WO2019141045A1 - 一种沉浸式制备钙钛矿薄膜的设备及使用方法和应用 - Google Patents

一种沉浸式制备钙钛矿薄膜的设备及使用方法和应用 Download PDF

Info

Publication number
WO2019141045A1
WO2019141045A1 PCT/CN2018/122633 CN2018122633W WO2019141045A1 WO 2019141045 A1 WO2019141045 A1 WO 2019141045A1 CN 2018122633 W CN2018122633 W CN 2018122633W WO 2019141045 A1 WO2019141045 A1 WO 2019141045A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
deposited
sealed chamber
perovskite
vessel
Prior art date
Application number
PCT/CN2018/122633
Other languages
English (en)
French (fr)
Inventor
姚冀众
颜步一
盛睿
顾楠楠
Original Assignee
杭州纤纳光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州纤纳光电科技有限公司 filed Critical 杭州纤纳光电科技有限公司
Priority to US16/960,361 priority Critical patent/US20200373507A1/en
Priority to JP2020535494A priority patent/JP7037838B6/ja
Priority to KR1020207020952A priority patent/KR102418868B1/ko
Priority to EP18901559.7A priority patent/EP3723118B1/en
Publication of WO2019141045A1 publication Critical patent/WO2019141045A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/811Of specified metal oxide composition, e.g. conducting or semiconducting compositions such as ITO, ZnOx
    • Y10S977/812Perovskites and superconducting composition, e.g. BaxSr1-xTiO3

Definitions

  • the invention belongs to the technical field of perovskite solar cells, and particularly relates to an apparatus for immersing and preparing a perovskite film, and a using method and application thereof.
  • a solar cell is a photoelectric conversion device that converts solar energy into electrical energy using the photovoltaic effect of a semiconductor. Since its inception, solar power has become the most important renewable energy source besides hydropower and wind power.
  • the semiconductors currently used for commercialization include monocrystalline silicon, polycrystalline silicon, amorphous silicon, cadmium telluride, copper indium gallium selenide, etc., but most of them are energy-intensive and costly.
  • Perovskite solar cell has been widely concerned, and this perovskite solar cell has an organic metal halide as a light absorbing layer.
  • Perovskite is a cubic octahedral structure of ABX 3 type, as shown in Figure 1.
  • the thin film solar cell prepared by the material has the advantages of simple process, low production cost, stability and high conversion rate. Since 2009, the photoelectric conversion efficiency has increased from 3.8% to over 22%, which is higher than the commercial crystalline silicon solar cell and has Large cost advantage.
  • the existing various perovskite solar cell film forming processes can be divided into two major categories: solution method and gas phase method.
  • the solution method is easy to operate, but the film uniformity and repeatability are poor, which affects the efficiency of the battery.
  • the gas phase method includes a dual source co-evaporation method, a gas phase assisted solution method, a chemical vapor deposition (CVD) method, etc., wherein a gas phase solution assisting method can prepare a perovskite film having uniform, large grain size and small surface roughness, but the film is Repeatability and film quality need to be improved.
  • the technical problem to be solved by the present invention is to provide an apparatus for immersing and preparing a perovskite film, a method and application method thereof, and a uniform and stable reaction environment, which can control the crystal growth of the film during the preparation process and improve film formation. Quality and uniformity and repeatability, and can be embedded in large production lines for continuous production.
  • the present invention is achieved by providing an apparatus for immersing a perovskite film, comprising a sealed chamber having at least one set of semi-closed reactor devices disposed therein, the semi-closed reactor device comprising Lowering the sublimation device and the upper heating stage, and providing a vessel with an opening upward facing the top of the lower heating sublimation device, wherein the vessel holds a reactant precursor, and a substrate is disposed directly above the vessel a substrate holder, the substrate holder is covered on the opening of the vessel, and a substrate holder supporting platform is disposed on a side of the vessel, the substrate holder is disposed on the substrate holder supporting platform, and the substrate holder is disposed on the substrate holder
  • the lower bottom surface is provided with a substrate to be deposited, the substrate being located directly above the vessel, the surface to be deposited thereon facing the reactant precursor in the vessel, the upper heating station being disposed on the substrate holder to heat the substrate
  • the reactant precursor is evaporated onto the surface of the substrate; the gas pressure
  • the opening area of the vessel is larger than the area of the substrate.
  • the substrate holder can drive the substrate to reciprocate back and forth in a horizontal or vertical direction.
  • the thickness of the reactant precursor in the vessel is 2 to 10 mm, and the difference in thickness is not more than 0.1 to 1.0 mm; the distance between the surface to be deposited of the substrate and the top surface of the reactant precursor is 5 ⁇ 40mm.
  • reaction gas pressure in the sealed chamber ranges from 10 -5 Pa to 10 5 Pa
  • heating temperature of the upper heating stage ranges from 20 to 400 ° C
  • heating temperature range of the lower heating sublimation device ranges from 20 to 20 400 ° C
  • the reaction time is 10 ⁇ 120min.
  • the sealed chamber is a small cavity or a large continuous production device, and the air pressure in the sealed chamber is controlled by a vacuum pump and a vacuum valve.
  • the present invention is thus achieved, and provides a method of using the apparatus for immersing a perovskite film as described above, comprising the steps of:
  • the reactant precursor material is poured into the vessel, the substrate to be deposited is placed face down on the inner bottom surface of the substrate holder, and the substrate holder is placed on the substrate holder supporting platform, and then the setting is performed.
  • a good semi-closed reactor unit is placed in the sealed chamber;
  • the second step is: extracting the gas in the sealed chamber, controlling the air pressure in the sealed chamber; respectively energizing the upper heating stage and the lower heating sublimation device, controlling the heating temperature of the upper heating stage and the lower heating sublimation device, and the reactant precursor is evaporated and Deposited onto the surface of the substrate;
  • the upper heating stage and the lower heating sublimation device are powered off to stop heating, and the atmospheric pressure is restored in the sealed chamber, and the substrate on which the reactant precursor is deposited is taken out.
  • the thickness of the reactant precursor in the vessel is 2 to 10 mm, and the difference in thickness is not more than 0.1 to 1.0 mm, and the surface to be deposited of the substrate and the top of the reactant precursor The surface height distance is 5 ⁇ 40mm.
  • the substrate holder can drive the substrate to reciprocate back and forth in a horizontal or vertical direction.
  • the sealed chamber is a small cavity or a large continuous production device, and the air pressure in the sealed chamber is controlled by a vacuum pump and a vacuum valve.
  • the reaction gas pressure in the sealed chamber ranges from 10 -5 Pa to 10 5 Pa
  • the heating temperature of the upper heating stage ranges from 20 to 400 ° C
  • the lower heating sublimation device The heating temperature ranges from 20 to 400 °C.
  • the present invention is achieved by providing a perovskite solar cell comprising a perovskite layer, wherein the immersed preparation of calcium and titanium is used in the preparation of the perovskite layer.
  • the present invention is achieved by the present invention, and further provides a method for preparing the foregoing perovskite solar cell, the perovskite solar cell comprising a first conductive electrode, a first transport layer, a perovskite film layer, and a second transport layer And a second conductive electrode, the preparation method comprising the following steps:
  • B in the metal halide BX 2 is a divalent metal cation, which may be lead, tin, tungsten, copper, zinc, gallium, germanium, arsenic, selenium, tellurium, palladium, silver, cadmium, indium, antimony, a cation of ruthenium, rhodium, platinum, gold, mercury, ruthenium, osmium, iridium, and X is an anion of any one of chlorine, bromine, iodine, thiocyanate, cyanide, and oxycyanate;
  • the thickness of the BX 2 film is 80-300 nm;
  • A is any one of ruthenium, osmium, potassium, amine, sulfhydryl or alkali
  • X is any of chlorine, bromine, iodine, thiocyanate, cyanide and oxycyanate.
  • the thickness of the reactant precursor in the vessel is 2 to 10 mm, and the difference in thickness of each reactant precursor is not more than 0.1 to 1.0 mm, and the surface to be deposited and the reactant precursor of the substrate
  • the top surface height distance is 5 ⁇ 40 mm; the reaction gas pressure in the sealed chamber ranges from 10 -5 Pa to 10 5 Pa, and the upper heating stage has a heating temperature range of 100-400 ° C, and the lower heating sublimation device The heating temperature ranges from 100 to 400 ° C, and the prepared perovskite film layer has a thickness of 100 to 600 nm.
  • the substrate holder can drive the substrate to reciprocate back and forth in a horizontal or vertical direction.
  • the sealed chamber is a small cavity or a large continuous production device, and the air pressure in the sealed chamber is controlled by a vacuum pump and a vacuum valve.
  • the apparatus for immersing and preparing the perovskite film of the invention and the method and application thereof provide a uniform and stable reaction environment, and can control the crystal growth of the film during the preparation of the perovskite film. Improve film quality, uniformity and repeatability, and can be embedded in large production lines for continuous production.
  • the invention also has the following characteristics:
  • Deposition under vacuum prevents decomposition or deterioration of the perovskite material.
  • 1 is a schematic view showing the molecular structure of a prior art perovskite film
  • FIG. 2 is a plan view showing a preferred embodiment of an apparatus for immersing a perovskite film of the present invention
  • Figure 3 is a plan view showing a preferred example of the semi-closed device of Figure 2;
  • FIG. 4 is a schematic view showing a preferred example of the substrate holder of FIG. 3;
  • FIG. 5 is a flow chart of preparing a perovskite film of a perovskite solar energy according to the present invention.
  • Figure 6 is a scanning electron micrograph of a perovskite film prepared by using the apparatus for immersing a perovskite film of the present invention
  • Figure 7 is a JV curve of a perovskite solar cell prepared using the apparatus for immersing a perovskite film of the present invention.
  • the apparatus for immersing a perovskite film of the present invention comprises a sealed chamber 1 in which at least one set of semi-closed reactor devices is disposed. 2.
  • the semi-closed reactor device 2 comprises a lower heating sublimation device 3 and an upper heating station 4.
  • a vessel 5 having an opening upward is provided at the top of the lower heating sublimation device 3, and a reactant precursor is contained in the vessel 5.
  • a substrate holder 6 is disposed directly above the vessel 5.
  • the substrate holder 6 is masked on the opening of the vessel 5.
  • a substrate holder supporting platform 7 is provided on the side of the vessel 5, and the substrate holder 6 is disposed on the substrate holder supporting platform 7.
  • a substrate 8 to be deposited is disposed on the lower bottom surface of the substrate holder 6, the substrate 8 being located directly above the vessel 5, the surface to be deposited thereon being directed toward the reactant precursor in the vessel 5.
  • the upper heating stage 4 is disposed on the substrate holder 6 to heat the substrate 8.
  • the reactant precursor is deposited by evaporation onto the surface of the substrate 8.
  • the air pressure in the sealed chamber 1 is controlled to control the heating temperature of the upper heating stage 4 and the lower heating sublimation device 3.
  • the upper heating stage 4 is disposed at the top of the substrate holder 6, and a reactant heating device for heating the reactant precursor in the vessel 5 is disposed in the lower heating sublimation device 3, on the upper heating stage 4.
  • a substrate heating device for heating the substrate 8 is provided.
  • the opening area of the vessel 5 is larger than the area of the substrate 8.
  • the thickness of the reactant precursor in the vessel 5 is 2 to 10 mm, and the difference in thickness is not more than 0.1 to 1.0 mm.
  • the distance between the surface to be deposited of the substrate 8 and the top surface of the reactant precursor is 5 to 40 mm.
  • the reaction gas pressure in the sealed chamber 1 ranges from 10 -5 Pa to 10 5 Pa
  • the heating temperature of the upper heating stage 4 ranges from 20 to 400 ° C
  • the heating temperature range of the lower heating sublimation device 3 is 20 ⁇ 400 ° C
  • the reaction time is 10 ⁇ 120min.
  • the apparatus for immersing a perovskite film of the present invention further includes a transmission device 9 that drives the substrate holder support platform 7 to reciprocate the substrate holder 6 in a horizontal or vertical direction.
  • the sealed chamber 1 of the present invention is a small chamber or a large continuous production facility.
  • the air pressure of the sealed chamber 1 is controlled by a vacuum pump and a vacuum valve.
  • the invention also discloses a method for using the apparatus for immersing a perovskite film as described above, comprising the following steps:
  • the reactant precursor material is poured into the vessel 5, the substrate 8 to be deposited is placed face down on the inner bottom surface of the substrate holder 6, and the substrate holder 6 is placed on the substrate holder supporting platform 7. Above, the set semi-closed reactor unit 2 is then placed in the sealed chamber 1.
  • the gas in the sealed chamber 1 is extracted, the air pressure in the sealed chamber 1 is controlled, and the upper heating stage 4 and the lower heating sublimation device 3 are respectively energized to control the heating temperature of the upper heating stage 4 and the lower heating sublimation apparatus 3.
  • the reactant precursor is evaporated and deposited onto the surface of the substrate 8.
  • the upper heating stage 4 and the lower heating sublimation device 3 are powered off to stop heating, and the atmospheric pressure in the sealed chamber 1 is restored, and the substrate 8 on which the reactant precursor is deposited is taken out.
  • the thickness of the reactant precursor in the vessel 5 is 2 to 10 mm, and the difference in thickness is not more than 0.1 to 1.0 mm.
  • the surface to be deposited of the substrate 8 and the top surface of the reactant precursor The height distance is 5 ⁇ 40mm.
  • the reaction gas pressure in the sealed chamber 1 ranges from 10 -5 Pa to 10 5 Pa, and the heating temperature of the upper heating stage 4 ranges from 20 to 400 ° C.
  • the lower heating sublimation device 3 The heating temperature ranges from 20 to 400 °C.
  • the substrate holder 6 can drive the substrate 8 to reciprocate back and forth in a horizontal or vertical direction.
  • the sealed chamber is a small cavity or a large continuous production facility, and the air pressure in the sealed chamber is controlled by a vacuum pump and a vacuum valve.
  • the invention also discloses a perovskite solar cell, the perovskite solar cell comprising a perovskite layer, wherein the immersed device for preparing a perovskite film is used in the preparation process of the perovskite layer .
  • the present invention also discloses a method for preparing a perovskite solar cell, wherein the perovskite solar cell comprises a first conductive electrode, a first transport layer, a perovskite film layer, and a second transmission.
  • the layer and the second conductive electrode, the preparation method thereof comprises the following steps:
  • a substrate 8 on which a metal halide BX 2 film is deposited as a substrate to be deposited is fixed on a substrate holder 6 of an apparatus for immersing a perovskite film as described above, in the vessel 5
  • One or more reactants AX are placed and uniformly flattened, and the substrate 8 to be deposited faces down to the reactant AX in the vessel 5 while heating the upper heating stage 4 and the lower heating sublimation unit 3 Control the air pressure in the sealed chamber 1, control the heating temperature of the upper heating stage 4 and the lower heating sublimation device 3, and the reactant AX is evaporated and deposited on the surface of the substrate 8 containing the metal halide BX 2 to form a perovskite film.
  • B in the metal halide BX 2 is a divalent metal cation, which may be lead (Pb 2+ ), tin (Sn 2+ ), tungsten (W 2+ ), copper (Cu 2+ ), zinc ( Zn 2+ ), gallium (Ga 2+ ), germanium (Ge 2+ ), arsenic (As 2+ ), selenium (Se 2+ ), rhodium (Rh 2+ ), palladium (Pd 2+ ), silver (Ag 2+), Cd (2+ of Cd), indium (the In 2+), antimony (Sb 2+), osmium (Os 2+), iridium (Ir 2+), Pt (2+ of Pt), gold (Au 2 + ), a cation of mercury (Hg 2+ ), strontium (Tl 2+ ), bismuth (Bi 2+ ), cesium (Po 2+ ), X is chlorine (Cl - ), bromine (Br)
  • A is one of cesium (Cs + ), strontium (Rb + ), potassium (K + ), an amine group, a thiol group or an alkali group, and X is chlorine (Cl - ), Any one of bromine (Br - ), iodine (I - ), thiocyanate (NCS - ), cyanide (CN - ), oxycyanate (NCO - ).
  • the thickness of the reactant precursor in the vessel 5 is 2-10 mm, and the difference in thickness of each reactant precursor is not more than 0.1-1.0 mm.
  • the surface to be deposited of the substrate 8 and the precursor of the reactant are The top height distance is 5 ⁇ 40mm.
  • the reaction gas pressure in the sealed chamber 1 ranges from 10 -5 Pa to 10 5 Pa, the heating temperature of the upper heating stage 4 ranges from 100 to 400 ° C, and the heating temperature range of the lower heating sublimation device 3 is 100.
  • the thickness of the prepared perovskite film layer is from 100 to 600 nm at ⁇ 400 °C.
  • the substrate holder 6 can drive the substrate 8 to reciprocate back and forth in a horizontal or vertical direction.
  • the sealed chamber is a small cavity or a large continuous production facility, and the air pressure in the sealed chamber 1 is controlled by a vacuum pump and a vacuum valve.
  • a method of preparing a perovskite solar cell using the apparatus for immersing a perovskite film of the present invention will now be described with reference to specific embodiments.
  • a method for preparing a perovskite solar cell comprising the steps of:
  • the vacuum pump is used to control the air pressure, and after reaching a certain value, it is fed back to the vacuum valve to be closed, and the pressure in the chamber of the sealed chamber 1 is 10 -5 Pa ⁇ 10 5 Pa, and the lower heating sublimation device 3 control at 100 ° C ⁇ 200 ° C, the heating temperature of the upper heating stage 4 is controlled at 100 ° C ⁇ 200 ° C, the MAI gas molecules react with PbI 2 to form a perovskite film, the reaction time is 10-120 min;
  • a metal permeation layer Ag electrode is vapor-deposited to obtain a perovskite solar cell.
  • Figure 6 is a scanning electron micrograph of a perovskite film prepared by using the apparatus for immersing a perovskite film of the present invention. It can be seen from the figure that the perovskite prepared by the method is flat, dense, and has a crystal grain size. Evenly.
  • Figure 7 is a JV curve of a perovskite solar cell prepared using the apparatus for immersing a perovskite film of the present invention, with a cell efficiency of 16.08% (PCE).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种沉浸式制备钙钛矿薄膜的设备,包括一密封腔室(1),在密封腔室(1)内至少设置有一组半封闭反应器装置(2),半封闭反应器装置(2)包括下加热升华装置(3)和上加热台(4),在下加热升华装置(3)的顶部设置有器皿(5),在器皿(5)内盛载有反应物前体,在器皿(5)的正上方设置有基片架(6),基片架(6)遮罩在器皿(5)的开口上,在器皿(5)的侧面设置有基片架支撑平台(7),基片架(6)设置在基片架支撑平台(7)上,在基片架(6)的下底面设置有待沉积的基片(8),基片(8)上的待沉积面正朝向器皿(5)中的反应物前体,上加热台(4)设置在基片架(6)上给基片(8)加热。使用该沉浸式制备钙钛矿薄膜的设备制备钙钛矿太阳能电池的方法可在制备过程中控制薄膜的晶体生长,提高成膜质量及均匀性和重复性。

Description

一种沉浸式制备钙钛矿薄膜的设备及使用方法和应用 技术领域
本发明属于钙钛矿太阳能电池技术领域,特别涉及一种沉浸式制备钙钛矿薄膜的设备及使用方法和应用。
背景技术
太阳能电池是一种光电转换器件,利用半导体的光伏效应将太阳能转化为电能。发展至今,太阳能发电已经成为除水力发电和风力发电之外最重要的可再生能源。现用于商业化的半导体有单晶硅、多晶硅、非晶硅、碲化镉、铜铟镓硒等等,但大多能耗大、成本高。
近年来,一种钙钛矿太阳能电池受到广泛关注,这种钙钛矿太阳能电池以有机金属卤化物为光吸收层。钙钛矿为ABX 3型的立方八面体结构,如图1所示。此种材料制备的薄膜太阳能电池工艺简便、生产成本低、稳定且转化率高,自2009年至今,光电转换效率从3.8%提升至22%以上,已高于商业化的晶硅太阳能电池且具有较大的成本优势。
现有的各种钙钛矿太阳能电池薄膜成型工艺可分为两大类:溶液法和气相法。在溶液法操作简便,但薄膜均一性、重复性差,影响电池的效率。气相法有双源共蒸发法、气相辅助溶液法、化学气相沉积(CVD)等方法,其中气相溶液辅助法可制备均一、大晶粒尺寸、表面粗糙度小的钙钛矿薄膜,但薄膜的重复性、成膜质量有待提高。
技术问题
本发明所要解决的技术问题在于,提供一种沉浸式制备钙钛矿薄膜的设备及使用方法和应用,提供了一个均匀稳定的反应环境,可在制备过程中控制薄膜的晶体生长,提高成膜质量及均匀性和重复性,并可嵌入大型生产线进行连续生产。
技术解决方案
本发明是这样实现的,提供一种沉浸式制备钙钛矿薄膜的设备,包括一密封腔室,在所述密封腔室内至少设置有一组半封闭反应器装置,所述半封闭反应器装置包括下加热升华装置和上加热台,在所述下加热升华装置的顶部设置有开口朝上的器皿,在所述器皿内盛载有反应物前体,在所述器皿的正上方设置有基片架,所述基片架遮罩在器皿的开口上,在所述器皿的侧面设置有基片架支撑平台,所述基片架设置在基片架支撑平台上,在所述基片架的下底面设置有待沉积的基片,所述基片位于器皿的正上方,其上的待沉积面正朝向器皿中的反应物前体,所述上加热台设置在基片架上以加热基片,所述反应物前体被蒸发沉积到基片表面;控制密封腔室内的气压,控制上加热台和下加热升华装置的加热温度。
进一步地,所述器皿的开口面积大于基片的面积。
进一步地,所述基片架可带动基片在水平或垂直方向来回往复运动。
进一步地,在所述器皿内的反应物前体厚度为2~10mm,其厚度差不超过0.1~1.0mm;所述基片的待沉积面与反应物前体的顶面高度距离为5~40mm。
进一步地,所述密封腔室内的反应气压范围为10 -5Pa~10 5Pa,所述上加热台的加热温度范围为20~400℃,所述下加热升华装置的加热温度范围为20~400℃,反应时间为10~120min。
进一步地,所述密封腔室为小型腔体或大型连续生产设备,密封腔室内的气压由真空泵和真空阀控制。
本发明是这样实现的,还提供一种如前所述的沉浸式制备钙钛矿薄膜的设备的使用方法,包括以下步骤:
第一步骤、向器皿中倒入反应物前体材料,将基片的待沉积面朝下设置在基片架的内底面上,将基片架放置在基片架支撑平台上,然后将设置好的半封闭反应器装置放入密封腔室内;
第二步骤、抽取密封腔室内的气体,控制密封腔室内的气压;给上加热台和下加热升华装置分别通电,控制上加热台和下加热升华装置的加热温度,反应物前体被蒸发并沉积到基片表面上;
第三步骤、持续反应10~120min时间后,将上加热台和下加热升华装置断电停止加热,并恢复密封腔室内为大气压,取出沉积好反应物前体的基片。
进一步地,在第一步骤中,在所述器皿内的反应物前体厚度为2~10mm,其厚度差不超过0.1~1.0mm,所述基片的待沉积面与反应物前体的顶面高度距离为5~40mm。
进一步地,在第二步骤中,所述基片架可带动基片在水平或垂直方向来回往复运动。
进一步地,在第二步骤中,所述的密封腔室为小型腔体或大型连续生产设备,密封腔室内的气压由真空泵和真空阀控制。
进一步地,在第二步骤中,所述密封腔室内的反应气压范围为10 -5Pa~10 5Pa,所述上加热台的加热温度范围为20~400℃,所述下加热升华装置的加热温度范围为20~400℃。
本发明是这样实现的,还提供一种钙钛矿太阳能电池,所述钙钛矿太阳能电池包括钙钛矿层,在所述钙钛矿层的制备过程中使用如前所述的沉浸式制备钙钛矿薄膜的设备。
本发明是这样实现的,还提供一种前述的钙钛矿太阳能电池的制备方法,所述钙钛矿太阳能电池包括第一导电电极、第一传输层、钙钛矿薄膜层、第二传输层以及第二导电电极,其制备方法包括以下步骤:
S1、在第一导电电极上制备第一传输层;
S1、利用旋涂、刮涂、狭缝式连续涂布、喷涂、印刷或真空沉积中任意一种加工方法在沉积有第一传输层的基底上沉积一种或多种金属卤化物BX 2薄膜;
S2、其次将沉积有金属卤化物BX 2薄膜的基片作为待沉积基片固定在如前所述的沉浸式制备钙钛矿薄膜的设备的基片架上,在所述器皿中放置一种或多种反应物AX并每种均匀铺平,所述基片的待沉积面朝下正对器皿中的反应物AX,同时给上加热台和下加热升华装置加热,控制密封腔室内的气压,控制上加热台和下加热升华装置的加热温度,反应物AX被蒸发并沉积到含有金属卤化物BX 2的基片表面上生成钙钛矿薄膜层;
S3、反应结束后,取出已沉积好的基片;
S4、在制备的钙钛矿薄膜层上沉积第二传输层;
S5、沉积第二导电电极;
其中,所述金属卤化物BX 2中的B为二价金属阳离子,可为铅、锡、钨、铜、锌、镓、锗、砷、硒、铑、钯、银、镉、铟、锑、锇、铱、铂、金、汞、铊、铋、钋中的一种阳离子,X为氯、溴、碘、硫氰根、氰根、氧氰根中任意的一种阴离子;所述金属卤化物BX 2薄膜厚度为80-300nm;
所述的反应物AX中A为铯、铷、钾、胺基、脒基或者碱族中任意的一种阳离子,X为氯、溴、碘、硫氰根、氰根、氧氰根中任意的一种阴离子。
进一步地,所述在所述器皿内的反应物前体厚度为2~10mm,每种反应物前体的厚度差不超过0.1~1.0mm,所述基片的待沉积面与反应物前体的顶面高度距离为5~40mm;所述密封腔室内的反应气压范围为10 -5Pa~10 5Pa,所述上加热台的加热温度范围为100~400℃,所述下加热升华装置的加热温度范围为100~400℃,制备的钙钛矿薄膜层的厚度为100~600nm。
进一步地,所述基片架可带动基片在水平或垂直方向来回往复运动。
进一步地,所述的密封腔室为小型腔体或大型连续生产设备,密封腔室内的气压由真空泵和真空阀控制。
有益效果
与现有技术相比,本发明的沉浸式制备钙钛矿薄膜的设备及使用方法和应用,提供了一个均匀稳定的反应环境,可在钙钛矿薄膜的制备过程中控制薄膜的晶体生长,提高成膜质量及均匀性和重复性,并可嵌入大型生产线进行连续生产。
与现有技术相比,本发明同时还具有以下特点:
1. 可精确地控制要形成的钙钛矿薄膜的质量,提高钙钛矿薄膜的均匀性。
2. 促进金属卤化物与卤化物蒸汽的充分反应,提高对于钙钛矿结晶的可控性。
3. 提供了一种可实现连续性生产的方案。
4. 提高沉积速度及材料的利用率。
5. 真空下沉积防止钙钛矿材料的分解或变质。
附图说明
图1为现有技术钙钛矿薄膜中分子结构示意图;
图2为本发明的沉浸式制备钙钛矿薄膜的设备一较佳实施例的平面示意图;
图3为图2中半封闭装置的一个较佳示例的平面示意图;
图4为图3中基片架较佳示例示意图;
图5为本发明的钙钛矿太阳能中钙钛矿薄膜的制备流程图;
图6为使用本发明的沉浸式制备钙钛矿薄膜的设备制得的钙钛矿薄膜的扫描电镜图;
图7为使用本发明的沉浸式制备钙钛矿薄膜的设备制得的钙钛矿太阳能电池的JV曲线。
本发明的最佳实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请同时参照图2、图3以及图4所示,本发明沉浸式制备钙钛矿薄膜的设备,包括一密封腔室1,在所述密封腔室1内至少设置有一组半封闭反应器装置2。
所述半封闭反应器装置2包括下加热升华装置3和上加热台4。在所述下加热升华装置3的顶部设置有开口朝上的器皿5,在所述器皿5内盛载有反应物前体。在所述器皿5的正上方设置有基片架6。所述基片架6遮罩在器皿5的开口上。在所述器皿5的侧面设置有基片架支撑平台7,所述基片架6设置在基片架支撑平台7上。在所述基片架6的下底面设置有待沉积的基片8,所述基片8位于器皿5的正上方,其上的待沉积面正朝向器皿5中的反应物前体。所述上加热台4设置在基片架6上以加热基片8。所述反应物前体被蒸发沉积到基片8表面。控制密封腔室1内的气压,控制上加热台4和下加热升华装置3的加热温度。所述上加热台4设置在基片架6的顶部,在所述下加热升华装置3内设置有给器皿5中的反应物前体加热的反应物加热装置,在所述上加热台4上设置有给基片8加热的基片加热装置。
所述器皿5的开口面积大于基片8的面积。在所述器皿5内的反应物前体厚度为2~10mm,其厚度差不超过0.1~1.0mm。所述基片8的待沉积面与反应物前体的顶面高度距离为5~40mm。
所述密封腔室1内的反应气压范围为10 -5Pa~10 5Pa,所述上加热台4的加热温度范围为20~400℃,所述下加热升华装置3的加热温度范围为20~400℃,反应时间为10~120min。
本发明的沉浸式制备钙钛矿薄膜的设备还包括一传动装置9,所述传动装置9驱动基片架支撑平台7使基片架6在水平方向或垂直方向上来回往复运动。
本发明的密封腔室1为小型腔体或大型连续生产设备。密封腔室1的气压由真空泵和真空阀控制。
本发明还公开了一种如前所述的沉浸式制备钙钛矿薄膜的设备的使用方法,包括以下步骤:
第一步骤、向器皿5中倒入反应物前体材料,将基片8的待沉积面朝下设置在基片架6的内底面上,将基片架6放置在基片架支撑平台7上,然后将设置好的半封闭反应器装置2放入密封腔室1内。
第二步骤、抽取密封腔室1内的气体,控制密封腔室1内的气压,给上加热台4和下加热升华装置3分别通电,控制上加热台4和下加热升华装置3的加热温度,反应物前体被蒸发并沉积到基片8表面上。
第三步骤、持续反应10~120min时间后,将上加热台4和下加热升华装置3断电停止加热,并恢复密封腔室1内为大气压,取出沉积好反应物前体的基片8。
在第一步骤中,在所述器皿5内的反应物前体厚度为2~10mm,其厚度差不超过0.1~1.0mm,所述基片8的待沉积面与反应物前体的顶面高度距离为5~40mm。
在第二步骤中,所述密封腔室1内的反应气压范围为10 -5Pa~10 5Pa,所述上加热台4的加热温度范围为20~400℃,所述下加热升华装置3的加热温度范围为20~400℃。
在第二步骤中,所述基片架6可带动基片8在水平或垂直方向来回往复运动。
在第二步骤中,所述的密封腔室为小型腔体或大型连续生产设备,密封腔室内的气压由真空泵和真空阀控制。
本发明还公开了一种钙钛矿太阳能电池,所述钙钛矿太阳能电池包括钙钛矿层,在所述钙钛矿层的制备过程中使用如前所述的沉浸式制备钙钛矿薄膜的设备。
请参照图5所示,本发明还公开了一种钙钛矿太阳能电池的制备方法,所述钙钛矿太阳能电池包括第一导电电极、第一传输层、钙钛矿薄膜层、第二传输层以及第二导电电极,其制备方法包括以下步骤:
S1、在第一导电电极上制备第一传输层。
S2、利用旋涂、刮涂、狭缝式连续涂布、喷涂、印刷或真空沉积中任意一种加工方法在沉积有第一传输层的基底上沉积一种或多种金属卤化物BX 2薄膜。
S3、其次将沉积有金属卤化物BX 2薄膜的基片8作为待沉积基片固定在如前所述的沉浸式制备钙钛矿薄膜的设备的基片架6上,在所述器皿5中放置一种或多种反应物AX并每种均匀铺平,所述基片8的待沉积面朝下正对器皿5中的反应物AX,同时给上加热台4和下加热升华装置3加热,控制密封腔室1内的气压,控制上加热台4和下加热升华装置3的加热温度,反应物AX被蒸发并沉积到含有金属卤化物BX 2的基片8表面上生成钙钛矿薄膜层。
S4、反应结束后,取出已沉积好的基片8。
S5、在基片8的钙钛矿薄膜层上沉积第二传输层。
S6、沉积第二导电电极。
其中,所述金属卤化物BX 2中的B为二价金属阳离子,可为铅(Pb 2+)、锡(Sn 2+)、钨(W 2+)、铜(Cu 2+)、锌(Zn 2+)、镓(Ga 2+)、锗(Ge 2+)、砷(As 2+)、硒(Se 2+)、铑(Rh 2+)、钯(Pd 2+)、银(Ag 2+)、镉(Cd 2+)、铟(In 2+)、锑(Sb 2+)、锇(Os 2+)、铱(Ir 2+)、铂(Pt 2+)、金(Au 2+)、汞(Hg 2+)、铊(Tl 2+)、铋(Bi 2+)、钋(Po 2+)中的一种阳离子,X为氯(Cl -)、溴(Br -)、碘(I -)、硫氰根(NCS -)、氰根(CN -)、氧氰根 (NCO -)中任意的一种阴离子;所述金属卤化物BX 2薄膜厚度为80-300nm。
其中,所述的反应物AX中A为铯(Cs +)、铷(Rb +)、钾(K +)、胺基、脒基或者碱族中的一种,X为氯(Cl -)、溴(Br -)、碘(I -)、硫氰根(NCS -)、氰根(CN -)、氧氰根 (NCO -)中任意的一种阴离子。
所述在所述器皿5内的反应物前体厚度为2~10mm,每种反应物前体的厚度差不超过0.1~1.0mm,所述基片8的待沉积面与反应物前体的顶面高度距离为5~40mm。所述密封腔室1内的反应气压范围为10 -5Pa~10 5Pa,所述上加热台4的加热温度范围为100~400℃,所述下加热升华装置3的加热温度范围为100~400℃,制备的钙钛矿薄膜层的厚度为100~600nm。
所述基片架6可带动基片8在水平或垂直方向来回往复运动。
所述的密封腔室为小型腔体或大型连续生产设备,所述密封腔室1内的气压由真空泵和真空阀控制。
本发明的实施方式
下面结合具体实施例来说明使用本发明的沉浸式制备钙钛矿薄膜的设备来制备钙钛矿太阳能电池的方法。
实施例1。
一种钙钛矿太阳能电池的制备方法,包括以下步骤:
(1)将10×10cm的ITO玻璃板依次经洗洁精、去离子水、丙酮、异丙醇超声各清洗30min,再用N 2吹干后经UV O-zone处理10min;
(2)制备PEDOT:PSS薄膜作为空穴传输层;
(3)制备金属卤化物薄膜前驱液:将461mg的PbI 2(1mmol)、溶解于1mL的DMF溶液中,60℃加热搅拌2h,溶解后待用;
(4)使用制备的前驱液通过狭缝涂布制备掺杂的PbI 2薄膜;
(5)将沉积有金属卤化物薄膜的基片8固定于基片架6,带沉积面朝下,利用传动装置将反应腔上盖传输至被MAI铺满的蒸发皿正上方,架于基片架支撑平台7上,利用真空泵抽真空控制气压,到达在一定值后反馈于真空阀使其关闭,密封腔室1腔体内气压范围为10 -5Pa~10 5Pa,下加热台升华装置3控制在100℃~200℃,上加热台4加热温度控制在100℃~200℃,MAI气体分子与PbI 2反应生成钙钛矿薄膜,反应时间为10-120min;
(8)沉积电子传输层PCBM;
(9)蒸镀金属导电层Ag电极,制得钙钛矿太阳能电池。
图6为使用本发明的沉浸式制备钙钛矿薄膜的设备制得的钙钛矿薄膜的扫描电镜图,从图上可以看出,使用此法制备的钙钛矿平整、致密,晶体颗粒大小均匀。
图7为使用本发明的沉浸式制备钙钛矿薄膜的设备制得的钙钛矿太阳能电池的JV曲线,电池效率达16.08%(PCE)。
工业实用性
在此处键入工业实用性描述段落。
序列表自由内容
在此处键入序列表自由内容描述段落。

Claims (16)

  1. 一种沉浸式制备钙钛矿薄膜的设备,包括一密封腔室,其特征在于,在所述密封腔室内至少设置有一组半封闭反应器装置,所述半封闭反应器装置包括下加热升华装置和上加热台,在所述下加热升华装置的顶部设置有开口朝上的器皿,在所述器皿内盛载有反应物前体,在所述器皿的正上方设置有基片架,所述基片架遮罩在器皿的开口上,在所述器皿的侧面设置有基片架支撑平台,所述基片架设置在基片架支撑平台上,在所述基片架的下底面设置有待沉积的基片,所述基片位于器皿的正上方,其上的待沉积面正朝向器皿中的反应物前体,所述上加热台设置在基片架上以加热基片,所述反应物前体被蒸发沉积到基片表面;控制密封腔室内的气压,控制上加热台和下加热升华装置的加热温度。
  2. 如权利要求1所述的沉浸式制备钙钛矿薄膜的设备,其特征在于,所述器皿的开口面积大于基片的面积。
  3. 如权利要求1所述的沉浸式制备钙钛矿薄膜的设备,其特征在于,所述基片架可带动基片在水平或垂直方向来回往复运动。
  4. 如权利要求1所述的沉浸式制备钙钛矿薄膜的设备,其特征在于,在所述器皿内的反应物前体厚度为2~10mm,其厚度差不超过0.1~1.0mm;所述基片的待沉积面与反应物前体的顶面高度距离为5~40mm。
  5. 如权利要求1所述的沉浸式制备钙钛矿薄膜的设备,其特征在于,所述密封腔室内的反应气压范围为10 -5Pa~10 5Pa,所述上加热台的加热温度范围为20~400℃,所述下加热升华装置的加热温度范围为20~400℃,反应时间为10~120min。
  6. 如权利要求1所述的沉浸式制备钙钛矿薄膜的设备,其特征在于,所述的密封腔室为小型腔体或大型连续生产设备,密封腔室内的气压由真空泵和真空阀控制。
  7. 一种如权利要求1所述的沉浸式制备钙钛矿薄膜的设备的使用方法,其特征在于,包括以下步骤:
    第一步骤、向器皿中倒入反应物前体材料,将基片的待沉积面朝下设置在基片架的内底面上,将基片架放置在基片架支撑平台上,然后将设置好的半封闭反应器装置放入密封腔室内;
    第二步骤、抽取密封腔室内的气体,控制密封腔室内的气压;给上加热台和下加热升华装置分别通电,控制上加热台和下加热升华装置的加热温度,反应物前体被蒸发并沉积到基片表面上;
    第三步骤、持续反应10~120min时间后,将上加热台和下加热升华装置断电停止加热,并恢复密封腔室内为大气压,取出沉积好反应物前体的基片。
  8. 如权利要求7所述的沉浸式制备钙钛矿薄膜的设备的使用方法,其特征在于,在第一步骤中,在所述器皿内的反应物前体厚度为2~10mm,其厚度差不超过0.1~1.0mm,所述基片的待沉积面与反应物前体的顶面高度距离为5~40mm。
  9. 如权利要求7所述的沉浸式制备钙钛矿薄膜的设备的使用方法,其特征在于,在第二步骤中,所述基片架可带动基片在水平或垂直方向来回往复运动。
  10. 如权利要求7所述的沉浸式制备钙钛矿薄膜的设备的使用方法,其特征在于,在第二步骤中,所述的密封腔室为小型腔体或大型连续生产设备,密封腔室内的气压由真空泵和真空阀控制。
  11. 如权利要求7所述的沉浸式制备钙钛矿薄膜的设备的使用方法,其特征在于,在第二步骤中,所述密封腔室内的反应气压范围为10 -5Pa~10 5Pa,所述上加热台的加热温度范围为20~400℃,所述下加热升华装置的加热温度范围为20~400℃。
  12. 一种钙钛矿太阳能电池,其特征在于,所述钙钛矿太阳能电池包括钙钛矿层,在所述钙钛矿层的制备过程中使用如权利要求1所述的沉浸式制备钙钛矿薄膜的设备。
  13. 一种如权利要求12所述的钙钛矿太阳能电池的制备方法,其特征在于,所述钙钛矿太阳能电池包括第一导电电极、第一传输层、钙钛矿薄膜层、第二传输层以及第二导电电极,其制备方法包括以下步骤:
    S1、在第一导电电极上制备第一传输层;
    S2、利用旋涂、刮涂、狭缝式连续涂布、喷涂、印刷或真空沉积中任意一种加工方法在沉积有第一传输层的基底上沉积一种或多种金属卤化物BX 2薄膜;
    S3、其次将沉积有金属卤化物BX 2薄膜的基片作为待沉积基片固定在如权利要求1所述的沉浸式制备钙钛矿薄膜的设备的基片架上,在所述器皿中放置一种或多种反应物AX并每种均匀铺平,所述基片的待沉积面朝下正对器皿中的反应物AX,同时给上加热台和下加热升华装置加热,控制密封腔室内的气压,控制上加热台和下加热升华装置的加热温度,反应物AX被蒸发并沉积到含有金属卤化物BX 2的基片表面上生成钙钛矿薄膜层;
    S4、反应结束后,取出已沉积好的基片;
    S5、在钙钛矿薄膜层上沉积第二传输层;
    S6、沉积第二导电电极;
    其中,所述金属卤化物BX 2中的B为二价金属阳离子,可为铅、锡、钨、铜、锌、镓、锗、砷、硒、铑、钯、银、镉、铟、锑、锇、铱、铂、金、汞、铊、铋、钋中的一种阳离子,X为氯、溴、碘、硫氰根、氰根、氧氰根中任意的一种阴离子;所述金属卤化物BX 2薄膜厚度为80-300nm;
    所述的反应物AX中A为铯、铷、钾、胺基、脒基或者碱族中任意的一种阳离子,X为氯、溴、碘、硫氰根、氰根、氧氰根中任意的一种阴离子。
  14. 如权利要求13所述的钙钛矿太阳能电池的制备方法,其特征在于,所述在所述器皿内的反应物前体厚度为2~10mm,每种反应物前体的厚度差不超过0.1~1.0mm,所述基片的待沉积面与反应物前体的顶面高度距离为5~40mm;所述密封腔室内的反应气压范围为10 -5Pa~10 5Pa,所述上加热台的加热温度范围为100~400℃,所述下加热升华装置的加热温度范围为100~400℃,制备的钙钛矿薄膜层的厚度为100~600nm。
  15. 如权利要求13所述的钙钛矿太阳能电池的制备方法,其特征在于,所述基片架可带动基片在水平或垂直方向来回往复运动。
  16. 如权利要求13所述的钙钛矿太阳能电池的制备方法,其特征在于,所述的密封腔室为小型腔体或大型连续生产设备,密封腔室内的气压由真空泵和真空阀控制。
PCT/CN2018/122633 2018-01-17 2018-12-21 一种沉浸式制备钙钛矿薄膜的设备及使用方法和应用 WO2019141045A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/960,361 US20200373507A1 (en) 2018-01-17 2018-12-21 Apparatus For Immersion-Based Preparation of Perovskite Thin Film, Use Method and Application Thereof
JP2020535494A JP7037838B6 (ja) 2018-01-17 2018-12-21 ペロブスカイトフィルムを製造する蒸着装置、その使用方法およびペロブスカイト太陽電池の製造方法
KR1020207020952A KR102418868B1 (ko) 2018-01-17 2018-12-21 페로브스카이트 박막의 침지식 제조 기기 및 사용방법과 응용
EP18901559.7A EP3723118B1 (en) 2018-01-17 2018-12-21 Apparatus for immersion-based preparation of perovskite thin film, use method and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810046196.6A CN110047774B (zh) 2018-01-17 2018-01-17 一种沉浸式制备钙钛矿薄膜的设备及使用方法和应用
CN201810046196.6 2018-01-17

Publications (1)

Publication Number Publication Date
WO2019141045A1 true WO2019141045A1 (zh) 2019-07-25

Family

ID=67273112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122633 WO2019141045A1 (zh) 2018-01-17 2018-12-21 一种沉浸式制备钙钛矿薄膜的设备及使用方法和应用

Country Status (6)

Country Link
US (1) US20200373507A1 (zh)
EP (1) EP3723118B1 (zh)
JP (1) JP7037838B6 (zh)
KR (1) KR102418868B1 (zh)
CN (1) CN110047774B (zh)
WO (1) WO2019141045A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112993078A (zh) * 2019-12-02 2021-06-18 许昌学院 一种湿法单质粉末室温反应制备CuBiI4光电薄膜材料的化学方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111893437A (zh) * 2020-07-16 2020-11-06 中国电子科技集团公司第十八研究所 一种后处理制备梯度带隙钙钛矿薄膜的装置及方法
CN113130759B (zh) * 2021-03-05 2022-08-16 华南理工大学 一种快速去除卤化物钙钛矿薄膜表面缺陷的方法及其在钙钛矿太阳能电池中的应用
JP2023544933A (ja) * 2021-09-10 2023-10-26 中国華能集団清潔能源技術研究院有限公司 ペロブスカイト太陽電池用のその場フラッシュ蒸着成膜装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104183697A (zh) * 2014-08-25 2014-12-03 常州大学 一种钙钛矿结构的太阳能电池及其制备方法
CN104393109A (zh) * 2014-10-28 2015-03-04 合肥工业大学 一种钙钛矿太阳能电池的化学气相沉积制备方法
WO2016081789A1 (en) * 2014-11-20 2016-05-26 Brown University Methods of making coated substrates
CN106282922A (zh) * 2016-09-07 2017-01-04 中国工程物理研究院材料研究所 一种共蒸发制备无机非铅卤化物钙钛矿薄膜的方法
CN106917064A (zh) * 2017-02-16 2017-07-04 上海大学 单步原位闪蒸法生长abx3型钙钛矿薄膜的制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103638A (en) 1997-11-07 2000-08-15 Micron Technology, Inc. Formation of planar dielectric layers using liquid interfaces
US6700089B1 (en) * 1999-03-30 2004-03-02 Tokyo Electron Limited Plasma processing device, its maintenance method, and its installation method
KR100647577B1 (ko) 2002-06-12 2006-11-17 삼성에스디아이 주식회사 기판정렬장치 및 기판정렬방법
CN1938447B (zh) * 2004-03-29 2010-06-09 大见忠弘 成膜装置及成膜方法
US7371998B2 (en) * 2006-07-05 2008-05-13 Semitool, Inc. Thermal wafer processor
US8133360B2 (en) * 2007-12-20 2012-03-13 Applied Materials, Inc. Prediction and compensation of erosion in a magnetron sputtering target
US8674311B1 (en) * 2010-03-10 2014-03-18 Radiation Monitoring Devices, Inc. Polycrystalline lanthanum halide scintillator, devices and methods
KR101782965B1 (ko) * 2011-02-28 2017-09-29 한국전자통신연구원 태양전지의 제조방법
KR101306459B1 (ko) * 2011-11-16 2013-09-09 엘지이노텍 주식회사 태양광 발전장치 및 이의 제조방법
US8778081B2 (en) * 2012-01-04 2014-07-15 Colorado State University Research Foundation Process and hardware for deposition of complex thin-film alloys over large areas
WO2015170445A1 (en) * 2014-05-05 2015-11-12 Okinawa Institute Of Science And Technology School Corporation System and method for fabricating perovskite film for solar cell applications
US20170226641A1 (en) 2014-08-07 2017-08-10 Okinawa Institute Of Science And Technology School Corporation System and method based on multi-source deposition for fabricating perovskite film
CN104505462A (zh) * 2014-12-19 2015-04-08 深圳大学 一种有机金属卤化物薄膜及其制备方法与应用
CN105239054B (zh) * 2015-11-03 2018-01-05 天津理工大学 一种微米粒径有机无机杂化钙钛矿薄膜的制备装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104183697A (zh) * 2014-08-25 2014-12-03 常州大学 一种钙钛矿结构的太阳能电池及其制备方法
CN104393109A (zh) * 2014-10-28 2015-03-04 合肥工业大学 一种钙钛矿太阳能电池的化学气相沉积制备方法
WO2016081789A1 (en) * 2014-11-20 2016-05-26 Brown University Methods of making coated substrates
CN106282922A (zh) * 2016-09-07 2017-01-04 中国工程物理研究院材料研究所 一种共蒸发制备无机非铅卤化物钙钛矿薄膜的方法
CN106917064A (zh) * 2017-02-16 2017-07-04 上海大学 单步原位闪蒸法生长abx3型钙钛矿薄膜的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112993078A (zh) * 2019-12-02 2021-06-18 许昌学院 一种湿法单质粉末室温反应制备CuBiI4光电薄膜材料的化学方法

Also Published As

Publication number Publication date
JP7037838B6 (ja) 2022-04-01
CN110047774A (zh) 2019-07-23
KR102418868B1 (ko) 2022-07-07
EP3723118A1 (en) 2020-10-14
JP7037838B2 (ja) 2022-03-17
KR20200100148A (ko) 2020-08-25
US20200373507A1 (en) 2020-11-26
EP3723118A4 (en) 2021-03-10
EP3723118B1 (en) 2021-11-03
CN110047774B (zh) 2021-08-27
JP2021507542A (ja) 2021-02-22

Similar Documents

Publication Publication Date Title
WO2019141045A1 (zh) 一种沉浸式制备钙钛矿薄膜的设备及使用方法和应用
CN108258128B (zh) 一种具有界面修饰层的钙钛矿太阳能电池及其制备方法
CN104250723B (zh) 一种基于铅单质薄膜原位大面积控制合成钙钛矿型CH3NH3PbI3薄膜材料的化学方法
JP4680182B2 (ja) カルコパイライト型薄膜太陽電池用光吸収層の製造方法
CN110047998B (zh) 一种沉浸式制备钙钛矿太阳能电池的设备及使用方法
JP4680183B2 (ja) カルコパイライト型薄膜太陽電池の製造方法
WO2019218567A1 (zh) 一种有机铵金属卤化物薄膜的制备装置及制备和表征方法
CN101578707A (zh) 用于形成太阳能电池吸收体的前驱物膜的卷对卷反应
CN104051628A (zh) 有机/无机杂化钙钛矿薄膜的制备方法及其薄膜的用途
CN108878661A (zh) 一种碳量子点修饰的钙钛矿太阳能电池的制备方法
KR101105532B1 (ko) Rts를 이용한 cigs 박막형 태양전지 제조장치
CN112216796B (zh) 一种掺杂的钙钛矿层和钙钛矿电池及其制备方法
JP2003124487A (ja) 太陽電池の製造装置
CN114335356A (zh) 一种钙钛矿薄膜及组件的处理和制备方法
CN109904317A (zh) 一种钙钛矿层的制备方法、应用及装置
CN111668374B (zh) 大面积三维-二维钙钛矿异质结原位制备方法
CN104716227A (zh) Czts薄膜太阳电池吸收层的制备方法
US20130157407A1 (en) APPARATUS FOR INLINE PROCESSING OF Cu(In,Ga)(Se,S)2 EMPLOYING A CHALCOGEN SOLUTION COATING MECHANISM
KR101380142B1 (ko) 기판 이동형 안개분사 화학기상 증착법과 이를 이용한 투명 전도성 산화물층의 제조방법 및 cis계 박막태양전지의 제조방법
CN114242906B (zh) 一种氧化锡电子传输层的制备方法及钙钛矿太阳能电池
CN105980067B (zh) 在缓冲层沉积期间的溶液遏制
CN115360307B (zh) 一种钙钛矿薄膜的制备方法
CN116419581A (zh) 一种基于Ni-MOF框架的Ni-MOF空穴传输层和钙钛矿太阳能电池及其制备方法
JPH09246236A (ja) 半導体薄膜の製造方法および太陽電池の製造方法
CN116463587A (zh) 一种真空顺序沉积制备钙钛矿薄膜的装置及方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901559

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020535494

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018901559

Country of ref document: EP

Effective date: 20200706

Ref document number: 20207020952

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE