JP2013016668A - 太陽電池の製造方法 - Google Patents

太陽電池の製造方法 Download PDF

Info

Publication number
JP2013016668A
JP2013016668A JP2011148790A JP2011148790A JP2013016668A JP 2013016668 A JP2013016668 A JP 2013016668A JP 2011148790 A JP2011148790 A JP 2011148790A JP 2011148790 A JP2011148790 A JP 2011148790A JP 2013016668 A JP2013016668 A JP 2013016668A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
layer
electrode
solar cell
insulating partition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011148790A
Other languages
English (en)
Inventor
Yoshinori Maehara
佳紀 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2011148790A priority Critical patent/JP2013016668A/ja
Publication of JP2013016668A publication Critical patent/JP2013016668A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】短絡故障が抑制された太陽電池を、低工程数および低コストで製造する。
【解決手段】支持体10上に、少なくとも下部電極12と有機材料を含む光電変換層13と上部電極21とをこの順に積層してなる複数の光電変換素子が配置され、複数の光電変換素子の互いに隣接する光電変換素子cn,cn+1の一方の光電変換素子cnの上部電極21と他方の光電変換素子cn+1の下部電極12とを電気的に接続する電極接続配線22により直列接続されてなる太陽電池の製造方法において、支持体10上に、複数の光電変換素子の下部電極12を形成する前に、隣接する光電変換素子cn,cn+1の下部電極12同士の接触および一方の光電変換素子cnの下部電極12と電極接続配線22との接触を防止する第1の絶縁性隔壁11を形成する。
【選択図】図1D

Description

本発明は複数の有機光電変素子が直列接続されてなる太陽電池に関するものである。
近年、太陽電池の需要が高まり、軽量化(フレキシブル化)やコスト低減が期待できる有機エレクトロニクスデバイスが注目されている。特に、全固体型の有機薄膜太陽電池の期待が高まっている。
有機薄膜太陽電池の構成としては、2つの異種電極(正極と負極)間に、電子供与材料(ドナー)と電子受容材料(アクセプター)を混合してなるバルクヘテロ接合型の光電変換層を配置してなるものが一般的であり、アモルファスシリコン等を用いてなる従来の薄膜太陽電池に比べて製造が容易で、低コストで任意の面積の太陽電池を製造しうるという利点があり、実用化が望まれている。
有機薄膜太陽電池の実用化に当たっては、その集積化技術についての開発が望まれている。
特許文献1や特許文献2には、隣り合う有機光電変換素子を直列接続する配線が有機光電変換層上に形成されてなる太陽電池が開示されている。このような構成の太陽電池においては、有機光電変換層の上に形成する上部電極、配線、保護層の内部応力や封止フィルムを貼合せる際の機械的圧力で、特に下部電極端部の段差附近で、有機光電変換層に欠陥が発生して、有機光電変換層上の配線と下部電極が接触/短絡する故障が発生する恐れがある。
そこで、特許文献1や3では、隣り合う有機光電変換素子を直列接続する配線の下に絶縁性隔壁を形成する構成が開示されている。この構成によると下部電極と直列接続配線の短絡を防止する事が可能になる。
特表2009−506554号公報 米国特許出願公開第2007/0295400号明細書 米国特許出願公開第2010/0015752号明細書
特許文献1では、フォトリソグラフィ工程により下部電極をパターニングして個別電極化し、その後、絶縁体部を設ける製造方法が開示されている。特許文献1記載の製造方法では、下部電極に対するパターニングが必要であるため、工程数、工程時間が多く、コストが嵩むという問題がある。更に、下部電極として導電性ポリマーを用いた場合、フォトレジストの現像工程や剥離工程で、導電性ポリマーが変質して下部電極の抵抗が増大するという問題が発生してしまう。
また、特許文献3では、有機光電変換素子を形成した後に、レーザ等による切削(スクライブ)で下部電極をパターニングするので、パターニング工程で発生する下部電極材料からなる塵埃が有機光電変換素子上に付着して、他の配線間の短絡故障や、保護層・封止フィルムを形成する際の欠陥となり、保存性や信頼性が低下してしまう。又、パターニングで発生する塵埃や発熱を低減させることにより有機光電変換素子の劣化を防止しようとすると、レーザ強度を低くしたり、切削時間を短くしたり必要があるが、これらはスクライブ加工の精度を低下させることとなり下部電極間の十分な絶縁性が保てなくなる恐れがある。更に、有機光電変換素子上に絶縁性隔壁が形成されるので、絶縁性隔壁を形成する工程で使用される溶媒や、絶縁性隔壁自体の内部応力で、その下の有機光電変換素子に欠陥が発生してしまうという問題もある。
本発明は、上記事情に鑑みてなされたものであって、短絡故障の発生が低減されて長期信頼性の高い太陽電池を、低工程数および低コストで製造することができる太陽電池の製造方法を提供することを目的とする。
本発明の太陽電池の製造方法は、支持体上に、少なくとも下部電極と有機材料を含む光電変換層と上部電極とをこの順に積層してなる複数の光電変換素子が配置され、該複数の光電変換素子の互いに隣接する光電変換素子の一方の光電変換素子の上部電極と他方の光電変換素子の下部電極とを電気的に接続する電極接続配線により直列接続されてなる太陽電池の製造方法であって、
前記支持体上に、前記複数の光電変換素子の下部電極を形成する前に、前記隣接する光電変換素子の下部電極同士の接触および前記一方の光電変換素子の下部電極と前記電極接続配線との接触を防止する第1の絶縁性隔壁を形成することを特徴とする。
前記第1の絶縁性隔壁として、後に形成される前記光電変換層と前記下部電極層の厚みの和よりも高い隔壁を立設することが好ましい。
また、前記支持体上に、前記下部電極に接続される補助金属配線を形成し、
該補助金属配線の上方の少なくとも一部分に、前記他方の光電変換素子の上部電極と、前記電極接続配線との接触を防止すると共に、該電極接続配線の前記他方の光電変換素子の補助金属配線への接触を許容する第2の絶縁性隔壁を形成することが好ましい。
前記第2の絶縁性隔壁は前記第1の絶縁性隔壁と同一材料により、同一工程で形成することが好ましい。
前記各光電変換素子の外縁であって、前記第1の絶縁性隔壁と前記第2の絶縁性隔壁とが存在しない位置に、該第1の絶縁性隔壁および該第2の絶縁性隔壁と協働して前記各光電変換素子の周囲を取り囲む側壁を形成することが好ましい。
該側壁は、前記第1および第2の絶縁性隔壁と同一材料により、同一工程で形成することが好ましい。
前記支持体上に、前記補助金属配線の位置を光学的に検出するための位置検出用マークを該補助金属配線と同時に形成することが好ましい。
前記補助金属配線としてメッシュパターンの金属配線を形成し、前記金属配線の間に、該金属配線の表面と略同一平面となるように平坦化層を形成することが好ましい。
前記補助金属配線を形成する工程が、前記支持体上にハロゲン化銀を含む組成物を塗布してハロゲン化銀含有層を形成する工程と、該ハロゲン化銀含有層の一部を露光する工程と、該ハロゲン化銀含有層を現像する工程と、現像済みハロゲン化銀含有層を定着して銀を含む該補助配線を形成する工程と、を順に含むことが好ましい。
前記下部電極および前記光電変換層の少なくとも一方を、塗布により形成することが好ましい。
本発明の太陽電池の製造方法によれば、予め第1の絶縁性隔壁を形成した後に、下部電極を形成するので、下部電極のパターニング工程が不要となり工程数およびコストの低減を実現することができると共に、下部電極間の絶縁性を非常に良好なものとすることができる。
本発明の太陽電池の製造方法により製造された太陽電池は、隣接する光電変換素子の下部電極同士の接触および一方の光電変換素子の下部電極と電極接続配線との接触を防止する第1の絶縁性隔壁を備えているので、光電変換素子を直列接続する配線部で光電変換素子に生じる短絡故障を効果的に防止することができ、高い保存性および信頼性を備えている。
第1の実施形態に係る製造方法の製造工程を示す断面図および平面図(その1) 第1の実施形態に係る製造方法の製造工程を示す断面図および平面図(その2) 第1の実施形態に係る製造方法の製造工程を示す断面図および平面図(その3) 第1の実施形態に係る製造方法の製造工程を示す断面図および平面図(その4) 第2の実施形態に係る製造方法の製造工程を示す断面図および平面図(その1) 第2の実施形態に係る製造方法の製造工程を示す断面図および平面図(その2) 第2の実施形態に係る製造方法の製造工程を示す断面図および平面図(その3) 第2の実施形態に係る製造方法の製造工程を示す断面図および平面図(その4) 第2の実施形態に係る製造方法の製造工程を示す断面図および平面図(その5) 第3の実施形態に係る製造方法の製造工程を示す断面図および平面図(その1) 第3の実施形態に係る製造方法の製造工程を示す断面図および平面図(その2) 第3の実施形態に係る製造方法の製造工程を示す断面図および平面図(その3) 第3の実施形態に係る製造方法の製造工程を示す断面図および平面図(その4) 比較例1の製造方法で作製される太陽電池の構成を示す断面図
以下、本発明の実施の形態を説明する。
(第1の実施形態)
第1の実施形態の太陽電池の製造方法について図1A〜図1Dを参照して説明する。図1A〜図1Dは、第1の実施形態の太陽電池の製造方法における製造工程を示すものであり、各図において上図は断面図であり、下図は平面図である。
まず、図1Aに示すように、支持体10の表面にライン状に互いに分離された複数の第1の絶縁性隔壁11を形成する。このとき、絶縁性隔壁11の高さが後工程において形成される下部電極層および光電変換層の厚みの和よりも高くなるように立設する。
このような絶縁性隔壁11は、例えば光硬化型の絶縁材料を含む溶液をインクジェット印刷により塗布し、その材料に適した光を照射することにより形成することができる。絶縁材料を全面に成膜してから、一般的なフォトリソグラフィ工程によりエッチングすることで絶縁性隔壁を形成してもよい。
次に、図1Bに示すように、第1の絶縁性隔壁11間に、あるいは絶縁性隔壁11を挟むように下部電極12を形成する。下部電極12は、例えば、支持体10上に下部電極形成領域にのみ開口を有するシャドウマスクを配置して、スパッタにより成膜形成すればよい。
下部電極12の形成より前に第1の絶縁性隔壁11が形成されているので、下部電極12をフォトリソグラフィ等により個別電極化する従来の工程は不要である。また、下部電極12同士は、絶縁性隔壁11で隔てられているため、隣接する下部電極12同士が接触する恐れがない。
次に、図1Cに示すように、各下部電極12上に、該下部電極12の絶縁性隔壁11に隣接していない周縁が露出するように有機材料を含む光電変換層13を形成する。図1Cに示すように、隣接する光電変換層13間は、第1の絶縁性隔壁11およびライン状の溝14により隔てられている。光電変換層13は、例えば、下部電極12を備えた支持体10上に光電変換層形成領域にのみ開口を有するシャドウマスクを配置して、真空蒸着により成膜形成すればよい。
なお、図1Cに示すように、下部電極12および光電変換層13の積層厚みは、絶縁性隔壁11の高さよりも薄い。
なお、下部電極および光電変換層は真空蒸着やスパッタ等の物理的気相堆積(PVD)法のみならず、溶媒と組成物からなる溶液を塗布することにより形成することもできる。塗布形成を行う場合には溶液が濡れ広がるが、絶縁性隔壁11を設けているので、隣接する下部電極同士や光電変換層同士が接触することなく、短絡を生じない。各種の印刷方法により下部電極や光電変換層を形成することもできる。
さらに、図1Dに示すように、各光電変換層13上に、該光電変換層13の絶縁性隔壁11を備えていない周縁が露出するように電極層20を形成する。すなわち図1に示すように、隣接する電極層20間は、ライン状の溝16により隔てられている。電極層20は、例えば、光電変換層13を備えた支持体10上に電極層形成領域にのみ開口を有するシャドウマスクを配置して、真空蒸着により成膜形成する。電極層20は露出している第1の絶縁性隔壁11を覆うように、その表面が絶縁性隔壁11の表面よりも高くなる厚みで形成される。電極層は、導電性微粒子を含む塗布組成物を印刷して形成してもよい。
電極層20のうち、光電変換層13直上に形成されている部分が上部電極21として機能し、上部電極21から連続的に形成され溝14に埋め込まれて隣接する素子の下部電極12に接続している領域は電極接続配線22として機能し、直列接続の両終端に配置されている素子の一端に形成されている領域は外部接続端子23として機能する。
電極接続配線22は、隣接する光電変換素子cn、cn+1(ここでは、nは1または2である。)の一方の光電変換素子cnの上部電極21と他方の素子cn+1の下部電極12を電気的に接続するものであり、この電極接続配線22により、複数の素子が直列接続されている。
最後に、図1Dに示すように、電極層20上に素子c1,c2,c3を覆うようにして保護層18を形成し、さらにその上に封止フィルム19を配置して、ラミネートする。
以上の本実施形態の製造方法によれば、図1Dに示すように、支持体10上に複数の有機光電変換素子c1,c2,c3が電極接続配線22により直列接続された有機薄膜太陽電池1を形成することができる。ここでは、3つの素子が直列接続する例を説明したが、素子数は、複数であれば制限は特にない。
図1Dに示す太陽電池1において、図中両矢印にて示す領域Cは、下部電極12、光電変換層13および上部電極21がこの順に積層されて光電変換素子として機能する領域であり、領域Bは光電変換素子領域C間および両端に設けられている電極接続配線部であり、直列接続の終端領域Aは外部接続端子部である。
太陽電池1において、各絶縁性隔壁11は、各光電変換素子c1,c2,c3の光電変換層13および下部電極12の一側壁となっており、隣接素子の下部電極12同士の接触を防止すると共に、光電変換素子毎にその下部電極12および光電変換層13が、その上部電極21に連続して溝14に形成されている電極接続配線22と接触するのを防止している。
(第2の実施形態)
第2の実施形態の太陽電池の製造方法について図2A〜図2Eを参照して説明する。図2A〜図2Eは、第2の実施形態の太陽電池の製造方法における製造工程を示すものであり、各図において上図は断面図であり、下図は平面図である。なお、第1の実施形態の太陽電池の構成要素と同一の要素には同等の符号を付し詳細な説明を省略する。
まず、図2Aに示すように、支持体10の表面に、補助金属配線25を形成する。補助金属配線25としては、例えば図2Aに示すように、素子形成位置に対応する領域にはメッシュ状(本例では正方格子状)の配線26を設け、電極接続配線部にはやや太いライン状の配線27をメッシュ状の配線26に連続して設ける。補助金属配線25は素子毎に設けられるものであり、素子間で分離して形成する。
この補助金属配線25は、例えば、支持体10上にハロゲン化銀を含む組成物を塗布してハロゲン化銀含有層を形成する工程と、ハロゲン化銀含有層の一部を露光する工程と、ハロゲン化銀含有層を現像する工程と、現像済みハロゲン化銀含有層を定着して銀を含む該補助配線を形成する工程とを順に行うことにより形成することができる。補助金属配線は、シャドウマスクを使用した真空蒸着やスパッタ等のPVD法、または、導電性微粒子を含む塗布組成物を各種の印刷技術で成膜してもよい。金属材料を全面に成膜してから、一般的なフォトリソグラフィ工程によりエッチングすることで金属配線を形成することもできる。
なお、この補助金属配線25の形成時に同時に、アライメントマーク(位置検出用マーク)28を形成することが望ましい。
アライメントマーク28を形成しておくことにより、後の工程において、このアライメントマークを位置合わせの基準点として、画像認識機能を備えた各種製造装置や印刷装置を用いて、所望の位置に精度よく絶縁性隔壁などの機能膜の形成を行うことができる。
補助金属配線25のメッシュパターン配線26の間および素子間の補助金属配線が形成されていない領域(以下においては、両者を併せて配線開口部と称する。)に、埋め込まれて補助金属配線25の表面と面一となる表面を有する平坦化層30を形成する。
平坦化層30は、例えば、補助金属配線25が覆われるように窒化酸化珪素層などの透明材料をスパッタ成膜した後に、配線表面を露出させると共に、配線開口部に埋め込まれた窒化酸化珪素層の表面が配線表面と略同一平面になるまで、窒化酸化珪素層の表面をプラズマエッチングすることにより形成することができる。
次に、図2Bに示すように、補助金属配線25が形成された支持体10の表面にライン状に互いに分離された複数の第1の絶縁性隔壁11および第2の絶縁性隔壁31を形成する。このとき、第1の絶縁性隔壁11および第2の絶縁性隔壁31の高さが後工程において形成される下部電極層および光電変換層の厚みの和よりも高くなるように立設する。
このような絶縁性隔壁11、31は、例えば、画像認識機能付きのディスペンサロボットやインクジェット印刷装置によりアライメントマーク28を位置合わせの基準点として、所望の位置に、例えば光硬化型の絶縁材料を含む溶液を塗布し、光照射することにより形成することができる。
第2の絶縁性隔壁31は補助金属配線25のライン状配線27上の一部にそのラインに沿って形成されている。この第2の絶縁性隔壁31は、第1の絶縁性隔壁11と対になって素子の並び方向の光電変換素子幅を区画するものである。第1の絶縁性隔壁11と1つの対を構成する第2の絶縁性隔壁31と、この第2の絶縁性隔壁31に隣接し、他の第2の絶縁性隔壁31と対を構成する第1の絶縁性隔壁11との間には、後に形成される電極接続配線22の他方の光電変換素子の補助金属配線25への接触を許容するための間隔33が設けられている。
次に、図2Cに示すように、第1の絶縁性隔壁11と第2の絶縁性隔壁31との間の格子状の配線26上に下部電極12を形成する。
下部電極12は、例えば、溶媒と下部電極材料とからなる溶液を塗布し、その後加熱処理することにより形成することができる。
次に図2Dに示すように、下部電極12上に光電変換層13を形成する。
なお、図2Dに示すように、下部電極12および光電変換層13の積層厚みは、第1および第2の絶縁性隔壁11、31の高さよりも薄い。
さらに図2Eに示すように、光電変換層13上に電極層20を形成する。電極層20は、第1および第2の絶縁性隔壁11、31間の間隔33にも埋め込まれると共に、第2の絶縁性隔壁31の上に隣接電極層20間に間隔35が設けられるように形成される。
電極層20は、例えば、光電変換層13を備えた支持体10上に電極層形成領域にのみ開口を有するシャドウマスクを配置して、真空蒸着により成膜形成する。電極層20は露出している第1および第2の絶縁性隔壁11、31を覆うように、その表面が絶縁性隔壁11、31の表面よりも高くなる厚みで形成される。
電極層20のうち、光電変換層13直上に形成されている部分が上部電極21として機能し、上部電極21から連続的に形成され第1および第2の絶縁性隔壁11、31間の間隔33に埋め込まれて隣接する素子の補助金属配線25(詳細には、ライン状配線27)に接続している領域は電極接続配線22として機能し、直列接続の少なくとも一方の終端に配置されている素子の一端に形成されている領域は外部接続端子23として機能する。
電極接続配線22は、隣接する光電変換素子cn,cn+1の一方の光電変換素子cnの上部電極21と他方の素子cn+1の下部電極12を電気的に接続するものでありここでは、補助金属配線25を介して他方の素子cn+1の下部電極12に電気的に接続されている。この電極接続配線22により、複数の素子c1,c2,c3が直列接続されている。なお、一方の光電変換素子cnと他方の素子cn+1とを接続する電極接続配線22の他方の素子cn+1の上部電極12との接触は、他方の素子cn+1側の第2の絶縁性隔壁31により防止されている。
最後に、図2Eに示すように、第1の実施形態と同様に、電極層20上に素子c1,c2,c3を覆うようにして保護層18を形成し、さらにその上に封止フィルム19を配置して、ラミネートする。
以上の本実施形態の製造方法によれば、図2Eに示すように支持体10上に複数の有機光電変換素子c1,c2,c3が電極接続配線22により直列接続された有機薄膜太陽電池2を形成することができる。
(第3の実施形態)
第3の実施形態の太陽電池の製造方法について図3A〜図3Dを参照して説明する。図3A〜図3Dは、第3の実施形態の太陽電池の製造方法における製造工程を示すものであり、各図において上図は断面図であり、下図は平面図である。なお、第1あるいは第2の実施形態の太陽電池の構成要素と同一の要素には同等の符号を付し詳細な説明を省略する。
まず、図3Aに示すように、支持体10の表面に、補助金属配線25およびアライメントマーク28を形成する。第2の実施形態と異なるのは、補助金属配線25に各素子の長さ方向の端部にも太いライン状の配線27’をさらに設けている点のみである。
また、第2の実施形態と同様に平坦化層30を形成する。
次に、図3Bに示すように、補助金属配線25が形成された支持体10の表面にライン状に互いに分離された複数の第1の絶縁性隔壁11および第2の絶縁性隔壁31を形成すると共に、各光電変換素子の外縁であって、第1の絶縁性隔壁11および第2の絶縁性隔壁31のいずれも存在しない位置(ここでは、各素子の長さ方向端部の外縁)に、第1の絶縁性隔壁11と第2の絶縁性隔壁31と協働して各光電変換素子の周囲を取り囲む側壁38を形成する。すなわち、第1の絶縁性隔壁11、第2の絶縁性隔壁31および側壁38により各素子を取り囲む外縁が形成される。
このとき、第1の絶縁性隔壁11および第2の絶縁性隔壁31および側壁38の高さが後工程において形成される下部電極層および光電変換層の厚みの和よりも高くなるように立設する。
次に、図3Cに示すように、第1および第2の絶縁性隔壁11、31と側壁38とにより囲まれた領域に下部電極12、光電変換層13を順次積層形成する。
さらに図3Dに示すように、光電変換層13上に電極層20を形成する。電極層20は、第1および第2の絶縁性隔壁11、31間の間隔33にも埋め込まれると共に、第2の絶縁性隔壁の上に隣接電極層20間に間隔35が設けられるように形成される。
電極層20は、例えば、光電変換層13を備えた支持体10上に電極層形成領域にのみ開口を有するシャドウマスクを配置して、真空蒸着により成膜形成する。電極層20は露出している第1および第2の絶縁性隔壁11、31および側壁38を覆うように、その表面が絶縁性隔壁11、31および側壁38の表面に間隔35を除いて形成される。
第2の実施形態の場合と同様に、電極層20のうち、光電変換層13直上に形成されている部分が上部電極21として機能し、上部電極21から連続的に形成され第1および第2の絶縁性隔壁11、31間の間隔33に埋め込まれて隣接する素子の補助金属配線25に接続している領域は電極接続配線22として機能し、直列接続の少なくとも一方の終端に配置されている素子の一端に形成されている領域は外部接続端子23として機能する。
以上の本実施形態の製造方法によれば、図3Dに示すように、光電変換素子の光電変換層13が上部電極と絶縁性隔壁によって封止された構造の太陽電池3を製造することができる。このように、有機材料からなる光電変換層13を封止する構造とすることにより、耐久性のさらなる向上を図ることができる。なお、第1、2の実施形態と同様に、電極層20上に保護層を形成し、さらに封止フィルムを配置してラミネートすることがより好ましい。
以下、本発明の太陽電池の製造方法に好ましく用いることができる材料等について詳しく述べる。
<支持体>
支持体10は、その上に複数の光電変換素子およびそれらを直列接続するための電極接続配線を形成して保持することができるものであれば特に限定されず、例えば、ガラス、プラスチックフィルムなど、目的に応じて適宜選択しうる。以下、支持体の代表的な例としてプラスチックフィルム基板について説明する。
プラスチックフィルム基板の材質、厚み等に特に制限はなく、目的に応じて適宜選択することができるが、光透過性を有する有機薄膜太陽電池とする場合には、光、例えば、400nm〜800nmの波長範囲の光に対する透過性に優れることが好ましい。400nm〜800nmの波長範囲の光に対する光透過率は、通常80%以上が好ましく、より好ましくは85%以上、さらに好ましくは90%以上である。
プラスチックフィルムの厚みに関して特に制限はないが、典型的には1μm〜800μmであり、好ましくは10μm〜300μmである。
(易接着層/下塗り層)
プラスチックフィルム基板の表面(下部電極を形成する側の面)は、密着性向上の観点から、易接着層もしくは下塗り層を有していてもよい。易接着層もしくは下塗り層は、単層であってもよく、多層であってもよい。
易接着層もしくは下塗り層の形成には、各種の親水性下塗ポリマーが用いられる。本発明に使用する親水性下塗ポリマーとしては、ゼラチン、ゼラチン誘導体、カゼイン、寒天、アルギン酸ソーダ、でんぷん、ポリビニルアルコールなどの水溶性ポリマー、カルボキシメチルセルロース、ヒドロキシエチルセルロースなどのセルロースエステル、塩化ビニル含有共重合体、塩化ビニリデン含有共重合体、アクリル酸エステル含有共重合体、酢酸ビニル含有共重合体、ブタジエン含有共重合体などのラテックスポリマー、ポリアクリル酸共重合体、無水マレイン酸共重合体等が例示される。
易接着層もしくは下塗り層の乾燥後の塗布膜厚は、50nm〜2μmの範囲であることが好ましい。なお、支持体を仮支持体として用いる場合には、支持体表面に易剥離性処理を施すことも可能である。
<下部電極>
下部電極12は、金属、合金、透明導電性酸化物(TCO)、導電性ポリマー等の各種導電材料から選ばれる。例えば、光透過性を有する有機薄膜太陽電池とする場合は、下部電極12として導電性ポリマー層や酸化インジウム錫(ITO)等のTCOを用いればよいし、光透過性が要求されない場合は、コバルト、ニッケル、銅、モリブデン、パラジウム、銀、タンタル、タングステン、白金、金などの金属材料を用いればよい。下部電極として好適な導電性ポリマー層は、特願2010−181078号(本出願時において未公開)に詳細が開示されている。
<補助金属配線>
支持体10上には、第2および第3の実施形態に示したように、下部電極12と接する補助金属配線25が配置されていてもよい。導電性ポリマーによって下部電極12を形成する場合には、導電性の高い補助金属配線25を下部電極12と接するように設けておけば、導電性の向上を図ることができる。
補助金属配線25を構成する金属材料の例としては、金、白金、鉄、銅、銀、アルミニウム、クロム、コバルト、ステンレス鋼等が挙げられる。金属材料の好ましい例としては、銅、銀、アルミニウム、金等の低抵抗金属が挙げられ、なかでも、製造コストと材料コストが低く、酸化されにくい銀もしくは銅が好ましく用いられる。
補助金属配線25のパターン形状は特に限定されないが、光透過性及び導電性の観点から、メッシュ状のもの(メッシュパターン電極)が好ましい。メッシュパターンには特に制限がなく、正方形、長方形、菱形等の格子状、縞状(ストライプ状)、ハニカム、あるいは曲線の組合せを用いてもよい。
これらのメッシュデザインは開口率(光透過率)と表面抵抗(電気伝導率)が所望の値となるように調整される。このようなメッシュパターンの補助金属配線とする場合、メッシュの開口率は通常は70%以上であり、80%以上が好ましく、85%以上がより好ましい。
補助金属配線25の表面抵抗は10Ω/□以下であることが好ましく、3Ω/□以下であることがさらに好ましく、1Ω/□以下であることがより好ましい。光透過率と電気伝導率はトレードオフの関係にあるため、開口率は大きいほど好ましいが、現実的には95%以下となる。
補助金属配線25の厚みは特に制限は無いが、通常は0.02μm〜20μm程度である。
補助金属配線25のメッシュパターンにおける線幅は、光透過性と導電性の観点から、平面視による線幅が1μm〜500μmの範囲であり、1μm〜100μmが好ましく、3μm〜20μmがより好ましい。
補助金属配線25のメッシュパターンにおけるピッチは小さい(メッシュが細かい)方が太陽電池の特性上有利である。しかしながらピッチが小さいと光の透過率が低下するので、妥協点が選ばれる。ピッチは金属細線の線幅に応じて変化するが、平面視によるピッチが50μm〜2000μmであることが好ましく、100μm〜1000μmがより好ましく、150μm〜500μmがさらに好ましい。
開口部の観点から言えば補助金属配線25のメッシュパターンの繰り返し単位となる開口部の面積が1×10−9〜1×10−4であることが好ましく、3×10−9〜1×10−5であることがより好ましく、1×10−8〜1×10−6であることがさらに好ましい。
補助金属配線25は、大面積集電のために、バスライン(太線)27を有していても良い。バスラインの線幅やピッチは、使用する材料に応じて適宜選択される。
補助金属配線25の形成方法としては特に制限はなく、公知の形成方法を適宜使用しうる。例えば、予め作製したメッシュパターン金属を支持体表面に貼り合せる方法、導電材料をメッシュパターンに塗布する方法、蒸着もしくはスパッタ等のPVD法を用いて導電膜を全面に形成した後にエッチングしてメッシュパターンの導電膜を形成する方法、スクリーン印刷、インクジェット印刷などの各種印刷法によりメッシュパターンの導電材料を塗布する方法、蒸着もしくはスパッタによりシャドウマスクを用いてメッシュパターンの金属補助配線を基材表面に直接形成する方法、特開2006−352073号公報、特開2009−231194号公報等に記載のハロゲン化銀感光材料を用いる方法(以下、銀塩法と呼ぶことがある)等が挙げられる。
補助金属配線25をメッシュ電極として形成する場合は、そのピッチが小さいため、銀塩法で形成することが好ましい。銀塩法で補助金属配線25を形成する場合、補助金属配線を形成するための塗液を支持体上に設け、補助金属配線25を形成するための塗膜に対してパターン露光を行う工程と、パターン露光された塗膜を現像する工程と、現像された塗膜を定着する工程とにより、支持体上に所望のパターンを有する補助金属配線25を形成することができる。
銀塩法で作製される補助金属配線25は、銀と親水性ポリマーの層である。親水性ポリマーの例としては、ゼラチン、ゼラチン誘導体、カゼイン、寒天、アルギン酸ソーダ、でんぷん、ポリビニルアルコールなどの水溶性ポリマー、カルボキシメチルセルロース、ヒドロキシエチルセルロースなどのセルロースエステル等が例示される。層内には銀や親水性ポリマーのほかにも塗布、現像、定着工程に由来する物質が含まれる。
銀塩法で補助配線を形成した後に銅めっきを施して、さらに抵抗の低い補助配線を得る方法も好ましく用いられる。
<アライメントマーク>
補助金属配線25を形成する工程において、後工程で積層する各機能膜やフィルム基板の重ね合せ精度を向上させて集積化密度を高めるため、位置検出用のアライメントマーク28を該金属配線と同時に形成することが好ましい。アライメントマークは、各機能膜の製造装置や印刷装置の画像認識仕様が指定するパターンを適宜形成するが、縞、十字、矩形、円などの幾何学的模様や、記号、文字などが好ましく使用される。
<平滑化層>
補助金属配線を設ける場合には、その開口部に補助金属配線の表面と同一となる表面を有する平滑化層30を設けることが好ましい。
平滑化層30は透明材料であれば特に制限はないが、後述のガスバリア層を構成する材料が好ましく用いられ、特には、窒化珪素、酸化珪素、窒化酸化珪素などの透明な無機材料、あるいは(メタ)アクリレートなどの重合物を用いることができる。
<絶縁性隔壁>
本発明において、第1の絶縁性隔壁11は、隣接する光電変換素子cn、cn+1の下部電極12同士の絶縁や、光電変換素子cn、cn+1の間に配置された電極接続配線22と一方の光電変換素子cnの下部電極の絶縁を信頼性あるものにするため形成される。また、第2の絶縁性隔壁31は、隣接する光電変換素子cn、cn+1の間に配置された電極接続配線22と他方の光電変換素子cn+1の上部電極の絶縁を確実にするために形成されることが好ましい。これらの絶縁性隔壁を構成する材料は、公知の絶縁材料の中から適宜選択することができるが、有機薄膜太陽電池の製造工程を容易に転用可能な後述のガスバリア層を構成する材料が好ましく用いられる。特に、平坦化層30と同一の材料を同一の製造方法で加工し絶縁性隔壁を形成することが工程数を削減でき好ましい。
<機能性層>
支持体10の裏面側(下部電極を形成しない面側)には機能性層を設けてもよい。例えば、ガスバリア層、マット剤層、反射防止層、ハードコート層、防曇層、防汚層、易接着層等が挙げられる。このほか、機能性層に関しては特開2006−289627号公報の段落番号〔0036〕〜〔0038〕に詳しく記載されており、ここに記載の機能性層を目的に応じて設けてもよい。
<光電変換層>
光電変換層13は、太陽光を受けて励起子(電子−正孔対)を生成した後に、その励起子が電子と正孔に解離して、電子が負極側へ、正孔が正極側へ、輸送されるという光電変換過程が高効率で発現する材料から選択して構成される。有機薄膜太陽電池とする場合は、有機材料からなる電子供与領域(ドナー)を含む光電変換層13を形成し、変換効率の観点から、バルクへテロ接合型の光電変換層(適宜、「バルクへテロ層」という。)が好ましく適用される。
バルクヘテロ層は電子供与材料(ドナー)と電子受容材料(アクセプター)が混合された有機の光電変換層である。電子供与材料と電子受容材料の混合比は変換効率が最も高くなるように調整されるが、通常は、質量比で、10:90〜90:10の範囲から選ばれる。このような混合層の形成方法は、例えば、共蒸着法が用いられる。あるいは、両方の有機材料に共通する溶媒を用いて溶剤塗布することによって作製することも可能である。
バルクヘテロ層の膜厚は10〜500nmが好ましく、20〜300nmが特に好まし
い。
電子供与材料(ドナー又は正孔輸送材料ともいう。)は、その最高被占軌道(HOMO)準位が4.5〜6.0eVのπ電子共役系化合物であり、具体的には、各種のアレーン(例えば、チオフェン、カルバゾール、フルオレン、シラフルオレン、チエノピラジン、チエノベンゾチオフェン、ジチエノシロール、キノキサリン、ベンゾチアジアゾール、チエノチオフェンなど)をカップリングさせた共役系ポリマー、フェニレンビニレン系ポリマー、ポルフィリン類、フタロシアニン類等が例示される。このほか、ケミカルレビュー第107巻、953〜1010頁(2007年)にHole−Transporting Materialsとして記載されている化合物群やジャーナル オブ ジアメリカン ケミカル ソサエティー第131巻、16048頁(2009年)に記載のポルフィリン誘導体も適用可能である。
これらの中では、チオフェン、カルバゾール、フルオレン、シラフルオレン、チエノピラジン、チエノベンゾチオフェン、ジチエノシロール、キノキサリン、ベンゾチアジアゾール、チエノチオフェンからなる群より選ばれた構成単位をカップリングさせた共役系ポリマーが特に好ましい。具体例としてはポリ−3−ヘキシルチオフェン(P3HT)、ポリ−3−オクチルチオフェン(P3OT)、ジャーナル オブ ジ アメリカン ケミカル ソサエティー第130巻、3020頁(2008年)に記載の各種ポリチオフェン誘導体、アドバンスト マテリアルズ第19巻、2295頁(2007年)に記載のPCTBT、ジャーナル オブ ジ アメリカン ケミカル ソサエティー第130巻、732頁(2008年)に記載のPCDTQx、PCDTPP、PCDTPT、PCDTBX、PCDTPX、ネイチャー フォトニクス第3巻、649頁(2009年)に記載のPBDTTT−E、PBDTTT−C、PBDTTT−CF、アドバンスト マテリアルズ第22巻、E135〜E138頁(2010年)に記載のPTB7等が挙げられる。
電子受容材料(アクセプター又は電子輸送材料ともいう。)は、その最低空軌道(LUMO)準位が3.5〜4.5eVであるようなπ電子共役系化合物であり、具体的にはフラーレンおよびその誘導体、フェニレンビニレン系ポリマー、ナフタレンテトラカルボン酸イミド誘導体、ペリレンテトラカルボン酸イミド誘導体等が挙げられる。これらの中では、フラーレン誘導体が好ましい。フラーレン誘導体の具体例としてはC60、フェニル−C61−酪酸メチルエステル(文献等でPCBM、[60]PCBM、あるいはPC61BMと称されるフラーレン誘導体)、C70、フェニル−C71−酪酸メチルエステル(多くの文献等でPCBM、[70]PCBM、あるいはPC71BMと称されるフラーレン誘導体)、およびアドバンスト ファンクショナル マテリアルズ第19巻、779〜788頁(2009年)に記載のフラーレン誘導体、ジャーナル オブ ジ アメリカケミカル ソサエティー第131巻、16048頁(2009年)に記載のフラーレン誘導体SIMEF等が挙げられる。
<電子輸送層>
必要に応じて、光電変換層(バルクヘテロ層)13と負極の間に電子輸送材料からなる電子輸送層を設置しても良い。電子輸送層に用いることのできる電子輸送材料としては、前記の光電変換層で挙げた電子受容材料および、ケミカル レビュー第107巻、953〜1010頁(2007年)にElectron−Transporting and Hole−Blocking Materialsとして記載されているものが挙げられる。各種金属酸化物も安定性が高い電子輸送層の材料として好ましく利用され、例えば、酸化リチウム、酸化マグネシウム、酸化アルミニウム、酸化カルシウム、酸化チタン、酸化亜鉛、酸化ストロンチウム、酸化ニオブ、酸化ルテニウム、酸化インジウム、酸化亜鉛、酸化バリウムが挙げられる。これらのうち比較的に安定な酸化アルミニウム、酸化チタン、酸化亜鉛がより好ましい。電子輸送層の膜厚は0.1〜500nmであり、好ましくは0.5〜300nmである。電子輸送層は、塗布などによる湿式製膜法、蒸着やスパッタ等のPVD法による乾式製膜法、転写法、印刷法など、いずれによっても好適に形成することができる。
<その他の半導体層>
必要に応じて、正孔注入層、正孔輸送層、電子阻止層、電子注入層、正孔阻止層、励起子拡散防止層等の補助層を有していてもよい。なお、本発明において、下部電極12と上部電極21の間に形成された、バルクヘテロ層、正孔注入層、正孔輸送層、電子阻止層、電子注入層、電子輸送層、正孔阻止層、励起子拡散防止層など、電子や正孔を輸送する層の総称として「半導体層」の言葉を用いる。
<上部電極>
上部電極を構成する材料としては、公知の電極材料の中から適宜選択することができる。上部電極が負極として機能する場合は、マグネシウム、アルミニウム、カルシウム、チタン、クロム、マンガン、鉄、銅、亜鉛、ストロンチウム、銀、インジウム、錫、バリウム、ビスマスなどの金属やこれらの合金が好ましく用いられる。上部電極が正極として機能する場合は、コバルト、ニッケル、銅、モリブデン、パラジウム、銀、タンタル、タングステン、白金、金などの金属やこれらの合金、TCO、導電性ポリマーが好ましく用いられる。これらは、1種のみで使用しても、2種以上を混合または積層して用いても良い。
上部電極の形成方法については、特に制限はなく、公知の方法に従って行うことできる。例えば、塗布や印刷による湿式製膜法、真空蒸着法、スパッタ法、イオンプレーティング法等のPVD法や各種化学的気相製膜法(CVD法)による乾式製膜法などの中から、前記した構成材料との適性を考慮して適宜選択した方法に従って形成することができる。
上部電極を形成するに際してのパターニングは、フォトリソグラフィなどによる化学的エッチングによって行ってもよいし、レーザなどによる物理的エッチングによって行ってもよく、シャドウマスクを重ねて真空蒸着やスパッタ等を行ってもよいし、リフトオフ法や印刷法によって行ってもよい。
また、負極と半導体層との間に、アルカリ金属又はアルカリ土類金属の弗化物、酸化物等による誘電体層を0.1〜5nmの厚みで挿入してもよい。この誘電体層は、一種の電子注入層と見ることもできる。誘電体層は、例えば、真空蒸着法、スパッタ法、イオンプレーティング法等のPVD法により形成することができる。
上部電極の厚みは、その構成材料により適宜選択することができ、一概に規定することはできないが、導電性の観点から、通常、0.01μm〜10μm程度であり、0.05μm〜1μmが好ましい。
<保護層>
保護層18の材料としては、酸化マグネシウム、酸化アルミニウム、酸化珪素(SiO)、酸化チタン、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ハフニウム等の金属酸化物、窒化珪素(SiN)等の金属窒化物、窒化酸化珪素(SiO)等の金属窒化酸化物(金属酸化窒化物)、弗化リチウム、弗化マグネシウム、弗化アルミニウム、弗化カルシウム等の金属弗化物、ダイヤモンド状炭素(DLC)、などの無機材料が挙げられる。また、有機材料としては、ポリエチレン、ポリプロピレン、ポリ弗化ビニリデン、ポリパラキシリレン、ポリビニルアルコール等のポリマーが挙げられる。これらのうち、金属の酸化物、窒化物、窒化酸化物やDLCが好ましく、珪素、アルミニウムの酸化物、窒化物、窒化酸化物が特に好ましい。保護層は単層でも多層構成であっても良い。保護層の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタ法、MBE(分子線エピタキシ)法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法などのPVD法や、原子層堆積法(ALD法またはALE法)を含む各種化学的気相堆積(CVD)法、塗布法、印刷法、転写法を適用できる。
<ガスバリア層>
水分子や酸素分子など活性因子の浸透を阻止する目的の保護層を特にガスバリア層ともいい、有機薄膜太陽電池はガスバリア層を有することが好ましい。ガスバリア層は、水分子や酸素分子等の活性因子を遮断する層であれば、特に制限はないが、保護層として先に例示した材料が通常利用される。これらは純物質でもよいし、複数組成からなる混合物や傾斜組成でもよい。これらのうち、珪素、アルミニウムの酸化物、窒化物、窒化酸化物が好ましい。
ガスバリア層は単層でも、複数層でも良い。有機材料層と無機材料層の積層でも良く、複数の無機材料層と複数の有機材料層の交互積層でも良い。有機材料層は平滑性があれば特に制限はないが、(メタ)アクリレートの重合物からなる層などが好ましく例示される。無機材料層は、上述の保護層材料が好ましく、珪素、アルミニウムの酸化物、窒化物、窒化酸化物が特に好ましい。
無機材料層の厚みに関しては特に限定されないが、1層に付き、通常は5〜500nmであり、好ましくは10〜200nmである。無機材料層は複数のサブレイヤーから成る積層構造であってもよい。この場合、各サブレイヤーが同じ組成であっても異なる組成であってもよい。また、米国特許出願公開2004/0046497号明細書に開示してあるようにポリマーからなる有機材料層との界面が明確で無く、組成が膜厚方向で連続的に変化する層であってもよい。
<封止フィルム>
ガスバリア層をプラスチックフィルム基板上にあらかじめ形成したものを本発明では封止フィルムと表現している。有機光電変換素子からなる太陽電池1を形成した後に、封止フィルムを公知の接着剤やシーラントで貼り合せる製造方法が、該太陽電池の製造工程数を削減できるので好ましく使用されている。特に、太陽電池1の支持体10がプラスチックフィルムからなる場合は、支持体の裏面(下部電極を形成しない面)側からも水分子や酸素分子など活性因子が浸透するので、該太陽電池の両面に封止フィルムを貼り合わせる(ラミネートする)ことが好ましい。
本発明に製造方法により製造される太陽電池の厚さは特に限定されないが、光透過性を有する有機薄膜太陽電池とする場合は、50μm〜1mmであることが好ましく、100μm〜500μmであることがより好ましい。
以下に実施例を挙げて本発明をさらに具体的に説明する。
(実施例1)
実施例1として図1A〜図1Dに示した第1の実施形態の製造方法に沿って太陽電池1を製造した。
2‐プロパノール(IPA)とアセトンに順次浸漬して超音波洗浄した無アルカリガラス(50mm角)を支持体10として使用した。
無アルカリガラス10上に、光重合開始剤(Lamberti製、Esacure KTO 46)を添加したトリメチロールプロパントリアクリレート(TMPTA)の2‐アセトキシ‐1‐メトキシプロパン(PGMEA)溶液をインクジェット印刷により塗布し、紫外線(波長365nm)照射する事で図1Aのような第1の絶縁性隔壁11(幅1mm、高さ0.6μm)を形成した。第1の絶縁性隔壁11間の間隔は12mmとした。
ArガスとOガスを導入した真空度0.1Paの雰囲気で、高周波マグネトロンスパッタにより、下部電極12としてITO(膜厚0.2μm)を成膜した。ITO成膜の際に、支持体10の上方にシャドウマスクを配置する事で、図1Bのように下部電極層を形成した。
正孔輸送層として酸化モリブデン(膜厚5nm)を真空蒸着して形成した(図示せず)。
光電変換層13として、亜鉛フタロシアニン(ZnPc:膜厚40nm)を真空蒸着した後に、ZnPcとフラーレンC60を体積比1:1で共蒸着(膜厚20nm)し、更に、C60(膜厚40nm)を蒸着して計100nmの膜厚とした。これらの真空蒸着工程は、真空度が1×10−4Pa以下であって、基板上方にシャドウマスクを配置する事により、図1Cのように光電変換層を形成した。なお、先の形成した正孔輸送層も光電変換層と同じシャドウマスクを用いて、同じ部分に形成した。
上部電極層20として、アルミニウム(膜厚0.4μm)を真空蒸着した。支持体10の上方にシャドウマスクを配置する事で、図1Dのように上部電極層20を形成した。既述の通り上部電極層20は、その形成箇所により上部電極21、電極接続配線22および外部接続端子23のそれぞれとして機能する。なお、光電変換素子cとして機能する領域Cの幅は10mmとした。
以上の構成の有機光電変換素子は、下部電極12のITOが正極として、上部電極層20のアルミニウムが負極として機能する。
以上の工程によって、3つの有機光電変換素子c1,c2,c3が電極接続配線22を介して直列接続された有機薄膜太陽電池1を形成した。
さらに、保護層18として、ArガスとNガスとOガスを導入した真空度1Paの雰囲気で、高周波マグネトロンスパッタにより、組成分布を変化させた窒化酸化珪素(SiO:膜厚0.5μm)を形成した。このとき、電極層20が設けられた支持体10の上方にシャドウマスクを配置する事で、外部接続端子23に窒化酸化珪素が成膜される事を防止した。
以上の工程は、下部電極12、保護層18を形成するスパッタ装置と、正孔輸送層、光電変換層13、上部電極層20を形成する真空蒸着装置が真空度1×10−4Pa以下のクラスタ型真空搬送系にそれぞれ直結されている有機電界発光(有機EL)素子製造装置を使用した。
最後に、封止フィルム19として酸化アルミニウム蒸着膜が積層されたポリエチレンナフタレート(PEN)フィルムを、シーラントとしてのエチレン‐酢酸ビニル共重合体(EVA)フィルムをはさんで、保護層18上に真空加熱(140℃)ラミネートした。
上記のようにして得られた有機薄膜太陽電池を、支持体10の裏面(下部電極を形成しない面)側から擬似太陽光を80mW・cm−2照射して変換効率を測定した。具体的には、有機薄膜太陽電池へキセノンランプ(Newport製96000)にエアマスフィルタ(Newport製84094)を組合せた光源を照射しながら、ソースメータ(Keithley Instruments製Model 2400)により電圧を印加して電流値を測定した。得られた電流−電圧特性からPeccell I−V Curve Analyzer(ペクセル・テクノロジーズ製ver.2.1)を用いて変換効率を算出した。
得られた変換効率は1%であった。
(比較例1)
実施例1の工程において、第1の絶縁性隔壁を形成せずに、また、正孔輸送層と光電変換層の蒸着時に実施例1の場合とは異なる開口領域を有するシャドウマスクを使用して、図4に断面図を示す構成の有機薄膜太陽電池を形成した。ここで、有機光電変換素子として機能する領域Cは10mm幅とした。各下部電極12の幅は12mm、光電変換層の幅12mmとした。
その他の工程は実施例1と同じ条件で製造した。
比較例1の太陽電池は、短絡していて、光電変換特性が得られなかった。素子断面を電子顕微鏡で観察すると、電極接続配線部において電極層20の材料であるアルミニウム粒子が、光電変換層13を貫通して、下部電極12であるITO層と接触していた箇所が複数確認された。
(実施例2)
実施例2として図2A〜図2Eに示した第2の実施形態の製造方法に沿って太陽電池2を製造した。
支持体10としてPENフィルム(100μm厚、50mm角)を用い、PENフィルム上に、0.01mm幅、0.2mmピッチ、2μm厚の正方格子状の配線26とこの配線26に隣接して設けられるライン状配線27からなる補助金属配線25、0.1mm幅、1mm長の金属線からなる十字模様をアライメントマーク28として同時に図2Aのように形成した。なお、格子状配線26は幅10mmの範囲に形成し、格子状の配線間のライン状配線27は幅2mm、図中左端に設けられているライン状配線27は幅8mmとした。
補助金属配線の形成方法は、以下の通りとした。
[ハロゲン化銀乳剤の調製]
反応容器内で下記溶液Aを34℃に保ち、特開昭62−160128号公報記載の混合撹拌装置を用いて高速に撹拌しながら、硝酸(濃度6%)を用いて水素イオン濃度pHを2.95に調整した。引き続き、ダブルジェット法を用いて下記溶液Bと下記溶液Cを一定の流量で8分6秒間かけて添加した。添加終了後に、炭酸ナトリウム(濃度5%)を用いてpHを5.90に調整し、続いて下記溶液Dと溶液Eを添加した。
(溶液A)
アルカリ処理不活性ゼラチン(平均分子量10万) 18.7g
塩化ナトリウム 0.31g
溶液I(下記) 1.59cm
純水 1,246cm
(溶液B)
硝酸銀 169.9g
硝酸(濃度6%) 5.89cm
純水にて全量を317.1cmとした。
(溶液C)
アルカリ処理不活性ゼラチン(平均分子量10万) 5.66g
塩化ナトリウム 58.8g
臭化カリウム 13.3g
溶液I(下記) 0.85cm
溶液II(下記) 2.72cm
純水にて全量を317.1cmとした。
(溶液D)
2−メチル−4ヒドロキシ−1,3,3a,7−テトラアザインデン 0.56g
純水 112.1cm
(溶液E)
アルカリ処理不活性ゼラチン(平均分子量10万) 3.96g
溶液I(下記) 0.40cm
純水 128.5cm
〈溶液I〉
ポリイソプロピレンポリエチレンオキシジ琥珀酸エステルナトリウム塩の10質量%メタノール溶液
〈溶液II〉
六塩化ロジウム錯体の10質量%水溶液
上記操作終了後に、常法に従い40℃にてフロキュレーション法を用いて脱塩及び水洗処理を施し、溶液Fと防黴剤を加えて60℃でよく分散し、40℃にてpHを5.90に調整して、最終的に臭化銀を10mol%含む平均粒子径0.09μm、変動係数10%の塩臭化銀立方体粒子乳剤を得た。
(溶液F)
アルカリ処理不活性ゼラチン(平均分子量10万) 16.5g
純水 139.8cm
上記塩臭化銀立方体粒子乳剤に対し、チオ硫酸ナトリウムをハロゲン化銀1mol当たり20mg用い、40℃にて80分間化学増感を行い、化学増感終了後に4−ヒドロキシ−6−メチル−1,3,3a,7−テトラザインデン(TAI)をハロゲン化銀1mol当たり500mg、1−フェニル−5−メルカプトテトラゾールをハロゲン化銀1mol当たり150mg添加して、ハロゲン化銀乳剤を得た。このハロゲン化銀乳剤のハロゲン化銀粒子とゼラチンの体積比(ハロゲン化銀粒子/ゼラチン)は0.625であった。
[塗布]
さらに硬膜剤としてテトラキス(ビニルスルホニルメチル)メタンをゼラチン1g当たり200mgの比率となるようにして添加し、また塗布助剤(界面活性剤)として、スルホ琥珀酸ジ(2−エチルヘキシル)ナトリウムを添加し、表面張力を調整した。
こうして得られた塗布液を、銀換算の目付け量が0.625g・m−2となるように、下塗り層を施したPENフィルム基板(支持体)上に塗布した後、50℃24時間のキュア処理を実施して感光材料を得た。
[露光]
得られた感光材料を、メッシュパターンのフォトマスク(線幅0.01mm、ピッチ0.2mm)を介して紫外線露光した。
[化学現像]
露光した感光材料を、下記現像液(DEV−1)を用いて25℃で60秒間の現像処理を行った後、下記定着液(FIX−1)を用いて25℃で120秒間の定着処理を行った。
(DEV−1)
純水 500cm
メトール 2g
無水亜硫酸ナトリウム 80g
ハイドロキノン 4g
ホウ砂 4g
チオ硫酸ナトリウム 10g
臭化カリウム 0.5g
水を加えて全量を1000cmとした。
(FIX−1)
純水 750cm
チオ硫酸ナトリウム 250g
無水亜硫酸ナトリウム 15g
氷酢酸 15cm
カリミョウバン 15g
水を加えて全量を1000cmとした。
[物理現像]
次に、下記物理現像液(PDEV−1)を用いて30℃で10分間物理現像を行った後、水道水で10分間洗い流して水洗処理を行った。
(PDEV−1)
純水 900cm
クエン酸 10g
クエン酸三ナトリウム 1g
アンモニア水(28%) 1.5g
ハイドロキノン 2.3g
硝酸銀 0.23g
水を加えて全量を1000cmとした。
[電解めっき]
物理現像処理の後に、下記電解めっき液を用いて25℃で電解銅めっき処理を施した後、水洗、乾燥処理を行った。なお電解銅めっきにおける電流制御は3Aで1分間、次いで1Aで12分間、計13分間かけて実施した。めっき処理終了後に、水道水で10分間洗い流して水洗処理を行い、乾燥風(50℃)を用いてドライ状態になるまで乾燥した。
(電解めっき液)
硫酸銅(五水和物) 200g
硫酸 50g
塩化ナトリウム 0.1g
水を加えて全量を1000cmとした。
化学現像、物理現像、電解めっきの処理をした、以上の感光材料を電子顕微鏡にて観察したところ、PENフィルム基板(支持体)上に線幅0.01mm、ピッチ0.2mmのメッシュパターン銀配線が形成されていることが確認された。
次に、NガスとOガスとSiHガスを導入した真空度10Paの雰囲気で、プラズマCVDにより、組成分布を変化させた窒化酸化珪素(SiO:膜厚5μm)を成膜し、補助銀配線25を被覆した。
その後、銀配線25表面と、配線開口部に形成された窒化酸化珪素の表面が略同一平面になるまで、ArガスとCFガスとOガスを導入した真空度1Paの雰囲気で、窒化酸化珪素の表面をプラズマエッチングして、平坦化層30を形成した。
次に、アライメントマーク28を位置合せの基準点として、画像認識機能が付いたディスペンサロボットにより、光重合開始剤を添加したTMPTAのPGMEA溶液を図2Bのように塗布して第1の絶縁性隔壁11と第2の絶縁性隔壁31とを形成した。第1の絶縁性隔壁11及び第2の絶縁性隔壁31は共に幅1mm、高さ0.6μmとした。1対の第1の絶縁性隔壁と第2の絶縁性隔壁との間隔は10mmとした。
続いて、ジメチルスルホキシド(DMSO)を添加したポリエチレンジオキシチオフェン−ポリスチレンスルホン酸水溶液(PEDOT−PSS:H.C.Starck Clevios製、Clevios PH 500)(以下では「PEDOT−PSS水溶液I」と略記する。)を支持体10上(格子状の補助銀配線上)にフィルムアプリケータを用いて塗布し、130℃で20分間加熱処理した。これにより図2Cに示すような下部電極12(膜厚0.2μm)を形成した。
次に、正孔輸送層(図示せず)として、別組成のPEDOT−PSS水溶液(H.C.Starck Clevios製、Clevios P VP.AI4083)(以下では「PEDOT−PSS水溶液II」と略記する。)を下部電極12上にフィルムアプリケータを用いて塗布し、130℃で20分間加熱処理した。これにより正孔輸送層(膜厚0.04μm)を形成した。
電子供与材料としてP3HT(Merck製、lisicon SP001)、及び、電子受容材料としてPC61BM(フロンティアカーボン製、nanom spectra E100H)をクロロベンゼンに溶解させた組成物を、乾燥窒素雰囲気で正孔輸送層上に回転塗布し、130℃で20分間加熱処理した。これにより図2Dに示すバルクヘテロ接合型の光電変換層13を形成し、膜厚は0.2μmであった。
次に、電極層20として、アルミニウム(膜厚0.4μm)を真空蒸着した。光電変換層13までが積層された支持体10の上方にシャドウマスクを配置する事で、電極層20を図2Eのように形成した。
以上の構成の有機光電変換素子では、下部電極12のPEDOT−PSSが正極として、上部電極21のアルミニウムが負極として機能する。
保護層18および封止フィルム19の真空加熱ラミネート工程は、実施例1と同様とした。更に、真空加熱ラミネート工程で、支持体10の裏面(下部電極を形成しない面)へも別の封止フィルムを同時に貼り合わせた(図示せず)。
上記のようにして得られた有機太陽電池について、実施例1と同様の手順で変換効率を算出した。
変換効率は2%であった。
(比較例2)
実施例2の工程において、第1の絶縁性隔壁11および第2の絶縁性隔壁31を形成せずに、DMSOを添加したPEDOT−PSS水溶液Iを塗布したところ、水溶液Iが濡れ広がってしまって、電極接続配線を形成する範囲に隣り合う下部電極の間隙が形成できず、各素子の下部電極が接触してしまった。以降の工程を実施例2と同条件で実施して有機薄膜太陽電池を形成したが、短絡していて光電変換特性が得られなかった。
(比較例3)
実施例2の工程において、第1の絶縁性隔壁11および第2の絶縁性隔壁31を形成せずに、DMSOを添加したPEDOT−PSS水溶液Iを下部電極層としてPENフィルム全面に塗布した。
その後、各光電変換素子の外縁を区画するように半導体パルスレーザ(波長405nm、30MHz、対物レンズ開口数0.85、強度25mW)を走査して、光電変換素子の外縁に形成されたPEDOT−PSSを除去した。
その後に、実施例2と同様の工程で第1の絶縁性隔壁11および第2の絶縁性隔壁31を形成した。
正孔輸送層の形成工程以降は実施例2と同様にして有機薄膜太陽電池を形成したが、短絡していて光電変換特性が得られなかった。PENフィルム側から光学顕微鏡で観察すると、電極接続配線部において、隣り合う有機光電変換素子の下部電極間にPEDOT−PSSの残渣が複数確認された。
(比較例4)
実施例2の工程において、補助銀配線および平滑化層を形成した後、第1の絶縁性隔壁11および第2の絶縁性隔壁31を形成することなく、DMSOを添加したPEDOT−PSS水溶液Iを下部電極層としてPENフィルム全面に塗布し、130℃20分間加熱処理した。そして、PEDOT−PSS水溶液IIを全面に塗布し、130℃20分間加熱処理することで正孔輸送層を形成した。
PEDOT−PSS層上にポジ型フォトレジスト(東京応化工業製、OFPR−800)を成膜し、補助銀配線形成時に形成した銀線からなるアライメントマークを位置合せの基準点として、各素子の下部電極12となる領域以外にフォトマスクを介して紫外線照射した。水酸化テトラメチルアンモニウム(TMAH)2.38%水溶液で現像した後に水洗し、120℃加熱した。
フォトレジストが除去されるまで、ArガスとOガスを導入した真空度1Paの雰囲気で、表面をプラズマエッチングした所、各素子の下部電極12となる領域以外のPEDOT−PSSも除去できた。
実施例2と同様にして、第1の絶縁性隔壁11および第2の絶縁性隔壁31を図2Cのように形成した。
光電変換層の形成工程以降は実施例2と同様にして有機薄膜太陽電池を形成した。
上記のようにして得られた有機太陽電池について、実施例1と同様の手順で変換効率を算出した。
変換効率は0.2%であった。
(実施例3)
実施例3として、図3A〜図3Dに示した第3の実施形態の製造方法に沿って太陽電池を製造した。
本実施例3は、実施例2の工程と異なる点を中心に説明する。特に記載のない場合には、寸法についても実施例2のものと同一である。実施例2の工程において、補助銀配線25の形成時に、図3Aに示すように各素子の長さ方向の端部にも太いライン状の配線27’をさらに設けた。
補助銀配線25の形成工程および平坦化層30の形成工程は実施例2と同様とした。
また、図3Bに示すように、第1の絶縁性隔壁11および第2の絶縁性隔壁31の形成時に、さらに側壁38を設けた。側壁38は、第1の絶縁性隔壁11および第2の絶縁性隔壁31と同じ材料で同一工程にて形成した。側壁38の壁厚は2mmとした。
その後、DMSOが添加されたPEDOT−PSS水溶液Iをフィルムアプリケータを用いて塗布し、130℃で20分間加熱処理した。これにより下部電極12(膜厚0.2μm)を絶縁性隔壁11、31および側壁38で囲まれた領域に形成した。
次に、電子輸送層として、チタン(IV)イソプロポキシドのエタノール溶液を下部電極上にフィルムアプリケータを用いて塗布し、130℃で20分間加熱処理した。これにより酸化チタンからなる電子輸送層(膜厚0.01μm)を形成した。
電子供与材料としてポリ[N‐9’‐ヘプタデカニル‐2,7‐カルバゾール‐alt‐5,5’‐(4’,7’‐ジ‐2‐チエニル‐2’,1’,3’‐ベンゾチアジアゾール)](PCDTBT)、及び、電子受容材料としてPC71BM(フロンティアカーボン製、nanom spectra E112)をクロロホルムに溶解させた組成物を、乾燥窒素雰囲気で電子輸送層上にフィルムアプリケータを用いて塗布した。
これによりバルクヘテロ接合型の光電変換層13(図3C参照)を形成し、膜厚は0.2μmであった。
PCDTBTの構造式は以下のとおりである。
Figure 2013016668
PEDOT−PSS水溶液IIを光電変換層上にフィルムアプリケータを用いて塗布し、130℃で20分間加熱処理した。これにより正孔輸送層(膜厚0.04μm、図示せず)を形成した。
次に、上部電極層20として、銀(膜厚0.4μm)を真空蒸着した。基板上方にシャドウマスクを配置する事で、電極層20を図3Dのように形成した。
このように素子外周を取り囲むように絶縁性隔壁を形成し、図3Dのように上部電極層20を形成することにより、光電変換層13が電極層20と絶縁性隔壁11、31および側壁38によって封止された構造とすることができる。
以上の構成の有機光電変換素子では、下部電極12のPEDOT−PSSが負極として、上部電極層20の銀が正極として機能する。
保護層18および封止フィルム19の真空加熱ラミネート工程は、実施例2と同様とした(図示せず)。
上記のようにして得られた有機太陽電池について、実施例1と同様の手順で変換効率を算出した。
変換効率は2%であった。
以上のように、実施例の製造方法により作製された太陽電池ではいずれも1%以上の変換効率が得られたのに対し、比較例の製造方法により作製された太陽電池では、光電変換特性が得られない、あるいは得られても0.2%と非常に小さかった。
1、2、3 太陽電池
10 支持体
11 第1の絶縁性隔壁
12 下部電極
13 光電変換層
20 電極層
21 上部電極
22 電極接続配線
23 外部接続端子
25 補助金属配線
28 アライメントマーク
30 平坦化層
31 第2の絶縁性隔壁
38 側壁

Claims (8)

  1. 支持体上に、少なくとも下部電極と有機材料を含む光電変換層と上部電極とをこの順に積層してなる複数の光電変換素子が配置され、該複数の光電変換素子の互いに隣接する光電変換素子の一方の光電変換素子の上部電極と他方の有機光電変換素子の下部電極とを電気的に接続する電極接続配線により直列接続されてなる太陽電池の製造方法であって、
    前記支持体上に、前記複数の光電変換素子の下部電極を形成する前に、前記隣接する光電変換素子の下部電極同士の接触および前記一方の光電変換素子の下部電極と前記電極接続配線との接触を防止する第1の絶縁性隔壁を形成することを特徴とする太陽電池の製造方法。
  2. 前記第1の絶縁性隔壁として、後に形成される前記光電変換層と前記下部電極層の厚みの和よりも高い隔壁を立設することを特徴とする請求項1記載の太陽電池の製造方法。
  3. 前記支持体上に、前記下部電極に接続される補助金属配線を形成し、
    該補助金属配線の上方の少なくとも一部分に、前記他方の光電変換素子の上部電極と、前記電極接続配線との接触を防止すると共に、該電極接続配線の前記他方の光電変換素子の補助金属配線への接触を許容する第2の絶縁性隔壁を形成することを特徴とする請求項1または2記載の太陽電池の製造方法。
  4. 前記各光電変換素子の外縁であって、前記第1の絶縁性隔壁および前記第2の絶縁性隔壁のいずれも存在しない位置に、該第1の絶縁性隔壁と該第2の絶縁性隔壁と協働して前記各光電変換素子の周囲を取り囲む側壁を形成することを特徴とする請求項3記載の太陽電池の製造方法。
  5. 前記支持体上に、前記補助金属配線の位置を光学的に検出するための位置検出用マークを該補助金属配線と同時に形成することを特徴とする請求項3または4記載の太陽電池の製造方法。
  6. 前記補助金属配線としてメッシュパターンの金属配線を形成し、
    前記金属配線の間に、該金属配線の表面と略同一平面となるように平坦化層を形成することを特徴とする請求項3から5いずれか1項記載の太陽電池の製造方法。
  7. 前記補助金属配線を形成する工程が、前記支持体上にハロゲン化銀を含む組成物を塗布してハロゲン化銀含有層を形成する工程と、該ハロゲン化銀含有層の一部を露光する工程と、該ハロゲン化銀含有層を現像する工程と、現像済みハロゲン化銀含有層を定着して銀を含む該補助配線を形成する工程と、を順に含むことを特徴とする請求項3から6いずれか1項記載の太陽電池の製造方法。
  8. 前記下部電極および前記光電変換層の少なくとも一方を、塗布により形成することを特徴とする請求項1から7いずれか1項記載の太陽電池の製造方法。
JP2011148790A 2011-07-05 2011-07-05 太陽電池の製造方法 Withdrawn JP2013016668A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011148790A JP2013016668A (ja) 2011-07-05 2011-07-05 太陽電池の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011148790A JP2013016668A (ja) 2011-07-05 2011-07-05 太陽電池の製造方法

Publications (1)

Publication Number Publication Date
JP2013016668A true JP2013016668A (ja) 2013-01-24

Family

ID=47689042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011148790A Withdrawn JP2013016668A (ja) 2011-07-05 2011-07-05 太陽電池の製造方法

Country Status (1)

Country Link
JP (1) JP2013016668A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016174086A (ja) * 2015-03-17 2016-09-29 株式会社東芝 光電変換装置および光電変換装置の製造方法
JP2016195175A (ja) * 2015-03-31 2016-11-17 株式会社東芝 光発電モジュール
WO2016186166A1 (ja) * 2015-05-19 2016-11-24 ローム株式会社 有機薄膜太陽電池モジュール、電子機器および有機薄膜太陽電池モジュールの製造方法
JP2017168798A (ja) * 2015-05-19 2017-09-21 ローム株式会社 有機薄膜太陽電池モジュール、電子機器および有機薄膜太陽電池モジュールの製造方法
WO2018088632A1 (ko) * 2016-11-08 2018-05-17 고려대학교 산학협력단 페로브스카이트 태양전지 모듈 및 이의 제조방법
US10236322B2 (en) 2015-03-19 2019-03-19 Kabushiki Kaisha Toshiba Solar cell module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016174086A (ja) * 2015-03-17 2016-09-29 株式会社東芝 光電変換装置および光電変換装置の製造方法
US10236322B2 (en) 2015-03-19 2019-03-19 Kabushiki Kaisha Toshiba Solar cell module
JP2016195175A (ja) * 2015-03-31 2016-11-17 株式会社東芝 光発電モジュール
WO2016186166A1 (ja) * 2015-05-19 2016-11-24 ローム株式会社 有機薄膜太陽電池モジュール、電子機器および有機薄膜太陽電池モジュールの製造方法
JP2017168798A (ja) * 2015-05-19 2017-09-21 ローム株式会社 有機薄膜太陽電池モジュール、電子機器および有機薄膜太陽電池モジュールの製造方法
US20180138326A1 (en) * 2015-05-19 2018-05-17 Rohm Co., Ltd. Organic thin film solar cell module, electronic device and method for manufacturing organic thin film solar cell module
WO2018088632A1 (ko) * 2016-11-08 2018-05-17 고려대학교 산학협력단 페로브스카이트 태양전지 모듈 및 이의 제조방법

Similar Documents

Publication Publication Date Title
JP5484279B2 (ja) 太陽電池
JP4985717B2 (ja) 有機薄膜太陽電池およびその製造方法
US9385348B2 (en) Organic electronic devices with multiple solution-processed layers
EP1920480B1 (en) Low resistance thin film organic solar cell electrodes
JP2013016668A (ja) 太陽電池の製造方法
US20040118444A1 (en) Large-area photovoltaic devices and methods of making same
US9099652B2 (en) Organic electronic devices with multiple solution-processed layers
JP2009076668A (ja) 有機薄膜太陽電池
WO2011052582A1 (ja) 有機薄膜太陽電池モジュールの製造方法
WO2013035283A1 (ja) 透明導電フィルム、その製造方法、フレキシブル有機電子デバイス、及び、有機薄膜太陽電池
US20210366662A1 (en) Solar cell module
JP2011181904A (ja) 太陽電池用基板、太陽電池、有機薄膜太陽電池、太陽電池用基板の製造方法および有機薄膜太陽電池の製造方法
JP2012059417A (ja) 透明導電フィルム、その製造方法、電子デバイス、及び、有機薄膜太陽電池
WO2012020657A1 (ja) 透明導電フィルム及びその製造方法並びに有機電子デバイス及び有機薄膜太陽電池
WO2012039246A1 (ja) 有機薄膜太陽電池及びその製造方法
US10930443B2 (en) Photoelectric conversion element
JP2006344741A (ja) 有機太陽電池とその製造方法
JP4993018B2 (ja) 有機薄膜太陽電池および有機薄膜太陽電池の製造方法
JP2013016667A (ja) 太陽電池の製造方法
JP2012079869A (ja) 有機薄膜太陽電池
JP2013016670A (ja) 透明導電フィルムおよびその製造方法並びに有機薄膜太陽電池
JP2013016669A (ja) 光電変換素子の製造方法
JP2012209400A (ja) 有機薄膜太陽電池、及び有機薄膜太陽電池モジュール
US20220209151A1 (en) Transparent electrode, process for producing transparent electrode, and photoelectric conversion device comprising transparent electrode
JP4765281B2 (ja) 光電変換素子およびその製造方法

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007