WO2019138863A1 - 有機デバイス用電極基板材料 - Google Patents

有機デバイス用電極基板材料 Download PDF

Info

Publication number
WO2019138863A1
WO2019138863A1 PCT/JP2018/047578 JP2018047578W WO2019138863A1 WO 2019138863 A1 WO2019138863 A1 WO 2019138863A1 JP 2018047578 W JP2018047578 W JP 2018047578W WO 2019138863 A1 WO2019138863 A1 WO 2019138863A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode substrate
organic
substrate material
conductor layer
Prior art date
Application number
PCT/JP2018/047578
Other languages
English (en)
French (fr)
Inventor
一 和栗
健吾 田
西尾 佳高
Original Assignee
東洋アルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋アルミニウム株式会社 filed Critical 東洋アルミニウム株式会社
Priority to JP2019564615A priority Critical patent/JP7284711B2/ja
Priority to CN201880085709.2A priority patent/CN111587610A/zh
Priority to KR1020207021071A priority patent/KR102341557B1/ko
Publication of WO2019138863A1 publication Critical patent/WO2019138863A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present disclosure relates to electrode substrate materials for organic devices.
  • organic electroluminescent (EL) elements have attracted attention as light sources of next-generation lighting devices.
  • the organic EL element is provided with an organic light emitting layer between the anode and the cathode, and in the organic light emitting layer, holes and electrons are recombined, and light is emitted by the energy generated at this time.
  • organic solar cells of the perovskite type and dye sensitization type are attracting attention as next-generation solar cell devices.
  • An organic solar cell is provided with a photoelectric conversion layer between an anode and a cathode, and generates electricity by extracting electrons and holes excited by incident sunlight from the anode and the cathode.
  • an electrode substrate material that can form an organic functional layer such as an organic light emitting layer and a photoelectric conversion layer, and can take out or take light is required.
  • the electrode substrate material is required to have smoothness capable of forming an organic functional layer so as not to cause pinholes and the like, and in particular, to be free from steps and protrusions.
  • the organic EL element and the organic solar cell are required to have a large area. In order to make the large area organic EL element emit light uniformly, it is important to be able to supply power to the entire surface of the device. In a large-area organic solar cell, it is important to efficiently transport excited electrons and holes in the device. Therefore, low surface resistance is required for the electrode substrate material.
  • organic EL elements and organic solar cells are produced by the roll-to-roll process in order to improve productivity, and are also required to be able to be used after being molded on a curved surface, so high flexibility is also required for electrode substrate materials. Be
  • an electrode substrate material for an organic device in which indium tin oxide (ITO) is laminated on a glass substrate, or an electrode substrate material for an organic device in which indium tin oxide (ITO) is laminated on a gas barrier film for example, , Patent Document 1.
  • the electrode substrate material for organic devices which laminated indium tin oxide (ITO) on the glass substrate does not have flexibility, it can not be bent and it can not manufacture by roll-to-roll. Furthermore, in order to adapt to the coating process, it takes time to perform pretreatment for securing wettability.
  • ITO indium tin oxide
  • An electrode substrate material for an organic device in which indium tin oxide (ITO) is laminated on a gas barrier film or the like has a considerably high surface resistance as compared with a metal such as silver, aluminum or copper. Although it is possible to further bend, when the radius of curvature of bending is reduced, the ITO layer is cracked and the surface resistance is increased.
  • ITO indium tin oxide
  • the mesh-shaped wiring portion becomes a step.
  • the metal deposition film is cracked and the surface resistance is increased, so that sufficient flexibility can not be obtained.
  • An object of the present disclosure is to enable realization of an electrode substrate material for an organic device having high smoothness, low surface resistance, and high flexibility.
  • One aspect of the electrode substrate material for organic devices of the present disclosure comprises a conductor layer made of a patterned metal foil and a planarizing layer provided around the conductor layer, and in the first surface, the conductor layer The surface is exposed from the planarizing layer, and the surface of the conductor layer and the surface of the planarizing layer form a continuous flat surface.
  • the conductor layer forms a pattern having a line width of 20 ⁇ m or more and 200 ⁇ m or less, and the density of the conductor layer per unit area in the first surface is 15% or less it can.
  • the planarization layer can include a gas barrier layer and a transparent resin layer, and the surface of the gas barrier layer and the exposed surface of the conductive layer can form a continuous smooth surface.
  • the gas barrier layer includes at least one of a layer containing aluminum and oxygen as main components, and a layer containing silicon and at least one of nitrogen, oxygen and carbon as main components. Can be 20 nm or more.
  • the planarization layer can have a transmittance of 85% or more for light with a wavelength of 400 nm to 800 nm.
  • the transparent resin layer is made of polyethylene terephthalate (PET), polypropylene (PP), polyethylene (PE), polystyrene (PS), polycarbonate (PC), acrylic, polyvinyl chloride (PVC) And one or more selected from fluorine resin, indium tin oxide (ITO), and polyethylenedioxythiophene / polystyrene sulfonic acid (PEDOT / PSS).
  • the conductor layer can be an aluminum foil having a thickness of 6 ⁇ m or more and 30 ⁇ m or less.
  • the conductor layer may include a base pattern and a peripheral pattern which is provided outside the base pattern and can be connected to an external device.
  • the surface of the conductor layer in the second surface opposite to the first surface, may be exposed from the planarization layer, and in the second surface, the conductor The surface of the layer may be covered by a planarization layer.
  • the electrode substrate material for organic devices of the present disclosure high smoothness, low surface resistance and high flexibility can be realized.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. It is a top view which shows the modification of the pattern of a conductor layer. It is sectional drawing which shows the modification of the surface electrode material for organic EL elements. It is sectional drawing which shows the modification of the surface electrode material for organic EL elements. It is sectional drawing which shows the modification of the surface electrode material for organic EL elements. It is sectional drawing which shows the modification of the surface electrode material for organic EL elements. It is sectional drawing which shows the modification of the surface electrode material for organic EL elements. It is sectional drawing which shows the modification of the surface electrode material for organic EL elements.
  • the electrode substrate material for organic devices of the present embodiment has a conductor layer 101 and a flattening layer 104, and can be used as an anode (front electrode) 202 of the organic EL element 200 as shown in FIG.
  • the light emitting layer 201 is provided between the anode 202 and the cathode 203.
  • the light generated in the light emitting layer 201 is output from the anode 202 side.
  • the light emitting layer 201 includes the hole injection layer, the hole transport layer, the electron injection layer, the electron transport layer, the charge confinement layer, and the like in addition to the organic light emitting layer. It means the whole layer formed by vapor deposition or application between them.
  • the electrode substrate material 100 for an organic device includes a conductor layer 101 made of patterned metal foil, and a planarization layer 104 provided around the conductor layer 101. Is equipped. In the first surface 111, the surface of the conductor layer 101 is exposed from the planarization layer 104, and the surface of the conductor layer 101 and the surface of the planarization layer 104 form a continuous flat surface. Therefore, the organic functional layer and the like can be easily formed on the first surface.
  • the electrode substrate material for an organic device of the present embodiment is composed of the conductor layer 101 whose surface is a metal foil and the planarization layer 102, and there is no ITO layer, so that the coating property can be easily improved. Therefore, when manufacturing an organic device by the apply
  • the conductor layer 101 of this embodiment is made of a metal foil patterned in a predetermined shape.
  • the conductor layer 101 made of metal foil is different from the conductor layer made of a metal vapor deposition film or the like, and is hardly broken even when bent, so that sufficient flexibility can be realized.
  • the conductor layer 101 abuts on the light emitting layer 201 of the organic EL element, and applies a voltage to the light emitting layer 201.
  • the metal foil used as the conductor layer 101 is not particularly limited, and may be, for example, an aluminum foil, a copper foil, a gold foil, or a silver foil. Among them, aluminum foil which is light in weight, hard to cause deep oxidation, and has high light reflectivity is preferable.
  • the metal foil used as the conductor layer 101 may have a metal thin film made of at least one of nickel, copper, silver, platinum, gold and the like formed on the surface by plating or evaporation.
  • the pattern of the conductor layer 101 can be designed according to the characteristics required for the electrode substrate material 100 for an organic device.
  • a known front electrode pattern adopted as an electrode of an organic device such as lattice, mesh, spiral, stripe, meander, and other irregular shapes can be adopted.
  • the pattern of the conductor layer 101 can include not only the base pattern 121 serving as one electrode of the organic device but also the peripheral pattern 122 provided on the outer side of the base pattern 121, as shown in FIG.
  • the peripheral pattern 122 is a second peripheral pattern for connecting the first peripheral pattern 122A connecting the substrate pattern and the terminal 124, the electrode 123 provided on the surface opposite to the substrate pattern 121 of the organic device, and the terminal 124.
  • the terminal 124 can be connected to an external device or the like.
  • the peripheral pattern 122 can be directly connected to an external device or the like without using the terminal 124.
  • the external device can be, for example, a power supply unit that supplies power to the organic device.
  • the thickness of the conductor layer 101 is not particularly limited, but is preferably 6 ⁇ m or more from the viewpoint of securing the flexibility and the viewpoint of reducing the surface resistance. Moreover, from a viewpoint of improving light transmittance, 30 micrometers or less are preferable.
  • the line width of the conductor layer 101 is not particularly limited, but is preferably 20 ⁇ m or more from the viewpoint of reducing the surface resistance, and is preferably 200 ⁇ m or less from the viewpoint of reducing the light emission unevenness. From the viewpoint of securing light transmittance, the density of the conductor layer per unit area in the first surface 111 is preferably 15% or less.
  • planarized layer is provided around the conductor layer 101 so as to fill the opening of the patterned conductor layer 101. In at least the first surface 111, the planarization layer 102 does not cover the conductor layer 101, and the surface of the conductor layer 101 is exposed.
  • the surface of the conductor layer 101 and the surface of the planarization layer 102 form a continuous flat surface.
  • the surface of the conductor layer 101 and the surface of the planarizing layer 102 are continuous surfaces without steps at their boundary portions, and the entire first surface 111 is flat. Since the first surface 111 is such a continuous flat surface, the uniform light emitting layer 201 can be formed on the surface of the electrode substrate material for an organic device of the present embodiment.
  • the first surface 111 may be in close contact with the entire surface of the light emitting layer 201, but the difference in level at the boundary between the surface of the conductor layer 101 and the surface of the planarization layer 102 is preferably 300 nm or less.
  • the planarizing layer 102 may be transparent as viewed by eye, but preferably has a transmittance of 85% or more at a wavelength of 400 nm to 800 nm. By setting the transmittance of the planarizing layer in this range, the light emission efficiency can also be improved.
  • the composition is not limited as long as the planarization layer 102 can be transparent.
  • transparent resins such as polyethylene terephthalate (PET), polypropylene (PP), polyethylene (PE), polystyrene (PS), polycarbonate (PC), acrylic, polyvinyl chloride (PVC), and fluorine resin can be used. These resins can be used alone or in combination of two or more.
  • transparent conductive materials such as indium tin oxide (ITO) or polyethylenedioxythiophene / polystyrene sulfonic acid (PEDOT / PSS) can also be used.
  • the planarization layer 102 may be a single layer or a plurality of layers. By forming the planarization layer 102 into a plurality of layers having different refractive indices, light diffusion can be controlled, total reflection can be reduced, and light extraction efficiency can be improved.
  • the planarization layer 102 may cover the conductor layer 101.
  • the second surface 112 is preferably a flat surface from the viewpoint of light extraction, but may have unevenness.
  • FIG. 6 it is possible to have a configuration in which unevenness corresponding to the pattern of the conductor layer 101 is present on the second surface 112.
  • the thickness of the planarization layer 102 is the same as the thickness of the conductor layer 101 when the conductor layer 101 is exposed also on the second surface 112.
  • it may be thicker than the conductor layer 101, but it is preferably 60 ⁇ m or less from the viewpoint of flexibility and light transparency.
  • the transparent support 105 can be bonded to the second surface 112 side. By bonding the transparent support 105, the strength of the surface electrode material 100 for an organic EL element can be increased.
  • the transparent support 105 is not particularly limited, and examples thereof include polyethylene terephthalate (PET), polypropylene (PP), polyethylene (PE), polystyrene (PS), polycarbonate (PC), acrylic, polyvinyl chloride (PVC), glass and the like. can do.
  • the transparent support can also be a layer having an antireflective function.
  • a black protective layer 106 can be provided on the second surface 112 side so as to hide the conductor layer 101.
  • the black protective layer 106 can be provided on the back surface of the conductor layer 101, it becomes difficult to see the pattern of the conductor layer 101 when the organic device is viewed from the front side, and the design is improved. Note that both the transparent support 105 and the protective layer 106 can be provided.
  • the protective layer 106 can be formed, for example, by using a black dry film resist used in an etching process described later, and using the dry film resist remaining after exposure and development without removing after etching.
  • the surface resistance can be made lower and the flexibility can be enhanced as compared with the conventional electrode substrate material for an organic device.
  • the planarization layer 102 can also be configured to include the gas barrier layer 103 and the transparent resin layer 104.
  • the organic light emitting layer and the photoelectric conversion layer of the organic device are weak to water vapor, and even a slight amount of water vapor is deteriorated. For this reason, the organic light emitting layer and the photoelectric conversion layer are sealed with glass, metal, a gas barrier film or the like. However, the prevention of water vapor on the electrode substrate side may not be sufficient. When the electrode substrate material has the water vapor barrier property 103, the water vapor does not easily enter from the electrode substrate side, and the deterioration of the organic functional layer can be suppressed.
  • the gas barrier layer 103 may be formed of any material as long as it has high transparency and water vapor barrier properties.
  • an atomic deposition method can form a layer containing aluminum and oxygen as main components.
  • a layer containing silicon, nitrogen, oxygen and carbon as main components can be formed by a chemical vapor deposition (CVD) method.
  • the gas barrier layer 103 is not limited to one layer, and may be a laminate of a plurality of layers.
  • the thickness of the gas barrier layer 103 is preferably 20 nm or more from the viewpoint of preventing water vapor.
  • the surface of the conductor layer 101 and the surface of the gas barrier layer 103 can form a continuous flat surface.
  • the difference in level at the boundary between the surface of the conductor layer 101 and the surface of the gas barrier layer 103 is preferably 300 nm or less. Note that the thickness of the transparent resin layer 104 can be thinner than the thickness of the conductor layer 101.
  • the electrode substrate material 100 for an organic device of the present embodiment can be formed, for example, as follows.
  • a metal foil 302 to be a conductor layer is laminated on a substrate 301 having a smooth surface and having poor adhesion to resin and metal.
  • the base material having poor adhesion refers to a base material having the ability to be easily separated even when resin or metal contacts.
  • the substrate may be formed of a material which itself has low adhesion, or may be provided with a low adhesion coating layer on the surface.
  • a substrate one or more of polyethylene terephthalate (PET), polypropylene (PP), polyethylene (PE), polystyrene (PS), polycarbonate (PC), acrylic and polyvinyl chloride (PVC), etc. are used as able to.
  • the metal foil 302 is made of the material and thickness capable of forming the conductor layer 101 described above. From the viewpoint of improving the adhesion between the light emitting layer 201 and the conductor layer 101 formed of the metal foil 302, the surface to be bonded to the base material 301 of the metal foil 302 is preferably smooth, and specifically the arithmetic average roughness It is preferable that (Ra) is 50 nm or less.
  • (Ra) is 50 nm or less.
  • stacked on the surface of the base material 301 is patternized, and the conductor layer 101 is formed.
  • the patterning of the metal foil 302 can be performed, for example, by a known method such as wet etching or dry etching.
  • the pattern formed by etching can adopt the known electrode pattern adopted as the electrode of the organic device as described above.
  • a pattern having a base pattern 121 and a peripheral pattern 122 as shown in FIG. 4 can also be used.
  • a transparent material is applied to form a planarization layer 102.
  • the transparent material may be a material as described above, and in the case of a material having fluidity at normal temperature, coating can be performed using, for example, a coater.
  • the material having fluidity at normal temperature is, for example, a resin having fluidity by dissolving in a solvent, a resin having fluidity at a specific temperature condition, a resin having fluidity at normal temperature and curable by heat or light, etc. And so on.
  • the base material 301 is peeled off. It becomes possible to peel easily by making a base material hard to adhere.
  • the conductor layer 101 is exposed without being covered by the planarization layer 102 on the first surface formed by peeling the base material 301.
  • the first surface is a surface to which the surface state of the base material 301 has been transferred. By using the substrate 301 having a smooth surface, a smooth first surface can be obtained.
  • the transparent support 105 can also be bonded together.
  • the planarization layer 102 can also be configured to include the gas barrier layer 103 and the transparent resin layer 104.
  • the gas barrier layer 103 covers both the portion from which the metal foil 302 is removed and the portion from which the metal foil 302 remains on the surface of the substrate 301 after the conductor layer 101 is formed.
  • the gas barrier layer 103 can be formed of a material having a high water vapor barrier property.
  • a layer mainly composed of aluminum and oxygen eg, a layer composed of Al 2 O 3 or the like
  • silicon is formed by a chemical vapor deposition (CVD) method.
  • a layer containing, as a main component, at least one of nitrogen, oxygen, and carbon may be formed. Moreover, the laminated body which combined these layers can also be formed.
  • a transparent material is applied on the surface of the gas barrier layer 103 to form a transparent resin layer 104.
  • FIG. 10B shows an example in which the transparent resin layer 104 completely fills the recess, the recess may not be completely filled.
  • the transparent resin layer 104 can completely cover the gas barrier layer 103.
  • a first surface which is a flat surface in which the surface of the conductor layer 101 and the surface of the gas barrier layer 103 are continuous is exposed.
  • the manufacturing method of the electrode substrate material for organic devices is not limited to such a method, and it may be formed by another method as long as the first surface can be made flat.
  • the electrode substrate material for an organic device of the present disclosure will be described in more detail using examples.
  • the following examples are illustrative and are not intended to limit the present invention.
  • Evaluation of the smoothness of the electrode substrate material for organic devices is made by observing the surface asperity shape with a field of view of 2.2 mm ⁇ 2.2 mm using Nikon Corporation high-resolution non-contact three-dimensional surface shape measurement system BW-D500 The maximum height Sz in the plane was measured.
  • the maximum height Rz defined in JIS-B 0601-2001 is a value calculated by expanding in three dimensions so as to be applicable to the entire observed surface.
  • a sample having a smoothness of Sz 200 nm or less was regarded as good ( ⁇ ), and a sample having a smoothness exceeding 200 nm was regarded as defective (x).
  • the evaluation of the water vapor barrier property of the electrode substrate material for organic devices is the water vapor permeability defined by JIS K 7129-7: 2016. The sample was placed on the deposited metallic calcium and calculated by calculating from the area of the corroded calcium after 100 hours under an environment of 40 ° C. and 90%.
  • the surface resistance of the electrode substrate material for organic devices is measured by using a resistance meter (RD701 DIGITALMULTIMETER, manufactured by Sanwa Denki Keiki Co., Ltd.) to measure the resistance between two corner points on the diagonal of a 50 mm ⁇ 50 mm sample. I asked for. A surface resistance of 10 ⁇ / cm or less was regarded as good ( ⁇ ), and a surface resistance exceeding 10 ⁇ / cm 2 was regarded as defective ( ⁇ ).
  • RD701 DIGITALMULTIMETER manufactured by Sanwa Denki Keiki Co., Ltd.
  • Example 1 Apply a poorly adhering adhesive to one surface (main surface) of an aluminum foil (1N30, manufactured by Toyo Aluminum Co., Ltd., made by Toyo Aluminum Co., Ltd.) having a thickness of 3 cm ⁇ 3 cm and a thickness of 15 ⁇ m (arithmetic mean roughness Ra: 7 nm) After drying, a substrate was attached to the coated surface on the side of the adhesive and aged at 50 ° C. for 4 days. The substrate was a 38 ⁇ m thick PET film (manufactured by Teijin Films Solutions Ltd.).
  • an alkaline development type dry film resist with a thickness of 15 ⁇ m is attached to the back surface of the aluminum foil, exposed to ultraviolet light (UV) using a mesh-shaped photomask, and developed. Etching was performed using an iron (II) aqueous solution to form a conductor layer.
  • the conductor layer had a line width of 75 ⁇ m, a grid of 1500 ⁇ m in pitch, and a wiring density of 10%.
  • a SiN film is formed to a thickness of 150 nm using plasma CVD on both the removed portion and the remaining portion of the aluminum foil by etching, and then an Al 2 O 3 film is formed to a thickness of 20 nm by atomic deposition.
  • a gas barrier layer was formed.
  • an epoxy resin having an average value of 90% of transmittance at a wavelength of 400 to 800 nm is applied so that the film thickness from the surface on which the gas barrier layer is formed is 20 ⁇ m. It applied so that the unevenness
  • a commercially available antireflective film with a thickness of 30 ⁇ m was attached as a transparent support, and dried at 100 ° C. After this, the base material was peeled off to obtain an electrode substrate material for an organic device.
  • the smoothness of the obtained electrode substrate material for an organic device is Rz 127 nm, the water vapor barrier property is 10 ⁇ 5 g / m 2 / day or less, and the surface resistance is 0.02 ⁇ / cm 2, and after bending test The surface resistance did not change.
  • An organic EL light-emitting device was formed in which the target sample was used as an anode.
  • the formation of the device was performed as follows. First, polyethylenedioxythiophene-polystyrene sulfonate (PEDOT / PSS, manufactured by sigma aldrich) was spin-coated on a target sample using a spin coater (Miniasa Inc., SpinCoater MS-A150) at 3000 rpm and dried in the air.
  • PEDOT / PSS polyethylenedioxythiophene-polystyrene sulfonate
  • a voltage of 7 V is applied to the obtained element to cause light emission, and the luminance with respect to the current and voltage is measured using a luminance meter (color luminance meter CS-200 manufactured by Konica Minolta), and the luminance per 1 A is determined as the luminous efficiency. As a result, it was 0.9 cd / A.
  • electrode substrate materials for organic devices at a wavelength of 254 nm and illuminance of 10.0 mW / cm 2 for 1 minute, 5 minutes, and 10 minutes.
  • UV ozone cleaning was performed, and each was evaluated by the wetting tension test method defined in JIS-K-6768-1999, 63 mN / m for 1 minute, 73 mN / m for 5 minutes, and 73 mN / m for 10 minutes. there were.
  • Example 2 The same process as in Example 1 was performed except that the aluminum foil was a copper foil having a thickness of 15 ⁇ m (purity 99.96%) and the epoxy resin was an acrylic resin.
  • the smoothness of the obtained electrode substrate material for an organic device is Rz 72 nm, the water vapor barrier property is 10 -5 g / m 2 / day or less, the surface resistance is 0.01 ⁇ / cm 2 , and after bending test Surface resistance did not change.
  • an organic EL light emitting device having the target sample as an anode was formed in the same manner as in Example 1, and the luminous efficiency was measured, to be 1.4 cd / A.
  • the wetting tension after UV ozone cleaning was evaluated in the same manner as in Example 1, it was 67 mN / m at 1 minute, 73 mN / m at 5 minutes, and 73 mN / m at 10 minutes.
  • Example 3 The process of Example 1 was repeated except that the line width of the conductive layer was 100 ⁇ m, the pitch was 2000 ⁇ m, and the wiring density was 9%.
  • the smoothness of the obtained electrode substrate material for an organic device is Rz 158 nm, the water vapor barrier property is 10 -5 g / m 2 / day or less, the surface resistance is 0.01 ⁇ / cm 2 , and after bending test Surface resistance did not change.
  • an organic EL light emitting element was formed in which the target sample was used as an anode in the same manner as in Example 1, and the luminous efficiency was measured, to be 1.0 cd / A.
  • the wetting tension after UV ozone cleaning was evaluated in the same manner as in Example 1, it was 63 mN / m at 1 minute, 73 mN / m at 5 minutes, and 73 mN / m at 10 minutes.
  • Example 4 An electrode substrate material for an organic device was obtained in the same manner as in Example 1 except that the gas barrier layer was not formed, that is, the portion from which the aluminum foil was removed by etching and the surface having the conductor layer were directly filled with the epoxy resin.
  • the smoothness of the obtained electrode substrate material for an organic device was Rz 127 nm, the surface resistance was 0.02 ⁇ / cm 2 , and the surface resistance after the bending test did not change.
  • the water vapor barrier property was 5.68 g / m 2 / day.
  • Example 2 an organic EL light-emitting device was formed using the target sample as an anode, and the luminous efficiency was measured, to be 0.9 cd / A.
  • the wetting tension after UV ozone cleaning was evaluated in the same manner as in Example 1, it was 68 mN / m at 1 minute, 68 mN / m at 5 minutes, and 73 mN / m at 10 minutes.
  • Example 5 An epoxy resin is directly filled in the area where the gas barrier layer is not formed, that is, the portion where the aluminum foil is removed by etching and the surface where the conductor layer is present, and the transparent support is 75 ⁇ m thick and has a water vapor transmission rate of 4 ⁇ 10 -4 g /
  • An electrode substrate material for an organic device was obtained in the same manner as in Example 1 except that a commercially available gas barrier film of m 2 / day was used.
  • the smoothness of the obtained electrode substrate material for an organic device was Rz 142 nm, the surface resistance was 0.02 ⁇ / cm 2 , and the surface resistance after the bending test did not change.
  • the water vapor barrier property was 3 ⁇ 10 ⁇ 2 g / m 2 / day.
  • Example 2 an organic EL light-emitting device was formed using the target sample as an anode, and the luminous efficiency was measured, which was 0.5 cd / A.
  • the wetting tension after UV ozone cleaning was evaluated in the same manner as in Example 1, it was 66 mN / m at 1 minute, 73 mN / m at 5 minutes, and 73 mN / m at 10 minutes.
  • An electrode substrate material for an organic device was obtained by laminating indium tin oxide (ITO) with a film thickness of 155 nm on a glass substrate by a sputtering method.
  • ITO indium tin oxide
  • the smoothness of the obtained electrode substrate material for an organic device was Rz: 17 nm, the water vapor barrier property was 10 ⁇ 5 g / m 2 / day or less, but the surface resistance was 0.68 ⁇ / cm 2 , Even if it was slightly bent, the glass substrate broke.
  • an organic EL light-emitting device was formed in which the target sample was used as an anode in the same manner as in Example 1, and the luminous efficiency was measured, to be 5.2 cd / A.
  • the wetting tension after UV ozone cleaning was evaluated in the same manner as in Example 1, it was 48 mN / m at 1 minute, 61 mN / m at 5 minutes, and 67 mN / m at 10 minutes.
  • Electrode substrate for organic devices by depositing indium tin oxide (ITO) with a film thickness of 120 nm by sputtering on a commercially available gas barrier film with a thickness of 75 ⁇ m and a water vapor transmission rate of 4 ⁇ 10 -4 g / m 2 / day I got the material.
  • ITO indium tin oxide
  • the obtained electrode substrate material for organic devices had a smoothness of Rz: 58 nm, a water vapor barrier property of 1 ⁇ 10 ⁇ 4 g / m 2 / day, and a surface resistance of 9.40 ⁇ / cm 2 . After the bending test, the resistance increased sharply to 2296.00 ⁇ / cm 2 .
  • Example 1 an organic EL light emitting element was formed in which the target sample was an anode, but no light was emitted.
  • the wetting tension after UV ozone cleaning was evaluated in the same manner as in Example 1, it was 52 mN / m at 1 minute, 58 mN / m at 5 minutes, and 62 mN / m at 10 minutes.
  • the crystallinity of the ITO film formed on the film was poor, and the surface resistance increased. Although it can be bent because it is a film, when it was bent with a small radius of curvature, the ITO film was cracked and resistance increased. In addition, a long pretreatment time was required to improve the wetting tension.
  • a commercially available acrylic adhesive is applied to one surface (main surface) of an aluminum foil (1N30 manufactured by Toyo Aluminum Co., Ltd., made by Toyo Aluminum Co., Ltd.) of 3 cm ⁇ 3 cm and a thickness of 15 ⁇ m (Ra: 7 nm).
  • a commercially available gas barrier film having a thickness of 75 ⁇ m and a water vapor transmission rate of 4 ⁇ 10 ⁇ 4 g / m 2 / day was laminated to the above.
  • a commercially available dry film is attached to the back of the aluminum foil, exposed and developed under UV conditions using a mesh-shaped photomask, and the portion where the dry film is not left is an aqueous solution of iron (II) chloride Thin lines were formed by etching, and the dry film was peeled off with a sodium hydroxide aqueous solution to obtain a front electrode material for an organic EL element.
  • the water vapor barrier property of the obtained electrode substrate material for organic devices was 4 ⁇ 10 -4 g / m 2 / day, but the surface resistance was 0.04 ⁇ / cm 2 , and the resistance value after the bending test changed Although it did not do, smoothness was Rz: 1621 nm.
  • Example 1 an organic EL light emitting device was formed in which the target sample was an anode, but no light was emitted.
  • the wetting tension after UV ozone cleaning was evaluated in the same manner as in Example 1, it was 70 mN / m at 1 minute, 73 mN / m at 5 minutes, and 73 mN / m at 10 minutes.
  • the conductor layer is formed of aluminum foil, there is no problem in surface resistance and flexibility, etc. However, since the planarization layer is not formed, a level difference is generated and the smoothness is poor.
  • Aluminum was vapor-deposited on a commercially available gas barrier film having a thickness of 75 ⁇ m and a water vapor transmission rate of 4 ⁇ 10 ⁇ 4 g / m 2 / day to form an aluminum vapor-deposited film having a thickness of 300 nm.
  • a commercially available dry film is attached to the surface of the aluminum deposition film, exposed by UV using a mesh-shaped photomask, developed, and the portion where the dry film is not left is etched using an aqueous solution of iron (II) chloride Done and patterned. Thereafter, the dry film was peeled using a sodium hydroxide aqueous solution to obtain an electrode substrate material for an organic device.
  • the water vapor barrier property of the obtained electrode substrate material for organic devices was 4 ⁇ 10 ⁇ 4 g / m 2 / day, and the surface resistance was 0.42 ⁇ / cm 2, but the resistance value after bending test was 12.6 ⁇ In addition to having increased to / cm 2 , the smoothness was Rz: 343 nm.
  • Example 1 an organic EL light emitting device was formed in which the target sample was an anode, but no light was emitted.
  • the wetting tension after UV ozone cleaning was evaluated in the same manner as in Example 1, it was 50 mN / m at 1 minute, 73 mN / m at 5 minutes, and 73 mN / m at 10 minutes.
  • the conductor layer was formed of an aluminum vapor deposition film, the conductor layer was cracked after 50 bending tests, and the surface resistance increased. Moreover, since the level
  • Table 1 summarizes the results of each example and comparative example.
  • the electrode substrate material for an organic device of the present disclosure can realize high smoothness, gas barrier properties, light transmittance, low surface resistance and high flexibility, and shorten the time for pretreatment in the coating process, and can use the electrode for an organic device. It is useful as a material.
  • Electrode substrate material 101 for organic devices conductive layer 102 planarizing layer 103 gas barrier layer 104 transparent resin layer 105 transparent support 106 protective layer 111 first surface 112 second surface 121 base pattern 122 peripheral pattern 122 A first peripheral pattern 122 B Second Peripheral Pattern 123 Electrode 124 Terminal 200 Organic EL Element 201 Light Emitting Layer 202 Electrode 203 Electrode 301 Base Material 302 Metal Foil

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

有機デバイス用電極基板材料は、パターン化された金属箔からなる導体層101と、導体層101の周囲に設けられた平坦化層102とを備えている。第1の面111において、導体層101の表面は平坦化層102から露出し、且つ導体層101の表面と、平坦化層102の表面とは、連続した平坦面を形成している。

Description

有機デバイス用電極基板材料
 本開示は、有機デバイス用電極基板材料に関する。
 近年、次世代照明器具の光源として、有機エレクトロルミネッセンス(EL)素子が注目されている。有機EL素子は陽極と陰極の間に有機発光層を備え、有機発光層において正孔と電子とを再結合させ、この際に生じるエネルギーにより発光させる。また、次世代太陽電池デバイスとしてペロブスカイト型や色素増感型などの有機太陽電池が注目されている。有機太陽電池は陽極と陰極の間に光電変換層を備え、入射した太陽光によって励起された電子及び正孔を陽極と陰極から取り出すことによって発電する。
 これらのデバイスにおいては、有機発光層及び光電変換層等の有機機能層を製膜することができると共に、光を取り出したり、取り込んだりすることができる電極基板材料が求められている。
 電極基板材料には、有機機能層をピンホール等が生じないように製膜することができる平滑性、特に段差や突起が無いことが求められる。近年、有機EL素子及び有機太陽電池は大面積化が求められている。大面積の有機EL素子を均一に発光させるためには、デバイス全面に電力を供給できるようにすることが重要となる。大面積化した有機太陽電池においては、デバイス内で励起された電子及び正孔を効率よく輸送することが重要となる。このため、電極基板材料には低い表面抵抗が求められる。さらに、有機EL素子及び有機太陽電池は生産性を高めるためにロールツゥロールプロセスで生産されると共に、曲面に成型して使用できることが求められているため、電極基板材料には高いフレキシブル性も求められる。
 これらの要求を満たす、有機デバイス用電極基板材料の開発が進められている。例えば、ガラス基板にインジウムスズオキサイト(ITO)を積層させた有機デバイス用電極基板材料やガスバリアフィルムにインジウムスズオキサイト(ITO)を積層させた有機デバイス用電極基板材料が検討されている(例えば、特許文献1を参照。)。
 さらに、ガスバリアフィルム等の上にメッシュ形状の金属蒸着膜を積層することにより形成した有機デバイス用電極基板材料も検討されている(例えば、特許文献2を参照。)。
特開2008-031496号公報 特開2001-0110574号公報
 しかしながら、ガラス基板にインジウムスズオキサイト(ITO)を積層させた有機デバイス用電極基板材料は、フレキシブル性が無いため曲げられずロールツーロールでの製造ができない。さらに塗布プロセスに適応するにはぬれ性を担保するための前処理に時間がかかる。
 ガスバリアフィルム等の上にインジウムスズオキサイト(ITO)を積層した有機デバイス用電極基板材料は銀、アルミニウム又は銅等の金属と比べて表面抵抗がかなり高い。さらに曲げることはできるものの、曲げの曲率半径を小さくするとITO層にクラックが入り表面抵抗が増大する。
 一方、ガスバリアフィルム等の上に金属蒸着膜により有機デバイス用電極基板材料を形成すると、メッシュ形状の配線部分が段差となってしまう。また、曲げることはできるものの曲げの曲率半径が小さいと金属蒸着膜にクラックが入り表面抵抗が増大するので十分なフレキシブル性を得ることができない。
 本開示の課題は、平滑性が高く、表面抵抗が低く、フレキシブル性が高い有機デバイス用電極基板材料を実現できるようにすることである。
 本開示の有機デバイス用電極基板材料の一態様は、パターン化された金属箔からなる導体層と、導体層の周囲に設けられた平坦化層とを備え、第1の面において、導体層の表面は平坦化層から露出し、且つ導体層の表面と、平坦化層の表面とは、連続した平坦面を形成している。
 有機デバイス用電極基板材料の一態様において、導体層は、線幅が20μm以上、200μm以下のパターンを形成し、第1の面における単位面積当たりの導体層の密度は15%以下とすることができる。
 有機デバイス用電極基板材料の一態様において、平坦化層はガスバリア層と透明樹脂層とを含みさ、ガスバリア層の表面と導電層の露出した表面とは連続した平滑面を形成するようにできる。
 有機デバイス用電極基板材料の一態様において、ガスバリア層は、アルミニウム及び酸素を主成分とする層並びにシリコンと、窒素、酸素及び炭素の少なくとも1つとを主成分とする層の少なくとも一方を含み、厚さが20nm以上とすることができる。
 有機デバイス用電極基板材料の一態様において、平坦化層は、波長400nm~800nmの光の透過率が85%以上とすることができる。
 有機デバイス用電極基板材料の一態様において、透明樹脂層は、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリスチレン(PS)、ポリカーボネート(PC)、アクリル、ポリ塩化ビニル(PVC)、フッ素樹脂、インジウムスズオキサイド(ITO)、及びポリエチレンジオキシチオフェン/ポリスチレンスルホン酸(PEDOT/PSS)のうちの1種又は2種以上とすることができる。
 有機デバイス用電極基板材料の一態様において、導体層は、厚さ6μm以上、30μm以下のアルミニウム箔とすることができる。
 有機デバイス用電極基板材料の一態様において、導体層は、基盤パターンと、基盤パターンの外側に設けられ、外部装置と接続可能な周辺パターンとを含んでいてもよい。
 有機エレクトロルミネッセンス素子用表電極材料の一態様において、第1の面と反対側の第2の面において、導体層の表面は平坦化層から露出していてもよく、第2の面において、導体層の表面は平坦化層に覆われていてもよい。
 本開示の有機デバイス用電極基板材料によれば、高い平滑性、低い表面抵抗及び高いフレキシブル性を実現できる。
一実施形態の有機EL素子用表電極材料を用いた有機EL素子を示す断面図である。 一実施形態に係る有機EL素子用表電極材料を示す斜視図である。 図2のIII-III線における断面図である。 導体層のパターンの変形例を示す平面図である。 有機EL素子用表電極材料の変形例を示す断面図である。 有機EL素子用表電極材料の変形例を示す断面図である。 有機EL素子用表電極材料の変形例を示す断面図である。 有機EL素子用表電極材料の変形例を示す断面図である。 有機EL素子用表電極材料の製造方法の一工程を示す斜視図である。 有機EL素子用表電極材料の製造方法の一工程を示す斜視図である。 有機EL素子用表電極材料の製造方法の一工程を示す斜視図である。 有機EL素子用表電極材料の製造方法の一工程を示す斜視図である。 有機EL素子用表電極材料の製造方法の一工程を示す断面図である。 有機EL素子用表電極材料の製造方法の一工程を示す断面図である。
 本実施形態の有機デバイス用電極基板材料は、導体層101と平坦化層104とを有し、図1に示すような、有機EL素子200の陽極(表電極)202として用いることができる。有機EL素子200は、発光層201が陽極202と、陰極203との間に設けられている。発光層201において生じた光は、陽極202側から出力される。
 本実施形態において発光層201は、有機発光層に加えて、正孔注入層、正孔輸送層、電子注入層、電子輸送層、電荷閉込め層等を含めた、陰極203と陽極202との間に蒸着又は塗布等によって形成された層全体を意味する。
 図2及び図3に示すように、本実施形態の有機デバイス用電極基板材料100は、パターン化された金属箔からなる導体層101と、導体層101の周囲に設けられた平坦化層104とを備えている。第1の面111において、導体層101の表面は平坦化層104から露出し、且つ導体層101の表面と、平坦化層104の表面とは、連続した平坦面を形成している。このため、第1の面に有機機能層等を容易に成膜することができる。
 本実施形態の有機デバイス用電極基板材料は表面が金属箔からなる導体層101と平坦化層102とからなり、ITO層が存在しないため、塗れ性を容易に向上できる。従って、塗布法によって有機デバイスを製造する際、UVオゾン洗浄などの前処理の時間を短縮できるという利点も得られる。
 <導体層>
 本実施形態の導体層101は、所定形状にパターン化された金属箔からなる。金属箔からなる導体層101は、金属蒸着膜等からなる導体層と異なり、折り曲げても断線しにくいために、十分なフレキシブル性を実現することができる。導体層101は、有機デバイス用電極基板材料100が有機デバイスの電極202として用いられた際に、有機EL素子の発光層201と当接し、発光層201に電圧を印加する。
 導体層101として用いる金属箔は特に限定されず、例えばアルミニウム箔、銅箔、金箔、又は銀箔等とすることができる。中でも、軽量で、深部の酸化が生じにくく、且つ光反射性が高いアルミニウム箔が好ましい。
 また、導体層101として用いる金属箔は、表面にめっき又は蒸着等により形成された、ニッケル、銅、銀、白金、及び金等の少なくとも1種からなる金属薄膜を有していてもよい。
 導体層101のパターンは、有機デバイス用電極基板材料100に必要な特性に応じて設計することができる。例えば、格子状、網目状、螺旋状、縞状、蛇行形状、及びその他の不定形状等、有機デバイスの電極として採用されている既知の表電極パターンを採用することができる。
 導体層101のパターンは、図4に示すように、有機デバイスの一方の電極となる基盤パターン121だけでなく、基盤パターン121の外側に設けられた周辺パターン122を含むことができる。周辺パターン122は、基盤パターンと端子124とを接続する第1の周辺パターン122Aと有機デバイスの基盤パターン121と反対側の面に設けられた電極123と端子124とを接続する第2の周辺パターン122Bとを含むことができる。端子124は、外部装置等と接続することができる。また、端子124を介さずに、周辺パターン122を直接外部装置等と接続することもできる。外部装置は、例えば有機デバイスに電力を供給する電力供給部等とすることができる。
 導体層101の厚さは特に限定されないが、フレキシブル性を確保する観点及び表面抵抗を低減する観点から6μm以上が好ましい。また、光透過率を向上させる観点から、30μm以下が好ましい。
 導体層101の線幅は特に限定されないが、表面抵抗を低減する観点から20μm以上が好ましく、発光ムラを低減する観点から200μm以下が好ましい。光透過性を確保する観点から、第1の面111における単位面積当たりの導体層の密度は15%以下であることが好ましい。
 <平坦化層>
 平坦化層102は、パターン化された導体層101の開口部を埋めるように、導体層101の周囲に設けられている。少なくとも第1の面111において、平坦化層102は導体層101を覆っておらず、導体層101の表面が露出している。
 少なくとも第1の面111において、導体層101の表面と、平坦化層102の表面とは、連続した平坦面を形成している。具体的には、導体層101の表面と、平坦化層102の表面とが、その境界部分に段差が無い連続面となっていると共に、第1の面111全体として平坦面になっている。第1の面111がこのような連続した平坦面となっているため、本実施形態の有機デバイス用電極基板材料の表面には、均一な発光層201を成膜することができる。なお、第1の面111は、発光層201の全面と密着すればよいが、導体層101の表面と、平坦化層102の表面との境界におけるレベルの差は、好ましくは300nm以下である。
 平坦化層102は目視において透明であればよいが、波長400nm~800nmの透過率が85%以上であることが好ましい。平坦化層の透過率をこの範囲とすることにより、発光効率を向上させることもできる。
 平坦化層102は透明にできれば、その組成は限定されない。例えば、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリスチレン(PS)、ポリカーボネート(PC)、アクリル、ポリ塩化ビニル(PVC)及びフッ素樹脂等の透明な樹脂を用いることができる。これらの樹脂は単独又は2種以上を混合して用いることができる。また、インジウムスズオキサイト(ITO)又はポリエチレンジオキシチオフェン/ポリスチレンスルホン酸(PEDOT/PSS)等の透明な導電性材料を用いることもできる。
 平坦化層102は一層であっても複数の層であってもよい。平坦化層102を屈折率が異なる複数の層とすることにより、光の拡散を制御し、全反射を少なくして、光取り出し効率を向上させることができる。
 図3に示すように、第1の面111と反対側の第2の面112においても導体層101が平坦化層102に覆われていない場合は、給電箇所の自由度が大きくなるという利点が得られる。しかし、図5に示すように、第2の面112においては、平坦化層102が導体層101を覆っていてもよい。また、第2の面112は光取り出しの観点からは平坦面であることが好ましいが、凹凸が存在していてもよい。例えば、図6に示すように、導体層101のパターンに対応した凹凸が第2の面112に存在している構成とすることができる。
 平坦化層102の厚さは、第2の面112においても導体層101が露出するようにする場合には、導体層101の厚さと同じ厚さとなる。第2の面において導体層101を覆うようにする場合には、導体層101よりも厚くすればよいが、フレキシブル性の観点及び光透過性の観点から60μm以下とすることが好ましい。
 図7に示すように、第2の面112側に透明支持体105を貼り合わせることもできる。透明支持体105を貼り合わせることにより、有機EL素子用表電極材料100の強度を高くすることができる。透明支持体105は、特に限定されないが、例えばポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリスチレン(PS)、ポリカーボネート(PC)、アクリル、ポリ塩化ビニル(PVC)及びガラス等とすることができる。透明支持体は、反射防止機能を有する層とすることもできる。
 また、図8に示すように、第2の面112側に、導体層101を隠すように黒色の保護層106を設けることもできる。導体層101の裏面に、黒色の保護層106を設けることにより、有機デバイスを表面側から見たときに導体層101のパターンが見えにくくなり、意匠性が向上する。なお、透明支持体105と保護層106との両方を設けることもできる。
 保護層106は、例えば後述のエッチング工程で使用するドライフィルムレジストに黒色のものを使用し、露光、現像して残ったドライフィルムレジストをエッチング後に剥離せずにそのまま使用することで形成できる。
 有機デバイス用電極基板材料100が以上のような構成を備えることにより、従来の有機デバイス用電極基板材料よりも表面抵抗を低くできると共にフレキシブル性を高くできる。また、デバイス化したときの発光効率を向上させることもできる。
 平坦化層102をガスバリア層103と透明樹脂層104とを含む構成とすることもできる。有機デバイスの有機発光層や光電変換層は水蒸気に弱く、わずかな水蒸気でも劣化してしまう。このため、有機発光層や光電変換層はガラス、金属又はガスバリアフィルム等により封止される。しかし、電極基板側における水蒸気の阻止は十分ではない場合がある。電極基板材料が水蒸気バリア性103を有することにより、電極基板側から水蒸気が侵入しにくくして、有機機能層の劣化を抑えることがきる。
 ガスバリア層103は、透明度が高く水蒸気バリア性を有していればどのような材料により形成してもよい。例えば、原子堆積法によってアルミニウム及び酸素を主成分とする層を形成することができる。また、化学気相堆積(CVD)法によってシリコン、窒素、酸素及び炭素を主成分とする層を形成することもできる。ガスバリア層103は1層に限らず、複数の層の積層体とすることもできる。ガスバリア層103の厚さは、水蒸気を阻止する観点から好ましくは20nm以上である。
 ガスバリア層103を設ける場合は、導体層101の表面とガスバリア層103の表面とが、連続した平坦面を形成するようにできる。導体層101の表面と、ガスバリア層103の表面との境界におけるレベルの差は、好ましくは300nm以下である。なお、透明樹脂層104の厚さは、導体層101の厚さよりも薄くすることができる。
 <製造方法>
 本実施形態の有機デバイス用電極基板材料100は、例えば以下のようにして形成することができる。
 まず、図9Aに示すように、表面が平滑で、樹脂及び金属に対して難付着性を有する基材301に、導体層となる金属箔302を積層する。難付着性を有する基材とは、樹脂や金属が接触しても容易に引き離し可能な性能を有する基材をいう。基材はそのものが難付着性を有している材料により形成することも、表面に難付着性のコート層が設けられているものとすることもできる。例えば、基材として、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリスチレン(PS)、ポリカーボネート(PC)、アクリル及びポリ塩化ビニル(PVC)等の1種又は2種以上を用いることができる。
 金属箔302には先に述べた導体層101を形成できる材質及び厚さのものを用いる。金属箔302により形成する導体層101と発光層201との密着性を向上させる観点から、金属箔302の基材301と貼り合わせる面は平滑であることが好ましく、具体的には算術平均粗さ(Ra)が50nm以下であることが好ましい。基材301に金属箔302を積層する際に、基材301及び金属箔302の少なくとも一方の表面に難付着性又は微付着性の接着剤等を塗布することもできる。このようにすれば、積層を容易となる。
 次に、図9Bに示すように、基材301の表面に積層した金属箔302をパターン化して導体層101を形成する。金属箔302のパターン化は例えば、ウエットエッチング又はドライエッチング等の既知の方法により行うことができる。エッチングにより形成するパターンは、先に述べたように有機デバイスの電極として採用されている既知の電極パターンを採用することができる。また、図4に示すような基盤パターン121と周辺パターン122とを有しているようなパターンとすることもできる。
 次に、図9Cに示すように、透明材料を塗工して平坦化層102を形成する。透明材料は、先に述べたような材料を用いることができ、常温で流動性を有する材料の場合、例えばコーターを用いて塗工を行うことができる。常温で流動性を有する材料は、例えば、溶剤に溶解することにより流動性を有する樹脂、特定の温度条件において流動性を有する樹脂、常温で流動性を有し熱又は光等により硬化可能な樹脂等とすることができる。
 次に、図9Dに示すように、基材301を剥離する。基材を難付着性とすることにより、容易に剥離することが可能となる。基材301を剥離して形成した第1の面において、導体層101は平坦化層102に覆われず露出する。また、第1の面は、基材301の表面状態が転写された面となる。平滑な表面を有する基材301を用いることにより、平滑な第1の面が得られる。
 なお、平坦化層102を形成した後、基材301を剥離する前に、透明支持体105を貼り合わせる工程を設けてもよい。透明支持体105を設けることにより、平坦化層102の厚さが薄い場合にも、基材301の剥離が容易となる。なお、基材301を剥離した後で、透明支持体105を貼り合わせることもできる。
 平坦化層102をガスバリア層103と透明樹脂層104と含む構成とすることもできる。この場合、図10Aに示すように導体層101を形成した後の基材301の表面に、金属箔302が除去された部分及び金属箔302が残存する部分の両方を覆うように、ガスバリア層103を形成する。ガスバリア層103は、水蒸気バリア性の高い材料により形成することができる。例えば原子堆積法等を用いて、アルミニウム及び酸素を主成分とする層(例えば、Al23等からなる層)を形成したり、化学気相堆積法(CVD)法を用いてシリコンと、窒素、酸素及び炭素の少なくとも1つとを主成分とする層(例えば、SiOx、SiN、SiON、又はSiONC等からなる層)を形成したりすればよい。また、これらの層を組み合わせた積層体を形成することもできる。図10Bに示すように、ガスバリア層103を形成した後、ガスバリア層103の表面に透明材料を塗工して透明樹脂層104を形成する。図10Bにおいて、透明樹脂層104が凹部を完全に埋めている例を示したが、凹部が完全に埋まっていなくてもよい。また、透明樹脂層104がガスバリア層103を完全に覆うようにすることもできる。基材301を剥離すると、導体層101の表面とガスバリア層103の表面とが連続した平坦面である第1の面が露出する。
 有機デバイス用電極基板材料の製造方法は、このような方法に限らず、第1の面を平坦にできれば他の方法により形成することもできる。
 本開示の有機デバイス用電極基板材料について実施例を用いてさらに詳細に説明する。以下の実施例は例示であり、本発明を限定することを意図するものではない。
 <平滑性の評価>
 有機デバイス用電極基板材料の平滑性の評価は株式会社ニコン製超高分解能非接触三次元表面形状計測システムBW-D500を用いて2.2mm×2.2mmの視野で表面の凹凸形状を観察し、面内の最大高さSzを測定した。JIS-B0601-2001で定義されている最大高さRzを、観察された表面全体に対して適用できるように三次元に拡張して算出された値である。平滑性がSz200nm以下のものを良好(〇)、200nmを超えるものを不良(×)とした。
 <水蒸気バリア性の評価>
 有機デバイス用電極基板材料の水蒸気バリア性の評価は、JIS K 7129-7:2016で定義される水蒸気透過度である。蒸着した金属カルシウム上に試料を設置し、40℃90%の環境下で100時間経過後、腐食したカルシウムの面積から計算することによって算出した。
 <表面抵抗の評価>
 有機デバイス用電極基板材料の表面抵抗は、50mm×50mmの試料の対角線上にある2つの角点の間の抵抗値を抵抗計(三和電気計器株式会社製、RD701 DIGITALMULTIMETER)を用いて測定して求めた。表面抵抗が10Ω/cm以下のものを良好(〇)、10Ω/cm2を超えるものを不良(×)とした。
 <フレキシブル性の評価>
 対象試料の屈曲試験前後の表面抵抗を測定し、表面抵抗の低下率を求めた。屈曲試験は、塗膜屈曲試験機を用いて、10mmφのマンドレルで50回行った。表面抵抗の低下率が5%以下のものをフレキシブル性が良好(〇)、5%を超えるものを不良(×)とした。
 (実施例1)
 3cm×3cmで厚さ15μm(算術平均粗さRa:7nm)のアルミニウム箔(東洋アルミニウム株式会社製、1N30)の一方の表面(主面)に難付着性の接着剤を塗布し、100℃で乾燥させた後、この接着剤側の塗布面に基材を貼り合わせ、50℃で4日間エージングした。基材は厚さ38μmのPETフィルム(帝人フィルムソリューションズ株式会社製)とした。
 次に、アルミニウム箔の裏面に、厚さ15μmのアルカリ現像型ドライフィルムレジストを貼り合わせ、メッシュ形状フォトマスクを用いて紫外線(UV)により露光、現像し、ドライフィルムレジストが残っていない部分を塩化鉄(II)水溶液を用いてエッチングを行い、導体層を形成した。導体層の線幅は75μmで、ピッチが1500μmの格子状とし、配線密度は10%とした。
 次に、アルミニウム箔がエッチングにより除去された部分及び残存する部分の両方に、プラズマCVD法を用いてSiN膜を150nm製膜した後、原子堆積法によってAl23膜を20nm製膜してガスバリア層を形成した。
 次に、形成したガスバリア層の表面に波長400~800nmにおける透過率の平均値が90%のエポキシ樹脂を接着剤上にガスバリア層が形成されている面からの膜厚が20μmとなるように且つ導体層の凹凸が埋め込まれるように塗工し、平坦化層を形成した。平坦化層の表面には、透明支持体として厚さ30μmの市販の反射防止フィルムを貼り合わせ、100℃で乾燥させた。この後、基材を剥離し、有機デバイス用電極基板材料とした。
 得られた有機デバイス用電極基板材料の平滑性はRz127nmであり、水蒸気バリア性は10-5g/m/day以下であり、表面抵抗は、0.02Ω/cm2であり、屈曲試験後の表面抵抗は変化しなかった。
 対象試料を陽極とする有機EL発光素子を形成した。素子の形成は以下のようにして行った。まず、対象試料にポリエチレンジキシチオフェン―ポリスチレンスルホナート(PEDOT/PSS、sigma aldrich社製)をスピンコータ(ミカサ株式会社製、SpinCoater MS-A150)を用いて3000rpmでスピンコートし、大気中で乾燥させた。続いて、Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4′-(N-(4-sec-butylphenyl)diphenylamine)](TFB、sigma aldrich社製)をトルエンに溶解させたものを3000rpmでスピンコートし、窒素雰囲気で乾燥させた。この後、ポリ(9,9-ジオクチルフルオレン-alt-ベンゾチアジアゾール))F8BT、sigma aldrich社製)をトルエンに溶解させたものを2000rpmでスピンコートした。次に、フッ化リチウムを真空蒸着装置(日本電子株式会社製、JEE-4X)を用いて真空蒸着し、さらに陽極としてアルミニウムを真空蒸着した。
 得られた素子に7Vの電圧を印加して発光させ、電流・電圧に対する輝度を輝度計(コニカミノルタ製、色彩輝度計CS-200)を用いて測定し、1Aあたりの輝度を発光効率として求めたところ、0.9cd/Aであった。
 サンエナジー株式会社製UV/O洗浄改質装置SKB401Y-02を用いて波長254nm、照度10.0mW/cmで1分、5分、10分の3水準で有機デバイス用電極基板材料に対してUVオゾン洗浄を行い、それぞれについてJIS-K-6768-1999で定義されるぬれ張力試験方法で評価したところ、1分では63mN/m、5分では73mN/m、10分では73mN/mであった。
 (実施例2)
 アルミニウム箔を厚さが15μmの銅箔(純度99.96%)とし、エポキシ樹脂をアクリル樹脂とした以外は実施例1と同様にした。
 得られた有機デバイス用電極基板材料の平滑性はRz72nmであり、水蒸気バリア性は10-5g/m2/day以下であり、表面抵抗は、0.01Ω/cm2であり、屈曲試験後の表面抵抗は変化しなかった。
 また、実施例1と同様に対象試料を陽極とする有機EL発光素子を形成し、発光効率を測定したところ、1.4cd/Aであった。実施例1と同様にUVオゾン洗浄後のぬれ張力を評価したところ、1分では67mN/m、5分では73mN/m、10分では73mN/mであった。
 (実施例3)
 導電層の線幅を100μmとし、ピッチが2000μmで配線密度を9%とした以外は実施例1と同様にした。
 得られた有機デバイス用電極基板材料の平滑性はRz158nmであり、水蒸気バリア性は10-5g/m2/day以下であり、表面抵抗は、0.01Ω/cm2であり、屈曲試験後の表面抵抗は変化しなかった。
また、実施例1と同様に対象試料を陽極とする有機EL発光素子を形成し、発光効率を測定したところ、1.0cd/Aであった。実施例1と同様にUVオゾン洗浄後のぬれ張力を評価したところ、1分では63mN/m、5分では73mN/m、10分では73mN/mであった。
 (実施例4)
ガスバリア層を形成せず、すなわちアルミニウム箔がエッチングにより除去された部分及び導体層のある面に直接エポキシ樹脂を充填した以外は実施例1と同様にして有機デバイス用電極基板材料を得た。
 得られた有機デバイス用電極基板材料の平滑性はRz127nmであり、表面抵抗は、0.02Ω/cm2であり、屈曲試験後の表面抵抗は変化しなかった。水蒸気バリア性は5.68g/m/dayであった。
 実施例1と同様に対象試料を陽極とする有機EL発光素子を形成し、発光効率を測定したところ、0.9cd/Aであった。実施例1と同様にUVオゾン洗浄後のぬれ張力を評価したところ、1分では68mN/m、5分では68mN/m、10分では73mN/mであった。
 (実施例5)
 ガスバリア層を形成せず、すなわちアルミニウム箔がエッチングにより除去された部分及び導体層のある面に直接エポキシ樹脂を充填し、透明支持体を厚さ75μmで水蒸気透過率が4×10-4g/m2/dayの市販のガスバリアフィルムとした以外は実施例1と同様にして有機デバイス用電極基板材料を得た。
 得られた有機デバイス用電極基板材料の平滑性はRz142nmであり、表面抵抗は、0.02Ω/cm2であり、屈曲試験後の表面抵抗は変化しなかった。水蒸気バリア性は3×10-2g/m2/dayであった。
 実施例1と同様に対象試料を陽極とする有機EL発光素子を形成し、発光効率を測定したところ、0.5cd/Aであった。実施例1と同様にUVオゾン洗浄後のぬれ張力を評価したところ、1分では66mN/m、5分では73mN/m、10分では73mN/mであった。
 (比較例1)
 ガラス基板上にインジウムスズオキサイト(ITO)をスパッタ法で155nmの膜厚で積層させることによって有機デバイス用電極基板材料を得た。
 得られた有機デバイス用電極基板材料の平滑性はRz:17nmであり、水蒸気バリア性は10-5g/m2/day以下であったが、表面抵抗は0.68Ω/cm2であり、わずかでも曲げるとガラス基板が割れてしまった。
 また、実施例1と同様に対象試料を陽極とする有機EL発光素子を形成し、発光効率を測定したところ、5.2cd/Aであった。実施例1と同様にUVオゾン洗浄後のぬれ張力を評価したところ、1分では48mN/m、5分では61mN/m、10分では67mN/mであった。
 (比較例2)
 厚さ75μmで水蒸気透過率が4×10-4g/m2/dayの市販のガスバリアフィルムにインジウムスズオキサイト(ITO)をスパッタ法により120nmの膜厚で積層させることによって有機デバイス用電極基板材料を得た。
 得られた有機デバイス用電極基板材料の平滑性はRz:58nmであり、水蒸気バリア性は1×10-4g/m2/dayであったが、表面抵抗は9.40Ω/cm2であり、屈曲試験後の抵抗値は2296.00Ω/cm2と、急激に増加した。
 また、実施例1と同様に対象試料を陽極とする有機EL発光素子を形成したが発光しなかった。実施例1と同様にUVオゾン洗浄後のぬれ張力を評価したところ、1分では52mN/m、5分では58mN/m、10分では62mN/mであった。
 フィルム上で製膜したITO膜の結晶性が悪く、表面抵抗が大きくなった。フィルムなので曲げることはできるが、小さい曲率半径で曲げるとITO膜にクラックが発生し抵抗が増大した。また、ぬれ張力が向上させるために、長い前処理時間が必要であった。
 (比較例3)
 3cm×3cmで厚さ15μm(Ra:7nm)のアルミニウム箔(東洋アルミニウム株式会社製、1N30)の一方の表面(主面)に市販のアクリル系接着剤を塗布し、この接着剤側の塗布面に厚さ75μmで水蒸気透過率が4×10-4g/m2/dayの市販のガスバリアフィルムを貼り合せた。
 次に、アルミニウム箔の裏面に、市販のドライフィルムを貼り合わせ、メッシュ形状フォトマスクを用いてUV条件下で露光、現像し、ドライフィルムが残っていない部分を塩化鉄(II)水溶液を用いてエッチングを行うことで細線を形成し、水酸化ナトリウム水溶液でドライフィルムを剥離することによって有機EL素子用表電極材料を得た。
 得られた有機デバイス用電極基板材料の水蒸気バリア性は4×10-4g/m2/dayであったが、表面抵抗は0.04Ω/cm2であり、屈曲試験後の抵抗値は変化しなかったが、平滑性はRz:1621nmであった。
 実施例1と同様に対象試料を陽極とする有機EL発光素子を形成したが発光しなかった。実施例1と同様にUVオゾン洗浄後のぬれ張力を評価したところ、1分では70mN/m、5分では73mN/m、10分では73mN/mであった。
 アルミニウム箔により導体層を形成しているため、表面抵抗及びフレキシブル性等に問題は無かったが、平坦化層を形成していないため段差が生じ、平滑性が悪かった。
 (比較例4)
 厚さ75μmで水蒸気透過率が4×10-4g/m2/dayの市販のガスバリアフィルムにアルミニウムを蒸着して、厚さが300nmのアルミニウム蒸着膜を形成した。次に、アルミニウム蒸着膜の表面に市販のドライフィルムを貼り合わせ、メッシュ形状フォトマスクを用いてUVにより露光、現像し、ドライフィルムが残っていない部分を塩化鉄(II)水溶液を用いてエッチングを行い、パターン化した。この後、水酸化ナトリウム水溶液を用いてドライフィルムを剥離することによって有機デバイス用電極基板材料を得た。
 得られた有機デバイス用電極基板材料の水蒸気バリア性は4×10-4g/m2/dayで、表面抵抗は0.42Ω/cm2であったが、屈曲試験後の抵抗値は12.6Ω/cm2と増加してしまったうえ、平滑性はRz:343nmであった。
 実施例1と同様に対象試料を陽極とする有機EL発光素子を形成したが発光しなかった。実施例1と同様にUVオゾン洗浄後のぬれ張力を評価したところ、1分では50mN/m、5分では73mN/m、10分では73mN/mであった。
 導体層をアルミニウム蒸着膜により形成しているため、50回の屈曲試験後に導体層にクラックが入っており、表面抵抗が増大した。また、導体層による段差が生じているため、平滑性が悪かった。
 表1に各実施例及び比較例の結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 本開示の有機デバイス用電極基板材料は、高い平滑性、ガスバリア性、光線透過率、低い表面抵抗及び高いフレキシブル性と、塗布プロセスにおける前処理の短時間化を実現でき、有機デバイス用の電極の材料として有用である。
100   有機デバイス用電極基板材料
101   導体層
102   平坦化層
103   ガスバリア層
104   透明樹脂層
105   透明支持体
106   保護層
111   第1の面
112   第2の面
121   基盤パターン
122   周辺パターン
122A  第1の周辺パターン
122B  第2の周辺パターン
123   電極
124   端子
200   有機EL素子
201   発光層
202   電極
203   電極
301   基材
302   金属箔

Claims (10)

  1.  パターン化された金属箔からなる導体層と、
     前記導体層の周囲に設けられた平坦化層とを備え、
     第1の面において、前記導体層の表面は前記平坦化層から露出し、且つ前記導体層の表面と、前記平坦化層の表面とは、連続した平坦面を形成している、有機デバイス用電極基板材料。
  2.  前記導体層は、線幅が20μm以上、200μm以下のパターンを形成し、前記第1の面における単位面積当たりの前記導体層の密度は15%以下である、請求項1に記載の有機デバイス用電極基板材料。
  3.  前記平坦化層は、ガスバリア層と透明樹脂層とを含み、
     前記ガスバリア層の表面と前記導体層の露出した表面とは連続した平滑面を形成している、請求項1又は2に記載の有機デバイス用電極基板材料。
  4.  前記ガスバリア層は、アルミニウム及び酸素を主成分とする層並びにシリコンと、窒素、酸素及び炭素の少なくとも1つとを主成分とする層の少なくとも一方を含み、厚さが20nm以上である、請求項3に記載の有機デバイス用電極基板材料。
  5.  前記平坦化層は、波長400nm~800nmの光の透過率が85%以上である、請求項1~4のいずれか1項に記載の有機デバイス用電極基板材料。
  6.  前記平坦化層は、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリスチレン(PS)、ポリカーボネート(PC)、アクリル、ポリ塩化ビニル(PVC)、フッ素樹脂、インジウムスズオキサイド(ITO)、及びポリエチレンジオキシチオフェン/ポリスチレンスルホン酸(PEDOT/PSS)のうちの1種又は2種以上である、請求項5に記載の有機デバイス用電極基板材料。
  7.  前記導体層は、基盤パターンと、基盤パターンの外側に設けられ、外部装置と接続可能な周辺パターンとを含む、請求項1~6のいずれか1項に記載の有機デバイス用電極基板材料。
  8.  前記導体層は、厚さ6μm以上、30μm以下のアルミニウム箔である、請求項1~7のいずれか1項に記載の有機デバイス用電極基板材料。
  9.  前記第1の面と反対側の第2の面において、前記導体層の表面は前記平坦化層から露出している、請求項1~8のいずれか1項に記載の有機デバイス用電極基板材料。
  10.  前記第1の面と反対側の第2の面において、前記導体層の表面は前記平坦化層に覆われている、請求項1~9のいずれか1項に記載の有機デバイス用電極基板材料。
PCT/JP2018/047578 2018-01-09 2018-12-25 有機デバイス用電極基板材料 WO2019138863A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019564615A JP7284711B2 (ja) 2018-01-09 2018-12-25 有機デバイス用電極基板材料
CN201880085709.2A CN111587610A (zh) 2018-01-09 2018-12-25 有机装置用电极基板材料
KR1020207021071A KR102341557B1 (ko) 2018-01-09 2018-12-25 유기 디바이스용 전극 기판 재료

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018001062 2018-01-09
JP2018-001062 2018-01-09

Publications (1)

Publication Number Publication Date
WO2019138863A1 true WO2019138863A1 (ja) 2019-07-18

Family

ID=67218989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047578 WO2019138863A1 (ja) 2018-01-09 2018-12-25 有機デバイス用電極基板材料

Country Status (5)

Country Link
JP (1) JP7284711B2 (ja)
KR (1) KR102341557B1 (ja)
CN (1) CN111587610A (ja)
TW (1) TWI804558B (ja)
WO (1) WO2019138863A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090831A1 (ja) * 2018-10-30 2020-05-07 住友化学株式会社 電子デバイスの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054085A (ja) * 2010-09-01 2012-03-15 Konica Minolta Holdings Inc 分散液の調製方法、透明導電膜、透明導電膜の形成方法、および有機エレクトロルミネッセンス素子
JP2013501341A (ja) * 2009-08-06 2013-01-10 ネーデルランドセ・オルガニサティ・フォール・トゥーヘパスト−ナトゥールウェテンスハッペライク・オンデルズーク・テーエヌオー 光電気装置及びその製造方法
JP2013501342A (ja) * 2009-08-06 2013-01-10 ネーデルランデ オルガニサティー ヴール トゥーヘパストナツールウェテンスハペライク オンデルズーク テーエヌオー 光電気装置の製造方法
US20140332148A1 (en) * 2011-06-29 2014-11-13 Debasis Majumdar Article with metal grid composite and methods of preparing
US20170374737A1 (en) * 2015-07-24 2017-12-28 Lg Chem, Ltd. Method for fabricating flexible substrate

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110574A (ja) 1999-10-06 2001-04-20 Matsushita Electric Ind Co Ltd 発光素子用電極
JP2008031496A (ja) 2006-07-26 2008-02-14 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス用透明電極
JP5009116B2 (ja) * 2006-09-28 2012-08-22 富士フイルム株式会社 自発光表示装置、透明導電性フイルム、エレクトロルミネッセンス素子、太陽電池用透明電極及び電子ペーパー用透明電極
JP5397376B2 (ja) * 2008-08-11 2014-01-22 コニカミノルタ株式会社 透明電極、有機エレクトロルミネッセンス素子及び透明電極の製造方法
JP2010285480A (ja) * 2009-06-09 2010-12-24 Sony Corp 紫外線硬化型樹脂組成物、光学フィルム、および表示装置
KR20160130876A (ko) * 2009-09-30 2016-11-14 다이니폰 인사츠 가부시키가이샤 플렉시블 디바이스용 기판, 플렉시블 디바이스용 박막 트랜지스터 기판, 플렉시블 디바이스, 박막 소자용 기판, 박막 소자, 박막 트랜지스터, 박막 소자용 기판의 제조 방법, 박막 소자의 제조 방법 및 박막 트랜지스터의 제조 방법
TWI644463B (zh) * 2012-10-26 2018-12-11 黑拉耶烏斯貴金屬公司 在OLEDs中具有高導電度及高效能之透明層及其製造方法
JP5949494B2 (ja) * 2012-11-26 2016-07-06 コニカミノルタ株式会社 塗布液、導電膜製造方法及び有機エレクトロルミネッセンス素子製造方法
JP6151158B2 (ja) * 2012-11-28 2017-06-21 信越化学工業株式会社 透明酸化物電極用表面修飾剤、表面修飾された透明酸化物電極、及び表面修飾された透明酸化物電極の製造方法
CN104969305B (zh) * 2013-02-06 2017-03-22 三菱树脂株式会社 透明层叠膜、透明导电性膜和气体阻隔性层叠膜
JP2014216175A (ja) * 2013-04-25 2014-11-17 リンテック株式会社 透明導電性積層体の製造方法及び透明導電性積層体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013501341A (ja) * 2009-08-06 2013-01-10 ネーデルランドセ・オルガニサティ・フォール・トゥーヘパスト−ナトゥールウェテンスハッペライク・オンデルズーク・テーエヌオー 光電気装置及びその製造方法
JP2013501342A (ja) * 2009-08-06 2013-01-10 ネーデルランデ オルガニサティー ヴール トゥーヘパストナツールウェテンスハペライク オンデルズーク テーエヌオー 光電気装置の製造方法
JP2012054085A (ja) * 2010-09-01 2012-03-15 Konica Minolta Holdings Inc 分散液の調製方法、透明導電膜、透明導電膜の形成方法、および有機エレクトロルミネッセンス素子
US20140332148A1 (en) * 2011-06-29 2014-11-13 Debasis Majumdar Article with metal grid composite and methods of preparing
US20170374737A1 (en) * 2015-07-24 2017-12-28 Lg Chem, Ltd. Method for fabricating flexible substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090831A1 (ja) * 2018-10-30 2020-05-07 住友化学株式会社 電子デバイスの製造方法

Also Published As

Publication number Publication date
JP7284711B2 (ja) 2023-05-31
KR102341557B1 (ko) 2021-12-20
JPWO2019138863A1 (ja) 2020-12-24
TWI804558B (zh) 2023-06-11
TW201937512A (zh) 2019-09-16
CN111587610A (zh) 2020-08-25
KR20200098664A (ko) 2020-08-20

Similar Documents

Publication Publication Date Title
JP5821038B2 (ja) 有機エレクトロルミネッセンス素子
US8283853B2 (en) Light-emitting device and article
US7638807B2 (en) Transparent conductive multi-layer structure, process for its manufacture and device making use of transparent conductive multi-layer structure
JP5312949B2 (ja) 電気活性デバイス用積層電極及びその製造方法
TWI375346B (en) Metal compound-metal multilayer electrodes for organic electronic devices
JP2006511073A (ja) 光学装置の電気接続
TW201638259A (zh) 透明導電層層合用薄膜、該製造方法、及透明導電性薄膜
US20150179971A1 (en) Organic electroluminescent element
KR20120001684A (ko) 투명 전도성막, 이의 제조 방법, 및 이를 이용한 투명전극 및 소자
JP5656975B2 (ja) 光電デバイスおよびその製造方法
JP5660128B2 (ja) 発光装置
US10553801B2 (en) Organic light emitting diode display device having substrate with concave light trapping microstructures
CN109119450B (zh) 显示基板及其制作方法、显示面板、显示装置
WO2019138863A1 (ja) 有機デバイス用電極基板材料
KR101397071B1 (ko) 광추출 효율이 향상된 나노 캐버티 유기 발광 소자 및 그의 제조방법
JP2013016668A (ja) 太陽電池の製造方法
CN113871542B (zh) 发光二极管器件及其制备方法、显示面板
EP2506332A1 (en) Substrate for improved handling and protection of an optoelectronic device
JP2013016669A (ja) 光電変換素子の製造方法
JP2013016667A (ja) 太陽電池の製造方法
EP2479015A1 (en) Method of molding structures in plastic substrate
JP2019207808A (ja) メッシュ電極材料
US20220246895A1 (en) Systems, methods, and structures for oled substrates
Jeong et al. Flexible organic light-emitting diodes with efficiency improvement by dielectric-metal-dielectric anode
JP2007157344A (ja) 有機エレクトロルミネッセンス素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899396

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019564615

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207021071

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18899396

Country of ref document: EP

Kind code of ref document: A1