WO2019138989A1 - チタンキレート化合物の製造方法 - Google Patents

チタンキレート化合物の製造方法 Download PDF

Info

Publication number
WO2019138989A1
WO2019138989A1 PCT/JP2019/000167 JP2019000167W WO2019138989A1 WO 2019138989 A1 WO2019138989 A1 WO 2019138989A1 JP 2019000167 W JP2019000167 W JP 2019000167W WO 2019138989 A1 WO2019138989 A1 WO 2019138989A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
chelate compound
hydroxycarboxylic acid
titanium chelate
acid
Prior art date
Application number
PCT/JP2019/000167
Other languages
English (en)
French (fr)
Inventor
慎介 宮部
Original Assignee
日本化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化学工業株式会社 filed Critical 日本化学工業株式会社
Priority to JP2019564685A priority Critical patent/JPWO2019138989A1/ja
Publication of WO2019138989A1 publication Critical patent/WO2019138989A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/01Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
    • C07C59/06Glycolic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/01Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
    • C07C59/08Lactic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/235Saturated compounds containing more than one carboxyl group
    • C07C59/245Saturated compounds containing more than one carboxyl group containing hydroxy or O-metal groups
    • C07C59/255Tartaric acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/235Saturated compounds containing more than one carboxyl group
    • C07C59/245Saturated compounds containing more than one carboxyl group containing hydroxy or O-metal groups
    • C07C59/265Citric acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/28Titanium compounds

Definitions

  • the present invention relates to a process for producing a titanium chelate compound, and more particularly to a process for producing a titanium chelate compound of hydroxycarboxylic acid.
  • Titanium chelate compounds are used in various applications such as various crosslinking agents, catalysts and dispersants.
  • a titanium chelate compound a titanium chelate compound formed by the reaction of a hydroxycarboxylic acid or its salt such as citric acid, tartaric acid or lactic acid and a titanium compound such as titanium alkoxide is known.
  • a reaction for producing this titanium chelate compound in Patent Document 1, a hydroxycarboxylic acid such as lactic acid and a titanium tetraalkoxide are reacted in the coexistence of water, and then a base such as amine ammonia, caustic soda or potassium carbonate is added to form a neutralized salt. How to do it is described.
  • Patent Document 2 describes that tetraisopropyl titanate was added to lactic acid in petroleum ether (exsol heptane) to obtain a titanium derivative of lactic acid.
  • Patent Document 3 describes that ethylene glycol is added to titanium tetraisopropoxide and then ammonium lactate is added to obtain a lactic acid chelated titanium compound.
  • patent document 4 after mixing lactic acid and isopropyl alcohol, it is described that titanium isopropoxide was dripped and the liquid mixture of the titanium isopropoxy lactic acid chelate was obtained.
  • Japanese Examined Patent Publication No. 50-5177 Japanese Patent Application Laid-Open No. 05-246936 JP, 2015-17219, A JP, 2015-36390, A
  • Patent Document 1 since the hydroxycarboxylic acid and the titanium tetraalkoxide are reacted in the coexistence of water, the titanium tetraalkoxide hydrolyzes, which makes it difficult to obtain a desired chelate with titanium. is there.
  • Patent Document 2 and Patent Document 3 petroleum ether or ethylene glycol is used as an impure component. Therefore, in the methods described in these documents, when it is desired to use the target titanium chelate compound in a solvent other than petroleum ether or ethylene glycol such as a water-containing solvent, the solid obtained by filtering the reaction solution is washed and dried. Since it is necessary, the number of processes is increased, which is industrially disadvantageous.
  • an object of the present invention is to provide a method for producing a titanium chelate compound that can overcome the points not achieved by the above-mentioned prior art.
  • the present inventor has made it possible to obtain the desired titanium alkoxide as a raw material under the condition industrially advantageous by mixing it with a hydroxycarboxylic acid after setting it as a state having specific conditions. It has been found that titanium chelates can be formed, and the present invention has been completed.
  • the present invention comprises a first step of diluting titanium alkoxide with a solvent to obtain a diluted solution, and a second step of mixing the diluted solution and a hydroxycarboxylic acid to obtain a mixture, and a method of producing a titanium chelate compound.
  • the present invention will be described below based on its preferred embodiments.
  • the production method of the present embodiment has a first step of diluting titanium alkoxide with a solvent to obtain a diluted solution, and a second step of mixing the diluted solution and a hydroxycarboxylic acid to obtain a mixture. It relates to a manufacturing method.
  • the present invention it is important to previously dilute the titanium alkoxide in a solvent. Thereby, the amount of hydroxycarboxylic acid used relative to the titanium alkoxide is reduced as compared with the case where the hydroxycarboxylic acid is previously diluted with a solvent and the diluted hydroxycarboxylic acid is mixed with the titanium alkoxide as in Patent Document 4 etc. be able to.
  • the reason for this is that in the present invention, the inventor can easily mix the diluted titanium alkoxide and the hydroxycarboxylic acid uniformly, thereby allowing the reaction to efficiently proceed to a six-coordinated chelate compound, titanium alkoxide, It is believed that the reason is that it is difficult to generate secondary components such as polymers of the above.
  • a solvent such as isopropanol is used as the solvent, there is also an advantage that it is easy to suppress smoke by mixing in advance with the titanium alkoxide.
  • titanium alkoxides used in the first step include titanium tetraalkoxides in which four alkoxy groups are coordinated to a titanium atom.
  • the alkoxy group which is a ligand in the titanium alkoxide may be linear or branched, but having 4 or less carbon atoms has reactivity with a hydroxycarboxylic acid or a water-soluble chelating agent. It is preferable from the point of easiness of synthesis.
  • the carbon number of the alkoxy group in titanium alkoxide is 1 or more.
  • the four alkoxy groups coordinated to the titanium atom may be the same or different, but are preferably the same from the viewpoint of the availability of the titanium alkoxide.
  • titanium alkoxides are exemplified by, for example, tetramethoxytitanium (IV), tetraethoxytitanium (IV), tetra-n-propoxytitanium (IV), tetraisopropoxytitanium (IV), tetra-n-butoxytitanium ( It is particularly preferable to be at least one selected from IV) and tetraisobutoxytitanium (IV).
  • the solvent includes an organic solvent.
  • titanium alkoxide can be stably present as a dilute solution in a highly fluid state to enhance the reactivity with a hydroxycarboxylic acid, or the titanium chelate compound as an object can be dispersed or dispersed in a water-containing solvent
  • a polar organic solvent is preferable, and an alcohol is particularly preferable, because it can be used without being removed when it is dissolved and used.
  • the alcohol include methanol, ethanol, isopropanol, n-propanol, n-butanol, sec-butanol, tert-butanol, n-pentanol, etc.
  • aliphatic alcohols having 1 or more and 4 or less carbon atoms are titanium. Since it is easy to mix the alkoxide and the hydroxycarboxylic acid uniformly in a liquid state, it is preferable in view of the ease of enhancing the reactivity and the ease of synthesis of the water-soluble chelating agent. Further, it is preferable to use a monohydric alcohol as the alcohol in view of the cost of obtaining. In particular, it is preferable to use a monohydric alcohol having an alkyl group having the same carbon number as at least one of the alkyl groups possessed by the titanium alkoxide in view of the compatibility between the chelate product and the solvent and the separation and recovery. Most preferred is a monohydric alcohol having an alkyl group with the same carbon number as the four alkyl groups it has. These solvents may be used alone or in combination of two or more.
  • the proportion of titanium alkoxide is 90% by mass or less in the diluted solution obtained by the first step, in which the solvent is mixed with the titanium alkoxide, makes it easy to fluidize the titanium alkoxide and mix it with the hydroxycarboxylic acid Preferred.
  • the proportion of titanium alkoxide in the diluted solution is preferably 40% by mass or more from the viewpoint of effectively increasing the yield while suppressing the amounts of the solvent and hydroxycarboxylic acid used. From these points, the amount of titanium alkoxide in the diluted solution is more preferably 50% by mass to 85% by mass, and particularly preferably 60% by mass to 80% by mass.
  • the amount of the solvent in the diluent is preferably 10 parts by mass or more and 150 parts by mass or less, and more preferably 15 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of titanium alkoxide.
  • the diluted solution may contain components other than the solvent and the titanium alkoxide, but it is substantially free of the components other than the solvent and the titanium alkoxide from the viewpoint of enhancing the purity of the obtained titanium chelate compound, etc. More preferable.
  • the amount of the solvent and components other than titanium alkoxide in the diluent is preferably 10% by mass or less, and more preferably 5% by mass or less.
  • the solvent dilution of the titanium alkoxide in the first step is carried out in the absence of hydroxycarboxylic acid.
  • the solvent is preferably low in water content in that it can prevent the titanium alkoxide from being hydrolyzed before the reaction with the hydroxycarboxylic acid. From this viewpoint, the solvent preferably has a water content of 10% by mass or less, and more preferably 5% by mass or less.
  • an aliphatic hydroxycarboxylic acid is preferably mentioned from the point of the availability, the reactivity with a titanium alkoxide, and the cost of acquisition.
  • examples of monovalent carboxylic acids include lactic acid, glycolic acid, glyceric acid and hydroxybutyric acid
  • examples of divalent carboxylic acids include talthronic acid, malic acid and tartaric acid
  • trivalent carboxylic acids such as citric acid
  • Examples include isocitrate and the like.
  • the hydroxycarboxylic acid is preferably an ⁇ -hydroxycarboxylic acid in that the hydroxycarboxylic acids are less likely to be dehydrated with each other, and among the ⁇ -hydroxycarboxylic acids, lactic acid is preferred in view of availability and handling.
  • Preferred are glycolic acid, tartaric acid and citric acid.
  • lactic acid is preferable from the viewpoint that it becomes a solution at room temperature, can be easily mixed with a titanium alkoxide diluent, and can easily produce a titanium chelate compound.
  • the hydroxycarboxylic acid mentioned here is not in the form of a salt such as an amine salt of hydroxycarboxylic acid in terms of easiness of waste liquid treatment and resistance to coloring.
  • the second step it is possible to mix 1 mole or more of hydroxycarboxylic acid with 1 mole of titanium alkoxide in the dilute solution with respect to the dilute solution in a high yield of the titanium chelate compound to which the hydroxycarboxylic acid is coordinated. It is preferable from the point of being obtained, and it is preferable to mix 3.5 moles or less, from the viewpoint of suppressing the amount of the hydroxycarboxylic acid to be used while suppressing the excessive oligomerization of the obtained titanium chelate compound, and enhancing the productivity. From these points, it is more preferable to mix the hydroxycarboxylic acid in 1.1 to 3.3 moles per 1 mole of the titanium alkoxide, and it is further preferable to mix 1.2 to 3 moles. preferable.
  • a ligand compound capable of coordinating to titanium in addition to the hydroxycarboxylic acid, a ligand compound capable of coordinating to titanium can be used as a diluting solution within the range where the titanium chelate compound can be efficiently obtained by high productivity. You may add.
  • a ligand compound for example, a fluorine atom, a chlorine atom, a bromine atom, a halogen atom-containing compound having an iodine atom, a methylamino group, an ethylamino group, a propylamino group, an isopropylamino group, a butylamino group,
  • amines having functional groups such as isobutylamino group, t-butylamino group and pentylamino group
  • phosphines such as trimethylphosphine, triethylphosphine, tributylphosphine, tris-t-butylphosphine and triphenylphosphine.
  • the amount of the ligand compound capable of coordinating to titanium other than hydroxycarboxylic acid is preferably 1 mole or less, more preferably 0.5 mole or less, per 1 mole of hydroxycarboxylic acid. Most preferably, it is 0.3 mol or less.
  • addition of the additional titanium alkoxide which is not diluted with the solvent is not performed at the time of mixing of the dilution liquid and hydroxycarboxylic acid in a 2nd process.
  • the first step of mixing the solvent and the titanium alkoxide and the second step of mixing the diluted solution obtained thereby and the hydroxycarboxylic acid can be carried out at room temperature (0 ° C. or more and 40 ° C. or less). .
  • the first and second steps are preferably performed continuously.
  • the titanium chelate compound obtained in the second step is a compound in which one or more hydroxycarboxylic acids are coordinated to a titanium metal atom.
  • the titanium chelate compound in which the hydroxycarboxylic acid is coordinated to the titanium metal atom is likely to maintain the coordination state by the hydroxycarboxylic acid and to suppress the polymerization even when mixed with water.
  • examples of the ligand other than the hydroxycarboxylic acid include an alkoxy group, a hydroxyl group, a halogen atom, an amino group, a phosphine, and the like, and an alkoxy group is preferable. Examples of such titanium chelate compounds include those represented by the following formula (1).
  • R 1 represents an alkoxy group, a hydroxyl group, a halogen atom, an amino group or a phosphines, and when there are a plurality of R 1 's , they may be identical or different.
  • L is derived from a hydroxycarboxylic acid And when there are a plurality of groups, they may be the same or different, m represents a number of 0 or more and 3 or less, n represents a number of 1 or more and 3 or less, and m + n is 3 to 6 is there.
  • the alcohol produced by the reaction of the hydroxycarboxylic acid and the titanium alkoxide may further react with the hydroxycarboxylic acid to produce water.
  • Examples of the source of the hydroxyl group represented by R 1 in the general formula (1) include water produced by this reaction.
  • L is a s-dentate ligand (s is a positive integer)
  • the coordination number of titanium is represented by m + s ⁇ n and is preferably 6.
  • Examples of the alkoxy group represented by R 1 include the same alkoxy groups as those mentioned as the ligand in the titanium alkoxide.
  • the halogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • Examples of the amino group include methylamino group, ethylamino group, propylamino group, isopropylamino group, butylamino group, isobutylamino group, t-butylamino group, pentylamino group and the like.
  • Examples of phosphines include trimethyl phosphine, triethyl phosphine, tributyl phosphine, tris-t-butyl phosphine, triphenyl phosphine and the like.
  • Examples of the group derived from a hydroxycarboxylic acid represented by L include a group formed by coordinating an oxygen atom of a hydroxyl group in a hydroxycarboxylic acid or an oxygen atom of a carboxyl group in a hydroxycarboxylic acid to a titanium atom.
  • the group which the oxygen atom of the hydroxyl group in hydroxycarboxylic acid and the oxygen atom of the carboxyl group in hydroxycarboxylic acid coordinate with a titanium atom by a bidentate is mentioned.
  • the oxygen atom of the hydroxyl group in the hydroxycarboxylic acid and the oxygen atom of the carboxyl group in the hydroxycarboxylic acid be a group formed by bidentate coordination to a titanium atom.
  • the titanium chelate compound obtained in the second step may contain a polymer such as an oligomer in which titanium atoms are bonded via an oxygen atom or the like in a range having water solubility, and does not substantially contain It is also good.
  • a polymer such as an oligomer in which titanium atoms are bonded via an oxygen atom or the like in a range having water solubility, and does not substantially contain It is also good.
  • the molar ratio of the monomer represented by the formula (1) to the above-mentioned oligomer is preferably 1 mol or less of the oligomer to 1 mol of the monomer. It is more preferably 8 moles or less and still more preferably 0.5 moles or less.
  • water may be added to the obtained mixture of titanium chelate compound and solvent.
  • a dispersion or solution of a water-containing solvent of a titanium chelate compound can be obtained.
  • This is preferable, for example, from the point of making a titanium chelate compound into a form suitable for the use.
  • it is easy to synthesize a water-soluble titanium chelate compound with few by-products, and a clear aqueous solution of the titanium chelate compound can be easily obtained by mixing the product of the second step with water. be able to.
  • the compound represented by the said Formula (1) is mentioned.
  • a compound in which at least one R 1 is a hydroxyl group is easily obtained.
  • the identification of the compound of the formula (1) includes NMR, FT-IR, GPC and the like.
  • a hydroxyl group or an alkoxy group is preferable.
  • preferred groups for L in the formula (1) are the preferred groups for L mentioned for the compound obtained in the second step above. It can be mentioned.
  • the amount of water to be added is 20 parts by mass or more with respect to 100 parts by mass of the mixture obtained in the second step as R 1 It is preferable at the point which promotes the reaction which substitutes the alkoxy group which is carried out to a hydroxyl group, and it is preferable at the point which raises the density
  • the titanium chelate compound obtained by the above steps can be usefully used as various crosslinking agents, catalysts, dispersants and the like.
  • Example 1 7.12 g of tetraisopropoxytitanium (IV) was mixed with 3.01 g of isopropanol to obtain a diluted solution. To this diluted solution, 5.01 g of L-lactic acid (purity 90% by mass) was added and stirred to obtain a titanium lactate chelate. The molar ratio of tetraisopropoxytitanium (IV) used to L-lactic acid used was about 1: 2. Thereafter, 12.59 ml of water was added and stirred to obtain a clear aqueous solution of titanium lactate chelate. Since there was no precipitation of titanium in the aqueous solution, it is recognized that all the used titanium has become the chelate compound represented by the formula (1).
  • Example 2 7.12 g of tetraisopropoxytitanium (IV) was mixed with 3.01 g of isopropanol to obtain a diluted solution.
  • a titanium lactate chelate was obtained by adding 3.01 g of L-lactic acid (purity 90% by mass) to this diluted solution and stirring.
  • the molar ratio of tetraisopropoxytitanium (IV) used to L-lactic acid used was about 1: 1.2. Thereafter, 14.24 ml of water was added and stirred to obtain a clear aqueous solution of titanium lactate chelate. Since there was no precipitation of titanium in the aqueous solution, it is recognized that all the used titanium has become a chelate compound of the formula (1).
  • Example 3 7.12 g of tetraisopropoxytitanium (IV) was mixed with 3.01 g of isopropanol to obtain a diluted solution.
  • a titanium lactate chelate was obtained by adding 7.51 g of L-lactic acid (purity 90% by mass) to this diluted solution and stirring.
  • the molar ratio between the amount of tetraisopropoxytitanium (IV) used and the amount of L-lactic acid used was about 1: 3. Thereafter, 10.52 ml of water was added and stirred to obtain a clear aqueous solution of titanium lactate chelate. Since there was no precipitation of titanium in the aqueous solution, it is recognized that all the used titanium has become a chelate compound of the formula (1).
  • the present comparative example is an example in which a titanium chelate compound was produced by the same method as that of Patent Document 4 (Japanese Patent Laid-Open No. 2015-36390). After mixing 4.0 g of L-lactic acid (purity 90% by mass) and 2.8 g of isopropanol and adding 2.8 g of tetraisopropoxytitanium (IV) while stirring, stirring is continued until the heat of reaction disappears. A mixture containing titanium chelate was obtained. The molar ratio of tetraisopropoxytitanium (IV) used to L-lactic acid used was about 1: 4.
  • a titanium chelate compound can be efficiently obtained with high productivity with few steps, an industrially advantageous method for producing a titanium chelate compound is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

少ない工程で高い生産性により効率的にチタンキレート化合物を得ることができ、工業的に有利なチタンキレート化合物の製造方法を提供すること。 本発明のチタンキレート化合物の製造方法は、チタンアルコキシドを溶媒で希釈して希釈液を得る第一工程と、前記希釈液とヒドロキシカルボン酸とを混合してチタンキレート化合物を得る第二工程と、を有する。前記チタンアルコキシドが、テトラメトキシチタン(IV)、テトラエトキシチタン(IV)、テトラ-n-プロポキシチタン(IV)、テトライソプロポキシチタン(IV)、テトラ-n-ブトキシチタン(IV)及びテトライソブトキシチタン(IV)から選ばれる少なくとも一種であることが好ましい。

Description

チタンキレート化合物の製造方法
 本発明は、チタンキレート化合物の製造方法、特にヒドロキシカルボン酸のチタンキレート化合物の製造方法に関する。
 チタンキレート化合物は、各種の架橋剤、触媒及び分散剤等、様々な用途で使用されている。チタンキレート化合物としては、クエン酸、酒石酸、乳酸といったヒドロキシカルボン酸又はその塩と、チタンアルコキシド等のチタン化合物との反応により形成されるチタンキレート化合物が知られている。このチタンキレート化合物の生成反応として、特許文献1では、乳酸などのヒドロキシカルボン酸とチタンテトラアルコキシドを水の共存下で反応させたのちアミンアンモニア、苛性ソーダ、炭酸カリ等の塩基を加え中和造塩する方法が記載されている。
 特許文献2では、テトライソプロピル・チタン酸塩を石油エーテル(エクスゾールヘプタン)中の乳酸に添加して乳酸のチタン誘導体を得たことが記載されている。特許文献3には、チタンテトライソプロポキシドにエチレングリコールを加え、その後、乳酸アンモニウムを加えて乳酸キレートチタン化合物を得たことが記載されている。また、特許文献4では、乳酸とイソプロピルアルコールを混合した後、チタンイソプロポキシドを滴下してチタンイソプロポキシ乳酸キレートの混合液を得たことが記載されている。
特公昭50-5177号公報 特開平05-246936号公報 特開2015-17219号公報 特開2015-36390号公報
 特許文献1に記載の方法では、ヒドロキシカルボン酸とチタンテトラアルコキシドとを水の共存下で反応させているため、チタンテトラアルコキシドが加水分解を起こしてしまい、所望するチタンとのキレートを得難い問題がある。特許文献2及び特許文献3に記載の方法では、不純成分として石油エーテルやエチレングリコールを使用している。このためこれら文献記載の方法では、目的とするチタンキレート化合物を水含有溶媒等の石油エーテルやエチレングリコール以外の溶媒中で使用したい場合、反応液を濾別して得られた固形物を洗浄、乾燥する必要があるため工程が多くなり、工業的に不利である。特許文献4に記載の方法では、チタンイソプロポキシド1molに対して使用するキレート剤、すなわち乳酸の量が多く、生産性の面で改善の余地がある。また特許文献4に記載の方法では、チタンアルコキシドとヒドロキシカルボン酸とを混合した時に固形分が生じやすく均一になりにくい、イソプロパノールによる発煙が生じやすく、作業がしづらい等という問題もある。
 工業的に有利な方法でチタンとのキレートを形成させるためには、少ない工程で効率的な反応を促進させる必要があるが、従来技術では未だその要求を達成できていない。
 したがって本発明の課題は、前述した従来技術により達成できていない点を解消し得るチタンキレート化合物の製造方法を提供することにある。
 本発明者は、上記実情に鑑み鋭意研究を重ねた結果、原料となるチタンアルコキシドを特定の条件を有する状態とした後にヒドロキシカルボン酸と混合することにより、工業的に有利な条件で、所望のチタンキレートを形成しうることを見出し、本発明を完成するに至った。
 すなわち、本発明は、チタンアルコキシドを溶媒で希釈して希釈液を得る第一工程、及び、前記希釈液とヒドロキシカルボン酸を混合して混合物を得る第二工程を有する、チタンキレート化合物の製造方法を提供するものである。
 以下本発明を、その好ましい実施形態に基づき説明する。本実施形態の製造方法は、チタンアルコキシドを溶媒で希釈して希釈液を得る第一工程、及び、前記希釈液とヒドロキシカルボン酸を混合して混合物を得る第二工程を有する、チタンキレート化合物の製造方法に係るものである。
 本発明において、チタンアルコキシドを、予め溶媒に希釈しておくことが重要である。これにより、特許文献4等のようにヒドロキシカルボン酸を溶媒により予め希釈し、希釈したヒドロキシカルボン酸をチタンアルコキシドと混合する場合に比べて、チタンアルコキシドに対して使用するヒドロキシカルボン酸量を低減させることができる。この理由として発明者は、本発明では、希釈されたチタンアルコキシドとヒドロキシカルボン酸とを均一に混合させやすく、これにより6配位のキレート化合物へと反応が効率よく進みやすい可能性や、チタンアルコキシドの重合体等の副成分が生じにくいことなどが理由ではないかと考えている。また、本発明では、溶媒として、イソプロパノール等の溶媒を使用した場合、チタンアルコキシドと予め混合しておくことで、発煙を抑制させやすいという利点もある。
 第一工程で使用するチタンアルコキシドとしては、チタン原子に4つのアルコキシ基が配位しているチタンテトラアルコキシドが挙げられる。チタンアルコキシドにおいて配位子であるアルコキシ基は、直鎖状であっても分岐鎖状であってもよいが、炭素数4以下であることがヒドロキシカルボン酸との反応性や水溶性キレート剤の合成しやすさの点から好ましい。チタンアルコキシドにおけるアルコキシ基の炭素数は1以上である。チタン原子に配位する4つのアルコキシ基は同一であってもよく、異なってもよいが、同一であることが、チタンアルコキシドの入手容易性の点から好ましい。これらの観点から、チタンアルコキシドは、例えば、テトラメトキシチタン(IV)、テトラエトキシチタン(IV)、テトラ-n-プロポキシチタン(IV)、テトライソプロポキシチタン(IV)、テトラ-n-ブトキシチタン(IV)及びテトライソブトキシチタン(IV)から選ばれる少なくとも一種であることが特に好ましい。
 溶媒としては、有機溶媒が挙げられる。特にチタンアルコキシドを希釈液として流動性が高い状態で安定的に存在させて、ヒドロキシカルボン酸との反応性を高めることができる点や、目的物であるチタンキレート化合物を水含有溶媒中で分散又は溶解させて使用したいとき等に除去せずに使用できる等の理由から、極性有機溶媒が好ましく、特に、アルコールが好ましい。アルコールとしては、メタノール、エタノール、イソプロパノール、n-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノール、n-ペンタノール等が挙げられるが、特に炭素数1以上4以下の脂肪族アルコールが、チタンアルコキシドとヒドロキシカルボン酸とを液状態で均一に混合させやすいので反応性を高めやすい点や水溶性キレート剤の合成しやすさの点で好ましい。またアルコールとして、1価のアルコールを用いることが、入手コストの点で好ましい。とりわけ、前記チタンアルコキシドが有するアルキル基の少なくとも一つと同じ炭素数のアルキル基を有する一価のアルコールを用いることがキレート生成物と溶媒との相溶性や分離回収の点で好ましく、前記チタンアルコキシドが有する4つのアルキル基と同じ炭素数のアルキル基を有する一価のアルコールが最も好ましい。これらの溶媒は、1種又は2種以上を混合して用いることができる。
 第一工程により得られる、溶媒をチタンアルコキシドと混合させた希釈液中、チタンアルコキシドの割合は、90質量%以下であることが、チタンアルコキシドを流動化させてヒドロキシカルボン酸と混合させやすくする点で好ましい。また希釈液中におけるチタンアルコキシドの割合は、40質量%以上であることが、溶媒及びヒドロキシカルボン酸の使用量を抑制しながら効果的に収率を高める点から好ましい。これらの点から、希釈液中のチタンアルコキシドの量は50質量%以上85質量%以下であることがより好ましく、60質量%以上80質量%以下であることが特に好ましい。また同様の観点から、希釈液中の溶媒の量はチタンアルコキシド100質量部に対して10質量部以上150質量部以下が好ましく、15質量部以上100質量部以下がより好ましい。
 希釈液は、溶媒とチタンアルコキシド以外の成分を含有していてもよいが、得られるチタンキレート化合物の純度を高める点などから、溶媒とチタンアルコキシド以外の成分を実質的に非含有であることがより好ましい。具体的には、希釈液中、溶媒及びチタンアルコキシド以外のその他の成分の量は、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。第一工程におけるチタンアルコキシドの溶媒による希釈は、ヒドロキシカルボン酸の不存在下で行う。
 溶媒は、水分含量が低いことが、チタンアルコキシドがヒドロキシカルボン酸との反応前に加水分解してしまうことを防止できる点で好ましい。この観点から、溶媒は、水分含量が10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
 第二工程で用いるヒドロキシカルボン酸としては、入手の容易性やチタンアルコキシドとの反応性、入手コストの点から、脂肪族ヒドロキシカルボン酸が好ましく挙げられる。例えば、1価のカルボン酸として、乳酸、グリコール酸、グリセリン酸、ヒドロキシ酪酸が挙げられ、2価のカルボン酸として、タルトロン酸、リンゴ酸、酒石酸が挙げられ、3価のカルボン酸としてクエン酸、イソクエン酸等が挙げられる。ヒドロキシカルボン酸は、α-ヒドロキシカルボン酸であることが、ヒドロキシカルボン酸同士が脱水反応しにくい点で好ましく、α-ヒドロキシカルボン酸の中でも、入手容易性や取扱いのし易さの点から、乳酸、グリコール酸、酒石酸、クエン酸が好ましい。特に室温で溶液となり、チタンアルコキシド希釈液と混合しやすく、容易にチタンキレート化合物が製造できる観点から、乳酸が好ましい。ここでいうヒドロキシカルボン酸としては、ヒドロキシカルボン酸のアミン塩等の塩の形態ではないことが、廃液処理のし易さや着色されにくい点で好ましい。
 第二工程において、ヒドロキシカルボン酸は、希釈液に対し、該希釈液中のチタンアルコキシド1モルに対して、1モル以上混合させることが、ヒドロキシカルボン酸が配位したチタンキレート化合物を高い収量で得られる点から好ましく、3.5モル以下混合させることが、得られるチタンキレート化合物の過度なオリゴマー化を抑制しつつヒドロキシカルボン酸の使用量を抑制して、生産性を高める点で好ましい。これらの点から、ヒドロキシカルボン酸は、チタンアルコキシド1モルに対して、1.1モル以上3.3モル以下で混合させることがより好ましく、1.2モル以上3モル以下混合させることが更に一層好ましい。
 本発明においては、高い生産性により効率的にチタンキレート化合物を得るという効果を奏する範囲内において、第二工程において、ヒドロキシカルボン酸以外に、チタンに配位可能な配位子化合物を希釈液に添加してもよい。そのような配位子化合物としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子を有するハロゲン原子含有化合物、メチルアミノ基、エチルアミノ基、プロピルアミノ基、イソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、t-ブチルアミノ基、ペンチルアミノ基等の官能基を有するアミン類、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリス-t-ブチルホスフィン、トリフェニルホスフィン等のホスフィン類が挙げられる。ヒドロキシカルボン酸以外の、チタンに配位可能な配位子化合物の使用量は、ヒドロキシカルボン酸1モルに対して1モル以下であることが好ましく、0.5モル以下であることがより好ましく、0.3モル以下であることが最も好ましい。なお、第二工程における希釈液とヒドロキシカルボン酸との混合時に、溶媒に希釈されていない追加のチタンアルコキシドの添加は行わない。
 溶媒とチタンアルコキシドとを混合する第一工程、及び、それにより得られる希釈液とヒドロキシカルボン酸とを混合する第二工程は、いずれも室温下(0℃以上40℃以下)で行うことができる。第一工程及び第二工程は、連続的に行うことが好ましい。
 第二工程により得られるチタンキレート化合物は、チタン金属原子に、ヒドロキシカルボン酸が1分子以上配位した化合物である。このように、チタン金属原子にヒドロキシカルボン酸が配位したチタンキレート化合物は、水分と混合させた場合でもヒドロキシカルボン酸による配位状態が維持されて重合が抑制されやすい。第二工程により得られるチタンキレート化合物において、ヒドロキシカルボン酸以外の配位子としては、アルコキシ基、水酸基、ハロゲン原子、アミノ基、ホスフィン類等が挙げられ、アルコキシ基が好ましい。このようなチタンキレート化合物としては下記式(1)で示すものが挙げられる。
 Ti(R)m(L)n  ・・・(1)
(式中、Rは、アルコキシ基、水酸基、ハロゲン原子、アミノ基又はホスフィン類を表し、複数存在する場合、同一であってもよく、異なっていてもよい。Lはヒドロキシカルボン酸に由来する基を表し、複数存在する場合、同一であってもよく、異なっていてもよい。mは0以上3以下の数を示し、nは1以上3以下の数を示し、m+nは3~6である。)
 なお第二工程で、ヒドロキシカルボン酸とチタンアルコキシドとの反応により生じるアルコールが、ヒドロキシカルボン酸と更に反応して水が生じる場合がある。一般式(1)のRで表される水酸基の由来としては、この反応により生じる水が挙げられる。一般式(1)においてチタンの配位数は、Lがs座の配位子(sは正の整数)である場合、m+s×nで表され、6であることが好ましい。
 Rで表されるアルコキシ基としては、チタンアルコキシドにおける配位子として挙げられたものと同様のアルコキシ基が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。アミノ基としては、例えばメチルアミノ基、エチルアミノ基、プロピルアミノ基、イソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、t-ブチルアミノ基、ペンチルアミノ基等が挙げられる。ホスフィン類としては、例えばトリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリス-t-ブチルホスフィン、トリフェニルホスフィン等が挙げられる。
 Lで表されるヒドロキシカルボン酸に由来する基としては、ヒドロキシカルボン酸におけるヒドロキシル基の酸素原子又はヒドロキシカルボン酸におけるカルボキシル基の酸素原子が、チタン原子に配位してなる基が挙げられる。また、ヒドロキシカルボン酸におけるヒドロキシル基の酸素原子及びヒドロキシカルボン酸におけるカルボキシル基の酸素原子が、チタン原子に2座で配位してなる基が挙げられる。これらの中、ヒドロキシカルボン酸におけるヒドロキシル基の酸素原子及びヒドロキシカルボン酸におけるカルボキシル基の酸素原子が、チタン原子に2座で配位してなる基であることが好ましい。mが0の場合はm+nは3であることが好ましく、mが1以上3以下の場合はm+nは4又は5であることが好ましい。
 第二工程で得られるチタンキレート化合物は、チタン原子同士が酸素原子等を介して結合したオリゴマーなどの重合体を、水溶性を有する範囲で含有していてもよく、実質的に含有しなくてもよい。例えば、当該チタンキレート化合物のモノマーとオリゴマーが等量存在していたとしても、オリゴマーの重合度が低く水溶性を有していれば、本発明の範疇となる。例えば、第二工程で得られるチタンキレート化合物において、式(1)で表されるモノマーと上記オリゴマーとのモル比は、モノマー1モルに対してオリゴマーが1モル以下であることが好ましく、0.8モル以下であることがより好ましく、0.5モル以下であることが更に一層好ましい。
 前記第二工程の後、得られたチタンキレート化合物及び溶媒の混合物に水を添加してもよい。これにより、チタンキレート化合物の水含有溶媒の分散液又は溶解液を得ることができる。これは、例えば、チタンキレート化合物をその用途に適した形態とする点等から好ましい。とりわけ、本発明の方法によれば、副生物の少ない水溶性チタンキレート化合物を合成しやすく、前記第二工程の生成物と水とを混合することでチタンキレート化合物の透明な水溶液を容易に得ることができる。
 第二工程により得られた混合物を、水と混合して得られる化合物としては、上記式(1)で表される化合物が挙げられる。特に式(1)において、少なくとも一つのRが水酸基である化合物が容易に得やすい。
 式(1)の化合物の同定には、NMR、FT-IR、GPC等が挙げられる。
 第二工程により得られた化合物及び当該化合物を水と混合して得られる化合物のいずれについても、式(1)において、Rで表される配位子としては、水酸基又はアルコキシ基が好ましい。また第二工程で得られた混合物を水と混合して得られる化合物についても、式(1)のLの好ましい基としては上記で第二工程により得られた化合物について挙げたLの好ましい基が挙げられる。
 第二工程で得られた混合物に水を添加する場合、添加する水の量は、第二工程で得られた混合物100質量部に対して、20質量部以上であることが、Rとして表されるアルコキシ基を水酸基に置換する反応を促進する点で好ましく、200質量部以下であることがチタンの濃度を高くする点で好ましい。これらの観点から、水の添加量は前記の混合物100質量部に対して25質量部以上190質量部以下あることがより好ましい。
 以上の工程により得られたチタンキレート化合物は、各種の架橋剤、触媒及び分散剤等として有用に用いることができる。
 以下、本発明を実施例により説明する。しかしながら本発明の範囲はこれらの実施例に限定されるものではない。
(実施例1)
 テトライソプロポキシチタン(IV)7.12gにイソプロパノール3.01gを混合して希釈液を得た。この希釈液にL-乳酸(純度90質量%)5.01gを添加して撹拌することにより乳酸チタンキレートを得た。テトライソプロポキシチタン(IV)の使用量とL-乳酸の使用量とのモル比は約1:2であった。その後、12.59mlの水を添加して撹拌することにより透明な乳酸チタンキレートの水溶液を得た。水溶液にチタンの沈殿が存在しなかったことから、使用したチタンが全て式(1)で表されるキレート化合物となったものと認められる。生成した式(1)で表されるキレート化合物は、m=2、n=2、R=水酸基であり、Lが、乳酸における水酸基の酸素原子及びカルボキシル基の酸素原子がチタン原子に2座で配位してなる基である化合物を主として含んでいた。上記手順はいずれも室温(25℃)下で行った。
(実施例2)
 テトライソプロポキシチタン(IV)7.12gにイソプロパノール3.01gを混合して希釈液を得た。この希釈液にL-乳酸(純度90質量%)3.01gを添加して撹拌することにより乳酸チタンキレートを得た。テトライソプロポキシチタン(IV)の使用量とL-乳酸の使用量とのモル比は約1:1.2であった。その後、14.24mlの水を添加して撹拌することにより透明な乳酸チタンキレートの水溶液を得た。水溶液にチタンの沈殿が存在しなかったことから、使用したチタンが全て式(1)のキレート化合物となったものと認められる。生成した式(1)で表されるキレート化合物は、m=4、n=1、R=水酸基であり、Lが、乳酸における水酸基の酸素原子及びカルボキシル基の酸素原子がチタン原子に2座で配位してなる基である化合物を主として含んでいた。上記手順はいずれも室温(25℃)下で行った。
(実施例3)
 テトライソプロポキシチタン(IV)7.12gにイソプロパノール3.01gを混合して希釈液を得た。この希釈液にL-乳酸(純度90質量%)7.51gを添加して撹拌することにより乳酸チタンキレートを得た。テトライソプロポキシチタン(IV)の使用量とL-乳酸の使用量とのモル比は約1:3であった。その後10.52mlの水を添加して撹拌することにより透明な乳酸チタンキレートの水溶液を得た。水溶液にチタンの沈殿が存在しなかったことから、使用したチタンが全て式(1)のキレート化合物となったものと認められる。生成した式(1)で表されるキレート化合物は、m=0、n=3であり、Lが乳酸における水酸基の酸素原子及びカルボキシル基の酸素原子がチタン原子に2座で配位してなる基である化合物を主として含んでいた。上記手順はいずれも室温(25℃)下で行った。
(比較例1)
 テトライソプロポキシチタン(IV)7.12gにL-乳酸(純度90質量%)5.01gを添加したところ、粘調な塊となり、その後の操作が不能となった。
(比較例2)
 本比較例は、特許文献4(特開2015-36390号公報)と同様の手法でチタンキレート化合物を製造した例である。
 L-乳酸(純度90質量%)4.0gとイソプロパノール2.8gを混合し、撹拌しながらテトライソプロポキシチタン(IV)2.8gを添加した後、反応熱が無くなるまで撹拌を継続して乳酸チタンキレートを含む混合液を得た。テトライソプロポキシチタン(IV)の使用量とL-乳酸の使用量とのモル比は約1:4であった。得られた混合液に、18.3mlの水を添加して撹拌することにより乳酸チタンキレートを含む水溶液を得た。しかし、イソプロパノールとL-乳酸との混合物にテトライソプロポキシチタン(IV)を混合した際に発煙し、作業が非常に困難であるだけでなく、固形物が発生し、水を添加してもなかなか溶解せず、実施例1~3に比べて撹拌に時間がかかった。具体的には、実施例1~3は水添加後に、チタンキレート化合物が溶解するまでの撹拌時間が60~120分であるのに、比較例2は6時間程度であった。得られた水溶液は茶色がかっており、チタンアルコキシドの重合体等の副生物が生成している可能性が示された。
 本発明によれば、少ない工程で高い生産性により効率的にチタンキレート化合物を得ることができるため、工業的に有利なチタンキレート化合物の製造方法が提供される。

Claims (7)

  1.  チタンアルコキシドを溶媒で希釈して希釈液を得る第一工程と、
     前記希釈液とヒドロキシカルボン酸とを混合してチタンキレート化合物を得る第二工程と、を有する、チタンキレート化合物の製造方法。
  2.  前記チタンアルコキシドが、テトラメトキシチタン(IV)、テトラエトキシチタン(IV)、テトラ-n-プロポキシチタン(IV)、テトライソプロポキシチタン(IV)、テトラ-n-ブトキシチタン(IV)及びテトライソブトキシチタン(IV)から選ばれる少なくとも一種である、請求項1に記載のチタンキレート化合物の製造方法。
  3.  前記溶媒が、前記チタンアルコキシドが有するアルキル基の少なくとも一つと同じ炭素数のアルキル基を有する一価のアルコールである請求項1又は2に記載のチタンキレート化合物の製造方法。
  4.  前記ヒドロキシカルボン酸が、クエン酸、酒石酸、乳酸及びグリコール酸から選ばれる少なくとも一種である請求項1~3の何れか一項に記載のチタンキレート化合物の製造方法。
  5.  前記第一工程における希釈液におけるチタンアルコキシドの濃度が40質量%以上90質量%以下である請求項1~4の何れか一項に記載のチタンキレート化合物の製造方法。
  6.  前記第二工程におけるヒドロキシカルボン酸の使用量が、前記第一工程で得られた希釈液中のチタンアルコキシド1モルに対して、1モル以上3.5モル以下である請求項1~5の何れか一項に記載のチタンキレート化合物の製造方法。
  7.  前記第二工程の後、得られたチタンキレート化合物に水を添加してチタンキレート化合物の水溶液を得る請求項1~6の何れか一項に記載のチタンキレート化合物の製造方法。
PCT/JP2019/000167 2018-01-12 2019-01-08 チタンキレート化合物の製造方法 WO2019138989A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019564685A JPWO2019138989A1 (ja) 2018-01-12 2019-01-08 チタンキレート化合物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018003207 2018-01-12
JP2018-003207 2018-01-12

Publications (1)

Publication Number Publication Date
WO2019138989A1 true WO2019138989A1 (ja) 2019-07-18

Family

ID=67218574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000167 WO2019138989A1 (ja) 2018-01-12 2019-01-08 チタンキレート化合物の製造方法

Country Status (2)

Country Link
JP (1) JPWO2019138989A1 (ja)
WO (1) WO2019138989A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115724878A (zh) * 2022-11-14 2023-03-03 广州绿腾新材料有限公司 二次钛螯合物的制备方法及其在有机硅密封胶中的应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05246936A (ja) * 1991-08-08 1993-09-24 Tioxide Specialties Ltd カルボン酸のチタン誘導体の製造法
JP2001181231A (ja) * 1999-12-24 2001-07-03 Komatsuya Kagaku Kk 有機酸チタンアルカリ金属塩およびその製法
JP2003515441A (ja) * 1999-12-02 2003-05-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー エステル化触媒組成物およびその使用
JP2010242016A (ja) * 2009-04-09 2010-10-28 Toray Ind Inc ポリエステルの製造方法
JP2012140473A (ja) * 2010-12-28 2012-07-26 Tosoh Corp ポリウレタンの製造方法
US20120291667A1 (en) * 2011-04-15 2012-11-22 Charles Geoffrion Composition and Method to Form a Self Decontaminating Surface
JP2015160812A (ja) * 2014-02-26 2015-09-07 三洋化成工業株式会社 崩壊剤

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4746032B2 (ja) * 2005-02-15 2011-08-10 日本曹達株式会社 チタン酸化物粒子の分散液、チタン酸化物薄膜、有機機能膜形成用溶液、有機機能膜形成基体及びその製造方法
DE102011011544A1 (de) * 2011-02-17 2012-08-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Polytitansäureester und deren Verwendung zur Herstellung von implantierbaren, ggf. resorbierbaren Fasern
JP6236946B2 (ja) * 2013-07-12 2017-11-29 東レ株式会社 ポリエステルの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05246936A (ja) * 1991-08-08 1993-09-24 Tioxide Specialties Ltd カルボン酸のチタン誘導体の製造法
JP2003515441A (ja) * 1999-12-02 2003-05-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー エステル化触媒組成物およびその使用
JP2001181231A (ja) * 1999-12-24 2001-07-03 Komatsuya Kagaku Kk 有機酸チタンアルカリ金属塩およびその製法
JP2010242016A (ja) * 2009-04-09 2010-10-28 Toray Ind Inc ポリエステルの製造方法
JP2012140473A (ja) * 2010-12-28 2012-07-26 Tosoh Corp ポリウレタンの製造方法
US20120291667A1 (en) * 2011-04-15 2012-11-22 Charles Geoffrion Composition and Method to Form a Self Decontaminating Surface
JP2015160812A (ja) * 2014-02-26 2015-09-07 三洋化成工業株式会社 崩壊剤

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHUN, HYUNGPHIL ET AL.: "Metal-Organic Frameworks from Group 4 Metals and 2,5-Dihydroxyterephthalic Acid: Reinvestigation, New Structure, and Challenges Toward Gas Storage and Separation", CRYST. GROWTH DES., vol. 17, no. 4, 2017, pages 2140 - 2146, XP055625855, ISSN: 1528-7483 *
GIGANT, KARINE ET AL.: "Synthesis and Molecular Structures of Some New Titanium(IV) Aryloxides", J. AM. CHEM. SOC., vol. 123, no. 47, 2001, pages 11632 - 11637, XP055625852, ISSN: 0002-7863 *
MAHRWALD, R. ET AL.: "Insight into the mechanism of direct catalytic aldol addition nediated by ambifunctional titanium complexes", RETRAHEDRON LETTERS, vol. 43, no. 25, 2002, pages 4459 - 4461, XP004361175, ISSN: 0040-4039 *
QUIROZ-GUZMAN,MAURICIO ET AL.: "Redox-active tetrahydrosalen (salan) complexes of titanium", DALTON TRANS., vol. 40, no. 43, 2011, pages 11458 - 11468, XP055625858, ISSN: 1477-9226 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115724878A (zh) * 2022-11-14 2023-03-03 广州绿腾新材料有限公司 二次钛螯合物的制备方法及其在有机硅密封胶中的应用
CN115724878B (zh) * 2022-11-14 2024-02-13 广州绿腾新材料有限公司 二次钛螯合物的制备方法及其在有机硅密封胶中的应用

Also Published As

Publication number Publication date
JPWO2019138989A1 (ja) 2020-12-24

Similar Documents

Publication Publication Date Title
TW591050B (en) Esterification catalysts and processes therefor and therewith
RU2316396C2 (ru) Катализатор и способ
US5196388A (en) Process for the preparation of double metal oxide powders containing a Group IIIA and a Group IVB element and a novel double metal hydroxyl carboxylate useful in preparing same
WO2000062927A1 (en) Titanium-containing catalyst composition and processes therefor and therewith
KR20010052255A (ko) 티타늄 화합물, 아민 및 인 화합물을 포함하는 촉매조성물, 그의 제조 방법 및 용도
GB2258464A (en) Preparation of titanium derivatives of carboxylic acids
JP2003500492A (ja) エステル化触媒
WO2019138989A1 (ja) チタンキレート化合物の製造方法
JP2001322815A (ja) チタン含有水溶液の製造方法
JPH0688944B2 (ja) 脂肪酸ポリオキシアルキレンアルキルエーテルの製造方法
JP2003512350A (ja) 5−スルホイソフタレートのビスグリコール酸エステル金属塩およびそれから作製されるオキシスルホン化されたポリエステル類の製造のための方法
JP2002512267A (ja) チタン化合物とアミンと燐化合物を含んで成る触媒組成物、それの製造および使用
JP7525610B2 (ja) 組成物及び方法
US7157592B1 (en) Method for producing organo-metallic compounds of cyclopentadiene
JP4680382B2 (ja) 固体のネオジムカルボン酸塩の製造方法
JP2024057213A (ja) 水溶性チタンキレート剤の製造方法
KR101853260B1 (ko) 세벨라머 카보네이트의 제조방법
KR20100040722A (ko) 수 안정성 화합물, 촉매 및 촉매화된 반응
EP0079392B1 (en) Composite oxyalkoxides and derivatives thereof
EP3898570A1 (en) A process for preparation of amides and esthers of 2-((2-hydroxypanoyl)oxy)propanoic acid
US4990657A (en) Process for the preparation of aromatic acid
US6982346B2 (en) Process of making D-panthenyl triacetate
US2910494A (en) Polyaluminum oxide carboxylates
JPH03178947A (ja) フェノール化合物の製造法
US2468916A (en) Method for producing organic titanium compounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19739122

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019564685

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19739122

Country of ref document: EP

Kind code of ref document: A1