E-04 -1.0145E-04 6.7853E-06
S12 2.0143E-02 -3.2642E-03 1.0824E-04 -2.4373E-05 1.9461E-06
表2
表3给出了实施例1中从第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL、光学透镜组的最大半视场角Semi-FOV、光圈数Fno、总有效焦距f以及各透镜的有效焦距f1至f6。
TTL(mm) 10.00 f2(mm) -5.01
semi-FOV(°) 87.50 f3(mm) 6.32
Fno 2.20 f4(mm) 5.76
f(mm) 1.74 f5(mm) 47.57
f1(mm) -3.60 f6(mm) 4.15
表3
图2A示出了实施例1的光学透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2B示出了实施例1的光学透镜组的F-theta畸变曲线,其表示不同视角情况下对应的畸变大小值。图2C示出了实施例1的光学透镜组的相对照度曲线,其表示不同视角情况下的相对照度。根据 图2A和图2C可知,实施例1所给出的光学透镜组能够实现良好的成像品质。
实施例2
以下参照图3至图4C描述根据本申请实施例2的光学透镜组。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学透镜组的结构示意图。
如图3所示,根据本申请示例性实施方式的光学透镜组沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、光阑STO、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。第一透镜E1、第二透镜E2、第三透镜E3的有效半口径依次递减,而第四透镜E4、第五透镜E5、第六透镜E6的有效半口径依次递增。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
本实施例中的光学透镜组的使用波段为约800nm至约1000nm的近红外波段。
表4示出了实施例2的光学透镜组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019099387-appb-000004
表4
由表4可知,在实施例2中,第一透镜E1、第二透镜E2、第三透镜E3、第五透镜E5和第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面;第四透镜E4的物侧面和像侧面均为 球面。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12
S1 2.4444E-03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 -2.2480E-02 -8.2771E-03 -3.0307E-03 0.0000E+00 0.0000E+00
S3 2.1575E-02 -1.1240E-02 0.0000E+00 0.0000E+00 0.0000E+00
S4 9.6581E-02 6.0154E-02 -9.9568E-02 1.8942E-01 -1.2025E-01
S5 5.0928E-02 2.7080E-02 1.1164E-03 7.9490E-03 0.0000E+00
S6 6.5290E-03 1.0422E-02 2.2945E-02 1.0606E-02 0.0000E+00
S9 1.9824E-02 -2.5249E-03 2.2041E-04 -5.3362E-05 0.0000E+00
S10 -3.1036E-02 1.6585E-02 -3.3333E-03 2.6960E-04 0.0000E+00
S11 9.8080E-03 -4.9159E-03 1.0204E-03 -1.7178E-04 1.2118E-05
S12 1.1750E-02 -3.0141E-03 1.8215E-04 -2.9303E-05 1.7412E-06
表5
表6给出了实施例2中从第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL、光学透镜组的最大半视场角Semi-FOV、光圈数Fno、总有效焦距f以及各透镜的有效焦距f1至f6。
TTL(mm) 10.00 f2(mm) -10.79
semi-FOV(°) 87.50 f3(mm) 6.67
Fno 2.20 f4(mm) 5.67
f(mm) 1.74 f5(mm) 38.61
f1(mm) -2.71 f6(mm) 4.29
表6
图4A示出了实施例2的光学透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4B示出了实施例2的光学透镜组的F-theta畸变曲线,其表示不同视角情况下对应的畸变大小值。图4C示出了实施例2的光学透镜组的相对照度曲线,其表示不同视角情况下的相对照度。根据图4A和图4C可知,实施例2所给出的光学透镜组能够实现良好的成像品质。
实施例3
以下参照图5至图6C描述了根据本申请实施例3的光学透镜组。图5示出了根据本申请实施例3的光学透镜组的结构示意图。
如图5所示,根据本申请示例性实施方式的光学透镜组沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、光阑STO、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第一透镜E1、第二透镜E2、第三透镜E3的有效半口径依次递减,而第四透镜E4、第五透镜E5、第六透镜E6的有效半口径依次递增。滤光片E7具有 物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
本实施例中的光学透镜组的使用波段为约800nm至约1000nm的近红外波段。
表7示出了实施例3的光学透镜组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019099387-appb-000005
表7
由表7可知,在实施例3中,第一透镜E1、第二透镜E2、第三透镜E3、第五透镜E5和第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面;第四透镜E4的物侧面和像侧面均为球面。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12
S1 3.2512E-03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 -1.7458E-02 -6.4254E-03 -5.6706E-04 0.0000E+00 0.0000E+00
S3 -1.9941E-03 -4.9922E-03 0.0000E+00 0.0000E+00 0.0000E+00
S4 7.3125E-02 5.6705E-02 -8.1373E-02 1.5256E-01 -8.0900E-02
S5 2.3301E-02 1.6458E-02 1.3483E-02 -6.1351E-03 0.0000E+00
S6 -7.0049E-03 2.1914E-02 -1.7069E-02 5.6989E-02 0.0000E+00
S9 1.6629E-02 -3.6897E-03 6.3400E-04 -1.1582E-04 0.0000E+00
S10 -4.2685E-02 1.5324E-02 -2.7214E-03 2.0086E-04 0.0000E+00
S11 1.3403E-02 -4.8640E-03 8.2084E-04 -1.5042E-04 1.0454E-05
S12 2.3614E-02 -2.9310E-03 -3.1915E-04 4.8688E-05 -2.6242E-06
表8
表9给出了实施例3中从第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL、光学透镜组的最大半视场角Semi-FOV、光圈数Fno、总有效焦距f以及各透镜的有效焦距f1至f6。
TTL(mm) 10.00 f2(mm) -6.01
semi-FOV(°) 87.50 f3(mm) 6.78
Fno 2.20 f4(mm) 5.67
f(mm) 1.74 f5(mm) 42.55
f1(mm) -3.02 f6(mm) 3.85
表9
图6A示出了实施例3的光学透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6B示出了实施例3的光学透镜组的F-theta畸变曲线,其表示不同视角情况下对应的畸变大小值。图6C示出了实施例3的光学透镜组的相对照度曲线,其表示不同视角情况下的相对照度。根据图6A和图6C可知,实施例3所给出的光学透镜组能够实现良好的成像品质。
实施例4
以下参照图7至图8C描述了根据本申请实施例4的光学透镜组。图7示出了根据本申请实施例4的光学透镜组的结构示意图。
如图7所示,根据本申请示例性实施方式的光学透镜组沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、光阑STO、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第一透镜E1、第二透镜E2、第三透镜E3的有效半口径依次递减,而第四透镜E4、第五透镜E5、第六透镜E6的有效半口径依次递增。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
本实施例中的光学透镜组的使用波段为约800nm至约1000nm的近红外波段。
表10示出了实施例4的光学透镜组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019099387-appb-000006
Figure PCTCN2019099387-appb-000007
表10
由表10可知,在实施例4中,第一透镜E1、第二透镜E2、第三透镜E3、第五透镜E5和第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面;第四透镜E4的物侧面和像侧面均为球面。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12
S1 3.2329E-03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 -2.0456E-02 -7.5882E-03 -5.1161E-04 0.0000E+00 0.0000E+00
S3 1.5707E-02 -1.0839E-02 0.0000E+00 0.0000E+00 0.0000E+00
S4 1.1845E-01 6.4459E-02 -6.1987E-02 1.6589E-01 -7.8599E-02
S5 3.6091E-02 2.8338E-02 6.4217E-03 1.3753E-02 0.0000E+00
S6 -7.6586E-03 2.6648E-02 -3.0841E-02 7.7238E-02 0.0000E+00
S9 1.1717E-02 -7.7087E-04 -1.8038E-04 4.5908E-05 0.0000E+00
S10 -4.7201E-02 1.7605E-02 -3.3723E-03 3.5410E-04 0.0000E+00
S11 1.2286E-02 -4.9959E-03 9.5768E-04 -1.7846E-04 1.2908E-05
S12 2.2615E-02 -2.7790E-03 -2.6212E-04 3.1883E-05 -1.2476E-06
表11
表12给出了实施例4中从第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL、光学透镜组的最大半视场角Semi-FOV、光圈数Fno、总有效焦距f以及各透镜的有效焦距f1至f6。
TTL(mm) 10.00 f2(mm) -6.01
semi-FOV(°) 87.50 f3(mm) 7.84
Fno 2.20 f4(mm) 5.21
f(mm) 1.74 f5(mm) 81.03
f1(mm) -3.10 f6(mm) 3.74
表12
图8A示出了实施例4的光学透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8B示出了实施例4的光学透镜组的F-theta畸变曲线,其表示不同视角情况下对应的畸变大小值。图8C示出了实施例4的光学透镜组的相对照度曲线,其表示不同视角情况下的相对照度。根据图8A和图8C可知,实施例4所给出的光学透镜组能够实现良好的成像品质。
实施例5
以下参照图9至图10C描述了根据本申请实施例5的光学透镜组。图9示出了根据本申请实施例5的光学透镜组的结构示意图。
如图9所示,根据本申请示例性实施方式的光学透镜组沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、光阑STO、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第一透镜E1、第二透镜E2、第三透镜E3的有效半口径依次递减,而第四透镜E4、第五透镜E5、第六透镜E6的有效半口径依次递增。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
本实施例中的光学透镜组的使用波段为约800nm至约1000nm的近红外波段。
表13示出了实施例5的光学透镜组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019099387-appb-000008
表13
由表13可知,在实施例5中,第一透镜E1、第二透镜E2、第三透镜E3、第五透镜E5和第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面;第四透镜E4的物侧面和像侧面均为球面。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12
S1 3.0058E-03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 -1.9848E-02 -6.7002E-03 -6.3865E-04 0.0000E+00 0.0000E+00
S3 2.2758E-02 -1.0639E-02 0.0000E+00 0.0000E+00 0.0000E+00
S4 1.4480E-01 8.7178E-02 -1.3706E-01 2.3930E-01 -1.3947E-01
S5 4.1552E-02 1.9681E-02 2.5415E-02 -4.6703E-03 0.0000E+00
S6 4.4670E-03 1.7686E-02 1.5929E-02 2.2401E-02 0.0000E+00
S9 9.6578E-03 -8.3964E-04 -1.5036E-04 8.2333E-05 0.0000E+00
S10 -5.5564E-02 1.9603E-02 -3.9225E-03 4.6106E-04 0.0000E+00
S11 1.0562E-02 -4.3629E-03 6.8472E-04 -1.2333E-04 9.1236E-06
S12 2.4767E-02 -3.4400E-03 -2.4825E-04 3.9043E-05 -1.7411E-06
表14
表15给出了实施例5中从第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL、光学透镜组的最大半视场角Semi-FOV、光圈数Fno、总有效焦距f以及各透镜的有效焦距f1至f6。
TTL(mm) 10.00 f2(mm) -6.01
semi-FOV(°) 87.50 f3(mm) 7.32
Fno 2.20 f4(mm) 5.64
f(mm) 1.74 f5(mm) 63.56
f1(mm) -3.17 f6(mm) 3.71
表15
图10A示出了实施例5的光学透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10B示出了实施例5的光学透镜组的F-theta畸变曲线,其表示不同视角情况下对应的畸变大小值。图10C示出了实施例5的光学透镜组的相对照度曲线,其表示不同视角情况下的相对照度。根据图10A和图10C可知,实施例5所给出的光学透镜组能够实现良好的成像品质。
实施例6
以下参照图11至图12C描述了根据本申请实施例6的光学透镜组。图11示出了根据本申请实施例6的光学透镜组的结构示意图。
如图11所示,根据本申请示例性实施方式的光学透镜组沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、光阑STO、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。第一透镜E1、第二透镜E2、第三透镜E3的有效半口径依次递减,而第四透镜E4、第五透镜E5、第六透镜E6的有效半口径依次递增。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
本实施例中的光学透镜组的使用波段为约800nm至约1000nm的近红外波段。
表16示出了实施例6的光学透镜组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019099387-appb-000009
Figure PCTCN2019099387-appb-000010
表16
由表16可知,在实施例6中,第一透镜E1、第二透镜E2、第三透镜E3、第五透镜E5和第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面;第四透镜E4的物侧面和像侧面均为球面。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12
S1 3.0193E-03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 -2.0477E-02 -6.8769E-03 -6.6589E-04 0.0000E+00 0.0000E+00
S3 1.7812E-02 -9.2050E-03 0.0000E+00 0.0000E+00 0.0000E+00
S4 1.4393E-01 7.5592E-02 -1.0058E-01 1.9011E-01 -1.1406E-01
S5 4.1742E-02 2.5511E-02 1.2245E-02 5.9603E-03 0.0000E+00
S6 8.8083E-03 1.9841E-02 1.6510E-02 2.9462E-02 0.0000E+00
S9 1.1801E-02 -1.0825E-03 -1.1068E-04 6.8288E-05 0.0000E+00
S10 -5.4839E-02 1.9498E-02 -3.7670E-03 4.0594E-04 0.0000E+00
S11 1.1704E-02 -4.5072E-03 6.5699E-04 -1.2074E-04 9.0079E-06
S12 2.6426E-02 -4.3181E-03 -1.2982E-04 3.3404E-05 -1.7876E-06
表17
表18给出了实施例6中从第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL、光学透镜组的最大半视场角Semi-FOV、光圈数Fno、总有效焦距f以及各透镜的有效焦距f1至f6。
TTL(mm) 10.00 f2(mm) -6.01
semi-FOV(°) 87.50 f3(mm) 7.11
Fno 2.20 f4(mm) 5.45
f(mm) 1.74 f5(mm) 62.47
f1(mm) -3.16 f6(mm) 3.77
表18
图12A示出了实施例6的光学透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12B示出了实施例6的光学透镜组的F-theta畸变曲线,其表示不同视角情况下对应的畸变大小值。图12C示出了实施例6的光学透镜组的相对照度曲线,其表示不同视角情况下的相对照度。根据 图12A和图12C可知,实施例6所给出的光学透镜组能够实现良好的成像品质。
实施例7
以下参照图13至图14C描述了根据本申请实施例7的光学透镜组。图13示出了根据本申请实施例7的光学透镜组的结构示意图。
如图13所示,根据本申请示例性实施方式的光学透镜组沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、光阑STO、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。第一透镜E1、第二透镜E2、第三透镜E3的有效半口径依次递减,而第四透镜E4、第五透镜E5、第六透镜E6的有效半口径依次递增。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
本实施例中的光学透镜组的使用波段为约800nm至约1000nm的近红外波段。
表19示出了实施例7的光学透镜组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019099387-appb-000011
表19
由表19可知,在实施例7中,第一透镜E1、第二透镜E2、第三透镜E3、第五透镜E5和第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面;第四透镜E4的物侧面和像侧面均为球面。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述 实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12
S1 3.2560E-03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 -2.0981E-02 -6.3450E-03 -1.0951E-03 0.0000E+00 0.0000E+00
S3 3.5443E-03 -4.5122E-03 0.0000E+00 0.0000E+00 0.0000E+00
S4 1.3871E-01 7.0908E-02 -6.2794E-02 1.7252E-01 -1.0433E-01
S5 6.1660E-02 2.7453E-02 1.1946E-02 8.6105E-03 0.0000E+00
S6 1.4884E-02 2.6810E-02 -8.2199E-03 6.7463E-02 0.0000E+00
S9 6.8716E-03 1.5119E-03 -5.7566E-04 8.2004E-05 0.0000E+00
S10 -6.2708E-02 2.0581E-02 -3.3194E-03 2.9262E-04 0.0000E+00
S11 1.2106E-02 -4.5518E-03 7.4869E-04 -1.3282E-04 9.3774E-06
S12 3.6574E-02 -8.0873E-03 5.8823E-04 -3.4928E-05 1.0642E-06
表20
表21给出了实施例7中从第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL、光学透镜组的最大半视场角Semi-FOV、光圈数Fno、总有效焦距f以及各透镜的有效焦距f1至f6。
TTL(mm) 10.00 f2(mm) -6.70
semi-FOV(°) 87.50 f3(mm) 7.27
Fno 2.20 f4(mm) 5.33
f(mm) 1.74 f5(mm) -39.68
f1(mm) -2.94 f6(mm) 3.36
表21
图14A示出了实施例7的光学透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14B示出了实施例7的光学透镜组的F-theta畸变曲线,其表示不同视角情况下对应的畸变大小值。图14C示出了实施例7的光学透镜组的相对照度曲线,其表示不同视角情况下的相对照度。根据图14A和图14C可知,实施例7所给出的光学透镜组能够实现良好的成像品质。
实施例8
以下参照图15至图16C描述了根据本申请实施例8的光学透镜组。图15示出了根据本申请实施例8的光学透镜组的结构示意图。
如图15所示,根据本申请示例性实施方式的光学透镜组沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、光阑STO、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。第一透镜E1、第二透镜E2、第三透镜E3的有效半口径依次递减,而第四透镜E4、第五透镜E5、第六透镜E6的有效半口径依次递增。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
本实施例中的光学透镜组的使用波段为约800nm至约1000nm的近红外波段。
表22示出了实施例8的光学透镜组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019099387-appb-000012
表22
由表22可知,在实施例8中,第一透镜E1、第二透镜E2、第三透镜E3、第五透镜E5和第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面;第四透镜E4的物侧面和像侧面均为球面。表23示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12
S1 2.7678E-03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 -2.8818E-02 7.7259E-03 -5.5857E-03 0.0000E+00 0.0000E+00
S3 -5.5754E-03 -1.4354E-02 0.0000E+00 0.0000E+00 0.0000E+00
S4 4.5268E-02 4.0845E-03 4.8495E-02 -3.8684E-02 5.3196E-02
S5 2.2645E-02 5.0089E-02 -4.5665E-02 7.8816E-02 0.0000E+00
S6 2.7496E-03 2.3633E-02 -5.5268E-03 6.2244E-02 0.0000E+00
S9 1.9705E-02 -5.1898E-03 5.3303E-04 -5.6134E-05 0.0000E+00
S10 -3.3776E-02 1.5117E-02 -3.5573E-03 3.3604E-04 0.0000E+00
S11 6.8992E-03 -3.6702E-03 5.7531E-04 -1.0616E-04 8.4764E-06
S12 1.0047E-02 -2.2198E-03 5.1891E-05 -2.0790E-05 1.3207E-06
表23
表24给出了实施例8中从第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL、光学透镜组的最大半视场角Semi-FOV、光圈数Fno、总有效焦距f以及各透镜的有效焦距f1至f6。
TTL(mm) 9.80 f2(mm) -12.37
semi-FOV(°) 87.50 f3(mm) 8.29
Fno 2.20 f4(mm) 5.52
f(mm) 1.74 f5(mm) 21.27
f1(mm) -2.72 f6(mm) 4.07
表24
图16A示出了实施例8的光学透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16B示出了实施例8的光学透镜组的F-theta畸变曲线,其表示不同视角情况下对应的畸变大小值。图16C示出了实施例8的光学透镜组的相对照度曲线,其表示不同视角情况下的相对照度。根据图16A和图16C可知,实施例8所给出的光学透镜组能够实现良好的成像品质。
综上,实施例1至实施例8分别满足表25中所示的关系。
条件式\实施例 1 2 3 4 5 6 7 8
semi-FOV/CRAmax 5.84 6.01 5.51 5.45 5.62 5.64 5.93 5.72
f4/f -1.60 -2.09 -1.88 -1.68 -1.78 -1.73 -1.81 -2.03
N1/N4 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84
R8/R10 -0.78 -0.82 -0.79 -0.80 -0.82 -0.79 -0.79 -1.02
R11/f 1.18 1.22 1.19 1.21 1.15 1.11 1.02 1.15
CT4/∑CT 0.34 0.32 0.33 0.35 0.33 0.34 0.34 0.32
T45/T56 0.28 0.04 0.19 0.05 0.21 0.24 0.66 0.47
DT11/DT62 1.33 1.42 1.39 1.40 1.38 1.37 1.34 1.31
DT62/ImgH 0.92 0.92 0.88 0.84 0.91 0.91 0.92 0.95
DT31/DT42 0.61 0.58 0.61 0.62 0.62 0.62 0.62 0.65
SAG61/CT6 0.77 0.54 0.59 0.55 0.56 0.62 0.64 0.51
ET4/(ET5+ET6) 1.90 1.76 1.90 2.02 1.91 2.05 1.96 1.68
表25
本申请还提供一种摄像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。摄像装置可以是诸如数码相机的独立摄像设备,也可以是集成在诸如手机、平板电脑等移动电子设备上的摄像模块。该摄像装置装配有以上描述的光学透镜组。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (28)

  1. 光学透镜组,沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其特征在于,
    所述第一透镜具有负光焦度;
    所述第二透镜具有负光焦度;
    所述第三透镜具有正光焦度;
    所述第四透镜具有正光焦度;
    所述第五透镜具有光焦度,其物侧面为凸面;
    所述第六透镜具有正光焦度;以及
    所述光学透镜组的最大半视场角semi-FOV与所述光学透镜组的主光线入射电子感光组件的最大入射角度CRAmax满足5<semi-FOV/CRAmax<10。
  2. 根据权利要求1所述的光学透镜组,其特征在于,所述第一透镜的折射率N1与所述第四透镜的折射率N4满足N1/N4<0.9。
  3. 根据权利要求2所述的光学透镜组,其特征在于,所述第四透镜的有效焦距f4与所述第一透镜的有效焦距f1满足-2.5<f4/f1<-1。
  4. 根据权利要求1所述的光学透镜组,其特征在于,所述第四透镜的像侧面的曲率半径R8与所述第五透镜的像侧面的曲率半径R10满足-1.2<R8/R10<-0.7。
  5. 根据权利要求1所述的光学透镜组,其特征在于,所述第六透镜的物侧面的曲率半径R11与所述光学透镜组的总有效焦距f满足1<R11/f<1.5。
  6. 根据权利要求1所述的光学透镜组,其特征在于,所述第四透镜于所述光轴上的中心厚度CT4与所述第一透镜至所述第六透镜分别于所述光轴上的中心厚度的总和∑CT满足0.3<CT4/∑CT<0.6。
  7. 根据权利要求1所述的光学透镜组,其特征在于,所述第四透镜和所述第五透镜的轴上间隔距离T45与所述第五透镜和所述第六透镜的轴上间隔距离T56满足0<T45/T56<0.7。
  8. 根据权利要求1所述的光学透镜组,其特征在于,所述第一透镜的物侧面的有效半口径DT11与所述第六透镜的像侧面的有效半口径DT62满足1<DT11/DT62<1.5。
  9. 根据权利要求1所述的光学透镜组,其特征在于,所述第六透镜的像侧面的有效半口径DT62与所述光学透镜组的电子感光组件的有效像素区域对角线长的一半ImgH满足0.5<DT62/ImgH<1。
  10. 根据权利要求1所述的光学透镜组,其特征在于,所述第三透镜的物侧面的有效半口径DT31与所述第四透镜的像侧面的有效半口径DT42满足0.4<DT31/DT42<0.8。
  11. 根据权利要求1所述的光学透镜组,其特征在于,所述第六透镜的物侧面和所述光轴的交点至所述第六透镜的物侧面的最大有效半口径顶点的轴上距离SAG61与所述第六透镜于所述光轴上的中心厚度CT6满足0.4<SAG61/CT6<0.8。
  12. 根据权利要求1所述的光学透镜组,其特征在于,所述第四透镜的边缘厚度ET4、所述第五透镜的边缘厚度ET5与所述第六透镜的边缘厚度ET6满足1.5<ET4/(ET5+ET6)<2.1。
  13. 根据权利要求1至12中任一项所述的光学透镜组,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜的有效半口径依次递减,所述第四透镜、所述第五透镜、所述第六透镜的有效半口径依次递增。
  14. 根据权利要求1至12中任一项所述的光学透镜组,其特征在于,所述光学透镜组的使用波段范围为800nm至1000nm。
  15. 光学透镜组,沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其特征在于,
    所述第一透镜具有负光焦度;
    所述第二透镜具有光焦度;
    所述第三透镜具有光焦度;
    所述第四透镜具有正光焦度;
    所述第五透镜具有光焦度,其物侧面为凸面;
    所述第六透镜具有正光焦度;
    所述第四透镜的有效焦距f4与所述第一透镜的有效焦距f1满足-2.5<f4/f1<-1。
  16. 根据权利要求15所述的光学透镜组,其特征在于,所述第一透镜的折射率N1与所述第四透镜的折射率N4满足N1/N4<0.9。
  17. 根据权利要求15所述的光学透镜组,其特征在于,所述第四透镜的像侧面的曲率半径R8与所述第五透镜的像侧面的曲率半径R10满足-1.2<R8/R10<-0.7。
  18. 根据权利要求15所述的光学透镜组,其特征在于,所述第六透镜的物侧面的曲率半径R11与所述光学透镜组的总有效焦距f满足1<R11/f<1.5。
  19. 根据权利要求15所述的光学透镜组,其特征在于,所述第四透镜于所述光轴上的中心厚度CT4与所述第一透镜至所述第六透镜分别于所述光轴上的中心厚度的总和∑CT满足0.3<CT4/∑CT<0.6。
  20. 根据权利要求15所述的光学透镜组,其特征在于,所述第四透镜和所述第五透镜的轴上间隔距离T45与所述第五透镜和所述第六透镜的轴上间隔距离T56满足0<T45/T56<0.7。
  21. 根据权利要求15所述的光学透镜组,其特征在于,所述第一透镜的物侧面的有效半口径DT11与所述第六透镜的像侧面的有效半口径DT62满足1<DT11/DT62<1.5。
  22. 根据权利要求15所述的光学透镜组,其特征在于,所述第六透镜的像侧面的有效半口径DT62与所述光学透镜组的电子感光组件的有效像素区域对角线长的一半ImgH满足0.5<DT62/ImgH<1。
  23. 根据权利要求15所述的光学透镜组,其特征在于,所述第三透镜的物侧面的有效半口径DT31与所述第四透镜的像侧面的有效半口径DT42满足0.4<DT31/DT42<0.8。
  24. 根据权利要求15所述的光学透镜组,其特征在于,所述第六透镜的物侧面和所述光轴的 交点至所述第六透镜的物侧面的最大有效半口径顶点的轴上距离SAG61与所述第六透镜于所述光轴上的中心厚度CT6满足0.4<SAG61/CT6<0.8。
  25. 根据权利要求15所述的光学透镜组,其特征在于,所述第四透镜的边缘厚度ET4、所述第五透镜的边缘厚度ET5与所述第六透镜的边缘厚度ET6满足1.5<ET4/(ET5+ET6)<2.1。
  26. 根据权利要求15至25中任一项所述的光学透镜组,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜的有效半口径依次递减,所述第四透镜、所述第五透镜、所述第六透镜的有效半口径依次递增。
  27. 根据权利要求15至25中任一项所述的光学透镜组,其特征在于,所述光学透镜组的最大半视场角semi-FOV与所述光学透镜组的主光线入射电子感光组件的最大入射角度CRAmax满足5<semi-FOV/CRAmax<10。
  28. 根据权利要求15至25中任一项所述的光学透镜组,其特征在于,所述光学透镜组的使用波段范围为800nm至1000nm。
PCT/CN2019/099387 2018-11-27 2019-08-06 光学透镜组 WO2020107934A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811424906.0 2018-11-27
CN201811424906.0A CN109212722B (zh) 2018-11-27 光学透镜组

Publications (1)

Publication Number Publication Date
WO2020107934A1 true WO2020107934A1 (zh) 2020-06-04

Family

ID=64994476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099387 WO2020107934A1 (zh) 2018-11-27 2019-08-06 光学透镜组

Country Status (1)

Country Link
WO (1) WO2020107934A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104423022A (zh) * 2013-08-28 2015-03-18 扬明光学股份有限公司 定焦镜头
CN106405791A (zh) * 2015-07-31 2017-02-15 先进光电科技股份有限公司 光学成像系统
CN107436476A (zh) * 2017-06-22 2017-12-05 玉晶光电(厦门)有限公司 光学成像镜头
WO2018066641A1 (ja) * 2016-10-05 2018-04-12 マクセル株式会社 撮像レンズ系及び撮像装置
CN207281374U (zh) * 2017-09-15 2018-04-27 江西联创电子有限公司 新型鱼眼镜头
CN109212722A (zh) * 2018-11-27 2019-01-15 浙江舜宇光学有限公司 光学透镜组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104423022A (zh) * 2013-08-28 2015-03-18 扬明光学股份有限公司 定焦镜头
CN106405791A (zh) * 2015-07-31 2017-02-15 先进光电科技股份有限公司 光学成像系统
WO2018066641A1 (ja) * 2016-10-05 2018-04-12 マクセル株式会社 撮像レンズ系及び撮像装置
CN107436476A (zh) * 2017-06-22 2017-12-05 玉晶光电(厦门)有限公司 光学成像镜头
CN207281374U (zh) * 2017-09-15 2018-04-27 江西联创电子有限公司 新型鱼眼镜头
CN109212722A (zh) * 2018-11-27 2019-01-15 浙江舜宇光学有限公司 光学透镜组

Also Published As

Publication number Publication date
CN109212722A (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
WO2020093725A1 (zh) 摄像光学系统
WO2020107962A1 (zh) 光学成像透镜组
WO2020001066A1 (zh) 摄像镜头
WO2020029620A1 (zh) 光学成像镜片组
WO2020073703A1 (zh) 光学透镜组
WO2020107935A1 (zh) 光学成像镜头
WO2020088022A1 (zh) 光学成像镜片组
WO2020119146A1 (zh) 光学成像镜头
WO2021068753A1 (zh) 光学成像系统
WO2019223263A1 (zh) 摄像镜头
WO2020134129A1 (zh) 光学成像系统
WO2020151251A1 (zh) 光学透镜组
WO2020191951A1 (zh) 光学成像镜头
WO2020088024A1 (zh) 光学成像镜头
WO2020024635A1 (zh) 光学成像镜头
WO2019233040A1 (zh) 摄像透镜组
WO2020019796A1 (zh) 光学成像系统
WO2019233142A1 (zh) 光学成像镜头
WO2020042799A1 (zh) 光学成像镜片组
WO2021042992A1 (zh) 光学成像系统
WO2019233143A1 (zh) 光学成像镜片组
WO2020134130A1 (zh) 光学成像镜头
WO2019237776A1 (zh) 光学成像系统
WO2020007068A1 (zh) 光学成像系统
WO2020029613A1 (zh) 光学成像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19888922

Country of ref document: EP

Kind code of ref document: A1