WO2019131796A1 - リン化合物含有排ガス浄化用触媒 - Google Patents

リン化合物含有排ガス浄化用触媒 Download PDF

Info

Publication number
WO2019131796A1
WO2019131796A1 PCT/JP2018/047942 JP2018047942W WO2019131796A1 WO 2019131796 A1 WO2019131796 A1 WO 2019131796A1 JP 2018047942 W JP2018047942 W JP 2018047942W WO 2019131796 A1 WO2019131796 A1 WO 2019131796A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
catalyst layer
side end
inflow side
side upper
Prior art date
Application number
PCT/JP2018/047942
Other languages
English (en)
French (fr)
Inventor
弘尊 久野
優 中島
公博 中間
Original Assignee
ユミコア日本触媒株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユミコア日本触媒株式会社 filed Critical ユミコア日本触媒株式会社
Priority to CN201880077307.8A priority Critical patent/CN111432928B/zh
Priority to US16/767,213 priority patent/US11110436B2/en
Priority to EP18894947.3A priority patent/EP3733289B1/en
Priority to JP2019521498A priority patent/JP6544881B1/ja
Publication of WO2019131796A1 publication Critical patent/WO2019131796A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9463Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick
    • B01D53/9468Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick in different layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9463Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick
    • B01D53/9472Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick in different zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0228Coating in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2042Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9022Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/903Multi-zoned catalysts
    • B01D2255/9032Two zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/904Multiple catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/905Catalysts having a gradually changing coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/908O2-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/55Compounds of silicon, phosphorus, germanium or arsenic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • F01N2510/0682Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having a discontinuous, uneven or partially overlapping coating of catalytic material, e.g. higher amount of material upstream than downstream or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • F01N2510/0684Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having more than one coating layer, e.g. multi-layered coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a catalyst suitable for the purification of an exhaust gas containing a phosphorus compound (also simply referred to as a “phosphorus compound-containing exhaust gas”). More particularly, the present invention relates to a technique for improving the exhaust gas purification performance of a catalyst at high temperature and after being exposed to a phosphorus compound-containing exhaust gas for a long time.
  • a phosphorus compound-containing exhaust gas also simply referred to as a “phosphorus compound-containing exhaust gas”.
  • Phosphorus poisoning occurs when a phosphorus compound derived from a lubricating oil additive such as zinc dialkyl dithiophosphate contained in exhaust gas deposits and penetrates the catalyst layer (Non-patent Document 1).
  • ZrO 2 zirconium oxide
  • JP-A-8-38898 JP 2009-501079 (corresponding to US Patent 2007/014705)
  • JP 2010-5590 A (corresponding to WO 2010/001226)
  • an object of the present invention is to provide a catalyst that can exhibit sufficient exhaust gas purification performance even at high temperatures and after being exposed to a phosphorus compound-containing exhaust gas for a long time.
  • the present inventors diligently studied to solve the above problems.
  • three catalyst layers, at least the lower catalyst layer, the upper catalyst layer on the gas inflow side, and the lower catalyst layer on the gas outflow side are disposed on the partition walls of the refractory three-dimensional structure, and It has been found that the above problems can be solved by providing the region in which the catalyst layer is not formed and the region in which the upper catalyst layer (the upper catalyst layer on the gas inflow side or the upper catalyst layer on the gas outflow side) is not formed.
  • the present invention has been completed.
  • the phosphorus compound-containing exhaust gas purification catalyst extends from the gas inflow side end face along the gas outflow side end face and penetrates from the gas inflow side end face to the gas outflow side end face
  • a refractory three-dimensional structure having a partition that partitions and forms a plurality of gas flow paths, a lower catalyst layer containing Pd continuously formed on the partition from the gas inflow side end surface, and a position on the outermost surface on the partition
  • the gas inflow side upper catalyst layer and the gas outflow side upper catalyst layer are disposed to be separated from each other along the gas flow path direction, and the length of the lower catalyst layer along the gas flow path direction is 15 mm or more
  • the ratio of the length is 18% or more and less than 100% with respect to the total length of the gas flow path.
  • FIG. 6 is a front cross-sectional view showing a phosphorus compound-containing exhaust gas purification catalyst according to Comparative Example 1;
  • FIG. 6 is a front cross-sectional view showing a phosphorus compound-containing exhaust gas purification catalyst according to Comparative Example 2;
  • FIG. 6 is a front cross-sectional view showing a phosphorus compound-containing exhaust gas purification catalyst according to Comparative Example 3; It is a graph which shows the temperature which CO purification rate of the catalyst which concerns on the Example and comparative example of this invention reaches to 50%. It is a graph which shows the temperature which HC purification rate of the catalyst which concerns on the Example and comparative example of this invention reaches 50%. It is a graph which shows the temperature which the NOx purification rate of the catalyst which concerns on the Example and comparative example of this invention reaches 50%. It is a graph which shows time when CO purification rate of the catalyst concerning the example of the present invention and a comparative example reaches 20%.
  • the gas inflow side upper catalyst layer and the gas outflow side upper catalyst layer are disposed to be separated from each other along the gas flow path direction, and the length of the lower catalyst layer along the gas flow path direction is 15 mm or more It is characterized by being 18% or more and less than 100% with respect to the total length of the gas flow path.
  • the phosphorus compound-containing exhaust gas purification catalyst 1 includes the refractory three-dimensional structural body 10, the lower catalyst layer 20, the gas inflow side upper catalyst layer 30, and the gas outflow side upper catalyst layer 40. Have.
  • the refractory three-dimensional structural body 10 is provided to extend from the gas inflow side end face 10A along the gas outflow side end face 10B, as shown in FIG.
  • the fire-resistant three-dimensional structural body 10 has a partition that partitions and forms a plurality of gas flow paths penetrating from the gas inflow side end face 10A to the gas outflow side end face 10B.
  • the length of the gas flow path direction of a fireproof three-dimensional structure is 80 mm.
  • the lower catalyst layer 20 is continuously formed on the partition wall from the gas inflow side end face 10A.
  • the length of the lower catalyst layer 20 along the gas flow direction (left and right direction in FIG. 1) is 50 mm, which is 62.5% of the total length of the gas flow path. That is, the lower catalyst layer 20 is formed halfway from the gas inflow side end surface 10A to the surface of the three-dimensional structure 10.
  • the gas inflow side upper catalyst layer 30 is located on the outermost surface of the partition wall, continuously formed from the gas inflow side end face 10 A, and provided on the upper surface of the lower catalyst layer 20.
  • the length of the gas inflow side upper catalyst layer 30 along the gas channel direction is 30 mm, and the ratio of the length is 37.5% with respect to the total length of the gas channel.
  • the stepped portion 41 is formed on the gas outflow side of the gas outflow side upper catalyst layer 40, and the surface area of the gas outflow side upper catalyst layer 40 is increased. Furthermore, since the step portion 41 on the gas outflow side has no wall formed on the gas outflow side, it is difficult to be poisoned by phosphorus, and a large number of gas outflow side upper catalyst layer surfaces in which catalytic activity is maintained become present. Exhaust gas purification performance can be further improved.
  • the gas outflow side upper catalyst layer is formed in a step shape, the total thickness of the catalyst layer is from the gas inflow side end of the gas outflow side upper catalyst layer to the gas outflow side end
  • the gas outlet upper catalyst layer may be formed to decrease gradually.
  • the total thickness of the catalyst layer at the gas inflow side end of the gas outflow side upper catalyst layer is the gas outflow side of the gas outflow side upper catalyst layer It is characterized in that it is larger than the total of the thickness of the catalyst layer at the end.
  • the length of the gas outflow side upper catalyst layer 40 along the gas flow channel direction is 40 mm, and the ratio of the length is 50% with respect to the total length of the gas flow channel.
  • the gas inflow side upper catalyst layer 30 and the gas outflow side upper catalyst layer 40 are disposed to be separated from each other along the gas flow path direction, as shown in FIG.
  • the separation distance L between the gas inflow side upper catalyst layer 30 and the gas outflow side upper catalyst layer 40 is 10 mm.
  • the gas inflow side upper catalyst layer 30 and the gas outflow side upper catalyst layer 40 are spaced apart, so that the gas inflow side upper catalyst layer 30 and the gas outflow side upper catalyst layer 40 are separated.
  • the recess 50 is formed between the two.
  • the gas outflow side upper catalyst layer 40 has an exhaust gas as the entire catalyst as compared to the case without the recess. Purification performance may be improved. Therefore, the catalyst according to the present embodiment can be suitably used to purify the exhaust gas containing a phosphorus compound in the exhaust gas of an internal combustion engine, and in particular, nitrogen oxides and monoxide contained in the exhaust gas from an internal combustion engine such as a gasoline engine It has excellent effects on the purification of carbon and hydrocarbons.
  • FIG. 2 is a front cross-sectional view showing the phosphorus compound-containing exhaust gas purification catalyst 2 according to the second embodiment.
  • the catalyst A of Example 1 mentioned later is mentioned as a specific example of 2nd Embodiment. Descriptions of parts in common with the first embodiment will be omitted, and parts characterized only in the second embodiment will be described. The same parts as those in the first embodiment described above will be described with the same reference numerals, and redundant description will be omitted.
  • the second embodiment differs from the first embodiment in the configurations of the lower catalyst layer and the gas outflow side upper catalyst layer.
  • the phosphorus compound-containing exhaust gas purification catalyst 2 is, as shown in FIG. 2, a refractory three-dimensional structural body 10, a lower catalyst layer 120, a gas inflow side upper catalyst layer 30, and a gas outflow side And the upper catalyst layer 140.
  • the lower catalyst layer 120 has a length of 30 mm along the gas flow channel direction, and is arranged shorter along the gas flow channel direction than the lower catalyst layer 20 according to the first embodiment.
  • the gas outflow side upper catalyst layer 140 is disposed on the surface of the refractory three-dimensional structure 10 so as to be separated from the lower catalyst layer 120, as shown in FIG. At this time, since the length of the gas inflow side upper catalyst layer 30 along the gas flow path direction is 30 mm, which is the same as the length of the lower catalyst layer 120 along the gas flow path direction, the gas outflow side upper catalyst layer 140 The lower catalyst layer 120 is disposed so as to be separated by 10 mm.
  • the gas outflow side upper catalyst layer 140 may be disposed in contact with the right end of the lower catalyst layer 120, as shown in FIG. At this time, since the length of the gas inflow side upper catalyst layer 30 along the gas flow path direction is shorter than the length along the gas flow path direction of the lower catalyst layer 120, the gas outflow side upper catalyst layer 140 is on the gas inflow side.
  • the upper catalyst layer 30 is disposed to be spaced apart.
  • the catalyst B of Example 2 mentioned later is mentioned as a specific example of a catalyst shown by FIG.
  • the upper catalyst layer on the gas inflow side and the upper catalyst layer on the gas outflow side are in the gas channel direction
  • the length of the lower catalyst layer along the gas channel direction is 15 mm or more, and the ratio of the length is the length of the gas channel relative to the total length of the gas channel, It is characterized by being 18% or more and less than 100%.
  • the separation distance between the gas inflow side upper catalyst layer and the gas outflow side upper catalyst layer is more than 0 mm, preferably 5 mm or more, more preferably 8 mm or more, still more preferably 10 mm or more Preferably 30 mm or less, more preferably 20 mm or less, and still more preferably 15 mm or less.
  • the numerical range of the separation distance is preferably 5 mm or more and 30 mm or less, more preferably 8 mm or more and 20 mm or less, and still more preferably 10 mm or more and 15 mm or less.
  • the separation distance is 0 mm, that is, the upper catalyst layer on the gas inflow side and the upper catalyst layer on the gas outflow side are not separated, there is a possibility that the exhaust gas can not be efficiently purified when poisoned by phosphorus.
  • the separation distance is 30 mm or less, a gas outflow side upper catalyst layer having a sufficient length for purification of exhaust gas can be formed, which is preferable from the viewpoint of reducing phosphorus poisoning.
  • the length of the gas inflow side upper catalyst layer along the gas flow channel direction is preferably equal to or less than the length of the lower catalyst layer.
  • the length of the lower catalyst layer along the gas channel direction is 15 mm or more, preferably 20 mm or more, more preferably 30 mm or more, and preferably less than 100 mm.
  • the ratio of the length is 18% or more, preferably 25% or more, more preferably 37% or more, relative to the total length of the gas channel; essentially less than 100%, preferably 88% or less, more preferably It is 75% or less.
  • the numerical range of the ratio of the length is essentially 18% or more and less than 100%, preferably 25% or more and 88% or less, and more preferably 37% or more and 75% or less.
  • the ratio of the length of the lower catalyst layer is less than 18%, it is not preferable from the viewpoint that the exhaust gas can not be efficiently purified under high space velocity conditions.
  • the ratio of the length of the lower catalyst layer is 100%, the transition point of the thickness of the catalyst layer is small from the gas inflow side end face to the gas outflow side end face, so turbulent flow and contraction flow It becomes difficult to happen. If turbulent flow and contraction do not occur easily, the exhaust gas is less likely to diffuse into the catalyst layer, which may not be sufficient for sufficient exhaust gas purification performance, which is not preferable.
  • the length of the gas inflow side upper catalyst layer along the gas channel direction is preferably 10 mm or more, more preferably 15 mm or more, still more preferably 20 mm or more, particularly preferably 25 mm or more; preferably 40 mm or less, more preferably It is 35 mm or less, more preferably 30 mm or less.
  • the numerical range of the length is preferably 10 mm to 40 mm, more preferably 15 mm to 35 mm, still more preferably 20 mm to 30 mm, and particularly preferably 25 mm to 30 mm. It is preferable that the length of the gas inflow side upper catalyst layer is 10 mm or more from the viewpoint of efficiently purifying NOx even under conditions of low temperature (150 ° C. to 600 ° C.) and high space velocity.
  • the ratio of the length is preferably 12% or more, more preferably 18% or more, still more preferably 25% or more, particularly preferably 31% or more, with respect to the total length of the gas flow path; % Or less, more preferably 50% or less, still more preferably 44% or less, particularly preferably 38% or less.
  • the numerical range of the length ratio is preferably 12% to 57%, more preferably 18% to 50%, still more preferably 25% to 44%, particularly preferably 31% to 38%. is there.
  • the length of the gas outflow side upper catalyst layer along the gas flow path direction is preferably 25 mm or more, more preferably 30 mm or more, still more preferably 40 mm or more, and preferably less than 100 mm.
  • the length of the gas outflow side upper catalyst layer along the gas flow path direction is preferably 31% or more, more preferably 43% or more, more preferably 31% or more of the length of the gas flow path. Is 50% or more; preferably less than 88%, more preferably 75% or less.
  • the numerical range of the ratio of the length is preferably 31 or more and less than 88%, more preferably 43% or more and 75% or less, and still more preferably 50% or more and 75% or less.
  • the ratio of the length of the gas outflow side upper catalyst layer is 31% or more, the exhaust gas purification performance at a low temperature after phosphorus poisoning becomes difficult to deteriorate.
  • the ratio of the length of the gas outflow side upper catalyst layer is less than 88%, the length and the separation distance of the gas inflow side upper catalyst layer can be secured.
  • the length of the gas outflow side upper catalyst layer along the gas flow path direction is the length and separation distance of the gas inflow side upper catalyst layer from the total length of the gas flow path (the length of the refractory three-dimensional structure).
  • the length is the reduced length.
  • the separation distance and the length of each catalyst layer can be obtained by observing a cross section of the catalyst cut in the gas flow direction.
  • the catalyst is broken and a microscope such as a caliper or a microscope can be used.
  • X-ray CT apparatus can be used to measure the length without destroying the catalyst. Any method that can measure the length can be used regardless of destruction or nondestructiveness.
  • the catalyst of this embodiment has other catalyst layers. It does not matter.
  • another catalyst layer may be included between the refractory three-dimensional structure and the lower catalyst layer, or between the lower catalyst layer and the gas inflow side upper catalyst layer, or the lower catalyst layer
  • Another catalyst layer may be included between the gas outlet side upper catalyst layer.
  • the catalyst of the present embodiment preferably has only the lower catalyst layer, the upper gas inflow side catalyst layer, and the upper gas outflow side catalyst layer as the catalyst layer.
  • the refractory three-dimensional structure is not particularly limited, and one generally used in the field of exhaust gas purification catalysts can be appropriately adopted, and is preferably a honeycomb carrier.
  • honeycomb carriers include monolith honeycomb carriers, metal honeycomb carriers, and plug honeycomb carriers such as particulate filters.
  • heat resistant metals such as cordierite, silicon carbide, silicon nitride, stainless steel, Fe-Cr-Al alloy, etc. can be used.
  • honeycomb carriers are manufactured by an extrusion molding method, a method of rolling up a sheet-like element, or the like.
  • the shape of the gas passage may be hexagonal, square, triangular or corrugated.
  • a cell density (cell number / unit cross section) of 100 to 1200 cells / square inch (15.5 to 186 cells / square centimeter) is sufficiently usable, preferably 200 to 900 cells / square inch (31). ⁇ 139.5 cells / square centimeter).
  • the length of the refractory three-dimensional structure along the gas flow path direction is preferably more than 15 mm, more preferably 30 mm or more, still more preferably 40 mm or more, particularly preferably 58 mm, most preferably 78 mm or more; Or less, more preferably 300 mm or less, still more preferably 200 mm or less, still more preferably 100 mm or less, particularly preferably 90 mm or less, most preferably 85 mm or less.
  • the range of the length is preferably 15 mm to 1000 mm or less, more preferably 30 mm to 300 mm or less, still more preferably 40 mm to 200 mm, still more preferably 58 mm to 100 mm, particularly preferably 78 mm to 90 mm, most preferably Is 78 mm or more and 85 mm or less.
  • the lower catalyst layer, the upper catalyst layer on the gas inlet side and the upper catalyst layer on the gas outlet side each independently contain a catalyst component such as a noble metal, an oxygen storage material, a refractory inorganic oxide and / or a cocatalyst.
  • a catalyst component such as a noble metal, an oxygen storage material, a refractory inorganic oxide and / or a cocatalyst.
  • the noble metal may be any one as long as it is used for an exhaust gas purification catalyst, and is preferably selected from rhodium (Rh), palladium (Pd) and platinum (Pt).
  • Rh rhodium
  • Pd palladium
  • Pt platinum
  • each catalyst layer only one noble metal may be used alone, or two or more noble metals may be used in combination. Further, the same noble metal may be used for each catalyst layer, or a plurality of noble metals may be used in combination as a whole catalyst by using different noble metals.
  • the lower catalyst layer contains Pd
  • the upper catalyst layer on the gas inflow side and the upper catalyst layer on the gas outlet side contain Rh.
  • the lower catalyst layer may contain a noble metal other than Pd
  • the upper catalyst layer on the gas inflow side and the upper catalyst layer on the gas outflow side may contain a noble metal other than Rh.
  • the noble metal other than Pd that the lower catalyst layer may contain is preferably Rh and / or Pt, preferably either Rh or Pt, and Pt is preferred.
  • noble metals other than Rh which can be contained in the gas inflow side upper catalyst layer or the gas outflow side upper catalyst layer are independently preferably either Pd or Pt, and Pd is preferable.
  • the Rh concentration of the gas inflow side upper catalyst layer is preferably higher than the Rh concentration of the gas outflow side upper catalyst layer.
  • the Rh concentration of the gas inflow side upper catalyst layer is preferably 1.1 to 5 times, more preferably 1.1 to 4 times, more preferably the Rh concentration of the gas outflow side upper catalyst layer. Is 1.1 to 2 times, particularly preferably 1.1 to 1.35 times.
  • the Rh concentration in each layer is a percentage obtained by dividing the mass of Rh contained in the layer by the supported amount in the layer (total mass of solid content contained in the layer). A ratio of 1.1 times or more is preferable because sufficient warmth is exhibited, and a ratio of 5 times or less is preferable because deterioration in exhaust gas purification performance due to phosphorus poisoning is suppressed.
  • the mass ratio of Pd to Rh in the gas inflow side upper catalyst layer is preferably 0.05 to 5.0, more preferably 0.1. To 2.0, more preferably 0.3 to 0.8. It is preferable that Pd / Rh is 0.05 or more, because Rh in the gas inflow side catalyst layer is less susceptible to phosphorus poisoning due to Pd, while if it is 5.0 or less, Rh is caused by covering Rh with Rh. It is preferable because the reaction reduction of
  • the Rh concentration of the lower catalyst layer is preferably lower than the Rh concentration of the gas outflow side upper catalyst layer.
  • the Rh concentration of the lower catalyst layer is preferably 0 to 0.5 times, more preferably 0 to 0.3 times, still more preferably 0 to the Rh concentration of the gas outflow side upper catalyst layer. It is 0.1 times.
  • Rh in the lower catalyst layer is not necessarily required, it is preferable that the ratio is 0.5 times or less because the performance of the lower catalyst layer is not significantly impaired.
  • the amount of noble metal contained in the catalyst of the present embodiment is preferably 0.01 to 10 g, more preferably 0.05 to 8 g, and still more preferably 0.1 to 5 g per liter of the refractory three-dimensional structure if it is Rh. is there.
  • Pd it is preferably 0.05 to 20 g, more preferably 0.5 to 15 g, and still more preferably 1 to 10 g per liter of the refractory three-dimensional structure.
  • Pt it is preferably 0.01 to 15 g, more preferably 0.1 to 10 g, and still more preferably 0.5 to 5 g, per liter of the refractory three-dimensional structure.
  • the source of rhodium (Rh) as a starting material is not particularly limited, and any source used in the field of exhaust gas purification can be used. Specifically, rhodium; halides such as rhodium chloride; nitrates, sulfates, acetates, ammonium salts, amine salts, rhodium salts, carbonate salts, carbonates, bicarbonates, nitrites, oxalates and the like of rhodium Inorganic salts; carboxylates such as formate; and hydroxides, alkoxides, oxides, etc.
  • nitrate, ammonium salt, amine salt and carbonate can be mentioned.
  • the addition amount of the rhodium source is an amount supported on the refractory three-dimensional structure in the amount as described above.
  • the rhodium source may be a single one or a mixture of two or more.
  • the palladium (Pd) source as a starting material is not particularly limited, and any raw material used in the field of exhaust gas purification can be used. Specifically, palladium; halides such as palladium chloride; nitrates, sulfates, acetates, ammonium salts, ammonium salts, amine salts, tetraammine salts, carbonates, bicarbonates, nitrites, oxalates and the like of palladium Inorganic salts; carboxylates such as formate; and hydroxides, alkoxides, oxides and the like.
  • palladium halides such as palladium chloride
  • carboxylates such as formate
  • the addition amount of the palladium source is an amount supported on the refractory three-dimensional structure in the amount as described above.
  • the palladium source may be a single one or a mixture of two or more.
  • the platinum (Pt) source as a starting material in the case of containing platinum as a catalytically active component is not particularly limited, and a raw material used in the field of exhaust gas purification can be used.
  • platinum halides such as platinum bromide and platinum chloride; nitrate, dinitrodiammine salt, tetraammine salt, sulfate, ammonium salt, amine salt, bisethanolamine salt, bisacetylacetonate salt of platinum Inorganic salts such as carbonates, bicarbonates, nitrites and oxalates; carboxylates such as formates; and hydroxides, alkoxides, oxides and the like.
  • platinum nitrate platinum nitrate
  • dinitrodiammine salt dinitrodiammine platinum
  • chloride platinum chloride
  • tetraammine salt tetraammine platinum
  • bisethanolamine salt bisethanolamine platinum
  • bisacetylacetonate salt Bisacetylacetonato platinum
  • the addition amount of the platinum source is an amount supported on the three-dimensional structure in the amount as described above.
  • the platinum sources may be used alone or in combination of two or more.
  • the oxygen storage material is a material capable of taking in or discharging oxygen according to the oxygen concentration in the exhaust gas, and cerium oxide, an oxide composed of cerium and other elements, such as cerium-zirconium composite oxide, There are cerium-zirconium-lanthanum complex oxide, cerium-zirconium-lanthanum-neodymium complex oxide, cerium-zirconium-lanthanum-yttrium complex oxide, and the like.
  • the crystal structure of the oxygen storage material is cubic, tetragonal, monoclinic, orthorhombic or the like, preferably cubic, tetragonal or monoclinic, and more preferably cubic or tetragonal.
  • the cerium source such as cerium-zirconium composite oxide used as the oxygen storage material is not particularly limited, and raw materials used in the field of exhaust gas purification can be used. Specifically, nitrates such as cerous nitrate, carbonates, sulfates and the like can be mentioned. Among these, nitrate is preferably used.
  • the said cerium source may be individual or may be 2 or more types of mixtures.
  • the amount of the cerium source added is preferably 5 to 200 g, more preferably 10 to 100 g, still more preferably 15 to 70 g, particularly preferably 20 to 50 g, per 1 L of the refractory three-dimensional structure in terms of cerium oxide (CeO 2 ). It is.
  • the zirconium source is not particularly limited, and any raw material used in the field of exhaust gas purification can be used. Specifically, zirconium oxynitrate, zirconium oxychloride, zirconium nitrate, basic zirconium sulfate and the like can be mentioned. Among these, zirconium oxynitrate and zirconium nitrate are preferably used. In addition, the said zirconium source may be individual or may be a mixture of 2 or more types.
  • the addition amount of the zirconium source is preferably 5 to 200 g, more preferably 10 to 150 g, still more preferably 20 to 100 g, per 1 L of the refractory three-dimensional structure in terms of zirconium oxide (ZrO 2 ).
  • the lanthanum source is not particularly limited, and any raw material used in the field of exhaust gas purification can be used. Specifically, lanthanum hydroxide, lanthanum nitrate, lanthanum acetate, lanthanum oxide and the like can be mentioned. Among these, lanthanum nitrate and lanthanum hydroxide are preferably used.
  • the lanthanum source may be a single source or a mixture of two or more.
  • the addition amount of the lanthanum source is preferably 1 to 50 g, more preferably 1 to 35 g, still more preferably 1 to 20 g per liter of the refractory three-dimensional structure in terms of lanthanum oxide (La 2 O 3 ).
  • the yttrium source is not particularly limited, and any raw material used in the field of exhaust gas purification can be used. Specifically, yttrium hydroxide, yttrium nitrate, yttrium oxalate, yttrium sulfate and the like can be mentioned. Among these, yttrium hydroxide and yttrium nitrate are preferably used.
  • the above yttrium source may be a single one or a mixture of two or more.
  • the addition amount of the yttrium source is preferably 0 to 50 g, more preferably 0 to 35 g, still more preferably 0 to 20 g, per 1 L of the refractory three-dimensional structure in terms of yttrium oxide (Y 2 O 3 ).
  • the neodymium source is not particularly limited, and any raw material used in the field of exhaust gas purification can be used. Specifically, neodymium hydroxide, neodymium nitrate, neodymium oxalate, neodymium sulfate and the like can be mentioned. Among these, neodymium hydroxide and neodymium nitrate are preferably used. The neodymium source may be used alone or in combination of two or more.
  • the addition amount of the neodymium source is preferably 0 to 50 g, more preferably 0 to 35 g, still more preferably 0 to 20 g, per 1 L of the refractory three-dimensional structure in terms of neodymium oxide (Nd 2 O 5 ).
  • At least one of the lower catalyst layer, the upper catalyst layer on the gas inflow side, and the upper catalyst layer on the gas outflow side preferably includes a composite oxide containing CeO 2 and ZrO 2 , and at least two layers. There is more preferably contains a composite oxide containing CeO 2 and ZrO 2, still more preferably all three layers comprises a composite oxide containing CeO 2 and ZrO 2.
  • the content of CeO 2 in the composite oxide is preferably 20% by mass or more, more preferably 30% by mass or more, and further preferably Is 40% by mass or more, particularly preferably 45% by mass or more; preferably 80% by mass or less, more preferably 60% by mass or less, still more preferably 50% by mass or less, particularly preferably 45% by mass or less.
  • the numerical range of the content of CeO 2 is preferably 20% by mass to 80% by mass, more preferably 30% by mass to 60% by mass, still more preferably 40% by mass to 50% by mass, particularly preferably It is 45 mass% or more and 50 mass% or less, or 40 mass% or more and 45 mass% or less.
  • the content of CeO 2 in the composite oxide is preferably 5% by mass. Or more, more preferably 10% by mass or more, further preferably 15% by mass or more, particularly preferably 20% by mass or more; preferably 60% by mass or less, more preferably 50% by mass or less, still more preferably 40% by mass or less , Particularly 30% by mass or less.
  • the numerical range of the content of CeO 2 is preferably 5% by mass to 60% by mass, more preferably 10% by mass to 50% by mass, still more preferably 15% by mass to 40% by mass, particularly preferably It is 20 mass% or more and 30 mass% or less.
  • the refractory inorganic oxide includes alumina, lanthanum-containing alumina, zirconia, silica-alumina, titania, zeolite and the like, and can be used alone or in the form of a mixture of two or more. It is preferable that the refractory inorganic oxide have a small change in specific surface area at 700 ° C. or higher, preferably 1000 ° C. or higher.
  • the BET specific surface area of the refractory inorganic oxide is not particularly limited, but is preferably 50 to 750 m 2 / g, more preferably 150 to 750 m 2 / g from the viewpoint of supporting a catalytically active component such as a noble metal.
  • the average primary particle size of the refractory inorganic oxide is not particularly limited, but is preferably in the range of 5 nm to 20 nm, more preferably 5 nm to 10 nm. Within such a range, the noble metal can be supported on the refractory inorganic oxide. In the present specification, the shape or average primary particle size of the refractory inorganic oxide is measured by a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the content of the refractory inorganic oxide is preferably 10 to 300 g, more preferably 20 to 200 g, and still more preferably 50 to 100 g, per 1 L of the refractory three-dimensional structure. If the content of the refractory inorganic oxide is within the above range, catalyst components such as noble metals can be dispersed and supported.
  • a Group 1 element, a Group 2 element, and / or a rare earth element can be added.
  • Group 1 elements, Group 2 elements, and rare earth elements include potassium, magnesium, calcium, strontium, barium, and lanthanum, and they can be used alone or in the form of a mixture of two or more.
  • oxides, sulfates, carbonates, nitrates and the like of Group 1 elements or Group 2 elements are used, and they are contained in the catalyst in the form of oxides, sulfates or carbonates after calcination.
  • lanthanum oxide La 2 O 3
  • barium oxide BaO
  • barium sulfate BaSO 4
  • it is preferably 0 to 50 g, more preferably 0 per 1 L of the refractory three-dimensional structure. It is contained in an amount of 5 to 30 g, more preferably 1 to 20 g.
  • the catalyst according to the present invention can exhibit sufficient exhaust gas purification performance even after being exposed to a phosphorus compound-containing exhaust gas for a long time at a high temperature.
  • the phosphorus compound (P 2 O 5 ) deposits on the catalyst exposed to the exhaust gas containing the phosphorus compound.
  • 1 g to 50 g, more preferably 1 g to 30 g, still more preferably 1 g to 15 g, particularly preferably 1 g to 10 g of the phosphorus compound is accumulated per liter of the three-dimensional refractory structure.
  • Excellent exhaust gas purification performance can be exhibited.
  • Phosphorus compounds generally deposit more on the gas inflow side and decrease toward the gas outflow side.
  • the phosphorus compound is present at a high concentration near the surface of the catalyst layer, and the concentration decreases as it gets inside the catalyst layer (as it approaches the refractory three-dimensional structure).
  • the amount of phosphorus compound deposited on the catalyst can be analyzed using XRF (fluorescent X-ray analysis), EPMA (electron probe micro analyzer), SEM-EDX or the like.
  • XRF fluorescent X-ray analysis
  • EPMA electron probe micro analyzer
  • SEM-EDX SEM-EDX or the like.
  • the phosphorus compound-containing catalyst for exhaust gas purification can be easily manufactured by those skilled in the art by appropriately referring to known methods. As a preferable manufacturing method, a method having the following steps can be mentioned.
  • the method for producing a phosphorus compound-containing exhaust gas purification catalyst according to another embodiment of the present invention is provided extending along the gas inflow side end face and the gas outflow side end face, and the gas outflow from the gas inflow side end
  • the lower catalyst layer slurry containing Pd is coated, dried and fired continuously from the gas inflow side end surface on the partition wall of the refractory three-dimensional structure having the partition walls forming the plurality of gas flow paths penetrating to the side end surface.
  • the slurry for the upper catalyst layer for the gas inflow side containing Rh is continuously formed on the partition wall from the gas inflow side end surface;
  • the slurry for the gas outflow side catalyst layer containing Rh is continuously applied from the outflow side end face so that the slurries do not contact each other, and then dried and calcined to form the gas inflow side upper catalyst layer and the gas outflow side upper catalyst Process of forming a layer II) and; having.
  • the slurry is prepared by mixing the precious metal, the oxygen storage material, the refractory inorganic oxide, and the raw material of the cocatalyst with an aqueous medium and wet grinding.
  • the slurry may be prepared in advance using an oxygen storage material or a refractory inorganic oxide on which a noble metal or a cocatalyst is supported.
  • the aqueous medium include water, lower alcohols such as ethanol and 2-propanol, and organic alkaline aqueous solutions.
  • Preferably water and lower alcohols are used, in particular water is preferably used.
  • the solid concentration in the slurry is preferably 5 to 60% by mass, more preferably 10 to 50% by mass.
  • the method of wet pulverization can employ
  • the method for applying the slurry to the refractory three-dimensional structure is not particularly limited.
  • the method for immersing the refractory three-dimensional structure from the gas inflow side end face or the gas outflow side end face in a container containing the slurry It can be mentioned.
  • the area to which the slurry is applied is controlled so that each catalyst layer has a desired length.
  • the gas inflow side upper catalyst layer slurry and the gas outflow side upper catalyst layer slurry are applied in step (II) and dried. And bake.
  • step (II) after both the slurry for the upper catalyst layer on the gas inflow side and the slurry for the upper catalyst layer on the gas outflow side are applied (in addition, the order of application of the slurry in this case is not particularly limited), Both of the slurries after application may be dried and fired together; either one of the slurry for the upper catalyst layer for the gas inflow side or the slurry for the upper catalyst layer for the gas outflow side is applied, dried and fired to carry out one The catalyst layer may be formed, and then the other slurry may be applied, dried and calcined to form the other catalyst layer.
  • the conditions for drying and calcining may be such that the catalyst component can be attached to the refractory three-dimensional structure, and drying and calcining are not particularly distinguished. It is dried in air preferably at a temperature of 50 to 300 ° C., more preferably 80 to 200 ° C., preferably 5 minutes to 10 hours, more preferably 30 minutes to 8 hours. Next, firing is performed preferably at a temperature of 300 to 1200 ° C., more preferably 400 to 700 ° C., preferably for 10 minutes to 10 hours, more preferably for 30 minutes to 5 hours.
  • a method of purifying a phosphorus compound-containing exhaust gas comprising the step of bringing the catalyst for exhaust gas purification with phosphorus compound-containing exhaust gas into contact with the phosphorus compound-containing exhaust gas.
  • the phosphorus compound-containing exhaust gas is preferably emitted from an internal combustion engine.
  • an internal combustion engine for example, a gasoline engine, a hybrid engine, an engine using natural gas, ethanol, dimethyl ether or the like as a fuel can be used. Among them, a gasoline engine is preferable.
  • the temperature of the phosphorus compound-containing exhaust gas is preferably in the range of 0 ° C. to 800 ° C., that is, within the temperature range of the exhaust gas during normal operation.
  • the air-fuel ratio (A / F) in the exhaust gas of the internal combustion engine at a temperature of 0 ° C. to 800 ° C. is preferably 10 to less than 30, and more preferably 11 to 14.7.
  • the catalyst according to the present invention can exhibit sufficient exhaust gas purification performance even after being exposed to high temperatures for a long time.
  • exposure to a high temperature refers to exposure to an exhaust gas of preferably 800 to 1200 ° C.
  • the air-fuel ratio (A / F) in the exhaust gas of an internal combustion engine having a temperature of 800 to 1200 ° C. is preferably 10 to 18.6.
  • the exposure time to exhaust gas at a temperature of 800 ° C. to 1200 ° C. is preferably 5 to 500 hours.
  • the phosphorus compound-containing exhaust gas When evaluating exhaust gas purification performance after being exposed to a phosphorus compound-containing exhaust gas at high temperature for a long time, the phosphorus compound-containing exhaust gas at 800 ° C. to 1200 ° C. It is effective to examine the exhaust gas purification performance after applying treatment to time exposure to the catalyst.
  • the catalyst according to the present invention can effectively purify the exhaust gas even if the space velocity of the exhaust gas is preferably 80,000 h -1 or more, more preferably 100 000 h -1 or more, still more preferably 12 000 h 1 or more.
  • the upper limit of the space velocity of the exhaust gas depends on the displacement of an internal combustion engine such as an engine, it is preferably 500,000 h ⁇ 1 or less.
  • Example 1 (Production of Catalyst A) Palladium nitrate (Pd), CeO 2 -ZrO 2 composite oxide (45% by mass as CeO 2 ), aluminum oxide (Al 2 O 3 ), barium hydroxide and lanthanum acetate in a mass ratio of Pd: CeO 2 -ZrO 2 Complex oxides: Al 2 O 3 : Barium oxide: Weigh each to 4.75: 1 6.9: 22.4: 4.7: 1.1 in terms of lanthanum oxide, add water and add wet The slurry a0 was prepared by grinding.
  • the loading amount of the slurry a2 was 50.3 g / L (35.L) after firing to a length of 40 mm from the end surface on the gas outflow side of the carrier provided with A1 (the distance from the application region of the slurry a1 was 10 mm).
  • the catalyst A has the same configuration as the phosphorus compound-containing exhaust gas purification catalyst 2 of FIG. 2 shown in the second embodiment described above.
  • the configuration of the catalyst A will be described with reference to FIG.
  • the lower catalyst layer 120 is formed on the surface of the refractory three-dimensional structure 10 to a length of 30 mm from the gas inflow side end face 10A.
  • the gas inflow side upper catalyst layer 30 is located on the outermost surface on the partition wall, and is continuously formed to a length of 30 mm from the gas inflow side end face 10A.
  • the gas outflow side upper catalyst layer 140 is located on the outermost surface of the partition wall, and is continuously formed to a length of 40 mm from the gas outflow side end face 10B.
  • the gas inflow side upper catalyst layer 30 and the gas outflow side upper catalyst layer 140 are arranged to be separated by 10 mm from each other along the gas flow path direction.
  • Example 2 (Production of Catalyst B) The same raw materials as in Example 1 in mass ratio of Pd: CeO 2 -ZrO 2 composite oxide: Al 2 O 3 : barium oxide: lanthanum oxide 4.75: 22.5: 29.8: 6.2: 1 Each slurry was weighed so as to be 0.5, and water was added and wet ground to prepare a slurry b0.
  • the slurry a1 is applied to a length of 30 mm from the gas inflow side end face of the carrier provided with B0 so that the supported amount after firing is 30.7 g / L (21.5 g / pc), and an example It dried and baked like 1 and provided catalyst layer B1.
  • the supported amount after firing of the slurry a2 is 50.3 g / L until the length of 40 mm (the distance from the application region of the slurry a1 is 10 mm) from the gas outflow side end face of the carrier provided with B1. It applied so that it might become (35.2 g / pc), and it dried and baked similarly to Example 1, and provided catalyst layer B2. Thus, a catalyst B provided with catalyst layers B0, B1 and B2 was obtained.
  • the catalyst B has the same configuration as the phosphorus compound-containing exhaust gas purifying catalyst 3 of FIG. 3 shown in the second embodiment described above.
  • the configuration of the catalyst B will be described with reference to FIG.
  • the lower catalyst layer 120 is formed on the surface of the refractory three-dimensional structure 10 to a length of 40 mm from the gas inflow side end face 10A.
  • the gas inflow side upper catalyst layer 30 is located on the outermost surface on the partition wall, and is continuously formed to a length of 30 mm from the gas inflow side end face 10A.
  • the gas outflow side upper catalyst layer 140 is located on the outermost surface of the partition wall and continuously formed to a length of 40 mm from the gas outflow side end face 10B, and the gas inflow side end is the gas outflow side end of the lower catalyst layer 120 It is placed in contact with the department.
  • the gas inflow side upper catalyst layer 30 and the gas outflow side upper catalyst layer 140 are arranged to be separated by 10 mm from each other along the gas flow path direction.
  • Example 3 (Production of Catalyst C) The same raw materials as in Example 1 were prepared in a mass ratio of Pd: CeO 2 -ZrO 2 composite oxide: Al 2 O 3 : barium oxide: Lattan oxide 4.75: 28.1: 37.3: 7.8: Each was weighed so as to be 1.9, and water was added and wet-pulverized to prepare slurry c0.
  • Slurry c0 is applied to a length of 50 mm from the gas inflow side end face of the refractory three-dimensional structure so that the supported amount after firing is 82.7 g / L (57.9 g / pc), and Example 1 and Similarly, drying and calcination were performed to provide a catalyst layer C0.
  • the amount of the slurry a1 after firing was 30.7 g / L (21.5 g / pc) It applied so that it might become, and dried and baked similarly to Example 1, and provided the catalyst layer C1.
  • the supported amount after firing of the slurry a2 is 50.3 g / L to a length of 40 mm from the gas outflow side end face of the carrier provided with C1 (the distance from the application region of the slurry a1 is 10 mm). It applied so that it might become (35.2 g / pc), and it dried and baked similarly to Example 1, and provided the catalyst layer C2. Thus, a catalyst C provided with catalyst layers C0, C1 and C2 was obtained.
  • the catalyst C has the same configuration as the phosphorus compound-containing exhaust gas purification catalyst 1 of FIG. 1 shown in the first embodiment described above.
  • the configuration of the catalyst C will be described with reference to FIG.
  • the lower catalyst layer 20 is formed on the surface of the refractory three-dimensional structure 10 to a length of 50 mm from the gas inflow side end face 10A.
  • the gas inflow side upper catalyst layer 30 is located on the outermost surface on the partition wall, and is continuously formed to a length of 30 mm from the gas inflow side end face 10A.
  • the gas outflow side upper catalyst layer 40 is located on the outermost surface on the partition wall, and is continuously formed to a length of 40 mm from the gas outflow side end face 10B.
  • the gas inflow side end of the gas outflow side upper catalyst layer 40 is formed on the surface of the lower catalyst layer 20, and the gas outflow side end of the gas outflow side upper catalyst layer 40 is on the surface of the refractory three-dimensional structure 10 It is formed.
  • the gas inflow side upper catalyst layer 30 and the gas outflow side upper catalyst layer 140 are arranged to be separated by 10 mm from each other along the gas flow path direction.
  • Example 4 (Production of Catalyst D) The same raw materials as in Example 1 were prepared in a mass ratio of Pd: CeO 2 -ZrO 2 complex oxide: Al 2 O 3 : barium oxide: Lattan oxide 4.75: 33.8: 44.7: 9.3: Each slurry was weighed so as to be 2.3, and water was added and wet ground to prepare a slurry d0.
  • the slurry d0 On a cordierite carrier similar to Example 1 up to a length of 60 mm from the gas inflow side end face of the refractory three-dimensional structure, the slurry d0 has a supported amount of 98.1 g / L (68.7 g / pc) after firing. It applied so that it might become, it carried out similarly to Example 1, dried, and baked, and the catalyst layer D0 was provided.
  • the slurry a1 is applied to a length of 30 mm from the gas inflow side end face of the carrier provided with D0 so that the supported amount after firing is 30.7 g / L (21.5 g / pc), and an example It dried and baked like 1 and provided catalyst layer D1.
  • the supported amount after firing is 50.3 g / L until the length of 40 mm (the distance from the application region of the slurry a1 becomes 10 mm) from the gas outflow side end face of the carrier provided with D1 It applied so that it might become (35.2 g / pc), it dried and baked like Example 1, and the catalyst layer D2 was provided.
  • a catalyst D provided with catalyst layers D0, D1 and D2 was obtained.
  • the catalyst D has the same configuration as that of the catalyst C of Example 3 except that the lower catalyst layer is formed to a length of 60 mm from the gas inflow side end face.
  • the supported amount after firing is 129.0 g / L It applied so that it might become 90.3 g / pc, and dried and baked like Example 1, and the catalyst layer E0 was provided.
  • the slurry a1 is applied to a length of 30 mm from the gas inflow side end face of the carrier provided with E0 so that the supported amount after firing is 30.7 g / L (21.5 g / pc), and an example It dried and baked like 1 and provided catalyst layer E1.
  • the supported amount after firing of the slurry a2 is 50.3 g / L until the length of 40 mm from the gas outflow side end face of the carrier provided with E1 (the distance from the application region of the slurry a1 becomes 10 mm). It applied so that it might become (35.2 g / pc), and it dried and baked similarly to Example 1, and provided the catalyst layer E2. Thus, a catalyst E provided with catalyst layers E0, E1 and E2 was obtained.
  • the configuration of the catalyst E will be described with reference to FIG. As shown in FIG. 4, the catalyst E differs in the configuration of the lower catalyst layer as compared with the catalysts A to D.
  • the lower catalyst layer 520 is formed on the entire surface of the three-dimensional refractory structure 10 from the gas inflow side end face 10A to the gas outflow side end face 10B.
  • the gas inflow side upper catalyst layer 30 is located on the outermost surface on the partition wall, and is continuously formed to a length of 30 mm from the gas inflow side end face 10A.
  • the gas outflow side upper catalyst layer 540 is located on the outermost surface on the partition wall, and is continuously formed to a length of 40 mm from the gas outflow side end face 10B.
  • the gas outflow side upper catalyst layer 540 is formed on the surface of the lower catalyst layer 520 on the entire surface.
  • the gas inflow side upper catalyst layer 30 and the gas outflow side upper catalyst layer 540 are arranged to be separated by 10 mm from each other along the gas flow path direction.
  • Comparative Example 2 (Production of Catalyst F)
  • the catalyst layer E0 was provided on the same cordierite carrier as in Example 1 in the same manner as in Comparative Example 1.
  • Rh: CeO 2 -ZrO 2 composite oxide Al 2 O 3 : La
  • the supported amount after firing is 81.1 g / It coated so that it might become L (56.8 g / pc), and it dried and baked similarly to Example 1, and obtained the catalyst layer F1.
  • a catalyst F provided with catalyst layers E0 and F1 was obtained.
  • the configuration of the catalyst F will be described with reference to FIG.
  • the catalyst F differs in the configurations of the lower catalyst layer and the upper catalyst layer as compared with the catalysts A to D.
  • the lower catalyst layer 520 is formed on the entire surface of the refractory three-dimensional structure 10 from the gas inflow side end face 10A to the gas outflow side end face 10B.
  • the upper catalyst layer 630 is formed on the entire surface of the lower catalyst layer 520 from the gas inflow side end face 10A to the gas outflow side end face 10B.
  • the slurry g0 On a cordierite carrier similar to that of Example 1 up to a length of 30 mm from the gas inflow side end face of the refractory three-dimensional structure, the slurry g0 has a loading amount of 36.2 g / L (25.3 g / pc) after firing It applied so that it might become, it carried out similarly to Example 1, dried, and baked, and the catalyst layer G0 was provided.
  • the supported amount after firing is 50.3 g / L until the length of 40 mm from the gas outflow side end face of the carrier provided with G0 (the distance from the application region of the slurry g0 is 10 mm) from the slurry a2 It applied so that it might become (35.2 g / pc), and it dried and baked similarly to Example 1, and provided the catalyst layer G1.
  • a catalyst G provided with the catalyst layers G0 and G1 was obtained.
  • the configuration of the catalyst G will be described with reference to FIG.
  • the catalyst G differs from the catalysts A to D in that it has no lower catalyst layer, as shown in FIG.
  • the gas inflow side catalyst layer 720 is located on the outermost surface of the refractory three-dimensional structure 10, and is continuously formed to a length of 30 mm from the gas inflow side end face 10A.
  • the gas outflow side catalyst layer 740 is located on the outermost surface of the refractory three-dimensional structure 10, and is formed continuously from the gas outflow side end face 10B to a length of 40 mm.
  • the gas inflow side catalyst layer 720 and the gas outflow side catalyst layer 740 are arranged to be separated by 10 mm from each other along the gas flow path direction.
  • the catalysts A to G obtained above were respectively installed 25 cm downstream from the exhaust port of a V-type 8-cylinder, 5.6-liter engine.
  • An oil having a phosphorus (P) concentration of 6 ppm in engine oil was used.
  • the air-fuel ratio (A / F) of the catalyst inlet is operated at 14.6, the temperature of the catalyst bed is 1000 ° C., then the A / F is operated at 12.5, and then the fuel supply is stopped and the operation is performed. The cycle was repeated for a total of 100 hours of operation and heat treatment.
  • each heat-treated catalyst was installed downstream of the exhaust port of a 3.0 L engine.
  • An oil having a phosphorus (P) concentration of 3000 ppm in engine oil was used.
  • the phosphorus poisoning treatment was carried out by operating the temperature of the catalyst bed portion at 880 ° C.
  • the phosphorus content of each catalyst after phosphorus poisoning treatment is analyzed by fluorescent X-ray (XRF), and approximately 2 g of phosphorus compound is contained in terms of phosphorus oxide (P 2 O 5 ) per liter of the refractory three-dimensional structure. I confirmed that I did.
  • XRF fluorescent X-ray
  • FIGS. 7A to 7C, 8A to 8C and 9A to 9C show that the catalyst according to the present invention is excellent in the exhaust gas purification performance.
  • the temperature (Light-off T50) at which the purification rate reaches 50% is significantly lower than the catalysts A and B according to the second embodiment, and The significantly reduced time until the purification rate reaches 20% and 50% (Warm-up T20 and Warm-up T50) was shown to have high exhaust gas purification performance. This is presumed to be due to the formation of the stepped recess on the gas outflow side of the gas outflow side upper catalyst layer, thereby suppressing phosphorus poisoning and maintaining the catalyst activity.
  • 1,2,3,4,5,6 Phosphorus compound-containing exhaust gas purification catalyst 10 fire resistant three-dimensional structure, 10A gas inflow side end face, 10B Gas outlet end face, 20, 120, 520 lower catalyst layer, 30 gas inflow side upper catalyst layer, 40, 140, 540 gas outflow side upper catalyst layer, 41 steps, 50 concave 630 upper catalyst layer 720 gas inflow side catalyst layer 740 gas outflow side catalyst layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

ガス流入側端面からガス流出側端面に沿って延在して設けられるとともに、ガス流入側端面からガス流出側端面まで貫通する複数のガス流路を区画形成する隔壁を有する耐火性三次元構造体と、隔壁上にガス流入側端面から連続して形成された、Pdを含む下触媒層と、隔壁上の最表面に位置し、ガス流入側端面から連続して形成された、Rhを含むガス流入側上触媒層と、隔壁上の最表面に位置し、ガス流出側端面から連続して形成された、Rhを含むガス流出側上触媒層とを有し、ガス流入側上触媒層及びガス流出側上触媒層は、ガス流路方向に沿って互いに離間するように配置されており、ガス流路方向に沿う下触媒層の長さは、15mm以上であり、当該長さの割合は、ガス流路の全長に対して、18%以上100%未満である、リン化合物含有排ガス浄化用触媒。

Description

リン化合物含有排ガス浄化用触媒
 本発明は、リン化合物を含有する排ガス(単に「リン化合物含有排ガス」とも称する)の浄化に適した触媒に関する。より詳しくは、本発明は、高温で、かつ、リン化合物含有排ガスに長期間曝された後の触媒において、排ガス浄化性能を向上させるための技術に関する。
 自動車排ガスに関する規制が強化されるに従い、長期間にわたる排ガス浄化性能の維持が求められるようになってきている。このことは、排ガス浄化の後処理装置としての、触媒の長寿命化、すなわち、触媒に対する長期耐久性の向上が求められていることを意味する。
 排ガス中に含まれるリン化合物による被毒(単に「リン被毒」とも称する)は、排ガス浄化性能の低下に大きな影響を及ぼすことが知られている。リン被毒は、排ガス中に含まれるジアルキルジチオリン酸亜鉛など潤滑油添加剤由来のリン化合物が、触媒層に堆積・浸透することで起こる(非特許文献1)。
 リン被毒による排ガス浄化性能の低下は、以下のような現象が発生するためであることが知られている。触媒層に堆積・浸透したリン化合物により、触媒層中での排ガスの拡散阻害が起こる。また、三元触媒で広く用いられている酸素貯蔵材(酸素吸蔵放出物質)のセリア(CeO(酸化セリウム))とリン化合物が反応し、リン酸セリウムが形成される。リン酸セリウムが形成されると酸素吸蔵放出性能が低下するため、排ガス雰囲気がリーンやリッチに変動した際の緩和が起こり難くなる。これらの現象が発生することにより、排ガス浄化率が低下する。
 リン被毒による排ガス浄化性能の低下を抑制するための技術として、パラジウム(Pd)を用いた触媒において、セリアとジルコニア(ZrO(酸化ジルコニウム))との複合酸化物を酸素吸蔵放出物質として用いる技術(特許文献1);触媒構造前端部にリン捕捉域として触媒層を塗布しない領域を設ける技術(特許文献2);ロジウム(Rh)を担持してなる上触媒層、Pd又は/及び白金(Pt)を担持してなる下触媒層を有する触媒において、ガス流れ方向において上触媒層の長さを下触媒層の長さよりも短くする技術(特許文献3);が開示されている。
特開平8-38898号公報 特表2009-501079号公報(米国特許2007/014705号明細書に相当) 特開2010-5590号公報(国際公開第2010/001226に相当)
A.Scott et.al.,SAE Paper,961898,(1996)
 近年、触媒の長寿命化に対する要求はさらに厳しくなっており、高温で、かつ、リン化合物含有排ガスに長期間曝された後においても十分な排ガス浄化性能を発揮できる触媒が求められている。
 しかしながら、本発明者らの検討によると、上記特許文献1~3に開示された触媒では、高温及びリン被毒による厳しい耐久処理後において十分な排ガス浄化性能が得られないことが判明した。
 したがって、本発明は、高温で、かつ、リン化合物含有排ガスに長期間曝された後においても、十分な排ガス浄化性能を発揮できる触媒を提供することを目的とする。
 本発明者らは、上記の問題を解決すべく、鋭意研究を行った。その結果、耐火性三次元構造体の隔壁上に、少なくとも下触媒層、ガス流入側上触媒層及びガス流出側下触媒層の3つの触媒層を配置するとともに、排ガス流れ方向に沿って、下触媒層が形成されない領域と、上触媒層(ガス流入側上触媒層又はガス流出側上触媒層)が形成されない領域とをそれぞれ所定範囲で設けることにより、上記課題が解決されることを見出し、本発明を完成させるに至った。
 すなわち、本発明の一形態に係るリン化合物含有排ガス浄化用触媒は、ガス流入側端面からガス流出側端面に沿って延在して設けられるとともに、ガス流入側端面からガス流出側端面まで貫通する複数のガス流路を区画形成する隔壁を有する耐火性三次元構造体と、隔壁上にガス流入側端面から連続して形成された、Pdを含む下触媒層と、隔壁上の最表面に位置し、ガス流入側端面から連続して形成された、Rhを含むガス流入側上触媒層と、隔壁上の最表面に位置し、ガス流出側端面から連続して形成された、Rhを含むガス流出側上触媒層とを有する。そして、ガス流入側上触媒層及びガス流出側上触媒層は、ガス流路方向に沿って互いに離間するように配置されており、ガス流路方向に沿う下触媒層の長さは、15mm以上であり、当該長さの割合は、ガス流路の全長に対して、18%以上100%未満であることを特徴とする。
本発明の第1実施形態に係るリン化合物含有排ガス浄化用触媒を示す正面断面図である。 本発明の第2実施形態に係るリン化合物含有排ガス浄化用触媒を示す正面断面図である。 本発明の第2実施形態に係るリン化合物含有排ガス浄化用触媒の変形例を示す正面断面図である。 比較例1に係るリン化合物含有排ガス浄化用触媒を示す正面断面図である。 比較例2に係るリン化合物含有排ガス浄化用触媒を示す正面断面図である。 比較例3に係るリン化合物含有排ガス浄化用触媒を示す正面断面図である。 本発明の実施例及び比較例に係る触媒のCO浄化率が50%に達する温度を示すグラフである。 本発明の実施例及び比較例に係る触媒のHC浄化率が50%に達する温度を示すグラフである。 本発明の実施例及び比較例に係る触媒のNOx浄化率が50%に達する温度を示すグラフである。 本発明の実施例及び比較例に係る触媒のCO浄化率が20%に達する時間を示すグラフである。 本発明の実施例及び比較例に係る触媒のHC浄化率が20%に達する時間を示すグラフである。 本発明の実施例及び比較例に係る触媒のNOx浄化率が20%に達する時間を示すグラフである。 本発明の実施例及び比較例に係る触媒のCO浄化率が50%に達する時間を示すグラフである。 本発明の実施例及び比較例に係る触媒のHC浄化率が50%に達する時間を示すグラフである。 本発明の実施例及び比較例に係る触媒のNOx浄化率が50%に達する時間を示すグラフである。
 以下、本発明の実施の形態を説明するが、本発明の技術的範囲は特許請求の範囲の記載に基づいて定められるべきものであり、以下の実施形態に限定されない。なお、本明細書中の数値範囲「A~B」は、「A以上、B以下」を意味する。また、「A及び/又はB」とは、「A又はBのいずれか一方」又は「A及びBの両方」を意味する。また、本明細書中の各種物性は、特記しない限り、後述する実施例に記載の方法により測定した値を意味する。
 <リン化合物含有排ガス浄化用触媒>
 本発明の一形態に係るリン化合物含有排ガス浄化用触媒(以下、単に「触媒」とも称する)は、ガス流入側端面からガス流出側端面に沿って延在して設けられるとともに、ガス流入側端面からガス流出側端面まで貫通する複数のガス流路を区画形成する隔壁を有する耐火性三次元構造体と、隔壁上にガス流入側端面から連続して形成された、Pdを含む下触媒層と、隔壁上の最表面に位置し、ガス流入側端面から連続して形成された、Rhを含むガス流入側上触媒層と、隔壁上の最表面に位置し、ガス流出側端面から連続して形成された、Rhを含むガス流出側上触媒層とを有する。そして、ガス流入側上触媒層及びガス流出側上触媒層は、ガス流路方向に沿って互いに離間するように配置されており、ガス流路方向に沿う下触媒層の長さは、15mm以上であり、ガス流路の全長に対して、18%以上100%未満であることを特徴とする。本形態に係る触媒は、上記構成を有することにより、高温で、かつ、リン化合物含有排ガスに長期間曝された後においても、十分な排ガス浄化性能を発揮できる。
 以下では、まず本形態に係るリン化合物含有排ガス浄化用触媒の全体構造について説明し、その後各構成部材について説明する。
 [第1実施形態]
 本発明の第1実施形態を、図面を参照しつつ説明する。図1は、第1実施形態に係るリン化合物含有排ガス浄化用触媒1を示す正面断面図である。なお、第1実施形態の具体例として、後述の実施例3の触媒Cが挙げられる。
 第1実施形態に係るリン化合物含有排ガス浄化用触媒1は、耐火性三次元構造体10と、下触媒層20と、ガス流入側上触媒層30と、ガス流出側上触媒層40と、を有する。
 耐火性三次元構造体10は、図1に示すように、ガス流入側端面10Aからガス流出側端面10Bに沿って延在して設けられる。また、耐火性三次元構造体10は、ガス流入側端面10Aからガス流出側端面10Bまで貫通する複数のガス流路を区画形成する隔壁を有する。なお、図1において、耐火性三次元構造体のガス流路方向の長さは80mmである。
 下触媒層20は、隔壁上にガス流入側端面10Aから連続して形成されている。ガス流路方向(図1の左右方向)に沿う下触媒層20の長さは、50mmであり、ガス流路の全長に対して、62.5%である。すなわち、下触媒層20は、ガス流入側端面10Aから耐火性三次元構造体10の表面の途中まで形成されている。
 ガス流入側上触媒層30は、隔壁上の最表面に位置し、ガス流入側端面10Aから連続して形成され、下触媒層20の上面に設けられる。ガス流路方向に沿うガス流入側上触媒層30の長さは、30mmであり、当該長さの割合は、ガス流路の全長に対して、37.5%である。
 ガス流出側上触媒層40は、隔壁上の最表面に位置し、ガス流出側端面10Bから連続して形成される。ガス流出側上触媒層40は、図1に示すように、左側の一部が下触媒層20の表面に形成されており、右側の一部が耐火性三次元構造体10の表面に形成されている。換言すれば、ガス流出側上触媒層40は、ガス流出側上触媒層40のガス流入側端部における触媒層の厚さの合計が、ガス流出側上触媒層40のガス流出側端部における触媒層の厚さの合計よりも大きくなるように、階段状に形成されている。これにより、ガス流出側上触媒層40のガス流出側に段差部41が形成されるとともに、ガス流出側上触媒層40の表面積が増大する。さらに、ガス流出側の段差部41は、ガス流出側に壁が形成されていないため、リン被毒されにくく、触媒活性が維持されたガス流出側上触媒層表面が多く存在するようになり、排ガス浄化性能がより一層向上し得る。なお、図1では、ガス流出側上触媒層が階段状に形成されているが、ガス流出側上触媒層のガス流入側端部からガス流出側端部へと触媒層の厚さの合計が漸減的に減少するようにガス流出側上触媒層が形成されていてもよい。したがって、本発明の好ましい形態に係るリン化合物含有排ガス浄化用触媒は、ガス流出側上触媒層のガス流入側端部における触媒層の厚さの合計が、ガス流出側上触媒層のガス流出側端部における触媒層の厚さの合計よりも大きいことを特徴とする。
 ガス流路方向に沿うガス流出側上触媒層40の長さは、40mmであり、当該長さの割合は、ガス流路の全長に対しては、50%である。
 ガス流入側上触媒層30及びガス流出側上触媒層40は、図1に示すように、ガス流路方向に沿って互いに離間するように配置されている。ガス流入側上触媒層30及びガス流出側上触媒層40の離間距離Lは、10mmである。
 図1に示す実施形態では、ガス流入側上触媒層30とガス流出側上触媒層40とが離間して配置されることにより、ガス流入側上触媒層30とガス流出側上触媒層40との間に凹部50が形成されている。このように凹部50が形成されることにより、リン化合物が凹部50のガス流出側の壁に衝突して凹部50に堆積し、ガス流出側上触媒層40へのリン化合物の被毒が抑制され得る。その結果、ガス流出側上触媒層40は、長期間リン化合物含有排ガスに曝された後であっても、触媒活性が維持されるため、凹部を有していない場合よりも触媒全体としての排ガス浄化性能は向上しうる。ゆえに、本形態に係る触媒は、内燃機関の排ガス中にリン化合物を含む排ガスを浄化するのに好適に使用でき、特にガソリンエンジン等の内燃機関からの排ガス中に含まれる窒素酸化物、一酸化炭素及び炭化水素の浄化に優れた効果を奏する。
 [第2実施形態]
 次に、図2を参照して、本発明の第2実施形態に係るリン化合物含有排ガス浄化用触媒2の構成について説明する。図2は、第2実施形態に係るリン化合物含有排ガス浄化用触媒2を示す正面断面図である。なお、第2実施形態の具体例として、後述の実施例1の触媒Aが挙げられる。第1実施形態と共通する部分は説明を省略し、第2実施形態のみに特徴のある箇所について説明する。なお、前述した第1実施形態と同一の部分には同一の符号を付して説明し、重複した説明は省略する。第2実施形態は、第1実施形態と比較して、下触媒層及びガス流出側上触媒層の構成が異なる。
 第2実施形態に係るリン化合物含有排ガス浄化用触媒2は、図2に示すように、耐火性三次元構造体10と、下触媒層120と、ガス流入側上触媒層30と、ガス流出側上触媒層140と、を有する。
 下触媒層120は、ガス流路方向に沿う長さが30mmであり、第1実施形態に係る下触媒層20よりもガス流路方向に沿って短くなるように配置される。
 ガス流出側上触媒層140は、図2に示すように、耐火性三次元構造体10の表面に、下触媒層120に対して離間するように配置される。このとき、ガス流入側上触媒層30のガス流路方向に沿う長さは、下触媒層120のガス流路方向に沿う長さと同じ30mmであることから、ガス流出側上触媒層140は、下触媒層120に対して10mm離間するように配置される。
 なお、ガス流出側上触媒層140は、図3に示すように、下触媒層120の右端に接触するように配置されていてもよい。このとき、ガス流入側上触媒層30のガス流路方向に沿う長さは、下触媒層120のガス流路方向に沿う長さよりも短いため、ガス流出側上触媒層140は、ガス流入側上触媒層30に対しては離間するように配置される。なお、図3に示される触媒の具体例として、後述の実施例2の触媒Bが挙げられる。
 第1実施形態及び第2実施形態において説明したように、本形態のリン化合物含有排ガス浄化用触媒は、(i)ガス流入側上触媒層及びガス流出側上触媒層が、ガス流路方向に沿って互いに離間するように配置されること;(ii)ガス流路方向に沿う下触媒層の長さが、15mm以上であり、当該長さの割合は、ガス流路の全長に対して、18%以上100%未満であることを特徴とする。
 上記特徴(i)において、ガス流入側上触媒層と、ガス流出側上触媒層との離間距離の長さは、0mm超、好ましくは5mm以上、より好ましくは8mm以上、さらに好ましくは10mm以上であり;好ましくは30mm以下、より好ましくは20mm以下、さらに好ましくは15mm以下である。離間距離の長さの数値範囲としては、好ましくは5mm以上30mm以下、より好ましくは8mm以上20mm以下、さらに好ましくは10mm以上15mm以下である。離間距離の長さが0mm、すなわち、ガス流入側上触媒層とガス流出側上触媒層とが離間していないと、リンの被毒を受けた際、効率よく排ガスを浄化できないおそれがある。一方、離間距離が30mm以下であると、排ガスの浄化に充分な長さのガス流出側上触媒層を作成することができ、リンの被毒を低減できるという観点から好ましい。なお、ガス流路方向に沿うガス流入側上触媒層の長さは、下触媒層の長さ以下であることが好ましい。理由は不明であるが離間距離は、耐火性三次元構造体の長さによらず、上記長さが好ましい。
 上記特徴(ii)において、ガス流路方向に沿う下触媒層の長さは、15mm以上、好ましくは20mm以上、より好ましくは30mm以上であり、100mm未満であることが好ましい。また、当該長さの割合は、ガス流路の全長に対して、18%以上、好ましくは25%以上、より好ましくは37%以上;必須に100%未満、好ましくは88%以下、より好ましくは75%以下である。当該長さの割合の数値範囲としては、必須に18%以上100%未満、好ましくは25%以上88%以下、より好ましくは37%以上75%以下である。下触媒層の長さの割合が18%未満であると、高い空間速度条件下では効率よく排ガスを浄化できないという観点から好ましくない。一方、下触媒層の長さの割合が100%であると、ガス流入側端面からガス流出側端面に到るまでの間で触媒層の厚みの変化点が少ないため、乱流や縮流が起こりにくくなる。乱流や縮流が起こりにくくなると触媒層内へ排ガスが拡散しにくくなることから、十分な排ガス浄化性能が発揮されないおそれがあり、好ましくない。
 ガス流路方向に沿うガス流入側上触媒層の長さは、好ましくは10mm以上、より好ましくは15mm以上、さらに好ましくは20mm以上、特に好ましくは25mm以上であり;好ましくは40mm以下、より好ましくは35mm以下、さらに好ましくは30mm以下である。当該長さの数値範囲としては、好ましくは10mm以上40mm以下、より好ましくは15mm以上35mm以下、さらに好ましくは20mm以上30mm以下、特に好ましくは25mm以上30mm以下である。ガス流入側上触媒層の長さが10mm以上であると、低温(150℃~600℃)、かつ、高い空間速度の条件においてもNOxを効率よく浄化できるという観点から好ましい。一方、ガス流入側上触媒層の長さが40mm以下であると、高価なRhを多量に必要としないという観点から好ましい。また、当該長さの割合は、ガス流路の全長に対して、好ましくは12%以上、より好ましくは18%以上、さらに好ましくは25%以上、特に好ましくは31%以上であり;好ましくは57%以下、より好ましくは50%以下、さらに好ましくは44%以下、特に好ましくは38%以下である。当該長さの割合の数値範囲としては、好ましくは12%以上57%以下、より好ましくは18%以上50%以下、さらに好ましくは25%以上44%以下、特に好ましくは31%以上38%以下である。
 ガス流路方向に沿うガス流出側上触媒層の長さは、好ましくは25mm以上、より好ましくは30mm以上、さらに好ましくは40mm以上であり、100mm未満であることが好ましい。また、ガス流路方向に沿うガス流出側上触媒層の長さは、当該長さの割合は、ガス流路の全長に対して、好ましくは31%以上、より好ましくは43%以上、さらに好ましくは50%以上であり;好ましくは88%未満、さらに好ましくは75%以下である。当該長さの割合の数値範囲としては、好ましくは31以上88%未満、より好ましくは43%以上75%以下、さらに好ましくは50%以上75%以下である。ガス流出側上触媒層の長さの割合が31%以上であると、リン被毒後の低温における排ガス浄化性能が低下しにくくなる。一方、ガス流出側上触媒層の長さの割合が88%未満であると、ガス流入側上触媒層の長さや離間距離を確保することができる。
 なお、ガス流路方向に沿うガス流出側上触媒層の長さは、ガス流路の全長(耐火性三次元構造体の長さ)から、ガス流入側上触媒層の長さ及び離間距離の長さを減じた長さである。
 上記の離間距離及び各触媒層の長さは、触媒をガス流れ方向に切断した断面を観察することによって求められる。所定の位置、長さ、厚みの測定には、触媒を破壊し、ノギスやマイクロスコープなどの顕微鏡を用いることができる。また、X線CT装置を用いて触媒を破壊せずに長さを測定することができる。長さを測定できる方法であれば破壊、非破壊によらず用いることができる。
 なお、上記では、触媒層として本発明において必須である下触媒層、ガス流入側上触媒層及びガス流出側上触媒層のみについて説明したが、本形態の触媒は、これ以外の触媒層を有していても構わない。例えば、耐火性三次元構造体と下触媒層との間に他の触媒層を含むものであってもよいし、下触媒層とガス流入側上触媒層との間、又は、下触媒層とガス流出側上触媒層との間に他の触媒層を含むものであってもよい。ただし、触媒の製造工程の簡便化を考慮すると、本形態の触媒は、下触媒層、ガス流入側上触媒層及びガス流出側上触媒層のみを触媒層として有するものであることが好ましい。
 次に、本形態のリン化合物含有排ガス浄化用触媒に含まれる、各構成部材について説明する。
 〔耐火性三次元構造体〕
 耐火性三次元構造体は、特に制限されず、一般的に排ガス浄化用触媒の分野で使用されるものを適宜採用することができ、好ましくはハニカム担体である。ハニカム担体としては、モノリスハニカム担体、メタルハニカム担体、パティキュレートフィルターなどのプラグハニカム担体等が挙げられる。材質は、コージエライト、炭化ケイ素、窒化ケイ素、ステンレス鋼、Fe-Cr-Al合金などの耐熱性金属などを用いることができる。
 これらのハニカム担体は、押出成型法やシート状素子を巻き固める方法などで製造される。そのガス通過口(セル形状)の形は、六角形、四角形、三角形又はコルゲーション形のいずれであってもよい。セル密度(セル数/単位断面積)は100~1200セル/平方インチ(15.5~186セル/平方センチ)であれば十分に使用可能であり、好ましくは200~900セル/平方インチ(31~139.5セル/平方センチ)である。
 ガス流路方向に沿う耐火性三次元構造体の長さは、好ましくは15mm超、より好ましくは30mm以上、さらに好ましくは40mm以上、特に好ましくは58mm、最も好ましくは78mm以上であり;好ましくは1000mm以下、より好ましくは300mm以下、さらに好ましくは200mm以下、さらにより好ましくは100mm以下、特に好ましくは90mm以下、最も好ましくは85mm以下である。当該長さの範囲としては、好ましくは15mm超1000mm以下、より好ましくは30mm以上300mm以下、さらに好ましくは40mm以上200mm以下、さらにより好ましくは58mm以上100mm以下、特に好ましくは78mm以上90mm以下、最も好ましくは78mm以上85mm以下である。
 〔触媒層〕
 下触媒層、ガス流入側上触媒層及びガス流出側上触媒層は、それぞれ独立して、貴金属、酸素貯蔵材、耐火性無機酸化物及び/又は助触媒等の触媒成分を含む。
 (貴金属)
 貴金属は、排ガス浄化用触媒に用いられるものであればよいが、好ましくはロジウム(Rh)、パラジウム(Pd)、白金(Pt)から選択される。各触媒層において、貴金属は1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、触媒層毎に同一の貴金属を用いてもよいし、異なる貴金属を用いることによって触媒全体として複数の貴金属を組み合わせて用いてもよい。
 本形態の触媒では、下触媒層はPdを含み、ガス流入側上触媒層及びガス流出側上触媒層はRhを含む。ただし、下触媒層がPd以外の貴金属を含んでもよく、ガス流入側上触媒層及びガス流出側上触媒層がRh以外の貴金属を含んでもよいことは、言うまでもない。下触媒層が含みうるPd以外の貴金属は、Rh及び/又はPtが好ましく、Rh又はPtのいずれか一方が好ましく、Ptが好ましい。一方、ガス流入側上触媒層又はガス流出側上触媒層が含みうるRh以外の貴金属は、それぞれ独立して、Pd又はPtのいずれか一方が好ましく、Pdが好ましい。
 ガス流入側上触媒層のRh濃度は、ガス流出側上触媒層のRh濃度より高いことが好ましい。具体的には、ガス流入側上触媒層のRh濃度は、ガス流出側上触媒層のRh濃度に対して、好ましくは1.1~5倍、より好ましくは1.1~4倍、さらに好ましくは1.1~2倍、特に好ましくは1.1~1.35倍である。ここで、各層中のRh濃度は、当該層に含まれるRhの質量を当該層における担持量(当該層に含まれる固形分の総質量)で割った百分率とする。比率が1.1倍以上であると充分な暖気性が発揮されるため好ましく、5倍以下であるとリン被毒による排ガス浄化性能低下が抑制されるため好ましい。
 ガス流入側上触媒層がPdを含む場合、ガス流入側上触媒層中のRhに対するPdの質量の割合(Pd/Rh)は、好ましくは0.05~5.0、より好ましくは0.1~2.0、さらに好ましくは0.3~0.8である。Pd/Rhが0.05以上であるとガス流入側触媒層中のPdによりRhがリン被毒を受けにくくなるため好ましく、一方、5.0以下であるとPdがRhを被覆することによるRhの反応低下が抑制されるため好ましい。
 また、下触媒層のRh濃度は、ガス流出側上触媒層のRh濃度より低いことが好ましい。具体的には、下触媒層のRh濃度は、ガス流出側上触媒層のRh濃度に対して、好ましくは0~0.5倍、より好ましくは0~0.3倍、さらに好ましくは0~0.1倍である。下触媒層のRhは必ずしも必要でないが、比率が0.5倍以下であると下触媒層の性能を大きく損なうことがないため好ましい。
 本形態の触媒に含まれる貴金属量は、Rhであれば耐火性三次元構造体1Lあたり、好ましくは0.01~10g、より好ましくは0.05~8g、さらに好ましくは0.1~5gである。Pdであれば耐火性三次元構造体1Lあたり、好ましくは0.05~20g、より好ましくは0.5~15g、さらに好ましくは1~10gである。Ptであれば耐火性三次元構造体1Lあたり、好ましくは0.01~15g、より好ましくは0.1~10g、さらに好ましくは0.5~5gである。
 出発原料としてのロジウム(Rh)源は、特に制限されることなく、排ガスの浄化の分野で用いられている原料を用いることができる。具体的には、ロジウム;塩化ロジウム等のハロゲン化物;ロジウムの、硝酸塩、硫酸塩、酢酸塩、アンモニウム塩、アミン塩、へキサアンミン塩、炭酸塩、重炭酸塩、亜硝酸塩、シュウ酸塩等の、無機塩類;ギ酸塩などのカルボン酸塩;及び水酸化物、アルコキサイド、酸化物などが挙げられる。好ましくは、硝酸塩、アンモニウム塩、アミン塩、炭酸塩が挙げられる。ここで、ロジウム源の添加量は、上記したような量で耐火性三次元構造体上に担持される量である。なお、本発明では、上記ロジウム源は、単独であってもあるいは2種以上の混合物であってもよい。
 また、出発原料としてのパラジウム(Pd)源は、特に制限されることなく、排ガスの浄化の分野で用いられている原料を用いることができる。具体的には、パラジウム;塩化パラジウム等のハロゲン化物;パラジウムの、硝酸塩、硫酸塩、酢酸塩、アンモニウム塩、アミン塩、テトラアンミン塩、炭酸塩、重炭酸塩、亜硝酸塩、シュウ酸塩等の、無機塩類;ギ酸塩などのカルボン酸塩;及び水酸化物、アルコキサイド、酸化物などが挙げられる。好ましくは硝酸塩、酢酸塩、アンモニウム塩、アミン塩、テトラアンミン塩、炭酸塩が挙げられる。ここで、パラジウム源の添加量は、上記したような量で耐火性三次元構造体上に担持される量である。なお、本発明では、上記パラジウム源は、単独であってもあるいは2種以上の混合物であってもよい。
 また、触媒活性成分として白金を含む場合の、出発原料としての白金(Pt)源は、特に制限されることなく、排ガスの浄化の分野で用いられている原料を用いることができる。具体的には、白金;臭化白金、塩化白金等のハロゲン化物;白金の、硝酸塩、ジニトロジアンミン塩、テトラアンミン塩、硫酸塩、アンモニウム塩、アミン塩、ビスエタノールアミン塩、ビスアセチルアセトナート塩、炭酸塩、重炭酸塩、亜硝酸塩、シュウ酸塩等の、無機塩類;ギ酸塩などのカルボン酸塩;及び水酸化物、アルコキサイド、酸化物などが挙げられる。これらのうち、硝酸塩(硝酸白金)、ジニトロジアンミン塩(ジニトロジアンミン白金)、塩化物(塩化白金)、テトラアンミン塩(テトラアンミン白金)、ビスエタノールアミン塩(ビスエタノールアミン白金)、ビスアセチルアセトナート塩(ビスアセチルアセトナート白金)が好ましい。ここで、白金源の添加量は、上記したような量で三次元構造体上に担持される量である。なお、本発明では、上記白金源は、単独であってもあるいは2種以上の混合物であってもよい。
 (酸素貯蔵材)
 酸素貯蔵材は、排ガス中の酸素濃度に従って酸素を取り込む、又は、排出することができる材料であり、酸化セリウム、セリウムと他の元素とで構成される酸化物、例えばセリウム-ジルコニウム複合酸化物、セリウム-ジルコニウム-ランタン複合酸化物、セリウム-ジルコニウム-ランタン-ネオジム複合酸化物、セリウム-ジルコニウム-ランタン-イットリウム複合酸化物等がある。
 酸素貯蔵材の結晶構造は、立方晶、正方晶、単斜晶、斜方晶等があり、好ましくは立方晶、正方晶、単斜晶であり、より好ましくは立方晶、正方晶である。
 酸素貯蔵材として用いるセリウム-ジルコニウム複合酸化物などのセリウム源は、特に制限されることなく、排ガスの浄化の分野で用いられている原料を用いることができる。具体的には、硝酸第一セリウムなどの硝酸塩、炭酸塩、硫酸塩、などが挙げられる。これらのうち、硝酸塩が好ましく使用される。なお、上記セリウム源は、単独であってもあるいは2種以上の混合物であってもよい。セリウム源の添加量は、酸化セリウム(CeO)換算で耐火性三次元構造体1Lあたり、好ましくは5~200g、より好ましくは10~100g、さらに好ましくは15~70g、特に好ましくは20~50gである。
 ジルコニウム源は、特に制限されることなく、排ガスの浄化の分野で用いられている原料を用いることができる。具体的には、オキシ硝酸ジルコニウム、オキシ塩化ジルコニウム、硝酸ジルコニウム、塩基性硫酸ジルコニウムなどが挙げられる。これらのうち、オキシ硝酸ジルコニウム、硝酸ジルコニウムが好ましく使用される。なお、上記ジルコニウム源は、単独であってもあるいは2種以上の混合物であってもよい。ジルコニウム源の添加量は、酸化ジルコニウム(ZrO)換算で耐火性三次元構造体1Lあたり、好ましくは5~200g、より好ましくは10~150g、さらに好ましくは20~100gである。
 ランタン源は、特に制限されることなく、排ガスの浄化の分野で用いられている原料を用いることができる。具体的には、水酸化ランタン、硝酸ランタン、酢酸ランタン、酸化ランタンなどが挙げられる。これらのうち、硝酸ランタン、水酸化ランタンが好ましく使用される。上記ランタン源は、単独であってもあるいは2種以上の混合物であってもよい。ランタン源の添加量は、酸化ランタン(La)換算で耐火性三次元構造体1Lあたり、好ましくは1~50g、より好ましくは1~35g、さらに好ましくは1~20gである。
 イットリウム源は、特に制限されることなく、排ガスの浄化の分野で用いられている原料を用いることができる。具体的には、水酸化イットリウム、硝酸イットリウム、シュウ酸イットリウム、硫酸イットリウムなどが挙げられる。これらのうち、水酸化イットリウム、硝酸イットリウムが好ましく使用される。なお、上記イットリウム源は、単独であってもあるいは2種以上の混合物であってもよい。イットリウム源の添加量は、酸化イットリウム(Y)換算で耐火性三次元構造体1Lあたり、好ましくは0~50g、より好ましくは0~35g、さらに好ましくは0~20gである。
 ネオジム源は、特に制限されることなく、排ガスの浄化の分野で用いられている原料を用いることができる。具体的には、水酸化ネオジム、硝酸ネオジム、シュウ酸ネオジム、硫酸ネオジムなどが挙げられる。これらのうち、水酸化ネオジム、硝酸ネオジムが好ましく使用される。なお、上記ネオジム源は、単独であってもあるいは2種以上の混合物であってもよい。ネオジム源の添加量は、酸化ネオジム(Nd)換算で耐火性三次元構造体1Lあたり、好ましくは0~50g、より好ましくは0~35g、さらに好ましくは0~20gである。
 本形態の触媒は、下触媒層、ガス流入側上触媒層及びガス流出側上触媒層のうちの少なくとも1層がCeO及びZrOを含有する複合酸化物を含むことが好ましく、少なくとも2層がCeO及びZrOを含有する複合酸化物を含むことがより好ましく、3層全てがCeO及びZrOを含有する複合酸化物を含むことがさらに好ましい。
 下触媒層がCeO及びZrOを含有する複合酸化物を含む場合において、当該複合酸化物中のCeOの含有率は、好ましくは20質量%以上、より好ましくは30質量%以上、さらに好ましくは40質量%以上、特に好ましくは45質量%以上であり;好ましくは80質量%以下、より好ましくは60質量%以下、さらに好ましくは50質量%以下、特に好ましくは45質量%以下である。当該CeOの含有率の数値範囲としては、好ましくは20質量%以上80質量%以下、より好ましくは30質量%以上60質量%以下、さらに好ましくは40質量%以上50質量%以下、特に好ましくは45質量%以上50質量%以下であるか、又は40質量%以上45質量%以下である。CeOの含有率が20質量%以上であると、高速走行時やリン被毒を受けた時にも十分な酸素貯蔵能が発揮されるため、炭化水素の浄化を効率よく行うことができる。一方、CeOの含有率80質量%以下であると、耐熱性が低下にくいため、触媒が高温の排ガスに曝された場合であっても、触媒性能を維持することができる。
 ガス流入側上触媒層及び/又はガス流出側上触媒層がCeO及びZrOを含有する複合酸化物を含む場合において、当該複合酸化物中のCeOの含有率は、好ましくは5質量%以上、より好ましくは10質量%以上、さらに好ましくは15質量%以上、特に好ましくは20質量%以上であり;好ましくは60質量%以下、より好ましくは50質量%以下、さらに好ましくは40質量%以下、特に30質量%以下である。当該CeOの含有率の数値範囲としては、好ましくは5質量%以上60質量%以下、より好ましくは10質量%以上50質量%以下、さらに好ましくは15質量%以上40質量%以下、特に好ましくは20質量%以上30質量%以下である。CeOの含有率が5質量%以上であると、Rhに付着するリン化合物が少なくなるため、触媒性能の低下を抑制することができる。一方、CeOの含有率が60質量%以下であると、CeO上へリン化合物が付着しにくくなり、触媒性能の低下を抑制することができる。
 (耐火性無機酸化物)
 耐火性無機酸化物としては、アルミナ、ランタン含有アルミナ、ジルコニア、シリカ-アルミナ、チタニア、ゼオライト等があり、単独であるいは2種以上の混合物の形態で用いることができる。耐火性無機酸化物は、700℃以上、好ましくは1000℃以上で比表面積の変化が少ないものが好ましい。耐火性無機酸化物のBET比表面積は、特に制限されないが、貴金属などの触媒活性成分を担持させる観点から、好ましくは50~750m/g、より好ましくは150~750m/gである。耐火性無機酸化物の平均一次粒径は、特に制限されないが、好ましくは5nm~20nm、より好ましくは5nm~10nmの範囲である。このような範囲であれば、貴金属を耐火性無機酸化物上に担持することができる。なお、本明細書において、耐火性無機酸化物の形状又は平均一次粒径は、透過型電子顕微鏡(TEM)によって測定される。
 耐火性無機酸化物の含有量は、耐火性三次元構造体1Lあたり、好ましくは10~300g、より好ましくは20~200g、さらに好ましくは50~100gである。耐火性無機酸化物の含有量が上記範囲内であれば、貴金属等の触媒成分を分散させて担持させることができる。
 (助触媒)
 助触媒として、第1族元素、第2族元素、及び/又は希土類元素が添加され得る。第1族元素、第2族元素、及び希土類元素としては、カリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ランタン等があり、単独であるいは2種以上の混合物の形態で用いることができる。原料としては、第1族元素又は第2族元素の、酸化物、硫酸塩、炭酸塩、硝酸塩などが使用され、焼成後に酸化物、硫酸塩又は炭酸塩の形態で触媒に含まれる。中でも、酸化ランタン(La)、酸化バリウム(BaO)、バリウム硫酸塩(BaSO)を用いることが好ましく、耐火性三次元構造体1Lあたり、それぞれ好ましくは0~50g、より好ましくは0.5~30g、さらに好ましくは1~20g含まれる。
 本発明に係る触媒は、高温で、かつ、リン化合物含有排ガスに長期間曝された後においても十分な排ガス浄化性能を発揮できる。リン化合物を含む排ガスに曝された触媒にはリン化合物が酸化リン(P)として堆積する。本発明によると、耐火性三次元構造体1Lあたり、好ましくは1g~50g、より好ましくは1g~30g、さらに好ましくは1g~15g、特に好ましくは1g~10gのリン化合物が蓄積した状態においても、優れた排ガス浄化性能を発揮することができる。リン化合物は、一般にガス流入側に多く堆積し、ガス流出側に向かって減少する。また、リン化合物は、触媒層の表面付近では高濃度で存在し、触媒層の内部になるほど(耐火性三次元構造体の方向に近づくほど)濃度は減少する。
 触媒に堆積したリン化合物の量は、XRF(蛍光X線分析)、EPMA(エレクトロン・プローブ・マイクロアナライザー)、SEM-EDX等を用いて分析できる。触媒の排ガス流れ方向の分布を調べる場合には、所定の長さで触媒を切断した後、各切断部位を前記XRF等でリン化合物量を分析することができる。各切断部位での分析結果を比較することで分布を調べることができる。
 <リン化合物含有排ガス浄化用触媒の製造方法>
 上記リン化合物含有排ガス浄化用触媒は、公知の手法を適宜参照することにより、当業者により容易に製造することできる。好ましい製造方法として、以下の工程を有する方法が挙げられる。すなわち、本発明の他の一形態に係るリン化合物含有排ガス浄化用触媒の製造方法は、ガス流入側端面及びガス流出側端面に沿って延在して設けられるとともに、ガス流入側端面からガス流出側端面まで貫通する複数のガス流路を区画形成する隔壁を有する耐火性三次元構造体の隔壁上に、ガス流入側端面から連続してPdを含む下触媒層用スラリーを塗布、乾燥及び焼成して、下触媒層を形成する工程(I)と、;下触媒層を形成した後に、隔壁上に、ガス流入側端面から連続してRhを含むガス流入側上触媒層用スラリーを、ガス流出側端面から連続してRhを含むガス流出側触媒層用スラリーを、スラリー同士が互いに接触しないように塗布し、その後、乾燥及び焼成して、ガス流入側上触媒層及びガス流出側上触媒層を形成する工程(II)と;を有する。
 スラリーは、貴金属、酸素貯蔵材、耐火性無機酸化物、助触媒の原料を水性媒体と混合し、湿式粉砕することによって調製される。なお、予め、貴金属や助触媒を担持させた酸素貯蔵材又は耐火性無機酸化物を用いてスラリーを調製してもよい。水性媒体としては、水、エタノールや2-プロパノール等の低級アルコール、並びに有機系のアルカリ水溶液などが挙げられる。好ましくは水や低級アルコールが使用され、特に水が好ましく使用される。スラリー中の固体物濃度は、好ましくは5~60質量%、より好ましくは10~50質量%である。湿式粉砕の方法は、公知の手法を適宜採用することができ、例えば、ボールミルを用いた方法が挙げられる。
 スラリーを耐火性三次元構造体に塗布する方法は、特に制限されないが、例えば、スラリーが入った容器に、耐火性三次元構造体をガス流入側端面又はガス流出側端面から、浸漬させる方法が挙げられる。この際、各触媒層が所望の長さとなるように、スラリーを塗布する領域を制御する。なお、工程(I)において下触媒層用スラリーを塗布、乾燥及び焼成した後で、工程(II)において、ガス流入側上触媒層用スラリー及びガス流出側上触媒層用スラリーを塗布し、乾燥及び焼成する。ここで、工程(II)は、ガス流入側上触媒層用スラリーと、ガス流出側上触媒層用スラリーとを両方塗布した後に(なお、この際のスラリーの塗布の順番は特に制限されない)、塗布後の両方のスラリーをともに乾燥及び焼成してもよいし;ガス流入側上触媒層用スラリー又はガス流出側上触媒層用スラリーのいずれか一方を塗布し、乾燥及び焼成を行って一方の触媒層を形成し、その後、他方のスラリーを塗布し、乾燥及び焼成を行って他方の触媒層を形成してもよい。
 乾燥、焼成する条件は、耐火性三次元構造体に触媒成分を付着できればよく、乾燥、焼成は特に区別されない。空気中で好ましくは50~300℃、より好ましくは80~200℃の温度で、好ましくは5分~10時間、より好ましくは30分~8時間乾燥させる。次に、好ましくは300~1200℃、より好ましくは400~700℃の温度で、好ましくは10分~10時間、より好ましくは30分~5時間焼成させる。
 <排ガスの浄化方法>
 本発明の他の一形態によると、上記リン化合物含有排ガス浄化用触媒と、リン化合物含有排ガスと、を接触させる工程を有する、リン化合物含有排ガスの浄化方法が提供される。
 リン化合物含有排ガスは、内燃機関から排出されるものであることが好ましい。内燃機関としては、例えば、ガソリンエンジン、ハイブリッドエンジン、天然ガス、エタノール、ジメチルエーテル等を燃料として用いるエンジン等を用いることができる。中でもガソリンエンジンであることが好ましい。
 リン化合物含有排ガスの温度は、好ましくは0℃~800℃、つまり通常運転時の排ガスの温度範囲内であることが好ましい。ここで、温度が0℃~800℃である内燃機関の排ガスにおける空燃比(A/F)は、好ましくは10~30未満、より好ましくは11~14.7である。
 本発明に係る触媒は、高温に長期間曝された後においても、十分な排ガス浄化性能を発揮できる。ここで高温に曝すとは、好ましくは800~1200℃の排ガスに曝すことをいう。ここで、温度が800~1200℃である内燃機関の排ガスにおける空燃比(A/F)は、好ましくは10~18.6である。温度が800℃~1200℃の排ガスに曝す時間は、好ましくは5~500時間である。
 高温で、かつ、リン化合物含有排ガスに長期間曝された後における排ガス浄化性能を評価する際には、熱及びリン被毒処理として、800℃~1200℃のリン化合物含有排ガスに、5~500時間曝す処理を触媒に施した後に、排ガス浄化性能を調べることが有効である。
 また、本発明に係る触媒は、排ガスの空間速度が好ましくは80000h-1以上、より好ましくは100000h-1以上、さらに好ましくは120000h-1以上であっても、排ガスを有効に浄化することができる。排ガスの空間速度の上限は、エンジンなどの内燃機関の排気量に依存するものの、500000h-1以下が好ましい。
 以下、本発明を実施例及び比較例を用いてさらに具体的に説明するが、本発明は、以下の実施例に限定されない。なお、特記しない限り、各操作は室温(25℃)/相対湿度40~50%RHの条件で行われた。また、特記しない限り、比は質量比を表す。
 [実施例1](触媒Aの製造)
 硝酸パラジウム(Pd)、CeO-ZrO複合酸化物(CeOとして45質量%)、酸化アルミニウム(Al)、水酸化バリウム及び酢酸ランタンを、質量比がPd:CeO-ZrO複合酸化物:Al:酸化バリウム:酸化ランタン換算で4.75:16.9:22.4:4.7:1.1となるように、それぞれ評量し、水を加えて湿式粉砕することでスラリーa0を調製した。
 耐火性三次元構造体として直径105.7mm、長さ80mm、円筒形の0.7L、1平方インチあたり900セル(1インチ=25.4mm)、セル壁厚み2.5mil(1mil=0.0254mm)、ガス通過口(セル形状)の形が四角形のコージェライト担体を用いた。スラリーa0を、コージェライト担体のガス流入側端面から30mmの長さまで、焼成後の担持量が51.8g/L(36.3g/pc)となるように塗布し、150℃で15分間乾燥後、550℃で30分間焼成し、触媒層A0を設けた。
 次に、硝酸ロジウム(Rh)、CeO-ZrO複合酸化物(CeOとして25質量%)、酸化アルミニウム及び酸化ランタンを、質量比がRh:CeO-ZrO複合酸化物:Al:La換算で0.591:13.1:14.3:2.6となるように、それぞれ秤量し、水を加えて湿式粉砕することでスラリーa1を調製した。スラリーa1を、A0を設けた担体のガス流入側端面から30mmの長さまで、焼成後の担持量が30.7g/L(21.5g/pc)となるように塗布し、150℃で15分間乾燥後、550℃で30分間焼成し、触媒層A1を設けた。
 続いて、硝酸ロジウム(Rh)、CeO-ZrO複合酸化物(CeOとして25質量%)、酸化アルミニウム及び酸化ランタンを、質量比がRh:CeO-ZrO複合酸化物:Al:La換算で0.259:21.9:23.8:4.4となるように、それぞれ秤量し、水を加えて湿式粉砕することでスラリーa2を調製した。スラリーa2を、A1を設けた担体のガス流出側端面から40mmの長さ(スラリーa1の塗布領域との離間距離が10mmとなる)まで、焼成後の担持量が50.3g/L(35.2g/pc)となるように塗布し、150℃で15分間乾燥後、550℃で30分間焼成し、触媒層A2を設けた。このようにして触媒層A0、A1及びA2を設けた触媒Aを得た。
 なお、触媒Aは、前述の第2実施形態で示した図2のリン化合物含有排ガス浄化用触媒2と同様の構成を有する。図2を参照しながら、触媒Aの構成を説明する。下触媒層120は、耐火性三次元構造体10の表面にガス流入側端面10Aから30mmの長さまで形成されている。ガス流入側上触媒層30は、隔壁上の最表面に位置し、ガス流入側端面10Aから30mmの長さまで連続して形成される。ガス流出側上触媒層140は、隔壁上の最表面に位置し、ガス流出側端面10Bから40mmの長さまで連続して形成される。ガス流入側上触媒層30及びガス流出側上触媒層140は、ガス流路方向に沿って互いに10mm離間するように配置されている。
 [実施例2](触媒Bの製造)
 実施例1と同じ原料を質量比がPd:CeO-ZrO複合酸化物:Al:酸化バリウム:酸化ランタン換算で4.75:22.5:29.8:6.2:1.5となるように、それぞれ評量し、水を加えて湿式粉砕することでスラリーb0を調製した。
 スラリーb0を、耐火性三次元構造体のガス流入側端面から40mmの長さまで、実施例1と同様のコージェライト担体に焼成後の担持量が67.2g/L(47.0g/pc)となるように塗布し、実施例1と同様に乾燥、焼成を行い、触媒層B0を設けた。
 次に、スラリーa1を、B0を設けた担体のガス流入側端面から30mmの長さまで、焼成後の担持量が30.7g/L(21.5g/pc)となるように塗布し、実施例1と同様に乾燥、焼成を行い、触媒層B1を設けた。
 続いて、スラリーa2を、B1を設けた担体のガス流出側端面から40mmの長さ(スラリーa1の塗布領域との離間距離が10mmとなる)まで、焼成後の担持量が50.3g/L(35.2g/pc)となるように塗布し、実施例1と同様に乾燥、焼成を行い、触媒層B2を設けた。このようにして触媒層B0、B1及びB2を設けた触媒Bを得た。   
 なお、触媒Bは、前述の第2実施形態で示した図3のリン化合物含有排ガス浄化用触媒3と同様の構成を有する。図3を参照しながら、触媒Bの構成を説明する。下触媒層120は、耐火性三次元構造体10の表面にガス流入側端面10Aから40mmの長さまで形成されている。ガス流入側上触媒層30は、隔壁上の最表面に位置し、ガス流入側端面10Aから30mmの長さまで連続して形成される。ガス流出側上触媒層140は、隔壁上の最表面に位置し、ガス流出側端面10Bから40mmの長さまで連続して形成され、ガス流入側の端部が下触媒層120のガス流出側端部と接するように配置される。ガス流入側上触媒層30及びガス流出側上触媒層140は、ガス流路方向に沿って互いに10mm離間するように配置されている。
 [実施例3](触媒Cの製造)
 実施例1と同じ原料を、質量比がPd:CeO-ZrO複合酸化物:Al:酸化バリウム:酸化ランタン換算で4.75:28.1:37.3:7.8:1.9となるように、それぞれ評量し、水を加えて湿式粉砕することでスラリーc0を調製した。
 スラリーc0を、耐火性三次元構造体のガス流入側端面から50mmの長さまで、焼成後の担持量が82.7g/L(57.9g/pc)となるように塗布し、実施例1と同様に乾燥、焼成を行い、触媒層C0を設けた。
 次に、スラリーa1を、C0を設けた担体のガス流入側端面から30mmの長さまで実施例1と同様のコージェライト担体に、焼成後の担持量が30.7g/L(21.5g/pc)となるように塗布し、実施例1と同様に乾燥、焼成を行い、触媒層C1を設けた。
 続いて、スラリーa2を、C1を設けた担体のガス流出側端面から40mmの長さ(スラリーa1の塗布領域との離間距離が10mmとなる)まで、焼成後の担持量が50.3g/L(35.2g/pc)となるように塗布し、実施例1と同様に乾燥、焼成を行い、触媒層C2を設けた。このようにして触媒層C0、C1及びC2を設けた触媒Cを得た。
 なお、触媒Cは、前述の第1実施形態で示した図1のリン化合物含有排ガス浄化用触媒1と同様の構成を有する。図1を参照しながら、触媒Cの構成を説明する。下触媒層20は、耐火性三次元構造体10の表面にガス流入側端面10Aから50mmの長さまで形成されている。ガス流入側上触媒層30は、隔壁上の最表面に位置し、ガス流入側端面10Aから30mmの長さまで連続して形成される。ガス流出側上触媒層40は、隔壁上の最表面に位置し、ガス流出側端面10Bから40mmの長さまで連続して形成される。ガス流出側上触媒層40のガス流入側端部は、下触媒層20の表面に形成され、ガス流出側上触媒層40のガス流出側端部は、耐火性三次元構造体10の表面に形成される。ガス流入側上触媒層30及びガス流出側上触媒層140は、ガス流路方向に沿って互いに10mm離間するように配置されている。
 [実施例4](触媒Dの製造)
 実施例1と同じ原料を、質量比がPd:CeO-ZrO複合酸化物:Al:酸化バリウム:酸化ランタン換算で4.75:33.8:44.7:9.3:2.3となるように、それぞれ評量し、水を加えて湿式粉砕することでスラリーd0を調製した。
 スラリーd0を、耐火性三次元構造体のガス流入側端面から60mmの長さまで実施例1と同様のコージェライト担体に、焼成後の担持量が98.1g/L(68.7g/pc)となるように塗布し、実施例1と同様に乾燥、焼成を行い、触媒層D0を設けた。
 次に、スラリーa1を、D0を設けた担体のガス流入側端面から30mmの長さまで、焼成後の担持量が30.7g/L(21.5g/pc)となるように塗布し、実施例1と同様に乾燥、焼成を行い、触媒層D1を設けた。
 続いて、スラリーa2を、D1を設けた担体のガス流出側端面から40mmの長さ(スラリーa1の塗布領域との離間距離が10mmとなる)まで、焼成後の担持量が50.3g/L(35.2g/pc)となるように塗布し、実施例1と同様に乾燥、焼成を行い、触媒層D2を設けた。このようにして触媒層D0、D1及びD2を設けた触媒Dを得た。
 なお、触媒Dは、下触媒層が、ガス流入側端面から60mmの長さまで形成されていること以外は、実施例3の触媒Cと同様の構成を有する。
 [比較例1](触媒Eの製造)
 実施例1と同じ原料を、質量比がPd:CeO-ZrO複合酸化物:Al:酸化バリウム:酸化ランタン換算で4.75:45:59.6:12.4:3となるように、それぞれ評量し、水を加えて湿式粉砕することでスラリーe0を調製した。
 スラリーe0を、耐火性三次元構造体のガス流入側端面から80mmの長さまで(ガス流出側端面まで)実施例1と同様のコージェライト担体に、焼成後の担持量が129.0g/L(90.3g/pc)となるように塗布し、実施例1と同様に乾燥、焼成を行い、触媒層E0を設けた。
 次に、スラリーa1を、E0を設けた担体のガス流入側端面から30mmの長さまで、焼成後の担持量が30.7g/L(21.5g/pc)となるように塗布し、実施例1と同様に乾燥、焼成を行い、触媒層E1を設けた。
 続いて、スラリーa2を、E1を設けた担体のガス流出側端面から40mmの長さ(スラリーa1の塗布領域との離間距離が10mmとなる)まで、焼成後の担持量が50.3g/L(35.2g/pc)となるように塗布し、実施例1と同様に乾燥、焼成を行い、触媒層E2を設けた。このようにして触媒層E0、E1及びE2を設けた触媒Eを得た。
 なお、図4を参照して、触媒Eの構成について説明する。触媒Eは、図4に示すように、触媒A~Dと比較して、下触媒層の構成が異なる。下触媒層520は、ガス流入側端面10Aからガス流出側端面10Bまで、耐火性三次元構造体10の表面の全域に形成されている。ガス流入側上触媒層30は、隔壁上の最表面に位置し、ガス流入側端面10Aから30mmの長さまで連続して形成される。ガス流出側上触媒層540は、隔壁上の最表面に位置し、ガス流出側端面10Bから40mmの長さまで連続して形成される。ガス流出側上触媒層540は、全面において下触媒層520の表面に形成されている。ガス流入側上触媒層30及びガス流出側上触媒層540は、ガス流路方向に沿って互いに10mm離間するように配置されている。
 [比較例2](触媒Fの製造)
 比較例1と同様の方法で、実施例1と同様のコージェライト担体に、触媒層E0を設けた。
 硝酸ロジウム(Rh)、CeO-ZrO複合酸化物(CeOとして25質量%)、酸化アルミニウム及び酸化ランタンを、質量比がRh:CeO-ZrO複合酸化物:Al:La換算で0.85:35:38:7となるように、それぞれ秤量し、水を加えて湿式粉砕することでスラリーf1を調製した。
 次に、スラリーf1を、E0を設けた担体のガス流入側端面から80mmの長さまで(ガス流出側端面まで)実施例1と同様のコージェライト担体に、焼成後の担持量が81.1g/L(56.8g/pc)となるように塗布し、実施例1と同様に乾燥、焼成を行い、触媒層F1を得た。このようにして触媒層E0、F1を設けた触媒Fを得た。
 なお、図5を参照して、触媒Fの構成について説明する。触媒Fは、図5に示すように、触媒A~Dと比較して、下触媒層及び上触媒層の構成が異なる。下触媒層520は、触媒Eと同様に、ガス流入側端面10Aからガス流出側端面10Bまで、耐火性三次元構造体10の表面の全域に形成されている。上触媒層630は、ガス流入側端面10Aからガス流出側端面10Bまで、下触媒層520の表面の全域に形成されている。
 [比較例3](触媒Gの製造)
 硝酸パラジウム(Pd)、硝酸ロジウム(Rh)、CeO-ZrO複合酸化物(CeOとして45質量%)、酸化アルミニウム(Al)、水酸化バリウム及び酢酸ランタンを、質量比がPd:Rh:CeO-ZrO複合酸化物:Al:酸化ランタン換算で4.75:0.591:13.1:14.3:2.6となるように、それぞれ評量し、水を加えて湿式粉砕することでスラリーg0を調製した。
 スラリーg0を、耐火性三次元構造体のガス流入側端面から30mmの長さまで実施例1と同様のコージェライト担体に、焼成後の担持量が36.2g/L(25.3g/pc)となるように塗布し、実施例1と同様に乾燥、焼成を行い、触媒層G0を設けた。
 次に、スラリーa2を、G0を設けた担体のガス流出側端面から40mmの長さ(スラリーg0の塗布領域との離間距離が10mmとなる)まで、焼成後の担持量が50.3g/L(35.2g/pc)となるように塗布し、実施例1と同様に乾燥、焼成を行い、触媒層G1を設けた。このようにして触媒層G0、G1を設けた触媒Gを得た。
 なお、図6を参照して、触媒Gの構成について説明する。触媒Gは、図6に示すように、触媒A~Dと比較して、下触媒層を有しない点で異なる。ガス流入側触媒層720は、耐火性三次元構造体10の最表面に位置し、ガス流入側端面10Aから30mmの長さまで連続して形成される。ガス流出側触媒層740は、耐火性三次元構造体10の最表面に位置し、ガス流出側端面10Bから40mmの長さまで連続して形成される。ガス流入側触媒層720及びガス流出側触媒層740は、ガス流路方向に沿って互いに10mm離間するように配置されている。
 <熱及びリン被毒処理>
 上記で得られた触媒A~Gを、それぞれ、V型8気筒、5.6リットルエンジンの排気口から25cm下流側に設置した。エンジンオイル中のリン(P)濃度が6ppmのオイルを用いた。触媒入口部の空燃比(A/F)を14.6、触媒床部の温度を1000℃として運転し、続いてA/Fが12.5で運転し、続いて燃料供給を停止して運転するサイクルを繰り返し、合計100時間運転し、熱処理を行った。
 次に、熱処理を行った各触媒を3.0Lエンジンの排気口の下流側に設置した。エンジンオイル中のリン(P)濃度が3000ppmのオイルを用いた。触媒床部の温度を880℃として運転することでリン被毒処理を行った。リン被毒処理後の各触媒のリン含有量を蛍光X線(XRF)にて分析し、耐火性三次元構造体1リットルあたり酸化リン(P)換算で約2gのリン化合物が含有していることを確認した。
 <排ガス浄化触媒の性能評価1>
 リン被毒後の触媒A~Gを、それぞれ、直列6気筒、2リットルエンジン排気口から30cm下流側に設置した。A/Fを14.6として、ガス流入側端面から15cmの位置ガス温度を150℃から500℃まで50℃/分で昇温させた。エンジンオイル中のリン(P)濃度が6ppmのオイルを用いた。この時、各触媒の空間速度は150000-1であった。触媒出口から排出されるガスをサンプリングし、CO、HC、NOxの各浄化率を算出した。各浄化率が50%に達する時の温度(Light-off T50)を図7A~7Cに示す。T50が低いほど、高い排ガス浄化性能を有していることを示している。
 <排ガス浄化触媒の性能評価2>
 リン被毒後の触媒A~Gを、それぞれ、直列6気筒、2リットルエンジン排気口から30cm下流側に設置した。A/Fを14.6、触媒入口ガス温度を100℃から500℃まで1800℃/分で昇温させた。エンジンオイル中のリン(P)濃度が6ppmのオイルを用いた。この時、各触媒の空間速度は140000-1であった。触媒出口から排出されるガスをサンプリングし、CO、HC、NOxの各浄化率を算出した。各浄化率が20%に達するまでの時間(Warm-up T20)を図8A~8Cに、各浄化率が50%に達するまでの時間(Warm-up T50)を図9A~9Cにそれぞれ示す。T20又はT50に達する時間が短いほど、早期に排ガスが浄化されることを意味する。
 図7A~7C、8A~8C及び9A~9Cの結果から、本発明に係る触媒は、排ガス浄化性能に優れることが示された。特に、第1実施形態に係る触媒C及びDは、第2実施形態に係る触媒A及びBよりも、浄化率が50%に達する時の温度(Light-off T50)が有意に低く、かつ、浄化率が20%及び50%に達するまでの時間(Warm-up T20及びWarm-up T50)が有意に短いことから、高い排ガス浄化性能を有することが示された。これは、ガス流出側上触媒層のガス流出側に階段状の凹部が形成されることにより、リン被毒が抑制され、触媒活性が維持されたことによると推測された。
 本出願は、2017年12月28日に出願された日本国特許出願第2017-254113号に基づいており、その開示内容は、参照により全体として引用されている。
  1、2、3、4、5、6 リン化合物含有排ガス浄化用触媒、
  10  耐火性三次元構造体、
  10A  ガス流入側端面、
  10B  ガス流出側端面、
  20、120、520  下触媒層、
  30  ガス流入側上触媒層、
  40、140、540  ガス流出側上触媒層、
  41  段差部、
  50  凹部
  630  上触媒層
  720  ガス流入側触媒層
  740  ガス流出側触媒層。

Claims (12)

  1.  ガス流入側端面からガス流出側端面に沿って延在して設けられるとともに、前記ガス流入側端面から前記ガス流出側端面まで貫通する複数のガス流路を区画形成する隔壁を有する耐火性三次元構造体と、
     前記隔壁上に前記ガス流入側端面から連続して形成された、Pdを含む下触媒層と、
     前記隔壁上の最表面に位置し、前記ガス流入側端面から連続して形成された、Rhを含むガス流入側上触媒層と、
     前記隔壁上の最表面に位置し、前記ガス流出側端面から連続して形成された、Rhを含むガス流出側上触媒層と、
    を有し、
     前記ガス流入側上触媒層及び前記ガス流出側上触媒層は、ガス流路方向に沿って互いに離間するように配置されており、
     前記ガス流路方向に沿う前記下触媒層の長さは、15mm以上であり、当該長さの割合は、前記ガス流路の全長に対して、18%以上100%未満である、リン化合物含有排ガス浄化用触媒。
  2.  前記ガス流出側上触媒層のガス流入側端部における触媒層の厚さの合計は、前記ガス流出側上触媒層のガス流出側端部における触媒層の厚さの合計よりも大きい、請求項1に記載のリン化合物含有排ガス浄化用触媒。
  3.  前記ガス流入側上触媒層及び前記ガス流出側上触媒層の離間距離は、5mm以上30mm以下である、請求項1又は2に記載のリン化合物含有排ガス浄化用触媒。
  4.  前記ガス流路方向に沿う前記ガス流入側上触媒層の長さは、10mm以上であり、当該長さの割合は、前記ガス流路の全長に対して、12%以上57%以下である、請求項1~3のいずれか1項に記載のリン化合物含有排ガス浄化用触媒。
  5.  前記ガス流路方向に沿う前記ガス流出側上触媒層の長さは、25mm以上であり、当該長さの割合は、前記ガス流路の全長に対して、31%以上88%未満である、請求項1~4のいずれか1項に記載のリン化合物含有排ガス浄化用触媒。
  6.  前記ガス流路方向に沿う前記ガス流入側上触媒層の長さは、前記下触媒層の長さ以下である、請求項1~5のいずれか1項に記載のリン化合物含有排ガス浄化用触媒。
  7.  前記ガス流入側上触媒層のRh濃度は、前記ガス流出側上触媒層のRh濃度より高い、請求項1~6のいずれか1項に記載のリン化合物含有排ガス浄化用触媒。
  8.  前記下触媒層のRh濃度は、前記ガス流出側上触媒層のRh濃度より低い、請求項1~7のいずれか1項に記載のリン化合物含有排ガス浄化用触媒。
  9.  前記下触媒層、前記ガス流入側上触媒層及び前記ガス流出側上触媒層のうちの少なくとも1層は、CeO及びZrOを含有する複合酸化物を含む、請求項1~8のいずれか1項に記載のリン化合物含有排ガス浄化用触媒。
  10.  前記耐火性三次元構造体の前記ガス流路方向の長さは、15mm超1000mm以下である、請求項1~9のいずれか1項に記載のリン化合物含有排ガス浄化用触媒。
  11.  前記ガス流入側端面及び前記ガス流出側端面に沿って延在して設けられるとともに、前記ガス流入側端面から前記ガス流出側端面まで貫通する複数の前記ガス流路を区画形成する隔壁を有する前記耐火性三次元構造体の前記隔壁上に、前記ガス流入側端面から連続してPdを含む下触媒層用スラリーを塗布、乾燥及び焼成して、前記下触媒層を形成する工程と、
     前記下触媒層を形成した後に、前記隔壁上に、前記ガス流入側端面から連続してRhを含むガス流入側上触媒層用スラリーを、前記ガス流出側端面から連続してRhを含むガス流出側触媒層用スラリーを、スラリー同士が互いに接触しないように塗布し、その後、乾燥及び焼成して、前記ガス流入側上触媒層及び前記ガス流出側上触媒層を形成する工程と、
    を有する、請求項1~10のいずれか1項に記載のリン化合物含有排ガス浄化用触媒の製造方法。
  12.  請求項1~10のいずれか1項に記載のリン化合物含有排ガス浄化用触媒と、
     リン化合物含有排ガスと、
    を接触させる工程を有する、リン化合物含有排ガスの浄化方法。
PCT/JP2018/047942 2017-12-28 2018-12-26 リン化合物含有排ガス浄化用触媒 WO2019131796A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880077307.8A CN111432928B (zh) 2017-12-28 2018-12-26 含有磷化合物的废气净化用催化剂
US16/767,213 US11110436B2 (en) 2017-12-28 2018-12-26 Phosphorus compound-containing exhaust gas purifying catalyst
EP18894947.3A EP3733289B1 (en) 2017-12-28 2018-12-26 Phosphorus-compound-containing-exhaust-gas purifying catalyst
JP2019521498A JP6544881B1 (ja) 2017-12-28 2018-12-26 リン化合物含有排ガス浄化用触媒

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-254113 2017-12-28
JP2017254113 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019131796A1 true WO2019131796A1 (ja) 2019-07-04

Family

ID=67067508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047942 WO2019131796A1 (ja) 2017-12-28 2018-12-26 リン化合物含有排ガス浄化用触媒

Country Status (5)

Country Link
US (1) US11110436B2 (ja)
EP (1) EP3733289B1 (ja)
JP (1) JP6544881B1 (ja)
CN (1) CN111432928B (ja)
WO (1) WO2019131796A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022039147A (ja) * 2020-08-28 2022-03-10 トヨタ自動車株式会社 排ガス浄化装置
JP2022061298A (ja) * 2020-10-06 2022-04-18 トヨタ自動車株式会社 排ガス浄化装置
CN114728235A (zh) * 2019-11-22 2022-07-08 巴斯夫公司 具有富集pgm区的排放控制催化剂制品
WO2023176325A1 (ja) * 2022-03-14 2023-09-21 株式会社キャタラー 排ガス浄化用触媒

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210213425A1 (en) * 2020-01-13 2021-07-15 Umicore Ag & Co. Kg Three-way-catalyst
US11364485B2 (en) * 2020-04-24 2022-06-21 Johnson Matthey (Shanghai) Chemicals Co. Ltd. Multi-region catalysts for CNG engine exhaust gas treatments with improved ammonia leakage control
US11224861B2 (en) 2020-06-08 2022-01-18 Umicore Ag & Co. Kg Layered TWC

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0838898A (ja) 1994-08-01 1996-02-13 Mazda Motor Corp 排気ガス浄化用触媒
US20070014705A1 (en) 2005-07-15 2007-01-18 Shau-Lin Franklin Chen High phosphorous poisoning resistant catalysts for treating automobile exhaust
WO2010001226A1 (en) 2008-06-30 2010-01-07 Toyota Jidosha Kabushiki Kaisha Layered exhaust gas purification catalyst comprising different noble metals
JP2013136032A (ja) * 2011-12-28 2013-07-11 Toyota Motor Corp 排ガス浄化用触媒
JP2016140846A (ja) * 2015-02-04 2016-08-08 株式会社キャタラー 排ガス浄化用触媒
JP2017200676A (ja) * 2016-05-02 2017-11-09 三菱自動車工業株式会社 内燃機関の排ガス浄化触媒

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102634A (en) * 1990-01-17 1992-04-07 Nippon Shokubai Kagaky Kogyo Co., Ltd. Method for purifying exhaust gas and apparatus
US7749472B2 (en) * 2006-08-14 2010-07-06 Basf Corporation Phosgard, a new way to improve poison resistance in three-way catalyst applications
JP5287884B2 (ja) * 2011-01-27 2013-09-11 トヨタ自動車株式会社 排ガス浄化用触媒
JP2015009163A (ja) * 2013-06-26 2015-01-19 株式会社キャタラー 排ガス浄化用触媒
WO2018199250A1 (ja) * 2017-04-28 2018-11-01 ユミコア日本触媒株式会社 排気ガス浄化用触媒およびそれを用いた排気ガス浄化方法
WO2019043557A1 (en) * 2017-08-28 2019-03-07 Basf Corporation THREE-WAY PHOSPHORUS-RESISTANT CATALYST

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0838898A (ja) 1994-08-01 1996-02-13 Mazda Motor Corp 排気ガス浄化用触媒
US20070014705A1 (en) 2005-07-15 2007-01-18 Shau-Lin Franklin Chen High phosphorous poisoning resistant catalysts for treating automobile exhaust
JP2009501079A (ja) 2005-07-15 2009-01-15 ビーエーエスエフ、カタリスツ、エルエルシー 自動車排ガス処理用高リン被毒耐性触媒
WO2010001226A1 (en) 2008-06-30 2010-01-07 Toyota Jidosha Kabushiki Kaisha Layered exhaust gas purification catalyst comprising different noble metals
JP2010005590A (ja) 2008-06-30 2010-01-14 Toyota Motor Corp 排ガス浄化用触媒
JP2013136032A (ja) * 2011-12-28 2013-07-11 Toyota Motor Corp 排ガス浄化用触媒
JP2016140846A (ja) * 2015-02-04 2016-08-08 株式会社キャタラー 排ガス浄化用触媒
JP2017200676A (ja) * 2016-05-02 2017-11-09 三菱自動車工業株式会社 内燃機関の排ガス浄化触媒

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. SCOTT, SAE PAPER, 1996, pages 961898
See also references of EP3733289A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114728235A (zh) * 2019-11-22 2022-07-08 巴斯夫公司 具有富集pgm区的排放控制催化剂制品
JP2022039147A (ja) * 2020-08-28 2022-03-10 トヨタ自動車株式会社 排ガス浄化装置
JP7235417B2 (ja) 2020-08-28 2023-03-08 トヨタ自動車株式会社 排ガス浄化装置
JP2022061298A (ja) * 2020-10-06 2022-04-18 トヨタ自動車株式会社 排ガス浄化装置
JP7328192B2 (ja) 2020-10-06 2023-08-16 トヨタ自動車株式会社 排ガス浄化装置
WO2023176325A1 (ja) * 2022-03-14 2023-09-21 株式会社キャタラー 排ガス浄化用触媒

Also Published As

Publication number Publication date
CN111432928A (zh) 2020-07-17
EP3733289B1 (en) 2024-02-28
JP6544881B1 (ja) 2019-07-17
JPWO2019131796A1 (ja) 2020-01-16
US11110436B2 (en) 2021-09-07
CN111432928B (zh) 2023-03-14
US20200384446A1 (en) 2020-12-10
EP3733289A4 (en) 2021-10-06
EP3733289A1 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
JP6544881B1 (ja) リン化合物含有排ガス浄化用触媒
EP2952251B1 (en) Exhaust-gas purification catalyst and its use
KR101051418B1 (ko) 배기가스 정화용 촉매, 그 제조방법 및 이러한 촉매를이용한 배기가스의 정화방법
JP6132324B2 (ja) リーンバーンエンジン用排ガス浄化触媒
JP6616003B2 (ja) 内燃機関の排気ガスの浄化用触媒および該触媒を用いた排気ガスの浄化方法
US20210001315A1 (en) Exhaust gas purification device
WO2016163488A1 (ja) 内燃機関排気ガスの浄化触媒及び該触媒を用いた排気ガス浄化方法
JP2022514532A (ja) 層状三元変換(twc)触媒およびその触媒を製造する方法
JP7195995B2 (ja) 排ガス浄化用触媒
JP6533873B2 (ja) 内燃機関の排気ガスの浄化用触媒および該触媒を用いた排気ガスの浄化方法
US20200049041A1 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
WO2023143493A1 (en) Gasoline particulate filter

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019521498

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018894947

Country of ref document: EP

Effective date: 20200728