WO2021036554A1 - 光学成像镜头 - Google Patents

光学成像镜头 Download PDF

Info

Publication number
WO2021036554A1
WO2021036554A1 PCT/CN2020/101982 CN2020101982W WO2021036554A1 WO 2021036554 A1 WO2021036554 A1 WO 2021036554A1 CN 2020101982 W CN2020101982 W CN 2020101982W WO 2021036554 A1 WO2021036554 A1 WO 2021036554A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
object side
optical axis
optical
Prior art date
Application number
PCT/CN2020/101982
Other languages
English (en)
French (fr)
Inventor
张爽
吕赛锋
张晓彬
戴付建
赵烈烽
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2021036554A1 publication Critical patent/WO2021036554A1/zh
Priority to US17/592,302 priority Critical patent/US20220155559A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration

Definitions

  • This application relates to the field of optical elements, and in particular, to an optical imaging lens.
  • An aspect of the present application provides such an optical imaging lens, which includes, in order from the object side to the image side along the optical axis: a first lens with positive refractive power; a second lens with refractive power; A third lens with refractive power; a fourth lens with positive refractive power, whose object side is convex and its image side is convex; and a fifth lens with negative refractive power, whose object side is convex and its image side It is concave.
  • the combined focal length f12 of the first lens and the second lens and the combined focal length f123 of the first lens, the second lens, and the third lens satisfy: 0.5 ⁇ f12/f123 ⁇ 1.5.
  • the distance from the object side of the first lens to the imaging surface of the optical imaging lens on the optical axis TTL and half of the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens ImgH satisfies: TTL/ImgH ⁇ 1.3.
  • the central thickness CT4 of the fourth lens on the optical axis and the separation distance T34 between the third lens and the fourth lens on the optical axis satisfy: CT4/T34>1.2.
  • the radius of curvature R1 of the object side surface of the first lens and the effective focal length f1 of the first lens satisfy: 0.2 ⁇ R1/f1 ⁇ 0.6.
  • the on-axis distance from the intersection point of the object side surface of the fourth lens and the optical axis to the apex of the effective radius of the object side surface of the fourth lens SAG41 and the intersection point of the object side surface of the fifth lens and the optical axis to the object side surface of the fifth lens satisfies: 0.2 ⁇ SAG41/SAG51 ⁇ 0.8.
  • the total effective focal length f of the optical imaging lens, the effective focal length f4 of the fourth lens, and the effective focal length f5 of the fifth lens satisfy: 1.8 ⁇
  • the radius of curvature R9 of the object side surface of the fifth lens and the radius of curvature R10 of the image side surface of the fifth lens satisfy: 1.0 ⁇ (R9+R10)/(R9-R10) ⁇ 2.2.
  • the sum ⁇ CT of the entrance pupil diameter EPD of the optical imaging lens and the central thickness of each of the first lens to the fifth lens on the optical axis satisfies: 0.3 ⁇ EPD/ ⁇ CT ⁇ 0.9.
  • the maximum effective radius DT11 of the object side surface of the first lens and the maximum effective radius DT12 of the image side surface of the first lens satisfy: 0.7 ⁇ DT11/DT12 ⁇ 1.4.
  • the maximum half-field angle Semi-FOV of the optical imaging lens and the central thickness CT5 of the fifth lens on the optical axis satisfy: 2.0mm -1 ⁇ tan(Semi-FOV)/CT5 ⁇ 3.5mm -1 .
  • the sum of the separation distance ⁇ AT between any two adjacent lenses of the first lens to the fifth lens on the optical axis is the same as the distance between the object side of the first lens and the image side of the fifth lens on the optical axis.
  • the distance TD satisfies: 0.1 ⁇ AT/TD ⁇ 0.6.
  • the central thickness CT2 of the second lens on the optical axis, the central thickness CT3 of the third lens on the optical axis, the separation distance T12 from the first lens to the second lens on the optical axis, and the second lens to The separation distance T23 of the third lens on the optical axis satisfies: 1.5 ⁇ (CT2+CT3)/(T12+T23) ⁇ 2.5.
  • Fig. 1 shows a schematic structural diagram of an optical imaging lens according to Embodiment 1 of the present application
  • 2A to 2D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging lens of Embodiment 1;
  • FIG. 3 shows a schematic structural diagram of an optical imaging lens according to Embodiment 2 of the present application
  • 4A to 4D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging lens of Embodiment 2;
  • FIG. 5 shows a schematic structural diagram of an optical imaging lens according to Embodiment 3 of the present application.
  • 6A to 6D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging lens of Embodiment 3;
  • FIG. 7 shows a schematic structural diagram of an optical imaging lens according to Embodiment 4 of the present application.
  • 8A to 8D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging lens of Embodiment 4;
  • FIG. 9 shows a schematic structural diagram of an optical imaging lens according to Embodiment 5 of the present application.
  • 10A to 10D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging lens of Embodiment 5;
  • FIG. 11 shows a schematic structural diagram of an optical imaging lens according to Embodiment 6 of the present application.
  • 12A to 12D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging lens of Example 6.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not represent any restriction on the feature. Therefore, without departing from the teachings of the present application, the first lens discussed below may also be referred to as a second lens or a third lens.
  • the thickness, size, and shape of the lens have been slightly exaggerated for ease of description.
  • the shape of the spherical or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspheric surface is not limited to the shape of the spherical surface or the aspheric surface shown in the drawings.
  • the drawings are only examples and are not drawn strictly to scale.
  • the paraxial area refers to the area near the optical axis. If the lens surface is convex and the position of the convex surface is not defined, it means that the lens surface is convex at least in the paraxial region; if the lens surface is concave and the position of the concave surface is not defined, it means that the lens surface is at least in the paraxial region. Concave. The surface of each lens closest to the object is called the object side of the lens, and the surface of each lens closest to the imaging surface is called the image side of the lens.
  • the present application provides an optical imaging lens with both miniaturization and high-quality imaging.
  • the optical imaging lens may include five lenses having optical power, that is, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
  • the five lenses are arranged in order from the object side to the image side along the optical axis.
  • the first lens may have a positive refractive power; the second lens may have a refractive power; the third lens may have a refractive power; the fourth lens may have a positive refractive power, and its object side surface is convex.
  • the image side surface is a convex surface; the fifth lens may have a negative refractive power, the object side surface is a convex surface, and the image side surface is a concave surface.
  • the object side surface of the first lens may be a convex surface
  • the image side surface may be a concave surface
  • the second lens may have negative refractive power.
  • the image side surface of the second lens may be a concave surface.
  • the ratio of the on-axis distance from the object side surface of the first lens to the imaging surface of the optical imaging lens to the half of the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens is less than or equal to 1.3. In this way, the size of the lens can be effectively reduced, so that the optical imaging lens has a more compact structure while increasing the imaging space of the optical system.
  • the ratio of the center thickness of the fourth lens on the optical axis to the separation distance of the third lens and the fourth lens on the optical axis is greater than 1.2. This can effectively correct the curvature of the optical system and reduce chromatic aberration.
  • the radius of curvature R1 of the object side surface of the first lens and the effective focal length f1 of the first lens satisfy: 0.2 ⁇ R1/f1 ⁇ 0.6, preferably 0.40 ⁇ R1/f1 ⁇ 0.55.
  • the molding process is difficult, and the production yield of optical imaging lenses is improved.
  • the above relationship setting in this embodiment can also reduce the risk of ghost images generated in the first lens in the edge field of view.
  • the combined focal length f12 of the first lens and the second lens and the combined focal length f123 of the first lens, the second lens, and the third lens satisfy: 0.5 ⁇ f12/f123 ⁇ 1.5.
  • Properly setting the ratio between the combined focal length of the first lens and the second lens and the combined focal length of the first lens, the second lens, and the third lens will not only help correct the chromatic aberration and field curvature of the optical system, but also make the incident
  • the light deflection to the optical imaging lens is gentle, which helps to reduce the difficulty of forming the optical imaging lens and improve the stability of the optical imaging lens during post-processing.
  • the total effective focal length f of the optical imaging lens, the effective focal length f4 of the fourth lens, and the effective focal length f5 of the fifth lens satisfy: 1.8 ⁇
  • a reasonable allocation of the effective focal length of the fourth lens and the fifth lens can effectively correct the aberration of the optical system and balance the field curvature of the optical system.
  • the radius of curvature R9 of the object side surface of the fifth lens and the radius of curvature R10 of the image side surface of the fifth lens satisfy: 1.0 ⁇ (R9+R10)/(R9-R10) ⁇ 2.2, preferably 1.0 ⁇ (R9+R10)/(R9-R10) ⁇ 2.0.
  • Reasonably setting the radius of curvature of the object side and the image side of the fifth lens not only helps reduce the deflection angle of the light, but also helps balance the system aberrations and improve the imaging quality of the optical imaging lens.
  • the on-axis distance from the intersection of the object side surface of the fourth lens and the optical axis to the apex of the effective radius of the object side surface of the fourth lens SAG41 and the intersection point of the object side surface of the fifth lens and the optical axis to the object side of the fifth lens satisfies: 0.2 ⁇ SAG41/SAG51 ⁇ 0.8.
  • the ratio of the upper distance is within a reasonable value range, which is beneficial to control the transmission angle of the chief ray and improve the matching of the optical imaging lens and the chip.
  • the sum ⁇ CT of the entrance pupil diameter EPD of the optical imaging lens and the central thickness of each of the first to fifth lenses on the optical axis satisfies: 0.3 ⁇ EPD/ ⁇ CT ⁇ 0.9, Preferably, 0.65 ⁇ EPD/ ⁇ CT ⁇ 0.75.
  • 0.3 ⁇ EPD/ ⁇ CT ⁇ 0.9 Preferably, 0.65 ⁇ EPD/ ⁇ CT ⁇ 0.75.
  • the maximum effective radius DT11 of the object side surface of the first lens and the maximum effective radius DT12 of the image side surface of the first lens satisfy: 0.7 ⁇ DT11/DT12 ⁇ 1.4, preferably 0.9 ⁇ DT11/DT12 ⁇ 1.1 .
  • Reasonably setting the ratio of the maximum effective radius of the object side surface of the first lens to the maximum effective radius of the image side surface of the first lens is beneficial to reduce the volume of the front end of the optical imaging lens to obtain the effect of miniaturizing the front end of the lens.
  • the maximum half field angle of the optical imaging Semi-FOV lens and the fifth lens on the optical axis central thickness CT5 satisfied: 2.0mm -1 ⁇ tan (Semi- FOV) / CT5 ⁇ 3.5mm - 1.
  • 2.2mm -1 ⁇ tan(Semi-FOV)/CT5 ⁇ 3.1mm -1 is beneficial to reduce the TV distortion of the optical imaging lens, so that the fifth lens has good processing technology.
  • the sum of the separation distances ⁇ AT between any two adjacent lenses of the first lens to the fifth lens on the optical axis and the object side surface of the first lens to the image side surface of the fifth lens are on the optical axis
  • the distance TD meets: 0.1 ⁇ AT/TD ⁇ 0.6.
  • the separation distance T23 from the third lens on the optical axis satisfies: 1.5 ⁇ (CT2+CT3)/(T12+T23) ⁇ 2.5, preferably 1.8 ⁇ (CT2+CT3)/(T12+T23) ⁇ 2.3.
  • the above-mentioned optical imaging lens may further include a diaphragm.
  • the diaphragm can be set at an appropriate position as required.
  • a diaphragm is provided close to the object side of the first lens.
  • the above-mentioned optical imaging lens may further include a filter for correcting color deviation and/or a protective glass for protecting the photosensitive element on the imaging surface.
  • the object side surface and the image side surface of all lenses in the optical imaging lens of the present application can be selected as an aspheric mirror surface.
  • the characteristic of an aspheric lens is that the curvature changes continuously from the center of the lens to the periphery of the lens. Unlike a spherical lens with a constant curvature from the center of the lens to the periphery of the lens, an aspheric lens has better curvature radius characteristics, and has the advantages of improving distortion and astigmatism. After the aspheric lens is used, the aberrations that occur during imaging can be eliminated as much as possible, thereby improving the imaging quality.
  • Exemplary embodiments of the present application also provide an imaging device including the optical imaging lens described above.
  • Exemplary embodiments of the present application also provide an electronic device including the above-described camera device.
  • the number of lenses constituting the optical imaging lens can be changed to obtain the various results and advantages described in this specification.
  • the optical imaging lens is not limited to include five lenses. If necessary, the optical imaging lens may also include other numbers of lenses.
  • FIG. 1 is a schematic diagram showing the structure of an optical imaging lens according to Embodiment 1 of the present application.
  • the optical imaging lens includes in order from the object side to the image side along the optical axis: a stop STO, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5. , Filter E6 and imaging surface S13.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power
  • the object side surface S3 is a concave surface
  • the image side surface S4 is a concave surface.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a concave surface
  • the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the filter E6 has an object side surface S11 and an image side surface S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • Table 1 shows the basic parameter table of the optical imaging lens of Embodiment 1, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
  • the object side and image side of any one of the first lens E1 to the fifth lens E5 are aspherical surfaces, and the surface shape x of each aspherical lens can be defined by but not limited to the following aspherical formula :
  • x is the distance vector height of the aspheric surface at a height h along the optical axis direction;
  • k is the conic coefficient;
  • Ai is the correction coefficient of the i-th order of the aspheric surface.
  • Table 2 shows the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 that can be used for each aspheric mirror S1-S10 in Example 1. .
  • FIG. 2A shows the axial chromatic aberration curve of the optical imaging lens of Embodiment 1, which represents the deviation of the focusing point of light of different wavelengths after passing through the lens.
  • 2B shows the astigmatism curve of the optical imaging lens of Example 1, which represents meridional field curvature and sagittal field curvature.
  • FIG. 2C shows a distortion curve of the optical imaging lens of Embodiment 1, which represents the distortion magnitude values corresponding to different image heights.
  • 2D shows the chromatic aberration curve of magnification of the optical imaging lens of Embodiment 1, which represents the deviation of different image heights on the imaging surface after light passes through the lens. According to FIGS. 2A to 2D, it can be seen that the optical imaging lens provided in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 shows a schematic structural diagram of an optical imaging lens according to Embodiment 2 of the present application.
  • the optical imaging lens includes in order from the object side to the image side along the optical axis: a stop STO, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5. , Filter E6 and imaging surface S13.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power
  • the object side surface S3 is a concave surface
  • the image side surface S4 is a concave surface.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a concave surface
  • the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is convex
  • the image side surface S8 is convex.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the filter E6 has an object side surface S11 and an image side surface S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • Table 3 shows the basic parameter table of the optical imaging lens of Embodiment 2, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the fifth lens E5 are aspherical surfaces.
  • Table 4 below shows the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 that can be used for each aspheric mirror S1-S10 in Example 2. .
  • FIG. 4A shows the axial chromatic aberration curve of the optical imaging lens of Embodiment 2, which represents the deviation of the focusing point of light of different wavelengths after passing through the lens.
  • Fig. 4B shows the astigmatism curve of the optical imaging lens of Example 2, which represents meridional field curvature and sagittal field curvature.
  • FIG. 4C shows a distortion curve of the optical imaging lens of Embodiment 2, which represents the distortion magnitude values corresponding to different image heights.
  • 4D shows the chromatic aberration curve of magnification of the optical imaging lens of Example 2, which represents the deviation of different image heights on the imaging surface after light passes through the lens. It can be seen from FIGS. 4A to 4D that the optical imaging lens provided in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 shows a schematic structural diagram of an optical imaging lens according to Embodiment 3 of the present application.
  • the optical imaging lens includes in order from the object side to the image side along the optical axis: a stop STO, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5. , Filter E6 and imaging surface S13.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a concave surface
  • the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the filter E6 has an object side surface S11 and an image side surface S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • Table 5 shows the basic parameter table of the optical imaging lens of Embodiment 3, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the fifth lens E5 are aspherical surfaces.
  • Table 6 below shows the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 that can be used for each aspheric mirror surface S1-S10 in Example 3. .
  • FIG. 6A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 3, which represents the deviation of the focusing point of light of different wavelengths after passing through the lens.
  • 6B shows the astigmatism curve of the optical imaging lens of Example 3, which represents meridional field curvature and sagittal field curvature.
  • FIG. 6C shows a distortion curve of the optical imaging lens of Embodiment 3, which represents the distortion magnitude values corresponding to different image heights.
  • 6D shows the chromatic aberration curve of magnification of the optical imaging lens of Embodiment 3, which represents the deviation of different image heights on the imaging surface after light passes through the lens. It can be seen from FIGS. 6A to 6D that the optical imaging lens provided in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 shows a schematic structural diagram of an optical imaging lens according to Embodiment 4 of the present application.
  • the optical imaging lens includes in order from the object side to the image side along the optical axis: a stop STO, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5. , Filter E6 and imaging surface S13.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a concave surface
  • the image side surface S6 is a convex surface.
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the filter E6 has an object side surface S11 and an image side surface S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the total effective focal length of the optical imaging lens f 3.12 mm
  • the distance from the object side S1 of the first lens E1 to the imaging surface S13 on the optical axis TTL 3.75 mm
  • the maximum half-field angle of the optical imaging lens Semi-FOV 43.0°
  • the aperture number of the optical imaging lens Fno 2.37.
  • Table 7 shows the basic parameter table of the optical imaging lens of Embodiment 4, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the fifth lens E5 are aspherical surfaces.
  • Table 8 below shows the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 that can be used for each aspheric mirror surface S1-S10 in Example 4. .
  • FIG. 8A shows the on-axis chromatic aberration curve of the optical imaging lens of Embodiment 4, which represents the deviation of the focusing point of light of different wavelengths after passing through the lens.
  • FIG. 8B shows the astigmatism curve of the optical imaging lens of Example 4, which represents meridional field curvature and sagittal field curvature.
  • FIG. 8C shows a distortion curve of the optical imaging lens of Embodiment 4, which represents the distortion magnitude values corresponding to different image heights.
  • FIG. 8D shows the chromatic aberration curve of magnification of the optical imaging lens of Embodiment 4, which represents the deviation of different image heights on the imaging surface after light passes through the lens. It can be seen from FIGS. 8A to 8D that the optical imaging lens provided in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 shows a schematic structural diagram of an optical imaging lens according to Embodiment 5 of the present application.
  • the optical imaging lens includes in order from the object side to the image side along the optical axis: a stop STO, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5. , Filter E6 and imaging surface S13.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface.
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the filter E6 has an object side surface S11 and an image side surface S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the total effective focal length of the optical imaging lens f 3.15 mm
  • the distance from the object side S1 of the first lens E1 to the imaging surface S13 on the optical axis TTL 3.91 mm
  • the maximum half-field angle of the optical imaging lens Semi-FOV 42.7°
  • the aperture number of the optical imaging lens Fno 2.15.
  • Table 9 shows the basic parameter table of the optical imaging lens of Embodiment 5, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the fifth lens E5 are aspherical surfaces.
  • Table 10 below shows the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 that can be used for each aspheric mirror surface S1-S10 in Example 5. .
  • FIG. 10A shows the on-axis chromatic aberration curve of the optical imaging lens of Embodiment 5, which represents the deviation of the focal point of light rays of different wavelengths after passing through the lens.
  • 10B shows the astigmatism curve of the optical imaging lens of Example 5, which represents meridional field curvature and sagittal field curvature.
  • FIG. 10C shows a distortion curve of the optical imaging lens of Embodiment 5, which represents the distortion magnitude values corresponding to different image heights.
  • FIG. 10D shows the chromatic aberration curve of magnification of the optical imaging lens of Example 5, which represents the deviation of different image heights on the imaging surface after light passes through the lens. It can be seen from FIGS. 10A to 10D that the optical imaging lens provided in Embodiment 5 can achieve good imaging quality.
  • FIG. 11 shows a schematic structural diagram of an optical imaging lens according to Embodiment 6 of the present application.
  • the optical imaging lens includes in order from the object side to the image side along the optical axis: a stop STO, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5. , Filter E6 and imaging surface S13.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface.
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the filter E6 has an object side surface S11 and an image side surface S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • Table 11 shows the basic parameter table of the optical imaging lens of Embodiment 6, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the fifth lens E5 are aspherical surfaces.
  • Table 12 below shows the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 that can be used for each aspheric mirror surface S1-S10 in Example 6. .
  • FIG. 12A shows the axial chromatic aberration curve of the optical imaging lens of Embodiment 6, which represents the deviation of the focusing point of light of different wavelengths after passing through the lens.
  • FIG. 12B shows the astigmatism curve of the optical imaging lens of Example 6, which represents meridional field curvature and sagittal field curvature.
  • FIG. 12C shows the distortion curve of the optical imaging lens of Embodiment 6, which represents the distortion magnitude values corresponding to different image heights.
  • FIG. 12D shows the chromatic aberration curve of magnification of the optical imaging lens of Example 6, which represents the deviation of different image heights on the imaging surface after light passes through the lens. It can be seen from FIGS. 12A to 12D that the optical imaging lens provided in Embodiment 6 can achieve good imaging quality.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本申请公开了一种光学成像镜头,该光学成像镜头沿着光轴由物侧至像侧依序包括具有正光焦度的第一透镜;具有光焦度的第二透镜;具有光焦度的第三透镜;具有正光焦度的第四透镜,其物侧面为凸面,像侧面为凸面;以及具有负光焦度的第五透镜,其物侧面为凸面,像侧面为凹面;其中:第一透镜和第二透镜的组合焦距f12与第一透镜、第二透镜以及第三透镜的组合焦距f123满足:0.5<f12/f123<1.5。

Description

光学成像镜头
相关申请的交叉引用
本申请要求于2019年8月27日提交于中国国家知识产权局(CNIPA)的、专利申请号为201910796812.4的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。
技术领域
本申请涉及光学元件领域,具体地,涉及一种光学成像镜头。
背景技术
随着科学技术进步,电子产品得到飞速发展。尤其是具有摄像功能的电子产品更是受到市场青睐,例如便携式摄像设备等。与此同时,随着摄像设备不断推广应用,市场对其成像质量的要求变的越来越高。其中,光学成像镜头的性能是影响摄像设备成像质量的关键因素。因此,需要一种高质量成像的光学成像镜头,以满足市场需求。
发明内容
本申请的一方面提供了这样一种光学成像镜头,该光学成像镜头沿着光轴由物侧至像侧依序包括:具有正光焦度的第一透镜;具有光焦度的第二透镜;具有光焦度的第三透镜;具有正光焦度的第四透镜,其物侧面为凸面,其像侧面为凸面;以及具有负光焦度的第五透镜,其物侧面为凸面,其像侧面为凹面。
在一个实施方式中,第一透镜和第二透镜的组合焦距f12与第一透镜、第二透镜以及第三透镜的组合焦距f123满足:0.5<f12/f123<1.5。
在一个实施方式中,第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离TTL与光学成像镜头的成像面上有效像素区域的对角线长的一半ImgH满足:TTL/ImgH≤1.3。
在一个实施方式中,第四透镜在光轴上的中心厚度CT4与第三透镜和第四透镜在光轴上的间隔距离T34满足:CT4/T34>1.2。
在一个实施方式中,第一透镜的物侧面的曲率半径R1与第一透镜的有效焦距f1满足:0.2<R1/f1<0.6。
在一个实施方式中,第四透镜的物侧面和光轴的交点至第四透镜的物侧面的有效半径顶点的轴上距离SAG41与第五透镜的物侧面和光轴的交点至第五透镜的物侧面的有效半径顶点的轴上距离SAG51满足:0.2<SAG41/SAG51<0.8。
在一个实施方式中,光学成像镜头的总有效焦距f、第四透镜的有效焦距f4以及第五透镜的有效焦距f5满足:1.8<|f/f4|+|f/f5|<2.8。
在一个实施方式中,第五透镜的物侧面的曲率半径R9与第五透镜的像侧面的曲率半径R10满足:1.0<(R9+R10)/(R9-R10)<2.2。
在一个实施方式中,光学成像镜头的入瞳直径EPD与第一透镜至第五透镜中的每个透镜在光轴上的中心厚度的总和∑CT满足:0.3<EPD/∑CT<0.9。
在一个实施方式中,第一透镜的物侧面的最大有效半径DT11与第一透镜的像侧面的最大有效半径DT12满足:0.7<DT11/DT12<1.4。
在一个实施方式中,光学成像镜头的最大半视场角Semi-FOV与第五透镜在光轴上的中 心厚度CT5满足:2.0mm -1<tan(Semi-FOV)/CT5<3.5mm -1
在一个实施方式中,第一透镜至第五透镜中任意两相邻的透镜在光轴上的间隔距离的总和∑AT与第一透镜的物侧面至第五透镜的像侧面在光轴上的间距TD满足:0.1<∑AT/TD<0.6。
在一个实施方式中,第二透镜在光轴上的中心厚度CT2、第三透镜在光轴上的中心厚度CT3、第一透镜至第二透镜在光轴上的间隔距离T12以及第二透镜至第三透镜在光轴上的间隔距离T23满足:1.5<(CT2+CT3)/(T12+T23)<2.5。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学成像镜头的结构示意图;
图2A至图2D分别示出了实施例1的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的光学成像镜头的结构示意图;
图4A至图4D分别示出了实施例2的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的光学成像镜头的结构示意图;
图6A至图6D分别示出了实施例3的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的光学成像镜头的结构示意图;
图8A至图8D分别示出了实施例4的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的光学成像镜头的结构示意图;
图10A至图10D分别示出了实施例5的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的光学成像镜头的结构示意图;
图12A至图12D分别示出了实施例6的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时, 则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物体的表面称为该透镜的物侧面,每个透镜最靠近成像面的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
为满足市场需求,本申请提供一种兼具小型化和高质量成像的光学成像镜头。
根据本申请示例性实施方式的光学成像镜头可包括五片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。这五片透镜沿着光轴由物侧至像侧依序排列。
在示例性实施方式中,第一透镜可具有正光焦度;第二透镜可具有光焦度;第三透镜可具有光焦度;第四透镜可具有正光焦度,其物侧面为凸面,其像侧面为凸面;第五透镜可具有负光焦度,其物侧面为凸面,其像侧面为凹面。如此通过合理配置各透镜的光焦度和面型,可实现在保证光学成像镜头高成像品质的前提下,减小光学成像镜头中的入射光线的偏折角度,降低镜头的公差敏感性。
在示例性实施方式中,第一透镜的物侧面可为凸面,像侧面可为凹面。
在示例性实施方式中,第二透镜可具有负光焦度。
在示例性实施方式中,第二透镜的像侧面可为凹面。
在示例性实施方式中,第一透镜的物侧面至光学成像镜头的成像面在轴上的距离与光学成像镜头的成像面上有效像素区域的对角线长的一半的比值小于等于1.3。如此可有效减小镜头尺寸,使得在光学成像镜头结构更加紧凑的同时,增大光学系统的成像空间。
在示例性实施方式中,第四透镜在光轴上的中心厚度与第三透镜和第四透镜在光轴上的间隔距离的比值大于1.2。如此可有效矫正光学系统场曲,减小色差。
在示例性实施方式中,第一透镜的物侧面的曲率半径R1与第一透镜的有效焦距f1满足:0.2<R1/f1<0.6,优选地,0.40<R1/f1<0.55。合理设置第一透镜的物侧面的曲率半径与第一透镜的有效焦距的比例关系,使得第一透镜的面型变换平缓,既有利于降低第一透镜的敏感性,又有利于降低光学成像镜头的成型工艺难度,提高光学成像镜头的生产良率。与此同时,在本实施例中的上述关系设置还可降低边缘视场在第一透镜内产生鬼像的风险。
在示例性实施方式中,第一透镜和第二透镜的组合焦距f12与第一透镜、第二透镜以及第三透镜的组合焦距f123满足:0.5<f12/f123<1.5。合理设置第一透镜和第二透镜两者的组合焦距与第一透镜、第二透镜以及第三透镜三者的组合焦距的比例关系,既有利于校正光学系 统的色差和场曲,又使得入射至光学成像镜头的光线偏折平缓,从而有助于在后期加工时,降低光学成像镜头的成型难度,提高光学成像镜头的稳定性。
在示例性实施方式中,光学成像镜头的总有效焦距f、第四透镜的有效焦距f4以及第五透镜的有效焦距f5满足:1.8<|f/f4|+|f/f5|<2.8,优选地,2.0<|f/f4|+|f/f5|<2.4。合理分配第四透镜和第五透镜的有效焦距,可有效校正光学系统的像差,平衡光学系统的场曲。
在示例性实施方式中,第五透镜的物侧面的曲率半径R9与第五透镜的像侧面的曲率半径R10满足:1.0<(R9+R10)/(R9-R10)<2.2,优选地,1.0<(R9+R10)/(R9-R10)<2.0。合理设置第五透镜的物侧面的曲率半径以及像侧面的曲率半径,既有利于减小光线偏折角,又有利于平衡系统像差,提高光学成像镜头的成像质量。
在示例性实施方式中,第四透镜的物侧面和光轴的交点至第四透镜的物侧面的有效半径顶点的轴上距离SAG41与第五透镜的物侧面和光轴的交点至第五透镜的物侧面的有效半径顶点的轴上距离SAG51满足:0.2<SAG41/SAG51<0.8。设置第四透镜的物侧面和光轴的交点至第四透镜的物侧面的有效半径顶点的轴上距离与第五透镜的物侧面和光轴的交点至第五透镜的物侧面的有效半径顶点的轴上距离的比值在合理的数值范围内,有利于控制主光线的传输角度,提高光学成像镜头与芯片的匹配性。
在示例性实施方式中,光学成像镜头的入瞳直径EPD与第一透镜至第五透镜中的每个透镜在光轴上的中心厚度的总和∑CT满足:0.3<EPD/∑CT<0.9,优选地,0.65<EPD/∑CT<0.75。合理设置各透镜的中心厚度,控制光学成像镜头的入瞳直径与各透镜中心厚度的总和的比值在合理的数值范围内,有利于增大系统光圈、增大光学成像镜头的通光量以及提高光学成像镜头的成像质量。
在示例性实施方式中,第一透镜的物侧面的最大有效半径DT11与第一透镜的像侧面的最大有效半径DT12满足:0.7<DT11/DT12<1.4,优选地,0.9<DT11/DT12<1.1。合理设置第一透镜的物侧面的最大有效半径与第一透镜的像侧面的最大有效半径的比例关系,有利于减小光学成像镜头的前端体积,以获得镜头前端微型化的效果。
在示例性实施方式中,光学成像镜头的最大半视场角Semi-FOV与第五透镜在光轴上的中心厚度CT5满足:2.0mm -1<tan(Semi-FOV)/CT5<3.5mm -1,优选地,2.2mm -1<tan(Semi-FOV)/CT5<3.1mm -1。合理设置光学成像镜头的最大半视场角与第五透镜在光轴上的中心厚度的相互关系,有利于减小光学成像镜头的TV畸变,使得第五透镜具有良好的加工工艺性。
在示例性实施方式中,第一透镜至第五透镜中任意两相邻的透镜在光轴上的间隔距离的总和∑AT与第一透镜的物侧面至第五透镜的像侧面在光轴上的间距TD满足:0.1<∑AT/TD<0.6。设置第一透镜至第五透镜中任意两相邻的透镜在光轴上的间隔距离的总和与第一透镜的物侧面至第五透镜的像侧面在光轴上的间距的比值在合理的数值范围内,既有利于减小光学成像镜头的总体长度,又有利于减小光学成像镜头的畸变,提高成像质量。
在示例性实施方式中,第二透镜在光轴上的中心厚度CT2、第三透镜在光轴上的中心厚度CT3、第一透镜至第二透镜在光轴上的间隔距离T12以及第二透镜至第三透镜在光轴上的间隔距离T23满足:1.5<(CT2+CT3)/(T12+T23)<2.5,优选地,1.8<(CT2+CT3)/(T12+T23)<2.3。合理设置上述四者的相互关系,可使相对应的透镜具有良好的加工工艺性,同时有利于平衡光学成像镜头的色差,提高光学成像镜头的成像质量。
在示例性实施方式中,上述光学成像镜头还可包括光阑。光阑可根据需要设置在适当位置处。例如,在物侧和第一透镜之间,靠近第一透镜的物侧面处设置光阑。可选地,上述光 学成像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
在示例性实施方式中,本申请的光学成像镜头中的所有透镜的物侧面和像侧面均可选为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
本申请的示例性实施方式还提供一种摄像装置,该摄像装置包括以上描述的光学成像镜头。
本申请的示例性实施方式还提供一种电子设备,该电子设备包括以上描述的摄像装置。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以五片透镜为例进行了描述,但是该光学成像镜头不限于包括五片透镜。如果需要,该光学成像镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的光学成像镜头。图1是示出了根据本申请实施例1的光学成像镜头的结构示意图。
如图1所示,光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凹面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表1示出了实施例1的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
Figure PCTCN2020101982-appb-000001
Figure PCTCN2020101982-appb-000002
表1
在本实施例中,光学成像镜头的总有效焦距f=3.22mm,从第一透镜E1的物侧面S1至成像面S13在光轴上的距离TTL=3.82mm,成像面S13上有效像素区域对角线长的一半ImgH=3.01mm,光学成像镜头的最大半视场角Semi-FOV=42.1°,以及光学成像镜头的光圈数Fno=2.40。
在实施例1中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2020101982-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S10的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面型 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 9.4697E-03 7.3276E-01 -8.7417E+00 6.3048E+01 -2.8727E+02 8.2945E+02 -1.4742E+03 1.4715E+03 -6.3202E+02
S2 -1.7180E-01 4.6423E-01 -6.6597E+00 3.6167E+01 -1.2422E+02 2.6903E+02 -3.3593E+02 2.0187E+02 -3.2062E+01
S3 -1.2062E-01 -5.6346E-03 -2.6964E-01 -4.4050E+00 3.2473E+01 -9.5075E+01 1.5379E+02 -1.3530E+02 5.1485E+01
S4 8.7773E-03 5.0275E-01 -3.7958E+00 2.3115E+01 -9.5177E+01 2.5470E+02 -4.1651E+02 3.7590E+02 -1.4264E+02
S5 -3.9843E-01 1.1200E+00 -4.3889E+00 1.0909E+01 -1.7367E+01 1.5968E+01 -1.1486E+01 1.2176E+01 -7.7944E+00
S6 -7.2727E-01 1.8245E+00 -6.7073E+00 2.0173E+01 -4.4493E+01 6.6730E+01 -6.3569E+01 3.4482E+01 -8.0119E+00
S7 -3.1085E-01 5.7273E-01 -8.9318E-01 8.2858E-01 -4.7004E-01 1.1621E-01 1.4750E-02 -1.0798E-02 8.2785E-04
S8 -8.8870E-02 2.8784E-01 -3.4056E-01 2.2843E-01 -1.2463E-01 6.2519E-02 -2.2783E-02 4.6695E-03 -3.9374E-04
S9 -8.1885E-01 8.9071E-01 -5.9769E-01 2.9380E-01 -1.0350E-01 2.4708E-02 -3.7460E-03 3.2398E-04 -1.2151E-05
S10 -3.3189E-01 3.0978E-01 -1.9846E-01 8.6865E-02 -2.5564E-02 4.7945E-03 -5.2597E-04 2.8815E-05 -5.1090E-07
表2
图2A示出了实施例1的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像镜头的畸变曲线,其表示不同像高对应的畸变大小值。图2D示出了实施例1的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学成像镜头能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述根据本申请实施例2的光学成像镜头。图3示出了根据本申请实施例2的光学成像镜头的结构示意图。
如图3所示,光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凹面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧 面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
在本实施例中,光学成像镜头的总有效焦距f=3.22mm,从第一透镜E1的物侧面S1至成像面S13在光轴上的距离TTL=3.80mm,成像面S13上有效像素区域对角线长的一半ImgH=3.01mm,光学成像镜头的最大半视场角Semi-FOV=42.1°,以及光学成像镜头的光圈数Fno=2.38。
表3示出了实施例2的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
Figure PCTCN2020101982-appb-000004
表3
在实施例2中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。下表4给出了可用于实施例2中各非球面镜面S1-S10的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面型 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.1647E-02 5.4234E-01 -6.3357E+00 4.4949E+01 -2.0314E+02 5.8390E+02 -1.0371E+03 1.0371E+03 -4.4724E+02
S2 -2.6818E-01 7.9846E-01 -5.7387E+00 4.3086E+01 -2.3568E+02 7.5895E+02 -1.3827E+03 1.3202E+03 -5.1039E+02
S3 -1.7545E-01 1.5771E-01 4.7934E+00 -3.3075E+01 9.2086E+01 -1.0166E+02 -3.5672E+01 1.7677E+02 -1.1008E+02
S4 -3.1701E-02 1.0436E+00 -8.4007E+00 6.0362E+01 -2.8730E+02 8.4592E+02 -1.4856E+03 1.4299E+03 -5.8073E+02
S5 -5.2201E-01 1.8271E+00 -1.3684E+01 7.7276E+01 -3.1282E+02 8.4351E+02 -1.4312E+03 1.3708E+03 -5.6120E+02
S6 -6.4790E-01 1.8419E+00 -8.4782E+00 2.9029E+01 -6.9599E+01 1.1121E+02 -1.1198E+02 6.4004E+01 -1.5628E+01
S7 -3.1412E-01 7.2254E-01 -1.8192E+00 3.2320E+00 -4.1000E+00 3.5487E+00 -1.9883E+00 6.4676E-01 -9.1402E-02
S8 -1.6224E-01 4.8712E-01 -8.5761E-01 1.1049E+00 -9.7726E-01 5.5710E-01 -1.9382E-01 3.7326E-02 -3.0449E-03
S9 -8.3536E-01 9.2793E-01 -6.5186E-01 3.3224E-01 -1.1889E-01 2.8446E-02 -4.2995E-03 3.7035E-04 -1.3854E-05
S10 -3.1788E-01 2.8460E-01 -1.7305E-01 7.1562E-02 -1.9986E-02 3.5972E-03 -3.8765E-04 2.2127E-05 -4.9839E-07
表4
图4A示出了实施例2的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的光学成像镜头的象散曲线,其表示子午像面 弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像镜头的畸变曲线,其表示不同像高对应的畸变大小值。图4D示出了实施例2的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像镜头能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述根据本申请实施例3的光学成像镜头。图5示出了根据本申请实施例3的光学成像镜头的结构示意图。
如图5所示,光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
在本实施例中,光学成像镜头的总有效焦距f=3.22mm,从第一透镜E1的物侧面S1至成像面S13在光轴上的距离TTL=3.78mm,成像面S13上有效像素区域对角线长的一半ImgH=3.02mm,光学成像镜头的最大半视场角Semi-FOV=42.1°,以及光学成像镜头的光圈数Fno=2.38。
表5示出了实施例3的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
Figure PCTCN2020101982-appb-000005
表5
在实施例3中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。下表6给出了可用于实施例3中各非球面镜面S1-S10的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面型 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.8953E-02 4.1887E-01 -4.7471E+00 3.2965E+01 -1.4716E+02 4.1993E+02 -7.4435E+02 7.4578E+02 -3.2366E+02
S2 -4.6434E-01 1.4510E+00 6.6284E-01 -1.7671E+01 1.0160E+01 1.6579E+02 -4.7682E+02 4.9170E+02 -1.6257E+02
S3 -3.3734E-01 7.3914E-01 1.0836E+01 -9.2062E+01 3.3863E+02 -7.1106E+02 9.0261E+02 -6.7135E+02 2.3567E+02
S4 -4.1042E-02 1.2679E+00 -1.0723E+01 7.9111E+01 -3.8805E+02 1.1828E+03 -2.1565E+03 2.1626E+03 -9.2025E+02
S5 -5.0380E-01 2.1955E+00 -2.0937E+01 1.4055E+02 -6.4065E+02 1.8893E+03 -3.4446E+03 3.5158E+03 -1.5289E+03
S6 -5.7019E-01 1.7648E+00 -8.4402E+00 2.9794E+01 -7.3674E+01 1.2140E+02 -1.2621E+02 7.4801E+01 -1.9060E+01
S7 -4.1275E-01 9.6118E-01 -2.9010E+00 6.7433E+00 -1.0700E+01 1.1045E+01 -7.1519E+00 2.6402E+00 -4.2078E-01
S8 -2.9825E-01 7.9548E-01 -1.8338E+00 3.2714E+00 -3.6277E+00 2.4372E+00 -9.7550E-01 2.1505E-01 -2.0160E-02
S9 -1.0894E+00 1.4861E+00 -1.1775E+00 6.1375E-01 -2.1364E-01 4.9078E-02 -7.1452E-03 5.9789E-04 -2.1925E-05
S10 -4.1651E-01 4.5041E-01 -2.9723E-01 1.2900E-01 -3.7829E-02 7.3722E-03 -9.1073E-04 6.4552E-05 -2.0050E-06
表6
图6A示出了实施例3的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像镜头的畸变曲线,其表示不同像高对应的畸变大小值。图6D示出了实施例3的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述根据本申请实施例4的光学成像镜头。图7示出了根据本申请实施例4的光学成像镜头的结构示意图。
如图7所示,光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
在本实施例中,光学成像镜头的总有效焦距f=3.12mm,从第一透镜E1的物侧面S1至成像面S13在光轴上的距离TTL=3.75mm,成像面S13上有效像素区域对角线长的一半ImgH=3.01mm,光学成像镜头的最大半视场角Semi-FOV=43.0°,以及光学成像镜头的光圈数Fno=2.37。
表7示出了实施例4的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
Figure PCTCN2020101982-appb-000006
Figure PCTCN2020101982-appb-000007
表7
在实施例4中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。下表8给出了可用于实施例4中各非球面镜面S1-S10的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面型 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.9009E-02 4.9258E-01 -6.0132E+00 4.5291E+01 -2.1738E+02 6.6508E+02 -1.2601E+03 1.3459E+03 -6.2047E+02
S2 -4.0109E-01 1.7526E+00 -9.4089E+00 7.2960E+01 -4.5813E+02 1.7131E+03 -3.6899E+03 4.2711E+03 -2.0637E+03
S3 -3.1577E-01 1.1843E+00 7.6551E-01 -9.6663E+00 -5.2798E+01 4.8456E+02 -1.4343E+03 1.9745E+03 -1.0683E+03
S4 -4.2621E-02 1.0367E+00 -6.3668E+00 4.1409E+01 -2.0025E+02 6.2311E+02 -1.1745E+03 1.2247E+03 -5.4205E+02
S5 -4.3408E-01 1.3899E+00 -1.1275E+01 6.5471E+01 -2.7446E+02 7.7361E+02 -1.3825E+03 1.3986E+03 -6.0461E+02
S6 -4.6290E-01 1.3428E+00 -6.7644E+00 2.4507E+01 -6.1365E+01 1.0095E+02 -1.0334E+02 5.9365E+01 -1.4373E+01
S7 -3.4195E-01 7.9685E-01 -2.4182E+00 5.3881E+00 -8.0085E+00 7.6874E+00 -4.6103E+00 1.5714E+00 -2.3074E-01
S8 -2.6900E-01 7.2362E-01 -1.6372E+00 2.7537E+00 -2.8463E+00 1.7796E+00 -6.6258E-01 1.3572E-01 -1.1793E-02
S9 -9.4066E-01 1.1699E+00 -8.3758E-01 3.9398E-01 -1.2373E-01 2.5622E-02 -3.3573E-03 2.5228E-04 -8.2858E-06
S10 -3.3175E-01 3.2018E-01 -1.9118E-01 7.4727E-02 -1.9472E-02 3.2891E-03 -3.3937E-04 1.9121E-05 -4.4224E-07
表8
图8A示出了实施例4的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像镜头的畸变曲线,其表示不同像高对应的畸变大小值。图8D示出了实施例4的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述根据本申请实施例5的光学成像镜头。图9示出了根据本申请实施例5的光学成像镜头的结构示意图。
如图9所示,光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
在本实施例中,光学成像镜头的总有效焦距f=3.15mm,从第一透镜E1的物侧面S1至成像面S13在光轴上的距离TTL=3.91mm,成像面S13上有效像素区域对角线长的一半ImgH=3.01mm,光学成像镜头的最大半视场角Semi-FOV=42.7°,以及光学成像镜头的光圈数Fno=2.15。
表9示出了实施例5的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
Figure PCTCN2020101982-appb-000008
表9
在实施例5中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。下表10给出了可用于实施例5中各非球面镜面S1-S10的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面型 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 3.3815E-02 2.2364E-01 -1.8549E+00 1.1814E+01 -4.6335E+01 1.1529E+02 -1.7596E+02 1.5073E+02 -5.5415E+01
S2 -7.8575E-02 -1.1907E-02 9.0859E-01 -8.0322E+00 3.9717E+01 -1.2132E+02 2.2225E+02 -2.2422E+02 9.4093E+01
S3 -1.2754E-01 1.5232E-01 8.8177E-01 -9.9441E+00 5.4714E+01 -1.8164E+02 3.5595E+02 -3.7921E+02 1.6761E+02
S4 -5.9160E-02 7.9434E-01 -7.0795E+00 5.2202E+01 -2.3916E+02 6.7848E+02 -1.1585E+03 1.0911E+03 -4.3533E+02
S5 -1.9371E-01 2.8739E-01 -2.0923E+00 1.0526E+01 -3.5769E+01 7.9733E+01 -1.1116E+02 8.9847E+01 -3.2074E+01
S6 -2.2971E-01 2.8623E-01 -1.6359E+00 6.2517E+00 -1.5748E+01 2.5455E+01 -2.5274E+01 1.4074E+01 -3.3339E+00
S7 -6.5981E-02 -9.3691E-03 5.8598E-02 -1.7880E-01 2.5688E-01 -2.2906E-01 1.2442E-01 -3.5712E-02 4.0742E-03
S8 -4.7595E-02 8.0454E-02 -4.9129E-02 4.7637E-02 -4.4922E-02 2.5925E-02 -8.7242E-03 1.5995E-03 -1.2375E-04
S9 -7.2129E-01 7.4691E-01 -5.1942E-01 2.7754E-01 -1.0639E-01 2.7258E-02 -4.3873E-03 4.0051E-04 -1.5827E-05
S10 -2.1949E-01 1.8527E-01 -1.0170E-01 3.6325E-02 -8.2571E-03 1.1014E-03 -7.1374E-05 7.1768E-07 9.3501E-08
表10
图10A示出了实施例5的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像镜头的畸变曲线,其表示不同像高对应的畸变大小值。图10D示出了实施例5的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学成像镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述根据本申请实施例6的光学成像镜头。图11示出了根据本申请实施例6的光学成像镜头的结构示意图。
如图11所示,光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
在本实施例中,光学成像镜头的总有效焦距f=3.10mm,从第一透镜E1的物侧面S1至成像面S13在光轴上的距离TTL=3.86mm,成像面S13上有效像素区域对角线长的一半ImgH=3.01mm,光学成像镜头的最大半视场角Semi-FOV=43.2°,以及光学成像镜头的光圈数Fno=2.15。
表11示出了实施例6的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
Figure PCTCN2020101982-appb-000009
表11
在实施例6中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。下表12给出了可用于实施例6中各非球面镜面S1-S10的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面型 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 3.3280E-02 2.7328E-01 -2.4994E+00 1.6967E+01 -7.0417E+01 1.8401E+02 -2.9339E+02 2.6131E+02 -9.9502E+01
S2 -7.7932E-02 1.1590E-01 -1.1247E+00 8.3637E+00 -4.2738E+01 1.3923E+02 -2.8278E+02 3.2387E+02 -1.6211E+02
S3 -1.2427E-01 1.6500E-01 4.9044E-01 -7.9505E+00 4.9373E+01 -1.7756E+02 3.6939E+02 -4.1375E+02 1.9106E+02
S4 -5.3048E-02 6.2991E-01 -4.8811E+00 3.4492E+01 -1.5404E+02 4.2849E+02 -7.1860E+02 6.6497E+02 -2.6066E+02
S5 -1.7385E-01 2.9312E-01 -2.1601E+00 1.1207E+01 -3.8428E+01 8.5160E+01 -1.1667E+02 9.1601E+01 -3.1691E+01
S6 -2.0201E-01 2.6077E-01 -1.5774E+00 6.0803E+00 -1.5383E+01 2.4996E+01 -2.4991E+01 1.4052E+01 -3.3704E+00
S7 -7.2880E-02 -7.9722E-03 3.4847E-02 -1.5380E-01 2.7781E-01 -3.0259E-01 1.9212E-01 -6.2178E-02 7.8517E-03
S8 -6.5844E-02 1.0466E-01 -9.0231E-02 8.8002E-02 -5.7601E-02 2.2536E-02 -5.4802E-03 8.1854E-04 -5.9198E-05
S9 -7.5528E-01 8.2448E-01 -6.2502E-01 3.6635E-01 -1.5099E-01 4.0782E-02 -6.8285E-03 6.4298E-04 -2.6060E-05
S10 -2.1661E-01 1.8545E-01 -1.0420E-01 3.8340E-02 -9.1521E-03 1.3499E-03 -1.1448E-04 4.9461E-06 -8.2308E-08
表12
图12A示出了实施例6的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12B示出了实施例6的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像镜头的畸变曲线,其表示不同像高对应的畸变大小值。图12D示出了实施例6的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的光学成像镜头能够实现良好的成像品质。
综上,实施例1至实施例6分别满足表13中所示的关系。
条件式\实施例 1 2 3 4 5 6
TTL/ImgH 1.27 1.26 1.25 1.24 1.30 1.28
CT4/T34 1.80 1.52 1.48 1.28 1.20 1.23
R1/f1 0.47 0.51 0.52 0.50 0.42 0.41
f12/f123 0.69 0.75 0.77 0.88 1.32 1.38
|f/f4|+|f/f5| 2.33 2.28 2.37 2.26 2.07 2.14
(R9+R10)/(R9-R10) 1.94 1.96 1.91 1.97 1.30 1.20
SAG41/SAG51 0.31 0.32 0.39 0.46 0.38 0.42
EPD/∑CT 0.68 0.72 0.72 0.71 0.72 0.70
DT11/DT12 0.97 0.98 0.99 0.99 1.04 1.05
tan(Semi-FOV)/CT5 2.98 2.98 3.01 3.10 2.36 2.29
∑AT/TD 0.33 0.36 0.36 0.37 0.35 0.33
(CT2+CT3)/(T12+T23) 1.81 1.86 2.01 2.10 2.16 2.25
表13
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (22)

  1. 一种光学成像镜头,其特征在于,沿着光轴由物侧至像侧依序包括:
    具有正光焦度的第一透镜;
    具有光焦度的第二透镜;
    具有光焦度的第三透镜;
    具有正光焦度的第四透镜,其物侧面为凸面,像侧面为凸面;以及
    具有负光焦度的第五透镜,其物侧面为凸面,像侧面为凹面;其中:
    所述第一透镜和所述第二透镜的组合焦距f12与所述第一透镜、所述第二透镜以及所述第三透镜的组合焦距f123满足:
    0.5<f12/f123<1.5。
  2. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的物侧面至所述光学成像镜头的成像面在所述光轴上的距离TTL与所述光学成像镜头的成像面上有效像素区域的对角线长的一半ImgH满足:TTL/ImgH≤1.3。
  3. 根据权利要求1所述的光学成像镜头,其特征在于,所述第四透镜在所述光轴上的中心厚度CT4与所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34满足:
    CT4/T34>1.2。
  4. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的物侧面的曲率半径R1与所述第一透镜的有效焦距f1满足:
    0.2<R1/f1<0.6。
  5. 根据权利要求1所述的光学成像镜头,其特征在于,所述第四透镜的物侧面和所述光轴的交点至所述第四透镜的物侧面的有效半径顶点的轴上距离SAG41与所述第五透镜的物侧面和所述光轴的交点至所述第五透镜的物侧面的有效半径顶点的轴上距离SAG51满足:
    0.2<SAG41/SAG51<0.8。
  6. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f、所述第四透镜的有效焦距f4以及所述第五透镜的有效焦距f5满足:
    1.8<|f/f4|+|f/f5|<2.8。
  7. 根据权利要求1所述的光学成像镜头,其特征在于,所述第五透镜的物侧面的曲率半径R9与所述第五透镜的像侧面的曲率半径R10满足:
    1.0<(R9+R10)/(R9-R10)<2.2。
  8. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的入瞳直径EPD与所述第一透镜至所述第五透镜中的每个透镜在所述光轴上的中心厚度的总和∑CT满足:
    0.3<EPD/∑CT<0.9。
  9. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的物侧面的最大有效半径DT11与所述第一透镜的像侧面的最大有效半径DT12满足:
    0.7<DT11/DT12<1.4。
  10. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的最大半视场角Semi-FOV与所述第五透镜在所述光轴上的中心厚度CT5满足:
    2.0mm -1<tan(Semi-FOV)/CT5<3.5mm -1
  11. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜至所述第五透镜中任意两相邻的透镜在所述光轴上的间隔距离的总和∑AT与所述第一透镜的物侧面至所述第五透镜的像侧面在所述光轴上的间距TD满足:
    0.1<∑AT/TD<0.6。
  12. 根据权利要求1所述的光学成像镜头,其特征在于,所述第二透镜在所述光轴上的中心厚度CT2、所述第三透镜在所述光轴上的中心厚度CT3、所述第一透镜至所述第二透镜在所述光轴上的间隔距离T12以及所述第二透镜至所述第三透镜在所述光轴上的间隔距离T23满足:
    1.5<(CT2+CT3)/(T12+T23)<2.5。
  13. 一种光学成像镜头,其特征在于,沿着光轴由物侧至像侧依序包括:
    具有正光焦度的第一透镜;
    具有光焦度的第二透镜;
    具有光焦度的第三透镜;
    具有正光焦度的第四透镜,其物侧面为凸面,其像侧面为凸面;以及
    具有负光焦度的第五透镜,其物侧面为凸面,其像侧面为凹面;其中:
    所述第一透镜的物侧面至所述光学成像镜头的成像面在所述光轴上的距离TTL与所述光学成像镜头的成像面上有效像素区域的对角线长的一半ImgH满足:TTL/ImgH≤1.3,以及
    所述第四透镜在所述光轴上的中心厚度CT4与所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34满足:
    CT4/T34>1.2。
  14. 根据权利要求13所述的光学成像镜头,其特征在于,所述光学成像镜头的入瞳直径EPD与所述第一透镜至所述第五透镜中的每个透镜在所述光轴上的中心厚度的总和∑CT满足:
    0.3<EPD/∑CT<0.9。
  15. 根据权利要求13所述的光学成像镜头,其特征在于,所述第一透镜的物侧面的曲率半径R1与所述第一透镜的有效焦距f1满足:
    0.2<R1/f1<0.6。
  16. 根据权利要求13所述的光学成像镜头,其特征在于,所述第四透镜的物侧面和所述光轴的交点至所述第四透镜的物侧面的有效半径顶点的轴上距离SAG41与所述第五透镜的物侧面和所述光轴的交点至所述第五透镜的物侧面的有效半径顶点的轴上距离SAG51满足:
    0.2<SAG41/SAG51<0.8。
  17. 根据权利要求13所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f、所述第四透镜的有效焦距f4以及所述第五透镜的有效焦距f5满足:
    1.8<|f/f4|+|f/f5|<2.8。
  18. 根据权利要求13所述的光学成像镜头,其特征在于,所述第五透镜的物侧面的曲率半径R9与所述第五透镜的像侧面的曲率半径R10满足:
    1.0<(R9+R10)/(R9-R10)<2.2。
  19. 根据权利要求13所述的光学成像镜头,其特征在于,所述第一透镜的物侧面的最大有效半径DT11与所述第一透镜的像侧面的最大有效半径DT12满足:
    0.7<DT11/DT12<1.4。
  20. 根据权利要求13所述的光学成像镜头,其特征在于,所述光学成像镜头的最大半视场角Semi-FOV与所述第五透镜在所述光轴上的中心厚度CT5满足:
    2.0mm -1<tan(Semi-FOV)/CT5<3.5mm -1
  21. 根据权利要求13所述的光学成像镜头,其特征在于,所述第一透镜至所述第五透镜中任意两相邻的透镜在所述光轴上的间隔距离的总和∑AT与所述第一透镜的物侧面至所述第五透镜的像侧面在所述光轴上的间距TD满足:
    0.1<∑AT/TD<0.6。
  22. 根据权利要求13所述的光学成像镜头,其特征在于,所述第二透镜在所述光轴上的中心厚度CT2、所述第三透镜在所述光轴上的中心厚度CT3、所述第一透镜至所述第二透镜在所述光轴上的间隔距离T12以及所述第二透镜至所述第三透镜在所述光轴上的间隔距离T23满足:
    1.5<(CT2+CT3)/(T12+T23)<2.5。
PCT/CN2020/101982 2019-08-27 2020-07-15 光学成像镜头 WO2021036554A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/592,302 US20220155559A1 (en) 2019-08-27 2022-02-03 Optical imaging lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910796812.4A CN110488467B (zh) 2019-08-27 2019-08-27 光学成像镜头
CN201910796812.4 2019-08-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/592,302 Continuation US20220155559A1 (en) 2019-08-27 2022-02-03 Optical imaging lens

Publications (1)

Publication Number Publication Date
WO2021036554A1 true WO2021036554A1 (zh) 2021-03-04

Family

ID=68554606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101982 WO2021036554A1 (zh) 2019-08-27 2020-07-15 光学成像镜头

Country Status (3)

Country Link
US (1) US20220155559A1 (zh)
CN (2) CN114236751B (zh)
WO (1) WO2021036554A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114236751B (zh) * 2019-08-27 2024-04-19 浙江舜宇光学有限公司 光学成像镜头
CN111142222B (zh) * 2019-12-23 2021-07-30 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111025595B (zh) * 2019-12-30 2021-09-24 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN114167587B (zh) * 2021-12-29 2023-11-24 江西晶超光学有限公司 光学系统、取像模组及电子设备
CN114326029B (zh) * 2022-01-10 2024-03-19 浙江舜宇光学有限公司 光学成像镜头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013174741A (ja) * 2012-02-24 2013-09-05 Hitachi Maxell Ltd 撮像レンズおよび撮像装置
CN103592743A (zh) * 2013-10-30 2014-02-19 浙江舜宇光学有限公司 微型摄像镜头
CN208984870U (zh) * 2018-10-23 2019-06-14 浙江舜宇光学有限公司 摄像镜头组
CN209265059U (zh) * 2018-12-11 2019-08-16 浙江舜宇光学有限公司 光学成像镜头
CN110488467A (zh) * 2019-08-27 2019-11-22 浙江舜宇光学有限公司 光学成像镜头

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5740799B2 (ja) * 2010-10-21 2015-07-01 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
CN104395806B (zh) * 2012-05-24 2017-06-30 富士胶片株式会社 摄像镜头以及具备该摄像镜头的摄像装置
JP2014209163A (ja) * 2013-03-29 2014-11-06 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
JP2015084066A (ja) * 2013-09-20 2015-04-30 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
US10101561B2 (en) * 2016-10-20 2018-10-16 Newmax Technology Co., Ltd. Five-piece optical imaging lens
CN206684372U (zh) * 2017-04-18 2017-11-28 浙江舜宇光学有限公司 成像镜头
CN107167900B (zh) * 2017-07-25 2022-09-06 浙江舜宇光学有限公司 光学成像镜头
CN107290843B (zh) * 2017-08-21 2022-09-13 浙江舜宇光学有限公司 光学成像镜头
CN113835198B (zh) * 2018-12-11 2022-09-02 浙江舜宇光学有限公司 光学成像镜头
CN211086749U (zh) * 2019-08-27 2020-07-24 浙江舜宇光学有限公司 光学成像镜头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013174741A (ja) * 2012-02-24 2013-09-05 Hitachi Maxell Ltd 撮像レンズおよび撮像装置
CN103592743A (zh) * 2013-10-30 2014-02-19 浙江舜宇光学有限公司 微型摄像镜头
CN208984870U (zh) * 2018-10-23 2019-06-14 浙江舜宇光学有限公司 摄像镜头组
CN209265059U (zh) * 2018-12-11 2019-08-16 浙江舜宇光学有限公司 光学成像镜头
CN110488467A (zh) * 2019-08-27 2019-11-22 浙江舜宇光学有限公司 光学成像镜头

Also Published As

Publication number Publication date
US20220155559A1 (en) 2022-05-19
CN110488467A (zh) 2019-11-22
CN114236751A (zh) 2022-03-25
CN114236751B (zh) 2024-04-19
CN110488467B (zh) 2024-06-21

Similar Documents

Publication Publication Date Title
WO2021073275A1 (zh) 光学成像镜头
WO2020024634A1 (zh) 光学成像镜片组
WO2020093725A1 (zh) 摄像光学系统
WO2020019794A1 (zh) 光学成像镜头
WO2020007080A1 (zh) 摄像镜头
WO2020029620A1 (zh) 光学成像镜片组
WO2019223263A1 (zh) 摄像镜头
WO2020134129A1 (zh) 光学成像系统
WO2020186759A1 (zh) 光学成像镜头
WO2021036554A1 (zh) 光学成像镜头
WO2020038134A1 (zh) 光学成像系统
WO2020073703A1 (zh) 光学透镜组
WO2020168717A1 (zh) 光学成像镜头
WO2020007069A1 (zh) 光学成像镜片组
WO2020134026A1 (zh) 光学成像系统
WO2020024635A1 (zh) 光学成像镜头
WO2020191951A1 (zh) 光学成像镜头
WO2019210740A1 (zh) 光学成像镜头
WO2020151251A1 (zh) 光学透镜组
WO2019100768A1 (zh) 光学成像镜头
WO2020107936A1 (zh) 光学成像系统
WO2020164236A1 (zh) 光学成像镜头
WO2019233040A1 (zh) 摄像透镜组
WO2020042799A1 (zh) 光学成像镜片组
WO2020134130A1 (zh) 光学成像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857973

Country of ref document: EP

Kind code of ref document: A1