WO2019142586A1 - 画像処理システム及び配光制御システム - Google Patents

画像処理システム及び配光制御システム Download PDF

Info

Publication number
WO2019142586A1
WO2019142586A1 PCT/JP2018/046920 JP2018046920W WO2019142586A1 WO 2019142586 A1 WO2019142586 A1 WO 2019142586A1 JP 2018046920 W JP2018046920 W JP 2018046920W WO 2019142586 A1 WO2019142586 A1 WO 2019142586A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminance
image
calculation formula
value
image processing
Prior art date
Application number
PCT/JP2018/046920
Other languages
English (en)
French (fr)
Inventor
宏治 土井
広道 大塚
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to DE112018005975.8T priority Critical patent/DE112018005975T5/de
Priority to JP2019565778A priority patent/JP6894536B2/ja
Publication of WO2019142586A1 publication Critical patent/WO2019142586A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/14Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
    • B60Q1/1415Dimming circuits
    • B60Q1/1423Automatic dimming circuits, i.e. switching between high beam and low beam due to change of ambient light or light level in road traffic
    • B60Q1/143Automatic dimming circuits, i.e. switching between high beam and low beam due to change of ambient light or light level in road traffic combined with another condition, e.g. using vehicle recognition from camera images or activation of wipers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/06Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
    • B60Q1/08Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically
    • B60Q1/085Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically due to special conditions, e.g. adverse weather, type of road, badly illuminated road signs or potential dangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/30Indexing codes relating to the vehicle environment
    • B60Q2300/33Driving situation
    • B60Q2300/337Tunnels or bridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/40Indexing codes relating to other road users or special conditions
    • B60Q2300/41Indexing codes relating to other road users or special conditions preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/40Indexing codes relating to other road users or special conditions
    • B60Q2300/42Indexing codes relating to other road users or special conditions oncoming vehicle

Definitions

  • the present invention relates to an image processing system for mounting on a vehicle and a light distribution control system for controlling the light distribution of a headlight of a vehicle.
  • Patent Document 1 Conventionally, an invention relating to an image processing system for mounting on a vehicle is known (see Patent Document 1 below).
  • the image processing system described in Patent Document 1 includes an imaging unit mounted on a vehicle, and an image analysis unit that acquires an image captured by the imaging unit and analyzes the image.
  • the image analysis means analyzes the image captured by the imaging means to detect the position of the taillight of the preceding vehicle that glows red.
  • element group the vehicle (taillight) and other objects based on the feature quantities of the element group (for example, the size of a rectangle inscribed or circumscribed in the element group, the maximum / minimum luminance of pixels included in the element group, etc.) (Reflector etc.) is being discriminated.
  • Patent Document 1 has a problem in that an object of a color close to red, such as an orange reflector on a road surface, is erroneously detected as a taillight of a leading vehicle.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an image processing system capable of identifying an object to be detected with high accuracy without increasing the cost.
  • the present application includes a plurality of means for solving the above problems, and an example thereof includes an imaging device, a luminance calculation unit for generating a luminance image from a captured image of the imaging device using a luminance calculation formula,
  • An image processing system comprising: an image processing apparatus having a detection unit for detecting a predetermined object based on the luminance image, wherein the image processing apparatus further comprises: a luminance index value of the predetermined area in the luminance image;
  • the display device further comprises a brightness calculation formula changing unit that changes the brightness calculation formula used by the brightness calculation unit according to the type of the predetermined object detected by the detection unit.
  • the present invention even in a situation where a captured image of exposure conditions suitable for detection of a detection target can not be obtained, it is possible to improve the detection rate of the detection target without raising the cost.
  • FIG. 1 is a schematic configuration diagram of a vehicle control system 100. Explanatory drawing of the predetermined area
  • 7 is an example of a flowchart of determination processing (change processing) of a luminance calculation expression by the luminance calculation expression changing unit 13.
  • 7 is an example of a flowchart of determination processing (change processing) of a luminance calculation expression by the luminance calculation expression changing unit 13.
  • 7 is an example of a flowchart of determination processing (change processing) of a luminance calculation expression by the luminance calculation expression changing unit 13.
  • the table surface which put together the content of each luminance calculation formula, and the conditions on which each luminance calculation formula is selected.
  • FIG. 1 is a schematic configuration diagram of a vehicle control system according to the present embodiment.
  • the vehicle control system 100 in this figure is provided in a vehicle (sometimes referred to as a vehicle), and is an imaging device installed in front of the vehicle and periodically imaging images of a predetermined area in front of the vehicle in time series.
  • the image processing apparatus 1 processes an image (captured image) captured by the camera 11, and a vehicle control apparatus 2 controls a vehicle based on the processing result of the image processing apparatus 1.
  • the image processing device 1 and the vehicle control device 2 are each a computer (for example, a microcomputer), and for example, an input unit, a central processing unit (CPU or MPU) which is a processor, and a read only memory (ROM) which is a storage device. And a random access memory (RAM) and an output unit.
  • the input unit converts various information input to the image processing device 1 and the vehicle control device 2 so that the CPU can calculate.
  • the ROM is a recording medium in which a control program for appropriately executing arithmetic processing to be described later and various information necessary for the execution of the arithmetic processing are stored.
  • the CPU executes an input unit and a ROM according to the control program stored in the ROM.
  • the output unit outputs a command for controlling the output target, information used by the output target, and the like.
  • the storage device is not limited to the above semiconductor memory such as ROM and RAM, and can be replaced by, for example, a magnetic storage device such as a hard disk drive.
  • the image processing apparatus 1 is a computer that executes an external recognition process including object detection based on a captured image (color image) of the camera 11, and includes an image acquisition unit 12, a luminance formula changing unit 13, and luminance calculation. A unit 14 and a detection unit 15 are provided.
  • the vehicle control device 2 is a computer that executes vehicle control processing based on the detection result of the detection unit 15 output from the image processing device 1 and includes a light distribution control unit 16 and a constant speed traveling / inter-vehicle distance control unit 17. Have.
  • the image processing apparatus 1 and the vehicle control apparatus 2 in FIG. 1 are configured by two different computers, they may be configured by an integrated computer.
  • the image acquisition unit 12 controls the camera 11 and periodically performs exposure time (shutter speed) setting and imaging to acquire a time series of color images and executes processing for storing them in the image processing apparatus 1 Do.
  • the color image is defined by the RGB color model, and the color of each pixel constituting the color image is defined by the combination of the brightness of red (R), green (G) and blue (B).
  • the brightness of each of R, G, and B is expressed by integer values from 0 to 255 (that is, 256 gradations), and the color of each pixel is three values (R value, G value, B value) It is defined by the combination of Color images are captured at a predetermined cycle, and for example, 30 frames may be captured per second.
  • the luminance calculation unit (luminance image generation unit) 14 generates a luminance image (Y) from a captured image (color image) of the camera 11 using the luminance calculation equation determined by the luminance calculation equation changing unit 13. Run.
  • the luminance image generated here is stored in the image processing apparatus 1 and is output to the detection unit 15 and the luminance formula changing unit 13.
  • the luminance formula changing unit 13 is a luminance index value of a predetermined area A located at the center of the luminance image generated in the past (for example, a predetermined frame before) by the luminance calculation unit 14 and a predetermined detection target of the detection unit 15
  • the brightness calculation formula used in the brightness calculation unit 14 Execute processing to change / determine
  • four luminance calculation equations (first to fourth luminance calculation equations) described later are used, and the luminance calculation equation changing unit 13 selects one of the four luminance calculation equations. There is.
  • Each luminance calculation formula is defined as a sum of values obtained by multiplying each of R value, G value, and B value by a predetermined coefficient, and the luminance calculation unit 14 calculates the R value of the pixels constituting the color image in this formula, By substituting the G value and B value, the brightness of the pixel is calculated.
  • a luminance image is obtained by calculating and collecting the luminance for each pixel of the captured image of the camera 11.
  • the predetermined area A is a predetermined area set for each luminance image. Although the predetermined area A can be set based on various rules, the predetermined area A based on the position of the vehicle traveling ahead of the own vehicle may be particularly referred to as a forward vehicle area A.
  • FIG. 2 is an explanatory view of the predetermined area A. As shown in FIG. In the luminance image 71 shown in the upper row, the circumscribed rectangle 75 shows a preceding vehicle (preceding vehicle) that has been detected by the detection unit 15 until just before the detection of the image due to overexposure at the tunnel exit.
  • a predetermined area (front vehicle area) A1 is determined by defining a rectangle of a predetermined size based on the position of the front vehicle (the circumscribed rectangle 75).
  • a predetermined area (front vehicle area) A1 is determined by defining a rectangle of a predetermined size.
  • the luminance image 72 shown in the lower part shows the circumscribed rectangle 76 of the vehicle in front similarly to the luminance image 72 in the middle, but the central part of the luminance image (that is, the camera 11)
  • a predetermined area A2 is set as a closed area (for example, a rectangle) of a predetermined size at a predetermined position of the center portion of the captured image when the direction is directed in the vehicle traveling direction.
  • the predetermined area A may be set based on the position of the oncoming vehicle traveling in the opposite direction to the host vehicle.
  • the luminance formula changing unit 13 of the present embodiment can change the luminance formula based on the luminance index value of the predetermined area A.
  • the luminance index value is an index value indicating the luminance as an aggregate of a plurality of pixels included in the predetermined area A, and, for example, all the pixels included in the predetermined area A or a plurality of appropriately selected pixels
  • An average value of luminance, maximum luminance or minimum luminance of all the pixels, and the like can be used.
  • the average luminance of all the pixels included in the predetermined area A will be described as a luminance index value.
  • the detection unit 15 executes a process of detecting a predetermined object based on at least one of the color image acquired by the image acquisition unit 12 and the luminance image generated by the luminance calculation unit 14 and controls the detection result of the vehicle Output to device 2
  • the “predetermined object” to be detected by the detection unit 15 may be determined depending on the type of application (program) executed by the vehicle control device 2.
  • the application of light distribution control according to the light distribution control unit 16 is executed, tail lights (red light emitters) of other vehicles (preceding vehicles, stopped vehicles, etc.) and headlights of other vehicles (oncoming vehicles) (White-based light emitter) can be predetermined objects, and when these objects are detected, it can be considered that a vehicle is detected.
  • the light distribution control unit 16 in the vehicle control device 2 executes light distribution control (light distribution control application) of the headlight of the own vehicle based on the detection result (vehicle detection result) of the detection unit 15 of the image processing device 1.
  • the light distribution control for example, when the preceding vehicle and the oncoming vehicle do not exist in front of the own vehicle, the headlight of the own vehicle is set to the high beam, and when the preceding vehicle or the oncoming vehicle exists, the headlight of the own vehicle is set to the low beam There is something to do.
  • the light shielding area of the headlight of the vehicle is determined so that other vehicles are excluded from the irradiation area of the headlight of the vehicle, and the vehicle is determined based on the light shielding region.
  • the vehicle is provided with an actuator (for example, a plurality of motors) for changing the optical axis of a plurality of headlights and a shade mechanism for shielding a part of the light of each headlight.
  • the section 16 outputs control signals for them.
  • the constant speed traveling / inter-vehicle distance control unit 17 keeps the traveling speed constant while keeping the distance between the detection vehicle and the vehicle constant.
  • ACC ACC application which appropriately controls the mechanism (steering control unit, engine control unit, brake control unit) corresponding to the steering control (steering control) and speed control (engine control, brake control) of the own vehicle to hold Run.
  • the vehicle control system 100 (the image processing device 1 and the vehicle control device 2) repeatedly executes the flowchart of FIG. 3 at a predetermined control cycle.
  • the image acquiring unit 12 sets an exposure time of an image to be imaged next to the camera 11 in step S1, and performs imaging at a predetermined timing to acquire a color image (captured image).
  • step S2 the luminance formula changing unit 13 executes a process of determining the luminance formula.
  • the brightness calculation formula changing unit 13 of the present embodiment changes the brightness calculation formula according to the type of the detection target of the detection unit 15.
  • FIG. 4 is a flowchart of determination processing (change processing) of the luminance calculation expression by the luminance calculation expression changing unit 13 according to the present embodiment.
  • a reference luminance calculation equation that the luminance calculation unit 14 normally uses to generate a luminance image is referred to as a first luminance calculation equation.
  • the first luminance calculation formula in the present embodiment is expressed by the following formula (1).
  • Y indicates a luminance value
  • R, G and B indicate R value, G value and B value of each pixel. That is, the first luminance calculation formula is defined as a sum of values obtained by multiplying each of the R value, the G value, and the B value of an arbitrary pixel in the captured image by a predetermined coefficient.
  • the sum of the coefficients of R, G and B is 1.
  • Y 0.299 R + 0.587 G + 0.114 B Formula (1)
  • step S22 the luminance calculation formula changing unit 13 determines whether the detection target in step S21 is a headlight (white-based light emitter) of an oncoming vehicle. Here, if the object to be detected is a headlight of an oncoming vehicle, the process proceeds to step S23. If not, the process proceeds to step S24.
  • a headlight white-based light emitter
  • the brightness calculation formula changing unit 13 sets a second brightness calculation formula as a brightness calculation formula.
  • the second luminance formula has a larger coefficient of B value than the first luminance formula, and smaller coefficients of R value and G value than the first luminance formula.
  • the second luminance calculation equation in the present embodiment is expressed by the following equation (2).
  • the sensitivity to white light including headlights differs among R, G and B pixels, and has a relationship of "G>R>B". Therefore, when the second luminance formula is used to generate a luminance image, overexposure is reduced more than when the first luminance formula is used.
  • step S24 the brightness calculation formula changing unit 13 determines whether the detection target in step S21 is a taillight (red light emitter) of the preceding vehicle. If the object to be detected is the taillight of the preceding vehicle, the process proceeds to step S25. Otherwise, the process proceeds to step S26.
  • the detection target in step S21 is a taillight (red light emitter) of the preceding vehicle. If the object to be detected is the taillight of the preceding vehicle, the process proceeds to step S25. Otherwise, the process proceeds to step S26.
  • the brightness calculation formula changing unit 13 sets a fourth brightness calculation formula as a brightness calculation formula.
  • the coefficient of the R value is larger than that of the first luminance calculation formula, and the coefficients of the G value and the B value are smaller than those of the first luminance calculation formula.
  • the fourth luminance calculation formula in the present embodiment is expressed by the following formula (4).
  • the sensitivity to red light is improved by making the coefficient of the R value larger than that of the first luminance calculation formula. For this reason, when the fourth luminance formula is used to generate the luminance image, the blackout of the red light emitter is reduced more than when the first luminance formula is used.
  • step S26 the brightness calculation formula changing unit 13 sets a first brightness calculation formula as a brightness calculation formula.
  • the brightness calculation formula changing unit 13 ends the process of FIG. 4 and the process of step S3 of FIG. 3 is started.
  • step S3 the brightness calculation unit 14 acquires the image acquisition unit 12 in step S1 using the brightness calculation equation determined by the brightness calculation equation changing unit 13 in step S2 (that is, any one of steps S23, S25, and S26).
  • the luminance value Y is calculated for all the pixels in the color image, and a luminance image is generated from the calculated luminance value Y.
  • the generated luminance image is output to the detection unit 15 or the luminance formula changing unit 13.
  • step S4 the detection unit 15 detects a vehicle candidate light spot from the color image acquired by the image acquisition unit 12. Specifically, first, the condition of the color to be searched in the color image is set according to the type of the detection target, and the color image is scanned to detect the pixel of the color corresponding to the condition. Next, adjacent detection pixels are connected as the same group, and a region occupied by those pixel groups is regarded as a light spot. A plurality of light spots suitable for the type of detection object can be detected by this step.
  • detection of a vehicle candidate light point in step S4 has the following problems. That is, when the preceding vehicle tail light (refer to the rectangle in the image 51 of FIG. 5) is the detection target of the detection unit 15, the light spot is detected by searching for red in the color image. However, the same red as the taillight may appear at the edge of the image of the orange reflector on the road (refer to the rectangle in the image 52 in FIG. 5), and the tail is only determined based on the red degree of the light spot. It is difficult to distinguish between lights and reflectors. Therefore, in the present embodiment, the determination based on the brightness in the subsequent step S5 is performed.
  • step S5 the detection unit 15 determines whether each light spot detected in step S4 is a vehicle light (oncoming vehicle headlight or preceding vehicle taillight). Specifically, a representative one (for example, the brightest pixel) is selected from the pixels included in the light spot area. Then, the luminance value of the pixel is confirmed in the luminance image generated in step S3, and it is determined whether the luminance value of the pixel is equal to or more than a predetermined threshold value determined for each detection target. If the luminance value of the pixel is equal to or greater than the predetermined threshold, the process proceeds to step S6. If the luminance value is less than the predetermined threshold, the process proceeds to step S7.
  • a representative one for example, the brightest pixel
  • step S6 the detection unit 15 detects a light point whose luminance value is to be determined in step S5, the light point is a vehicle light (oncoming car headlight or preceding vehicle taillight), and a vehicle related to the vehicle light The information to the effect that the headlight of the host vehicle is to be blocked is added, and the information is output to the light distribution control unit 16.
  • step S7 with respect to the light spot for which the determination of the luminance value is performed in step S5, the detection unit 15 does not set the light spot to be the vehicle light of the own vehicle headlight instead of the vehicle light. Information is added and output to the light distribution control unit 16.
  • step S8 the light distribution control unit 16 determines the light shielding area of the headlight of the vehicle based on the light spot information obtained in step S6 or S7, and the light shielding area is excluded from the irradiation area of the headlight of the vehicle. Control the light distribution of the headlights of the vehicle.
  • step S1 one cycle of the light distribution control process by the vehicle control system 100 is completed.
  • the vehicle control system 100 executes the series of processes from step S1 again.
  • FIG. 6 is a diagram showing the relationship between the distance and the luminance value for the pixels of the images 51 and 52 according to the taillight and the reflector under the same exposure condition.
  • the luminance values of the light spots of the taillight and the reflector reach both maximum values at a short distance (150 m or less in the example in the figure) (the luminance value is saturated). Large and small can not distinguish.
  • the luminance calculation formula used when creating the luminance image is changed.
  • FIG. 7 shows an example of the luminance image and the luminance distribution of the orange reflector on the road, and the left side of the figure shows the case where the first luminance formula is used, and the right side of the figure shows the second luminance calculation. Show the case of using an expression.
  • the first luminance formula when used, one peak of the distribution of luminance values exists at the maximum value (255), and in the processing of S5 based on luminance, the oncoming vehicle head is It turns out that it is difficult to distinguish from lights.
  • B among R, G and B has the lowest sensitivity to white light.
  • the luminance value of the light spot is distributed at a lower value than when the equation is used, and in the example of FIG. 7, the distribution of the luminance value can be dispersed to a value less than 255 (value on the left side in the drawing).
  • the detection rate of the light emitter can be improved without increasing the cost.
  • the R value coefficient is larger than the first luminance calculation equation, and the G value and B value coefficients are smaller, a pixel with a high R value according to the taillight is emphasized as high luminance
  • the luminance value of the light spot is distributed at a lower value than when the first luminance formula is used.
  • FIG. 8 is an example of a flowchart of determination processing (change processing) of the luminance calculation expression by the luminance calculation expression changing unit 13 in this case.
  • the luminance formula changing unit 13 repeatedly executes this flowchart at a predetermined control cycle.
  • the luminance formula changing unit 13 changes from the state where another vehicle is detected to the undetectable state based on the detection result input from the detection unit 15 in step S31. It is determined whether or not. And when it changes to undetectable, it progresses to step S32, and when it does not change (namely, when detection of another vehicle is continuing), it progresses to step S40.
  • step S32 the brightness calculation formula changing unit 13 reads the latest possible image among the brightness images generated based on the color image captured by the camera 11 in a state where another vehicle is detected. Note that instead of reading a luminance image, a color image may be read.
  • step S33 the luminance formula changing unit 13 sets a predetermined area (front vehicle area) A based on the position of another vehicle in the luminance image read in step S32.
  • a predetermined area front vehicle area
  • An example of the setting method of the predetermined area A is described with reference to FIG.
  • the predetermined area A may be set based on the position of the other vehicle on the image.
  • step S34 the luminance formula changing unit 13 calculates the luminance index value of the predetermined area A in the luminance image read in step S32.
  • the luminance index value of the predetermined area A on the luminance image corresponding to the color image is calculated.
  • step S35 the luminance equation modification unit 13 determines whether the luminance index value of the predetermined area A is equal to or less than the first threshold (Y1) and equal to or more than the second threshold (Y2).
  • the first threshold (Y1) is a threshold of luminance defined to consider that overexposure has occurred in a color image (captured image), and the second threshold (Y2) is similarly considered that underexposure has occurred.
  • the threshold value of luminance defined for However, the first threshold (Y1) is larger than the second threshold (Y2) (ie, Y1> Y2). If the luminance index value of the predetermined area A is equal to or more than the second threshold and equal to or less than the first threshold, it can be regarded as appropriate luminance. If the luminance index value of the predetermined area A is less than or equal to the first threshold (Y1) and greater than or equal to the second threshold (Y2), the process proceeds to step S36. If not, the process proceeds to step S37.
  • step S36 the luminance calculation formula changing unit 13 sets a first luminance calculation formula as a luminance calculation formula.
  • step S37 the luminance equation modification unit 13 determines whether the luminance index value of the predetermined area A is larger than the first threshold (Y1). If the luminance index value of the predetermined area A is larger than the first threshold (Y1), the process proceeds to step S38, otherwise (that is, the luminance index value of the predetermined area A is smaller than the second threshold (Y2)) The process proceeds to step S39.
  • step S38 the brightness calculation formula changing unit 13 sets a second brightness calculation formula as a brightness calculation formula.
  • step S39 the brightness calculation formula changing unit 13 sets a third brightness calculation formula as a brightness calculation formula.
  • the coefficient of the G value is larger than that of the first luminance calculation formula, and the coefficients of the R value and the B value are smaller than those of the first luminance calculation formula.
  • the third luminance calculation formula in the present embodiment is expressed by the following formula (3).
  • the sensitivity to white light differs among R, G, and B pixels, and has a relationship of “G>R> B”. Therefore, when the third luminance formula is used to generate a luminance image, the blackout is reduced more than when the first luminance formula is used.
  • Y G equation (3)
  • step S40 the brightness calculation formula changing unit 13 sets a first brightness calculation formula as a brightness calculation formula.
  • the brightness calculation formula changing unit 13 sets the second brightness calculation formula to the brightness calculation formula in step S38,
  • the luminance calculation unit 14 generates a luminance image using this second luminance calculation formula. Since overexposure is reduced in this luminance image by the second luminance formula, the possibility of detecting a lost vehicle in a color image is improved. As a result, the detection rate of another vehicle can be improved without raising the cost even in a situation where a captured image of the exposure condition suitable for detection of the other vehicle at the time of overexposure can not be obtained.
  • the brightness calculation formula changing unit 13 sets the third brightness calculation formula to the brightness calculation formula in step S39,
  • the luminance calculation unit 14 generates a luminance image using this third luminance calculation formula.
  • the possibility of detecting a lost vehicle in the color image is improved.
  • the detection rate of the other vehicle can be improved without raising the cost even in a situation where the captured image of the exposure condition suitable for the detection of the other vehicle at the time of the occurrence of the blackout can not be obtained.
  • the predetermined area A is set on the basis of the position of the lost vehicle, but it is predetermined at a predetermined position in the central portion of the luminance image directly unrelated to the position of the vehicle.
  • a rectangle having a different size may be set as a predetermined area to determine the luminance calculation formula.
  • FIG. 9 shows an example of a flowchart of determination processing (change processing) of the luminance calculation expression by the luminance calculation expression changing unit 13 in this case.
  • the luminance formula changing unit 13 repeatedly executes this flowchart at a predetermined control cycle.
  • the same processes as in FIG. 8 are assigned the same reference numerals and descriptions thereof will be omitted.
  • the luminance equation changing unit 13 updates the luminance equation changing unit 13 as much as possible among the luminance images generated based on the color image captured by the camera 11 in step S41. Load the stuff Note that instead of reading a luminance image, a color image may be read.
  • step S42 the luminance formula changing unit 13 calculates a luminance index value of a predetermined area A in the luminance image read in step S41.
  • the brightness index value of the predetermined area A on the brightness image corresponding to the color image is calculated.
  • step 35 is the same as that of FIG.
  • the cost of the other vehicle can be increased without raising the cost even in a situation where the captured image of the exposure condition suitable for detection of the other vehicle can not be obtained Detection rate can be improved.
  • FIG. 10 shows an example of a flowchart of determination processing (change processing) of the luminance calculation expression by the luminance calculation expression changing unit 13 in this case.
  • determination processing change processing
  • FIG. 10 when it determines with NO by step S31, it is comprised so that it may progress to step S21 of FIG.
  • FIG. 10 shows an example in which the flowcharts of FIGS. 8 and 4 are combined, it is needless to say that the flowcharts of FIGS. 9 and 4 may be combined.
  • FIG. 11 is a table summarizing the contents of each luminance calculation formula and the conditions under which each luminance calculation formula is selected.
  • the luminance index value of the predetermined area (front vehicle area) A is the second threshold (Y2)
  • the leading vehicle becomes undetectable due to the blackening of the captured image (for example, under the tunnel entrance or the overpass).
  • the detection target of the detection unit 15 is far (for example, a distance away from the vehicle In the case of a taillight of a traveling vehicle), in the case of a taillight of a traveling vehicle in which the detection target of the detection unit 15 is at a short distance (for example, a distance within 50 m from the own vehicle) There is.
  • the present invention is not limited to the above embodiments, and includes various modifications within the scope of the present invention.
  • the present invention is not limited to the one provided with all the configurations described in the above embodiment, but also includes one in which a part of the configuration is deleted.
  • part of the configuration according to one embodiment can be added to or replaced with the configuration according to another embodiment.
  • each configuration of the processing device 1 and the control device 2 described above the function of each configuration, execution processing, and the like, a part or all of them may be implemented by hardware (for example, logic for executing each function is designed by Etc.).
  • the configurations according to the above-described devices 1 and 2 may be programs (software) in which respective functions according to the configuration of the device are realized by being read and executed by an arithmetic processing unit (for example, a CPU).
  • the information related to the program can be stored in, for example, a semiconductor memory (flash memory, SSD, etc.), a magnetic storage device (hard disk drive, etc.), a recording medium (magnetic disk, optical disc, etc.), and the like.
  • control line and the information line showed what was understood to be required for description of the said embodiment in the description of each said embodiment, all the control lines and information lines which concern on a product are not necessarily shown. Does not necessarily indicate. In practice, it can be considered that almost all configurations are mutually connected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Studio Devices (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

本発明は、コストを上げることなく,検知対象物を高精度に識別可能な画像処理システムを提供する。本発明は、撮像装置11と,輝度計算式を利用して撮像装置の撮像画像から輝度画像を生成する輝度計算部14,及び,輝度画像を基に所定の対象物を検知する検知部15を有する画像処理装置1とを備える画像処理システムであって,画像処理装置1は,輝度画像中の所定領域の輝度指標値または検知部が検知する所定の対象物の種類に応じて,輝度計算部で利用される輝度計算式を変更する輝度計算式変更部13をさらに備える。

Description

画像処理システム及び配光制御システム
 本発明は,車両搭載用の画像処理システムと車両ヘッドライトの配光を制御する配光制御システムに関する。
 従来から車両搭載用の画像処理システムに関する発明が知られている(下記特許文献1を参照)。特許文献1に記載された画像処理システムは,車両に搭載された撮像手段と,前記撮像手段が撮影した画像を取得し前記画像の解析を行う画像解析手段とを備えている。この画像解析手段は,前記撮像手段が撮影した画像を解析して赤色に光る先行車のテールライトの位置を検出する。
 この画像処理システムでは,まず撮像画像内から赤色の画素を検出し,隣接する赤色画素を連結して「要素グループ」(=光点)を作成する。次にその要素グループの特徴量(例えば,要素グループに内接又は外接する矩形のサイズや,要素グループに含まれる画素の最大・最小輝度など)に基づいて車両(テールライト)とそれ以外の物体(反射板など)を判別している。
特開2014-232431号公報
 特許文献1の画像処理システムでは,路面上の橙色の反射板などの赤色に近い色の物体を先行車のテールライトとして誤検知する課題がある。
 テールライト検知の精度を上げるには,対象物の色や明るさを判別する処理に適した露光条件で画像を撮像することが好ましい。しかし,1つのシステム上で複数の認識機能を同時に動作させる場合,それぞれの機能に最適な露光条件で撮像するには高コストのカメラおよび回路が必要となる。他方,低コスト化のためには,複数の認識機能で露光条件を共有し,テールライト検知の観点からは必ずしも適切でない明るさの画像を入力してテールライト検知処理をせざるを得ない場合がある。そして,同様の課題は検知対象が他車のテールライトの場合限らず,対向車両のヘッドライトや信号機等の自発光式の発光体の検知でも発生し得る。さらに,発光体に限らず,例えば日中に他車を検知する際にトンネルの出入口等で撮像画像に黒つぶれや白とびが生じた場合にも同様の課題が発生し得る。
 本発明は,上記の課題に鑑みてなされたものであり,コストを上げることなく,検知対象物を高精度に識別可能な画像処理システムを提供することを目的とする。
 本願は上記課題を解決する手段を複数含んでいるが,その一例を挙げるならば,撮像装置と,輝度計算式を利用して前記撮像装置の撮像画像から輝度画像を生成する輝度計算部,及び,前記輝度画像を基に所定の対象物を検知する検知部を有する画像処理装置とを備える画像処理システムであって,前記画像処理装置は,前記輝度画像中の所定領域の輝度指標値または前記検知部が検知する前記所定の対象物の種類に応じて,前記輝度計算部で利用される輝度計算式を変更する輝度計算式変更部をさらに備えることを特徴とする。
 本発明によれば,検知対象物の検出に適した露光条件の撮像画像を得られない状況においても,コストを上げることなく当該検知対象物の検知率を向上できる。
車両制御システム100の概略構成図。 輝度画像上に設定される所定領域(前方車両領域)Aの説明図。 車両制御システム100による配光制御処理のフローチャート。 輝度計算式変更部13による輝度計算式の決定処理(変更処理)のフローチャート。 先行車テールライトと反射板の画像の一例。 同じ露光条件におけるテールライトと反射板に係る画像51,52の画素についての距離と輝度値の関係を示した図。 道路上の橙色の反射板の輝度画像及び輝度分布の一例を示す図。 輝度計算式変更部13による輝度計算式の決定処理(変更処理)のフローチャートの一例。 輝度計算式変更部13による輝度計算式の決定処理(変更処理)のフローチャートの一例。 輝度計算式変更部13による輝度計算式の決定処理(変更処理)のフローチャートの一例。 各輝度計算式の内容と各輝度計算式が選択される条件についてまとめた表。
 以下,本発明の実施形態について図面を用いて説明する。
  図1は本実施形態に係る車両制御システムの概略構成図である。この図の車両制御システム100は,車両(自車と称することがある)に備えられており,車両前方に設置され車両前方の所定の領域の画像を定期的に時系列で撮影する撮像装置としてのカメラ11と,カメラ11が撮影した画像(撮像画像)を処理する画像処理装置1と,画像処理装置1の処理結果を基に車両を制御する車両制御装置2を備えている。
 画像処理装置1と車両制御装置2は,それぞれコンピュータ(例えばマイクロコンピュータ)であり,例えば,入力部と,プロセッサである中央処理装置(CPU又はMPU)と,記憶装置であるリードオンリーメモリ(ROM)及びランダムアクセスメモリ(RAM)と,出力部とをそれぞれ有している。このうち入力部は,画像処理装置1及び車両制御装置2に入力される各種情報を,CPUが演算可能なように変換する。ROMは,適宜後述する演算処理を実行する制御プログラムと,当該演算処理の実行に必要な各種情報等が記憶された記録媒体であり,CPUは,ROMに記憶された制御プログラムに従って入力部及びROM,RAMから取り入れた信号に対して所定の演算処理を行う。出力部からは,出力対象を制御するための指令や出力対象が利用する情報等が出力される。なお,記憶装置は上記のROM及びRAMという半導体メモリに限られず,例えばハードディスクドライブ等の磁気記憶装置に代替可能である。
 画像処理装置1は,カメラ11の撮像画像(カラー画像)に基づいて物体検知をはじめとする外界認識処理を実行するコンピュータであり,画像取得部12と,輝度計算式変更部13と,輝度計算部14と,検知部15とを備えている。車両制御装置2は,画像処理装置1が出力する検知部15の検知結果に基づいて車両制御処理を実行するコンピュータであり,配光制御部16と,定速走行・車間距離制御部17とを備えている。なお,図1の画像処理装置1と車両制御装置2は異なる2つのコンピュータで構成しているが,一体のコンピュータで構成しても良い。
 画像取得部12は,カメラ11を制御し,定期的に露光時間(シャッタースピード)の設定および撮像を行ってカラー画像の時系列を取得し,それらを画像処理装置1内に記憶する処理を実行する。カラー画像はRGBカラーモデルで定義されており,カラー画像を構成する各画素の色は赤(R),緑(G),青(B)の明るさの組合せで定義されている。本実施形態ではR,G,Bそれぞれの明るさを0-255までの整数値(すなわち256階調)で表現しており各画素の色を3つの値(R値,G値,B値)の組合せで定義している。カラー画像は所定の周期で撮像されており,例えば1秒間につき30フレーム撮像されることがある。
 輝度計算部(輝度画像生成部)14は,輝度計算式変更部13で決定された輝度計算式を利用して,カメラ11の撮像画像(カラー画像)から輝度画像(Y)を生成する処理を実行する。ここで生成された輝度画像は画像処理装置1に記憶され,検知部15と輝度計算式変更部13に出力される。
 輝度計算式変更部13は,輝度計算部14で過去(例えば所定フレーム前)に生成された輝度画像の中央部に位置する所定領域Aの輝度指標値と,検知部15が検知対象とする所定の対象物の情報を含む検知部15の出力と,車両制御装置2が実行しているアプリケーションの情報を含む車両制御装置2の出力とに応じて,輝度計算部14で利用される輝度計算式を変更・決定する処理を実行する。本実施形態では後述する4つの輝度計算式(第1-第4輝度計算式)が利用されており,輝度計算式変更部13はその4つの輝度計算式から1つを選択することになっている。各輝度計算式は,R値,G値,B値のそれぞれに所定の係数を乗じた値の合計で定義されており,輝度計算部14はこの式にカラー画像を構成する画素のR値,G値,B値を代入することで当該画素の輝度を計算する。カメラ11の撮像画像の各画素について輝度を計算して集合させたものが輝度画像となる。
 所定領域Aは各輝度画像に設定される所定の領域である。所定領域Aは種々の規則に基づく設定が可能であるが,このうち自車の前方を走行する車両の位置を基準とした所定領域Aは特に前方車両領域Aと称することがある。図2は所定領域Aの説明図である。上段に示した輝度画像71には,直前まで検知部15で検知されていたがトンネル出口による画像の白とびにより検知不能となった前方車両(先行車両)をその外接矩形75で示しており,その前方車両(外接矩形75)の位置を基準として予め定められた大きさの矩形を定義することで所定領域(前方車両領域)A1を決定している。中段に示した輝度画像72には,同様にトンネル入口による画像の黒とびにより検知不能となった前方車両をその外接矩形76で示しており,その前方車両(外接矩形76)の位置を基準として予め定められた大きさの矩形を定義することで所定領域(前方車両領域)A1を決定している。下段に示した輝度画像72には,中段の輝度画像72と同様に前方車両の外接矩形76を示しているが,この前方車両の位置と直接的に無関係に輝度画像の中央部(すなわちカメラ11を自車進行方向に向けた場合の撮像画像の中央部)の予め定められた位置に予め定められた大きさの閉領域(例えば矩形)として所定領域A2を設定している。なお,ここでは前方車両として自車と同方向に走行する先行車両の例のみを説明したが,自車と逆方向に走行する対向車両の位置に基づいて所定領域Aを設定しても良い。
 本実施形態の輝度計算式変更部13は所定領域Aの輝度指標値に基づいて輝度計算式を変更できる。ここで輝度指標値とは,所定領域A内に含まれる複数の画素の,集合体としての輝度を示す指標値であり,例えば,所定領域Aに含まれる全画素又は適宜選択した複数の画素の輝度の平均値や,同全画素の最大輝度又は最小輝度などが利用できる。本実施形態では所定領域Aに含まれる全画素の平均輝度を輝度指標値として説明する。
 検知部15は,画像取得部12が取得したカラー画像と,輝度計算部14が生成した輝度画像の少なくとも1つに基づいて所定の対象物を検知する処理を実行し,その検知結果を車両制御装置2に出力する。検知部15が検知対象とする「所定の対象物」は車両制御装置2で実行されるアプリケーション(プログラム)の種類によって決定されることがある。配光制御部16に係る配光制御のアプリケーションが実行される場合には,他車両(先行車両,停止車両等)のテールライト(赤色系発光体)や,他車両(対向車両)のヘッドライト(白色系発光体)が所定の対象物となることができ,これらの対象物が検知された場合には車両が検知されたとみなすことができる。また,定速走行・車間距離制御部17に係る定速走行・車間距離制御(ACC:Adaptive Cruise Control)のアプリケーションが実行される場合には,他車両(先行車両,停止車両等)のテールライト(赤色系発光体)や,暗い露光条件(例えば露光時間が相対的に短い)で撮影された他車両(先行車両,停止車両等)のテールライト(赤色系発光体)が所定の対象物となることができる。
 車両制御装置2における配光制御部16は,画像処理装置1の検知部15の検知結果(車両検知結果)に基づいて,自車ヘッドライトの配光制御(配光制御アプリケーション)を実行する。配光制御としては,例えば,自車前方に先行車および対向車が存在しないときは自車ヘッドライトをハイビームに設定し,先行車または対向車が存在するときは自車ヘッドライトをロービームに設定するものがある。また,自車前方に他車が検知された場合にはその他車が自車ヘッドライトの照射領域から除外されるように自車ヘッドライトの遮光領域を決定し,その遮光領域に基づいて自車ヘッドライトの配光制御を行うものがある。後者の場合,複数のヘッドライトの光軸を変化させるアクチュエータ(例えば複数のモータ)と,各ヘッドライトの光の一部を遮蔽するためのシェード機構が自車に設けられており,配光制御部16からはそれらに対する制御信号が出力される。
 定速走行・車間距離制御部17は,画像処理装置1の検知部15の検知結果(車両検知結果)に基づいて,その検知車両と自車間の距離を一定に保持しつつ,走行速度を一定に保持するように自車の操舵制御(ステアリング制御)及び速度制御(エンジン制御,ブレーキ制御)に対応する機構(ステアリングコントロールユニット,エンジンコントロールユニット,ブレーキコントロールユニット)を適宜制御するACC(ACCアプリケーション)を実行する。
 -配光制御処理-
  次に図3を用いて車両制御システム100による配光制御処理の流れを説明する。車両制御システム100(画像処理装置1及び車両制御装置2)は図3のフローチャートを所定の制御周期で繰り返し実行している。
 処理を開始すると画像取得部12は,ステップS1において,カメラ11に対して次に撮像する画像の露光時間を設定し,所定のタイミングで撮像を行ってカラー画像(撮像画像)を取得する。
 ステップS2において,輝度計算式変更部13は,輝度計算式の決定処理を実行する。
本実施形態の輝度計算式変更部13は検知部15の検知対象物の種類に応じて輝度計算式を変更している。図4は本実施形態に係る輝度計算式変更部13による輝度計算式の決定処理(変更処理)のフローチャートである。
 ここでは輝度計算部14が輝度画像の生成に通常利用する基準の輝度計算式を第1輝度計算式と称する。本実施形態における第1輝度計算式は次の式(1)で表される。式(1)におけるYは輝度値を示し,R,G,Bは各画素のR値,G値,B値を示す。すなわち第1輝度計算式は,撮像画像中の任意の画素のR値,G値,B値のそれぞれに所定の係数を乗じた値の合計で定義されている。R,G,Bの係数の合計は1となる。
 
  Y=0.299R+0.587G+0.114B …式(1)
 
  図4の処理が開始されると輝度計算式変更部13は,ステップS21において,検知部15から入力される検知結果を基に検知部15の検知対象物の種類を入力する。
 ステップS22では,輝度計算式変更部13は,ステップS21の検知対象物が対向車のヘッドライト(白色系発光体)か否かを判定する。ここで検知対象物が対向車のヘッドライトであればステップS23に進み,それ以外であればステップS24に進む。
 ステップS23では,輝度計算式変更部13は,輝度計算式として第2輝度計算式を設定する。第2輝度計算式は,第1輝度計算式よりもB値の係数が大きく,第1輝度計算式よりもR値とG値の係数が小さい。本実施形態における第2輝度計算式は次の式(2)で表される。ヘッドライトをはじめとする白色光に対する感度はR,G,B画素で異なり,「G>R>B」の関係にある。そのため,輝度画像の生成に第2輝度計算式を用いると第1輝度計算式を用いた場合よりも白とびが低減される。
 
  Y=B …式(2)
 
  ステップS24では,輝度計算式変更部13は,ステップS21の検知対象物が先行車のテールライト(赤色系発光体)か否かを判定する。ここで検知対象物が先行車のテールライトであればステップS25に進み,それ以外であればステップS26に進む。
 ステップS25では,輝度計算式変更部13は,輝度計算式として第4輝度計算式を設定する。第4輝度計算式は,第1輝度計算式よりもR値の係数が大きく,第1輝度計算式よりもG値とB値の係数が小さい。本実施形態における第4輝度計算式は次の式(4)で表される。第1輝度計算式よりもR値の係数を大きくすることで赤色光に対する感度が向上する。このため,輝度画像の生成に第4輝度計算式を用いると第1輝度計算式を用いた場合よりも赤色系発光体の黒つぶれが低減される。
 
  Y=R …式(4)
 
  ステップS26では,輝度計算式変更部13は,輝度計算式として第1輝度計算式を設定する。
 上記のようにステップS23,S25,S26のいずれかで輝度計算式が決定されると,輝度計算式変更部13は図4の処理を終了し,図3のステップS3の処理が開始される。
 ステップS3において,輝度計算部14は,輝度計算式変更部13がステップS2(すなわちステップS23,S25,S26のいずれか)で決定した輝度計算式を利用して画像取得部12がステップS1で取得したカラー画像中の全ての画素について輝度値Yを算出し,その算出した輝度値Yから輝度画像を生成する。生成された輝度画像は検知部15や輝度計算式変更部13に出力される。
 ステップS4において,検知部15は,画像取得部12が取得したカラー画像の中から車両候補光点を検出する。具体的には,まず,カラー画像中で探索する色の条件を検知対象物の種類に応じて設定し,カラー画像を走査してその条件に該当する色の画素を検出する。次に,隣り合う検出画素を同一グループとして連結し,それらの画素群(グループ)が占める領域を光点とみなす。本ステップにより検知対象物の種類に適した複数の光点が検出され得る。
 ところで,ステップS4の車両候補光点の検出には,次のような課題がある。すなわち,先行車テールライト(図5の画像51の矩形内参照)が検知部15の検知対象物の場合,カラー画像中で赤色を探索することで光点を検出する。しかし,道路上の本来は橙色の反射板の画像(図5の画像52の矩形内参照)のエッジ部にテールライトと同じ赤色が出る場合があり,光点の赤色度合に基づく判定だけではテールライトと反射板の区別が難しい。そこで,本実施形態では続くステップS5の輝度による判定を行っている。
 ステップS5において,検知部15は,ステップS4で検出した各光点が車両ライト(対向車ヘッドライトまたは先行車テールライト)であるか否かを判定する。具体的には,光点の領域に含まれる画素のうち代表的なもの(例えばもっとも明るい画素)を選ぶ。そして,その画素の輝度値をステップS3で生成した輝度画像で確認し,その画素の輝度値が検知対象物ごとに定められた所定の閾値以上であるか否かを判定する。その画素の輝度値が所定の閾値以上である場合にはステップS6に進み,輝度値が所定の閾値未満の場合にはステップS7へ進む。
 ステップS6において,検知部15は,ステップS5で輝度値の判定対象とした光点に対し,当該光点は車両ライト(対向車ヘッドライトまたは先行車テールライト)であり,その車両ライトに係る車両を自車ヘッドライトの遮光対象とする旨の情報を付加し,配光制御部16へ出力する。
 ステップS7において,検知部15は,ステップS5で輝度値の判定対象とした光点に対し,当該光点は車両ライトではなく,その車両ライトに係る車両を自車ヘッドライトの遮光対象としない旨の情報を付加し,配光制御部16へ出力する。
 ステップS8において,配光制御部16は,ステップS6またはS7で得た光点情報に基づいて,自車ヘッドライトの遮光領域を決定し,その遮光領域が自車ヘッドライトの照射領域から除外されるように自車ヘッドライトの配光制御を行う。
 以上により,車両制御システム100による配光制御処理の1サイクルが完了する。車両制御システム100は所定の制御周期だけ待機した後,ステップS1から一連の処理を再び実行する。
 <作用・効果>
  次に上記のように構成される車両制御システム100の作用・効果について説明する。
 まず,本発明が解決しようとする課題について説明する。図3で説明したステップS5の輝度値に基づく判定では,自発光式の発光体(例えば,先行車テールライトや対向車ヘッドライト)と反射光式の発光体(例えば反射板)を判別することが難しい場合がある。図6は同じ露光条件におけるテールライトと反射板に係る画像51,52の画素についての距離と輝度値の関係を示した図である。この図に示すようにテールライトと反射板の光点の輝度値は近距離(図中の例では150m以下)ではともに最大値に達してしまい(輝度値が飽和してしまい),輝度値の大小では判別ができない。輝度値が飽和しない露光条件で撮像すれば改善されるが,車両制御システムの他の機能と画像を共有しているため露光条件を変えることは現実的に難しい。
 そこで本実施形態では,図4に示したフローチャートのように,検知部15の検知対象物の種類に応じて,輝度画像を作成する際に利用する輝度計算式を変更することとした。
 具体的には,対向車ヘッドライトが検知対象物のときは,ステップS23で第2輝度計算式(Y=B)を使うことにした。図7は道路上の橙色の反射板の輝度画像及び輝度分布の一例を示す図であり,図中の左側に第1輝度計算式を使った場合を示し,図中の右側に第2輝度計算式を使った場合を示す。図7の左側に示すように,第1輝度計算式を利用した場合には輝度値の分布のピークの1つが最大値(255)に存在しており,輝度に基づくS5の処理では対向車ヘッドライトとの区別が難しいことが分かる。既述のとおりR,G,BのうちBは白色光に対する感度が一番低い。第1輝度計算式よりもB値の係数が大きく,R値とG値の係数が小さい第2輝度計算式を利用して輝度値を算出すると,図7の右側に示すように第1輝度計算式を利用したときよりも光点の輝度値が低い値で分布するようになり,図7の例では輝度値の分布を255未満の値(図中左側の値)に分散させることができる。これにより対向車ヘッドライトと反射板の輝度値に基づく区別が容易になり,白色系の自発光式の発光体である対向車ヘッドライトの検出に適した露光条件の撮像画像を得られない状況においてもコストを上げることなく当該発光体の検知率を向上できる。
 また同様に,先行車テールライトが検知対象物のときは,ステップS25で第4輝度計算式(Y=R)を使うこととした。第1輝度計算式よりもR値の係数が大きく,G値とB値の係数が小さい第4輝度計算式を利用すると,テールライトに係るR値の高い画素が高輝度となって強調されるとともに第1輝度計算式を利用したときよりも光点の輝度値が低い値で分布するようになる。これにより先行車テールライトと反射板の輝度値に基づく区別が容易になり,赤色系の自発光式の発光体である先行車テールライトの検知率を向上できる。
 -定速走行・車間距離制御(ACC)-
  上記で説明した輝度計算式変更部13による輝度計算式の変更は,例えばACCの実行中に,トンネルの入口や出口で撮像画像に黒つぶれや白とびが発生し遠方の先行車両を見失った場合(図2の画像71,72参照)にも利用可能である。図8はこの場合の輝度計算式変更部13による輝度計算式の決定処理(変更処理)のフローチャートの一例である。輝度計算式変更部13はこのフローチャートを所定の制御周期で繰り返し実行する。
 図8の処理が開始されると輝度計算式変更部13は,ステップS31において,検知部15から入力される検知結果を基に,他車両が検知されている状態から検知不能の状態に変化したか否かを判定する。そして,検知不能に変化した場合にはステップS32に進み,変化しない場合(すなわち他車の検知が継続している場合)にはステップS40に進む。
 ステップS32では,輝度計算式変更部13は,他車両が検知されている状態でカメラ11が撮影したカラー画像を基に生成された輝度画像のうち可能な限り最新のものを読み込む。なお,輝度画像を読み込む代わりにカラー画像を読み込んでも良い。
 ステップS33では,輝度計算式変更部13は,ステップS32で読み込んだ輝度画像において他車両の位置を基準にして所定領域(前方車両領域)Aを設定する。所定領域Aの設定方法の一例としては図2で説明したものがある。なお,ステップS32でカラー画像を読み込んだ場合にはその画像上の他車両の位置を基に所定領域Aを設定しても良い。
 ステップS34では,輝度計算式変更部13は,ステップS32で読み込んだ輝度画像中の所定領域Aの輝度指標値を演算する。なお,ステップS32でカラー画像を読み込んだ場合には,そのカラー画像に対応する輝度画像上の所定領域Aの輝度指標値を演算する。
 ステップS35では,輝度計算式変更部13は,所定領域Aの輝度指標値が第1閾値(Y1)以下かつ第2閾値(Y2)以上か否かを判定する。第1閾値(Y1)は,カラー画像(撮像画像)に白とびが発生したとみなすために規定された輝度の閾値であり,第2閾値(Y2)は,同様に黒つぶれが発生したとみなすために規定された輝度の閾値である。
  ただし第1閾値(Y1)は第2閾値(Y2)より大きい値とする(すなわち,Y1>Y2)。所定領域Aの輝度指標値が第2閾値以上かつ第1閾値以下であれば適正な輝度であるとみなすことができる。所定領域Aの輝度指標値が第1閾値(Y1)以下かつ第2閾値(Y2)以上である場合にはステップS36に進み,そうでない場合にはステップS37に進む。
 ステップS36では,輝度計算式変更部13は,輝度計算式として第1輝度計算式を設定する。
 ステップS37では,輝度計算式変更部13は,所定領域Aの輝度指標値が第1閾値(Y1)より大きいか否かを判定する。所定領域Aの輝度指標値が第1閾値(Y1)より大きい場合にはステップS38に進み,そうでない場合(すなわち,所定領域Aの輝度指標値が第2閾値(Y2)より小さい場合)にはステップS39に進む。
 ステップS38では,輝度計算式変更部13は,輝度計算式として第2輝度計算式を設定する。
 ステップS39では,輝度計算式変更部13は,輝度計算式として第3輝度計算式を設定する。第3輝度計算式は,第1輝度計算式よりもG値の係数が大きく,第1輝度計算式よりもR値とB値の係数が小さい。本実施形態における第3輝度計算式は次の式(3)で表される。先述のように白色光に対する感度はR,G,B画素で異なり,「G>R>B」の関係にある。そのため,輝度画像の生成に第3輝度計算式を用いると第1輝度計算式を用いた場合よりも黒つぶれが低減される。
  Y=G …式(3)
  ステップS40では,輝度計算式変更部13は,輝度計算式として第1輝度計算式を設定する。
 <作用・効果>
  上記のように構成された輝度計算式変更部13が決定した輝度計算式を利用して輝度画像を生成した場合の作用・効果について説明する。
 まず,トンネルの出口でカラー画像(撮像画像)に白とびが発生し遠方の他車両を見失ったときには,輝度計算式変更部13はステップS38で第2輝度計算式を輝度計算式に設定し,輝度計算部14はこの第2輝度計算式を利用して輝度画像を生成する。この輝度画像では第2輝度計算式によって白とびが低減されているので,カラー画像中で見失った車両を検知できる可能性が向上する。これにより白とび発生時の他車両の検出に適した露光条件の撮像画像を得られない状況においてもコストを上げることなく他車両の検知率を向上できる。
 また,トンネルの入口でカラー画像(撮像画像)に黒つぶれが発生し遠方の他車両を見失ったときには,輝度計算式変更部13はステップS39で第3輝度計算式を輝度計算式に設定し,輝度計算部14はこの第3輝度計算式を利用して輝度画像を生成する。この輝度画像では第3輝度計算式によって黒つぶれが低減されているので,カラー画像中で見失った車両を検知できる可能性が向上する。これにより黒つぶれ発生時の他車両の検出に適した露光条件の撮像画像を得られない状況においてもコストを上げることなく他車両の検知率を向上できる。
 なお,白とびや黒つぶれが発生しない場合や,他車両を見失っていない場合には,通常と同じ第1輝度計算式が設定されるので,輝度計算式の変更に伴い不都合は生じない。
 -変形例1-
  ところで,図8の例では,見失った車両の位置を基準に所定領域Aを設定したが,その車両の位置とは直接的に無関係に輝度画像の中央部の予め定められた位置に予め定められた大きさの矩形を所定領域として設定し,輝度計算式を決定しても良い。図9にこの場合の輝度計算式変更部13による輝度計算式の決定処理(変更処理)のフローチャートの一例を示す。輝度計算式変更部13はこのフローチャートを所定の制御周期で繰り返し実行する。図8と同じ処理には同じ符号を付して説明は省略する。
 図9の処理が開始されると輝度計算式変更部13は,ステップS41において,輝度計算式変更部13は,カメラ11が撮影したカラー画像を基に生成された輝度画像のうち可能な限り最新のものを読み込む。なお,輝度画像を読み込む代わりにカラー画像を読み込んでも良い。
 ステップS42では,輝度計算式変更部13は,ステップS41で読み込んだ輝度画像中の予め定められた所定領域Aの輝度指標値を演算する。なお,ステップS41でカラー画像を読み込んだ場合には,そのカラー画像に対応する輝度画像上の所定領域Aの輝度指標値を演算する。
 ステップ35以降の処理については図8と同じなので説明は省略する。
 このように輝度計算式変更部13を構成しても,白とびや黒つぶれ発生時の他車両の検出に適した露光条件の撮像画像を得られない状況においてもコストを上げることなく他車両の検知率を向上できる。
 -変形例2-
  なお,図8,9のフローチャートは図4のフローチャートと組合せても良い。図10にこの場合の輝度計算式変更部13による輝度計算式の決定処理(変更処理)のフローチャートの一例を示す。図10ではステップS31でNOと判定された場合に図4のステップS21に進むように構成されている。このように輝度計算式変更部13を構成しても,所定の検知対象物の検出に適した露光条件の撮像画像を得られない状況においてもコストを上げることなく当該所定の検知対象物の検知率を向上できる。なお,図10では図8と図4のフローチャートを組み合わせた例を示したが,図9と図4のフローチャートを組合せても良いことは言うまでもない。
 最後に各実施形態で利用した4つの輝度計算式についてまとめる。図11は各輝度計算式の内容と各輝度計算式が選択される条件についてまとめた表である。
 この図に示すように,白とび低減のために利用される第2輝度計算式(Y=B)が選択される条件としては,例えば,所定領域(前方車両領域)Aの輝度指標値が第1閾値(Y1)より高い場合,先行車両が撮像画像の白とびにより検出不能となった場合(例えば,トンネル出口),検知部15の検知対象物が対向車のヘッドライトである場合(すなわち,ヘッドライトと反射板の判別が行われる場合)がある。
 また,黒つぶれ低減のために利用される第3輝度計算式(Y=G)が選択される条件としては,例えば,所定領域(前方車両領域)Aの輝度指標値が第2閾値(Y2)より低い場合,先行車両が撮像画像の黒つぶれにより検出不能となった場合(例えば,トンネル入口や陸橋の下)がある。
 また,暗い赤色灯検知のために利用される第4輝度計算式(Y=R)が選択される条件としては,例えば,検知部15の検知対象が遠方(例えば自車から500m以上離れた距離)の走行車両のテールライトの場合,検知部15の検知対象が近距離(例えば自車から50m以内の距離)にある走行車両のテールライトの場合(前者の場合よりも露光条件が暗い場合)がある。
 なお,第1輝度計算式における係数は一例に過ぎず,例えば小数点第2位を四捨五入して「Y=0.3R+0.6+0.1B」としても良い。
 -その他-
  本発明は,上記の実施の形態に限定されるものではなく,その要旨を逸脱しない範囲内の様々な変形例が含まれる。例えば,本発明は,上記の実施の形態で説明した全ての構成を備えるものに限定されず,その構成の一部を削除したものも含まれる。また,ある実施の形態に係る構成の一部を,他の実施の形態に係る構成に追加又は置換することが可能である。
 また,上記の処理装置1,制御装置2に係る各構成や当該各構成の機能及び実行処理等は,それらの一部又は全部をハードウェア(例えば各機能を実行するロジックを集積回路で設計する等)で実現しても良い。また,上記の装置1,2に係る構成は,演算処理装置
(例えばCPU)によって読み出し・実行されることで当該装置の構成に係る各機能が実現されるプログラム(ソフトウェア)としてもよい。当該プログラムに係る情報は,例えば,半導体メモリ(フラッシュメモリ,SSD等),磁気記憶装置(ハードディスクドライブ等)及び記録媒体(磁気ディスク,光ディスク等)等に記憶することができる。
 また,上記の各実施の形態の説明では,制御線や情報線は,当該実施の形態の説明に必要であると解されるものを示したが,必ずしも製品に係る全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えて良い。
 1…画像処理装置,11…カメラ,12…画像取得部,13…輝度計算式変更部,14…輝度計算部,15…車両検知部,16…配光制御部,17…定速走行・車間距離制御部,100…車両制御システム

Claims (11)

  1.  撮像装置と,
     輝度計算式を利用して前記撮像装置の撮像画像から輝度画像を生成する輝度計算部,及び,前記輝度画像を基に所定の対象物を検知する検知部を有する画像処理装置とを備える画像処理システムであって,
     前記画像処理装置は,前記輝度画像中の所定領域の輝度指標値または前記検知部が検知する前記所定の対象物の種類に応じて,前記輝度計算部で利用される輝度計算式を変更する輝度計算式変更部をさらに備えることを特徴とする画像処理システム。
  2.  請求項1の画像処理システムにおいて,
     前記輝度計算式変更部は,前記輝度画像中の所定領域の輝度指標値が第1閾値を超えるとき,前記輝度画像中の所定領域の輝度指標値が前記第1閾値より小さい第2閾値以上かつ前記第1閾値以下のときに前記輝度計算部が前記輝度計算式として利用する第1輝度計算式よりも前記輝度画像の白とびを低減する第2輝度計算式に前記輝度計算式を変更することを特徴とする画像処理システム。
  3.  請求項1の画像処理システムにおいて,
     前記輝度計算式変更部は,前記検知部により前記所定の対象物が検知されている状態から検知不能の状態に変化し,かつ,前記輝度画像中の所定領域の輝度指標値が第1閾値を超えるとき,前記輝度画像中の所定領域の輝度指標値が前記第1閾値より小さい第2閾値以上かつ前記第1閾値以下のときに前記輝度計算部が前記輝度計算式として利用する基準輝度計算式よりも前記輝度画像の白とびを低減する第2輝度計算式に前記輝度計算式を変更することを特徴とする画像処理システム。
  4.  請求項1の画像処理システムにおいて,
     前記輝度計算式変更部は,前記検知部の前記所定の対象物が白色系発光体であるとき,前記輝度計算部が前記輝度計算式として通常利用する第1輝度計算式よりも前記輝度画像の白とびを低減する第2輝度計算式に前記輝度計算式を変更することを特徴とする画像処理システム。
  5.  請求項2の画像処理システムにおいて,
     前記撮像画像はRGBカラーモデルで定義されており,
     前記第1輝度計算式は,前記撮像画像中の任意の画素のR値,G値,B値のそれぞれに所定の係数を乗じた値の合計で定義されており,
     前記第2輝度計算式は,前記第1輝度計算式よりもB値の係数が大きく,前記第1輝度計算式よりもR値とG値の係数が小さいことを特徴とする画像処理システム。
  6.  請求項1の画像処理システムにおいて,
     前記輝度計算式変更部は,前記輝度画像中の所定領域の輝度指標値が第2閾値未満のとき,前記輝度画像中の所定領域の輝度指標値が前記第2閾値以上かつ前記第2閾値より大きい第1閾値以下のときに前記輝度計算部が前記輝度計算式として利用する第1輝度計算式よりも前記輝度画像の黒つぶれを低減する第3輝度計算式に前記輝度計算式を変更することを特徴とする画像処理システム。
  7.  請求項1の画像処理システムにおいて,
     前記輝度計算式変更部は,前記検知部により前記所定の対象物が検知されている状態から検知不能の状態に変化し,かつ,前記輝度画像中の所定領域の輝度指標値が第2閾値未満のとき,前記輝度画像中の所定領域の輝度指標値が前記第2閾値以上かつ前記第2閾値より大きい第1閾値以下のときに前記輝度計算部が前記輝度計算式として利用する第1輝度計算式よりも前記輝度画像の黒つぶれを低減する第3輝度計算式に前記輝度計算式を変更することを特徴とする画像処理システム。
  8.  請求項6の画像処理システムにおいて,
     前記撮像画像はRGBカラーモデルで定義されており,
     前記第1輝度計算式は,前記撮像画像中の任意の画素のR値,G値,B値のそれぞれに所定の係数を乗じた値の合計で定義されており,
     前記第3輝度計算式は,前記第1輝度計算式よりもG値の係数が大きく,前記第1輝度計算式よりもR値とB値の係数が小さいことを特徴とする画像処理システム。
  9.  請求項1の画像処理システムにおいて,
     前記輝度計算式変更部は,前記検知部の前記所定の対象物が赤色系発光体であるとき,前記輝度計算部が前記輝度計算式として通常利用する第1輝度計算式よりも前記輝度画像の黒つぶれを低減する第4輝度計算式に前記輝度計算式を変更することを特徴とする画像処理システム。
  10.  請求項9の画像処理システムにおいて,
     前記撮像画像はRGBカラーモデルで定義されており,
     前記第1輝度計算式は,前記撮像画像中の任意の画素のR値,G値,B値のそれぞれに所定の係数を乗じた値の合計で定義されており,
     前記第4輝度計算式は,前記第1輝度計算式よりもR値の係数が大きく,前記第1輝度計算式よりもG値とB値の係数が小さいことを特徴とする画像処理システム。
  11.  撮像装置と,
     輝度計算式を利用して前記撮像装置の撮像画像から輝度画像を生成する輝度計算部,及び,前記輝度画像を基に所定の対象物を検知する検知部を有する画像処理装置と,
     前記検知部の検知結果に基づいて決定した自車ヘッドライトの遮光領域に基づいて配光制御を行う配光制御部とを備える配光制御システムであって,
     前記画像処理装置は,前記輝度画像中の所定領域の輝度指標値または前記検知部が検知する前記所定の対象物の種類に応じて,前記輝度計算部で利用される輝度計算式を変更する輝度計算式変更部をさらに備えることを特徴とする配光制御システム。
PCT/JP2018/046920 2018-01-17 2018-12-20 画像処理システム及び配光制御システム WO2019142586A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112018005975.8T DE112018005975T5 (de) 2018-01-17 2018-12-20 Bildverarbeitungssystem und Lichtverteilungssystem
JP2019565778A JP6894536B2 (ja) 2018-01-17 2018-12-20 画像処理システム及び配光制御システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-005794 2018-01-17
JP2018005794 2018-01-17

Publications (1)

Publication Number Publication Date
WO2019142586A1 true WO2019142586A1 (ja) 2019-07-25

Family

ID=67300985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046920 WO2019142586A1 (ja) 2018-01-17 2018-12-20 画像処理システム及び配光制御システム

Country Status (3)

Country Link
JP (1) JP6894536B2 (ja)
DE (1) DE112018005975T5 (ja)
WO (1) WO2019142586A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09311927A (ja) * 1996-05-24 1997-12-02 De-Shisu:Kk 駐車車両検出装置及び駐車車両検出方法
JPH1196367A (ja) * 1997-09-19 1999-04-09 Nagoya Denki Kogyo Kk 駐車車両検出方法およびその装置
JP2003032669A (ja) * 2001-07-11 2003-01-31 Hitachi Ltd 車載用画像処理カメラ装置
JP2004194993A (ja) * 2002-12-19 2004-07-15 Pentax Corp 電子内視鏡装置
JP2007018154A (ja) * 2005-07-06 2007-01-25 Honda Motor Co Ltd 車両及びレーンマーク認識装置
JP2012155612A (ja) * 2011-01-27 2012-08-16 Denso Corp 車線検出装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6085522B2 (ja) 2013-05-29 2017-02-22 富士重工業株式会社 画像処理装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09311927A (ja) * 1996-05-24 1997-12-02 De-Shisu:Kk 駐車車両検出装置及び駐車車両検出方法
JPH1196367A (ja) * 1997-09-19 1999-04-09 Nagoya Denki Kogyo Kk 駐車車両検出方法およびその装置
JP2003032669A (ja) * 2001-07-11 2003-01-31 Hitachi Ltd 車載用画像処理カメラ装置
JP2004194993A (ja) * 2002-12-19 2004-07-15 Pentax Corp 電子内視鏡装置
JP2007018154A (ja) * 2005-07-06 2007-01-25 Honda Motor Co Ltd 車両及びレーンマーク認識装置
JP2012155612A (ja) * 2011-01-27 2012-08-16 Denso Corp 車線検出装置

Also Published As

Publication number Publication date
JPWO2019142586A1 (ja) 2020-12-17
DE112018005975T5 (de) 2020-08-06
JP6894536B2 (ja) 2021-06-30

Similar Documents

Publication Publication Date Title
US10286834B2 (en) Vehicle exterior environment recognition apparatus
US10442343B2 (en) Vehicle exterior environment recognition apparatus
JP4253271B2 (ja) 画像処理システム及び車両制御システム
JP6132412B2 (ja) 車外環境認識装置
JP4253275B2 (ja) 車両制御システム
US10037473B2 (en) Vehicle exterior environment recognition apparatus
US10121083B2 (en) Vehicle exterior environment recognition apparatus
JP6701253B2 (ja) 車外環境認識装置
JP6420650B2 (ja) 車外環境認識装置
JP4980939B2 (ja) 撮像手段の調整装置および物体検出装置
JP7241772B2 (ja) 画像処理装置
US11704910B2 (en) Vehicle detecting device and vehicle lamp system
WO2013168744A1 (ja) 車両の光源を検出する方法及び装置
JP2007124676A (ja) 車載用画像処理装置
JP2014024411A (ja) 自発光光源検出装置、ライト制御装置、および自発光光源検出プログラム
WO2019142586A1 (ja) 画像処理システム及び配光制御システム
JP5547580B2 (ja) 撮像カメラ及びこれを用いた車両検出装置とランプ制御装置
JP7261006B2 (ja) 車外環境認識装置
JP7114965B2 (ja) ターゲット検出方法、装置及び画像処理装置
CN114867639A (zh) 用于控制机动车辆照明系统的方法
JP5310162B2 (ja) 車両灯火判定装置
JP2020177340A (ja) 画像処理装置
JP7277666B2 (ja) 処理装置
JP7142131B1 (ja) 車線検出装置、車線検出方法および車線検出プログラム
JP5803650B2 (ja) 物体判別装置、車両用前照灯装置、車両、物体判別方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901701

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019565778

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18901701

Country of ref document: EP

Kind code of ref document: A1