WO2019131336A1 - 凹凸構造体、光学部材及び電子機器 - Google Patents

凹凸構造体、光学部材及び電子機器 Download PDF

Info

Publication number
WO2019131336A1
WO2019131336A1 PCT/JP2018/046600 JP2018046600W WO2019131336A1 WO 2019131336 A1 WO2019131336 A1 WO 2019131336A1 JP 2018046600 W JP2018046600 W JP 2018046600W WO 2019131336 A1 WO2019131336 A1 WO 2019131336A1
Authority
WO
WIPO (PCT)
Prior art keywords
convex
concavo
aggregate
structure according
uneven
Prior art date
Application number
PCT/JP2018/046600
Other languages
English (en)
French (fr)
Inventor
正尚 菊池
田澤 洋志
林部 和弥
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to US16/955,496 priority Critical patent/US20200319377A1/en
Priority to CN201880083625.5A priority patent/CN111527421B/zh
Publication of WO2019131336A1 publication Critical patent/WO2019131336A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1809Diffraction gratings with pitch less than or comparable to the wavelength
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1866Transmission gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials

Definitions

  • the present invention relates to a concavo-convex structure, an optical member and an electronic device.
  • Patent Document 1 discloses a diffractive optical element in which a columnar structure having an average period equal to or less than the wavelength of incident light is formed as such a concavo-convex structure. Further, Patent Document 1 below discloses that the diffractive optical element is formed by spatially selective exposure using a laser interference exposure method.
  • the optical diffraction element disclosed in Patent Document 1 above since the concavo-convex structure is formed by the laser interference exposure method, it is possible to form any concavo-convex structure other than the concavo-convex structure corresponding to the interference pattern of the laser light. could not.
  • the optical diffraction element disclosed in Patent Document 1 described above can not have a complex uneven structure in which a plurality of concavo-convex assemblies each including a plurality of concave portions or convex portions are further arranged.
  • an object of the present invention is to provide an uneven structure having a more complicated uneven structure, an optical member provided with the uneven structure, and the optical system. It is providing the electronic device in which the uneven structure body was provided.
  • a plurality of aggregate structures including a plurality of recesses or projections provided on the surface of a substrate is provided, and the recesses are formed on the surface of the substrate
  • the uneven structure body is provided in which the average width of the region occupied by the convex portions is equal to or less than the wavelength belonging to the visible light band.
  • the average width of the area occupied by the recesses or projections on the surface of the substrate is a, and the average width of the bottom or zenith surface of the recesses or projections facing the surface of the substrate is b.
  • the average width of the cross section of the recess or the protrusion at a position h / 2 away from the surface of the base in the vertical direction is , (A + b) / 2 or more.
  • the average distance between the centers of gravity of the concave portions or convex portions adjacent to each other in the aggregate structure is such that the average width of the area occupied by the concave portions or convex portions on the surface of the substrate is x 1 and x 2 respectively. 0.65 (x 1/2 + x 2/2) or more 2.0 (x 1/2 + x 2/2) may be less than or equal to.
  • the average width of the entire aggregate structure may be 0.2 ⁇ m or more.
  • the shape of the region occupied by the concave or convex portion on the surface of the base may be substantially circular.
  • each of the lengths in the direction perpendicular to the surface of the base of the recess or the protrusion may belong to any of at least two or more groups having different center values.
  • each of the average widths of the regions occupied by the concave portions or the convex portions on the surface of the base material may belong to any of at least two or more groups having different central values.
  • the length of the recess or the protrusion in the direction perpendicular to the surface of the base may change stepwise within the aggregate structure.
  • the average width of the area occupied by the recesses or projections on the surface of the substrate may change stepwise within the aggregate structure.
  • the length in the direction perpendicular to the surface of the base of the recess or protrusion may vary irregularly in the aggregate structure.
  • the average width of the area occupied by the depressions or projections on the surface of the substrate may vary irregularly in the aggregate structure.
  • Each of the aggregate structures may be regularly arranged.
  • Each of the aggregate structures may be randomly arranged.
  • each of the recesses or protrusions may be provided in a close-packed arrangement.
  • an optical member using the above-mentioned concavo-convex structure body, or using a transfer thing which transferred the above-mentioned concavo-convex structure body is provided.
  • an electronic device using the above-mentioned concavo-convex structure or using a transferred product to which the above-mentioned concavo-convex structure is transferred.
  • the arrangement and the vertical length of the uneven portion can be controlled with high accuracy and high reproducibility.
  • disconnected the base material in which the uneven structure body is formed in the thickness direction is shown.
  • the top view which planarly viewed the principal surface of the base material in which an uneven structure body is formed from the perpendicular direction is shown.
  • FIG. 14 is a schematic perspective view of a collective structure of the concavo-convex structure according to Examples 1 to 9.
  • FIG. 7 is a schematic plan view of the concavo-convex structure according to Examples 1 to 9.
  • FIG. 10 is a schematic perspective view of a collective structure of the concavo-convex structure according to Comparative Example 1;
  • FIG. 7 is a schematic plan view of the uneven structure body according to Comparative Example 1;
  • FIG. 6 is an explanatory view showing a schematic cross-sectional shape of a convex portion in Example 1;
  • FIG. 10 is an explanatory view showing a schematic cross-sectional shape of a convex portion in Example 2;
  • FIG. 18 is an explanatory view showing a schematic cross-sectional shape of a convex portion in Example 3;
  • FIG. 18 is an explanatory view showing a schematic cross-sectional shape of a convex portion in Example 4;
  • FIG. 18 is an explanatory view showing a schematic cross-sectional shape of a convex portion in Example 5;
  • FIG. 21 is an explanatory view showing a schematic cross-sectional shape of a convex portion in Example 8;
  • FIG. 18 is an explanatory view showing a schematic cross-sectional shape of a convex portion in Example 9;
  • FIG. 1A is a cross-sectional view showing an example of the vertical structure of the concavo-convex structure according to the present embodiment
  • FIG. 1B is a plan view showing an example of a planar structure of the concavo-convex structure according to the present embodiment
  • FIG. 1A shows the sectional view which cut
  • FIG. 1B is planar view of one main surface of the base material in which the uneven structure body is formed The plan view is shown.
  • the concavo-convex structure 20 is configured by arranging a plurality of aggregate structures 210 in which a plurality of concavo-convex portions 200 are gathered on one main surface of the sheet-like base material 10.
  • the uneven structure body 20 is used, for example, as an optical member.
  • the concavo-convex structure 20 may be used, for example, as an optical member such as a light guide plate, a light diffusion plate, a microlens array, a Fresnel lens array, a diffraction grating, or an antireflective film.
  • the uneven structure body 20 may be used for electronic devices, such as a personal computer, a laptop, a television apparatus, a wearable device, a smart phone, or a tablet terminal, for example.
  • the substrate 10 is made of, for example, a material having transparency.
  • the substrate 10 is, for example, an organic material such as polycarbonate, polyethylene terephthalate, polymethyl methacrylate, triacetylcellulose (TriAcetyleCellulose: TAC), cyclic olefin polymer (COP) or cyclic olefin copolymer (COC). It may be made of resin or a transparent glass material such as quartz glass, soda lime glass or lead glass. “Transparent” means that the transmittance of light having a wavelength belonging to the visible light band (approximately 360 nm to 830 nm) is high (for example, the transmittance of light is 70% or more).
  • the concavo-convex portion 200 is a concave structure which is recessed in the thickness direction of the base material 10 or a convex structure which protrudes in the thickness direction of the base material 10.
  • FIG. 2B shows only the convex structure as the concavo-convex portion 200, it goes without saying that the concavo-convex portion 200 may have a concave structure.
  • Such a structure in which the uneven shape of the uneven structure 20 is reversed is, for example, by transferring the uneven shape to an organic resin or the like using an imprint technique in which the uneven structure 20 is used as a master (or replica master). It can be formed efficiently.
  • the length in the direction perpendicular to the surface of the base 10 of the uneven portion 200 (that is, the depth of the recess or the height of the protrusion, hereinafter also referred to as the vertical length) is at least two or more groups having different center values. It is provided to belong to any of
  • the concavo-convex portion 200 includes a first convex portion 222 having the longest vertical length, a third convex portion 226 having the shortest vertical length, and a first convex having a vertical length. And a second convex portion 224 which is intermediate between the portion 222 and the third convex portion 226.
  • the first convex portion 222, the second convex portion 224, and the third convex portion 226 are provided such that the vertical lengths have a difference of not less than the formation variation, and the aggregate structure 210 has different vertical lengths. It is provided so as to include a plurality of types of uneven portions 200 provided. That is, each of the concavo-convex portions 200 may be formed to be controlled to be a desired vertical length, instead of being formed to a random vertical length. Needless to say, the uneven portion 200 may be provided with four or more vertical lengths.
  • the size of the region occupied by the surface of the base material 10 of the concavo-convex portion 200 may be set to be larger as the vertical length of the concavo-convex portion 200 is longer.
  • the first convex portion 222 is formed such that the size of the region occupied on the surface of the base material 10 is the largest, and the size of the region occupied on the surface of the base 10 is the third convex portion 226 In such a manner that the area of the second convex portion 224 occupied on the surface of the base 10 is an intermediate size between the first convex portion 222 and the third convex portion 226. It may be formed.
  • the concavo-convex portion 200 may be provided such that the area occupied by the surface of the base material 10 becomes larger as the vertical length becomes larger. Therefore, the size of the region occupied by the surface of the base material 10 of the concavo-convex portion 200 is also provided to belong to any of at least two or more groups having different center values.
  • each of the plurality of types of uneven portions 200 (in FIG. 1A, the first convex portion 222, the second convex portion 224, and the third convex portion 226) formed with different vertical lengths is one At least one or more may be provided in the collective structure 210.
  • one collective structure 210 may be configured to include all of the first convex portion 222, the second convex portion 224, and the third convex portion 226.
  • one collective structure 210 may be configured by any one of the first convex portion 222, the second convex portion 224, and the third convex portion 226.
  • each of the first convex portion 222, the second convex portion 224, and the third convex portion 226 is provided in the collective structure 210 is a function realized by the collective structure 210 or the concavo-convex structure 20. It is possible to control suitably based on.
  • the collective structure 210 may be configured such that the vertical length of the uneven portion 200 changes stepwise in the collective structure 210. That is, the collective structure 210 may be provided such that the vertical length of the uneven portion 200 gradually changes along the predetermined direction. Specifically, the vertical length of the concavo-convex portion 200 may change so as to draw an arc along a predetermined direction throughout the collective structure 210 or to be a straight line. Similarly, the collective structure 210 may be configured so that the size or average width of the region occupied by the surface of the base 10 of the uneven portion 200 also changes stepwise.
  • the aggregate structure 210 may be configured such that the vertical length of the concavo-convex portion 200 changes irregularly. That is, the assembly structure 210 may be provided such that the vertical length of the uneven portion 200 changes randomly. Specifically, the vertical length of the concavo-convex portion 200 may change so that regularity is not seen in the entire assembly structure 210. Similarly, the assembly structure 210 may be configured such that the size or average width of the region occupied by the surface of the base 10 of the uneven portion 200 changes randomly.
  • the assembly structure 210 is configured by assembling a plurality of uneven portions 200.
  • the collective structure 210 may be configured by close-packing arrangement of a plurality of concavo-convex portions 200 whose planar shape on the surface of the base material 10 is substantially circular.
  • the overall average width of the aggregate structure 210 may be, for example, at least 0.2 ⁇ m or more, preferably larger than the wavelength belonging to the visible light band.
  • Each of the assembly structures 210 may be spaced apart from each other by a distance larger than that of each of the concavo-convex portions 200, for example, from each other by a distance larger than a wavelength belonging to the visible light band.
  • the planar shape of the region occupied by the concavo-convex portion 200 on the surface of the base material 10 may be a substantially circular shape as described above, but may be, for example, an elliptical shape or a polygonal shape. Further, the arrangement of the concavo-convex portion 200 in the collective structure 210 may be a close-packed arrangement as described above, but it may be a tetragonal lattice arrangement, a hexagonal lattice arrangement, a zigzag arrangement, etc. Good.
  • the planar shape of the uneven portion 200 on the surface of the substrate 10 and the arrangement of the uneven portion 200 in the aggregate structure 210 can be appropriately controlled based on the function realized by the aggregate structure 210 or the uneven structure 20. .
  • Each of the concavo-convex portions 200 may be provided such that the average width of the region on the surface of the substrate 10 is equal to or less than the wavelength belonging to the visible light band.
  • the interval between each of the concavo-convex portions 200 in the assembly structure 210 may be similarly provided to be equal to or less than the wavelength belonging to the visible light band.
  • the average width and interval of the region of the concavo-convex portion 200 may be 100 nm or more and 350 nm or less.
  • the aggregate structure 210 and the concavo-convex structure 20 can function as a so-called moth-eye structure that suppresses reflection of incident light belonging to the visible light band .
  • Each of the aggregate structures 210 may be arranged regularly. For example, as shown in FIG. 1B, in each of the aggregate structures 210, the aggregate structures 210 having the same configuration and arrangement of the concavo-convex portions 200 may be regularly arranged at predetermined intervals. Alternatively, each of the aggregate structures 210 may be randomly arranged. For example, each of the aggregate structures 210 may be randomly arranged at intervals of random size. The arrangement of each of the aggregate structures 210 can be appropriately controlled based on the function realized by the uneven structure body 20.
  • FIG. 2A is a cross-sectional view showing a specific configuration of a protrusion 2001 which is an example of the uneven portion 200
  • FIG. 2B is a cross-sectional view showing a specific configuration of a recess 2002 which is another example of the uneven portion 200. It is.
  • the convex portion 2001 and the concave portion 2002 have an isotropic three-dimensional shape in the in-plane direction of the base material 10.
  • convex part 2001 may be provided in the solid
  • the convex portion 2001 may be provided in a bullet-shaped three-dimensional shape.
  • the width of the convex portion 2001 on the surface of the base material 10 is a
  • the width of the flat surface of the top of the convex portion 2001 is b
  • the surface of the base 10 to the flat surface of the top of the convex portion 2001 The distance of (ie, the height of the convex portion 2001) is h.
  • the width w of the convex portion 2001 having a height of h / 2 from the surface of the base material 10 is preferably (a + b) / 2 or more.
  • the width w of the convex portion 2001 having a height of h / 2 from the surface of the base material 10 is more preferably 1.2 or more times (a + b) / 2.
  • the convex portion 2001 When the shape of the convex portion 2001 satisfies the above-described condition, the convex portion 2001 is provided in a three-dimensional shape in which the outline from the surface of the base material 10 toward the zenith portion bulges outward. According to the convex portion 2001 having such a shape, it is possible to further improve the anti-reflection characteristics of the aggregate structure 210 and the concavo-convex structure 20.
  • the upper limit of w is not particularly limited, the upper limit of w is, for example, a in consideration of the shape of the convex portion 2001. However, in consideration of the anti-reflection characteristics of the concavo-convex structure 20, w is preferably, for example, 1.41 times or less of (a + b) / 2. The upper limit of w can be appropriately selected depending on the application of the concavo-convex structure 20.
  • the recessed part 2002 may be provided in the shape which made the convex part 2001 shown in FIG. 2A upside down by making the surface of the base material 10 into a plane of symmetry.
  • the recess 2002 may be provided in a bowl-shaped hollow shape with a flat bottom surface.
  • the width of the recess 2002 on the surface of the substrate 10 is a
  • the width of the flat surface of the bottom of the recess 2002 is b
  • the distance from the surface of the substrate 10 to the flat surface of the bottom of the recess 2002 is h.
  • the width w of the concave portion 2002 having a depth of h / 2 from the surface of the base material 10 is preferably (a + b) / 2 or more.
  • the width w of the concave portion 2002 at a depth of h / 2 from the surface of the base material 10 is more preferably 1.2 or more times (a + b) / 2.
  • the concave portion 2002 When the shape of the concave portion 2002 satisfies the above-described condition, the concave portion 2002 is provided in a three-dimensional shape in which the outline from the surface to the bottom of the substrate 10 bulges outward.
  • the collective structure 210 and the concavo-convex structure 20 provided with the concave portions 2002 having such shapes can further improve the anti-reflection characteristics of the transferred material in which the concavo-convex shape is reversed.
  • the upper limit of w is not particularly limited, the upper limit of w is, for example, a in consideration of the shape of the recess 2002.
  • w is preferably, for example, 1.41 times or less of (a + b) / 2.
  • the upper limit of w can be appropriately selected depending on the application of the concavo-convex structure 20.
  • FIG. 3 is a plan view for explaining the arrangement intervals of the uneven portions 200.
  • FIG. 4 is a schematic view showing an example of the arrangement of the concavo-convex part 200 in each of the case where the concavo-convex part 200 has the same size or the concavo-convex part 200 has a different size.
  • the width of the uneven portion 200-1 on the surface of the base material 10 is x 1
  • the width of the uneven portion 200-2 adjacent to the uneven portion 200-1 on the surface of the base 10 is x 2 I assume.
  • the average distance i between the centroid of the concave-convex portion 200-1, and the centroid of the concave-convex portion 200-2 0.65 (x 1/2 + x 2/2) or more 2.0 (x 1/2 + x 2/2 Or less) is preferable.
  • the center of gravity of the concave-convex portion 200-1 the average distance i between the centroid of the concave-convex portion 200-2, 0.8 (x 1/2 + x 2/2) or more 1.2 (x 1/2 + x 2/2) It is more preferable that
  • the adjacent concavo-convex portions 200 are provided with appropriate overlapping or spacing therebetween, so the collective structure 210 and the concavo-convex structure It is possible to further improve the anti-reflection properties of 20. For example, if the average distance i between the centroid is less than 0.65 (x 1/2 + x 2/2), the concave-convex portion 200 adjacent the substantially vertical uneven portion 200 by overlap each other becomes too large It is not preferable because the length decreases and the anti-reflection characteristics of the aggregate structure 210 and the concavo-convex structure 20 deteriorate.
  • the average distance i between the centroid is 2.0 (x 1/2 + x 2/2) greater than the concave-convex portion 200 adjacent the flat surface between the concave-convex portion 200 by distance therebetween is too large Is not preferable because the anti-reflection characteristics of the aggregate structure 210 and the concavo-convex structure 20 decrease.
  • x 1 and x 2 described above may be circular or elliptical diameter or major axis of the planar shape of the concave-convex portion 200.
  • the center of gravity of the uneven portion 200 may be the center of a circle or an ellipse having a planar shape of the uneven portion 200.
  • the above x 1 and x 2 may be the diameter of the circumscribed circle of the planar shape of the uneven portion 200.
  • the center of gravity of the uneven portion 200 may be the center of the circumscribed circle of the planar shape of the uneven portion 200.
  • each of the plurality of uneven portions 200 will be described with reference to FIG. 4, for example, when the size of the region occupied by the uneven portion 200 on the surface of the base material 10 is substantially constant (in the case of the uneven portion 200A), the uneven portion 200A is in the closest packing arrangement In addition, the same interval as the size of the area occupied by the surface of the base 10 of the uneven portion 200 may be provided.
  • the uneven portion 200B may be provided at a constant interval.
  • the concavo-convex portion 200B is not in the closest packing arrangement, the concavo-convex portion 200B can be easily formed.
  • the size of the area occupied by the uneven portion 200 on the surface of the base 10 fluctuates (in the case of the uneven portion 200C)
  • the size of the area occupied by the uneven portion 200 on the surface of each base 10 is It may be provided at controlled intervals depending on the size. In such a case, even when the size of the area occupied by the uneven portion 200C on the surface of the base 10 fluctuates, the close-packed arrangement can be realized.
  • the arrangement of each of the concavo-convex portions 200 and the size on the surface of the base material 10 can be controlled with high accuracy. Therefore, even when the size of the region occupied by the uneven portion 200 on the surface of the base material 10 changes (in the case of the uneven portion 200C), the uneven portion 200 can be formed in the closest packing arrangement.
  • the concavo-convex portion 200 of the concavo-convex structure 20 is formed with a plurality of different vertical lengths. That is, the vertical length of the uneven portion 200 is provided to belong to any of a plurality of groups having different center values. Therefore, in the concavo-convex structure 20, the vertical length of each of the concavo-convex portions 200 is controlled with high accuracy so as to be a predetermined vertical length for each concavo-convex portion 200.
  • the concavo-convex structure 20 is provided so that the aggregate structure 210 configured by the plurality of concavo-convex portions 200 is separated from each other.
  • the formation position of the concavo-convex portion 200 is controlled with high accuracy so as to be provided at different intervals in the assembly structure 210 and between the assembly structures 210. Therefore, the concavo-convex structure 20 according to the present embodiment can have a more complicated concavo-convex shape.
  • FIGS. 5 to 9 are a cross-sectional view and a plan view schematically showing an example of the concavo-convex structure 20 according to the present embodiment. Note that, in the plan views of FIGS. 5 to 9, the darker the dot hatching, the higher the height corresponds to the convex portion.
  • the concavo-convex structure 21 may have a structure in which a collective structure 211 in which the convex portions 201 are arranged in a tetragonal lattice shape is provided at a predetermined interval.
  • the collective structure 211 is provided such that the height of the convex portion 201 in the collective structure 211 gradually increases or decreases in the first direction, and a second orthogonal to the first direction. In the directions, the heights of the protrusions 201 are provided to be substantially the same. Therefore, in the concavo-convex structure 21 shown in FIG.
  • the aggregate structure 211 can be formed as a structure showing a triangular-like (sawtooth-like) shape as a whole in the first direction.
  • a concavo-convex structure 21 can be used, for example, as a diffractive element provided with an antireflective ability by a moth-eye structure.
  • the concavo-convex structure 22 may have a structure in which a collective structure 212 in which the convex portions 202 are arranged in a tetragonal lattice shape is provided at a predetermined interval.
  • the collective structure 212 is provided such that the height of the convex portion 202 in the collective structure 212 gradually increases toward the center of the collective structure 212. Therefore, in the concavo-convex structure 22 shown in FIG. 6, the collective structure 212 can be formed as a structure showing a convex lens-like shape as a whole.
  • Such a concavo-convex structure 22 can be used, for example, as a microlens array provided with an antireflective ability by a moth-eye structure.
  • the concavo-convex structure 23 may have a structure in which a collective structure 213 in which the convex portions 203 are arranged in a tetragonal lattice shape is provided at a predetermined interval.
  • the aggregate structure 213 is provided such that the height of the convex portion 203 in the aggregate structure 213 increases stepwise toward the center of the aggregate structure 213, and the height of the convex portion 203 is predetermined. It is provided in the shape to which height falls concentrically so that it may be settled in the range of. Therefore, in the concavo-convex structure 23 shown in FIG.
  • the aggregate structure 213 can be formed as a structure showing a Fresnel lens-like shape as a whole.
  • a concavo-convex structure 23 can be used, for example, as a Fresnel lens array provided with an antireflective ability by a moth-eye structure.
  • the concavo-convex structure 24 may have a structure in which aggregate structures 214 in which the convex portions 204 are arranged in a tetragonal lattice shape are provided at predetermined intervals.
  • the aggregate structure 214 is provided such that the heights of the convex portions 204 in the aggregate structure 214 are irregular (random).
  • the heights of the convex portions 204 are provided to belong to any of a plurality of groups having different central values, more strictly, the arrangement of the convex portions 204 having different heights is not possible in the collective structure 214. It is provided to be a rule (random).
  • the collective structure 214 may be formed as a moth-eye structure in which the height of the projections 204 is irregular as a whole.
  • a concavo-convex structure 24 can be used as, for example, an antireflective film or a light diffusion plate having a small amount of interference light and diffracted light.
  • the concavo-convex structure 25 may have a structure in which aggregate structures 215 in which the convex portions 205 are arranged in an irregular (random) arrangement are provided at predetermined intervals.
  • the collective structure 215 is provided such that the arrangement of the convex portions 205 having different heights becomes irregular (random) in the collective structure 215. Be Therefore, in the concavo-convex structure 25 shown in FIG. 9, the collective structure 215 can be formed as a moth-eye structure in which the height and arrangement of the protrusions 205 as a whole are irregular.
  • the concavo-convex structure 25 can be used, for example, as an antireflective film or a light diffusing plate with less interference light and diffracted light.
  • the concavo-convex structure 25 shown in FIG. 8 has lower regularity than the concavo-convex structure 24 shown in FIG. 8, the generation of unintended diffracted light or interference light can be further suppressed.
  • the concavo-convex structure 20 forms a resist pattern corresponding to the concavo-convex structure on the outer peripheral surface of the substrate 10 using thermal lithography with laser light, and then etches the substrate 10 using the resist pattern as a mask It can be manufactured by doing.
  • the concavo-convex structure 20 is a known micro processing technology such as electron beam lithography using an electron beam lithography apparatus, multi-patterning using photolithography, or ultra-fine cutting using a diamond bite. It can be manufactured using
  • the concavo-convex structure 20 according to the present embodiment can be manufactured by an imprint technique using the concavo-convex structure 20 formed by the above-described manufacturing method as a master. Specifically, by pressing the concavo-convex structure 20 (that is, the master) against a sheet-like resin or the like and transferring the concavo-convex shape on the surface, a transfer product in which the concavo-convex shape is reversed from the master can be manufactured.
  • the concavo-convex structure according to the present embodiment will be more specifically described with reference to examples and comparative examples.
  • the Example shown below is one condition example for showing the practicability and the effect of the uneven structure body concerning this embodiment, and its manufacturing method, and the uneven structure body concerning this embodiment and its manufacturing method The present invention is not limited to the following examples.
  • Examples 1 to 9 A master corresponding to the concavo-convex structure according to Examples 1 to 9 is manufactured by the following steps, and a transfer product of the produced master (concave structure according to Examples 1 to 9) is manufactured using the imprint technique. did.
  • tungsten oxide is sputtered on the outer peripheral surface of a base material (axial length 100 mm, outer peripheral thickness 4.5 mm) made of cylindrical quartz glass.
  • the film was formed to form a resist layer.
  • thermal lithography was performed by laser light from a semiconductor laser light source with a wavelength of 405 nm, and latent images corresponding to each of Examples 1 to 9 were formed on the resist layer.
  • TMAH tetramethylammonium hydroxide
  • the substrate after exposure is developed at 27 ° C. for 900 seconds to obtain a latent image portion
  • the resist layer was dissolved, and a concavo-convex structure corresponding to each of Examples 1 to 9 was formed in the resist layer.
  • RIE reactive ion etching
  • a master having a concave-convex structure formed on the outer peripheral surface was produced, and a transcript was produced using the produced master.
  • the transfer products according to Examples 1 to 9 were produced by transferring the concavo-convex structure formed on the outer peripheral surface of the master to a UV curable resin using a transfer device.
  • a polyethylene terephthalate (PolyEthylene Terephthalate: PET) film was used for the sheet-like base material of a transcription thing, and ultraviolet curing resin was hardened by irradiating the ultraviolet-ray of 1000 mJ / cm 2 for 1 minute with a metal halide lamp.
  • Comparative example 1 A transferred product (the concavo-convex structure according to Comparative Example 1) was formed by the same method as in Examples 1 to 9 except that a latent image corresponding to Comparative Example 1 was formed on the resist layer using photolithography by exposure using a mask. ) was produced.
  • FIGS. 10A and 10B are shown in FIGS. 10A and 10B, and the schematic shapes of the concavo-convex structure formed in the concavo-convex structure according to Comparative Example 1 are shown.
  • the shape is shown in FIGS. 11A and 11B.
  • FIG. 10A is a schematic perspective view of a collective structure in the concavo-convex structure according to Examples 1 to 9, and
  • FIG. 10B is a schematic plan view of the concavo-convex structure according to Examples 1 to 9.
  • 11A is a schematic perspective view of a collective structure in the concavo-convex structure according to comparative example 1
  • FIG. 11B is a schematic plan view of the concavo-convex structure according to comparative example 1.
  • FIG. 10A is a schematic perspective view of a collective structure in the concavo-convex structure according to comparative example 1
  • FIG. 11B is a schematic plan view of the concavo-convex structure according to comparative example 1.
  • the concavo-convex structures according to Examples 1 to 9 are provided by arranging a plurality of aggregate structures in which a plurality of convex portions are gathered.
  • the concavo-convex structure is provided by arranging each of the collective structures arranged so that the convex portions projecting in the vertical direction from the surface of the base material are in the closest packing on a plane, mutually separated.
  • the collective structure is provided so as to have a convex lens-like shape as a whole by being provided so that the convex portion located at the center becomes stepwise higher.
  • the concavo-convex structures according to Examples 1 to 9 differ in the three-dimensional shape of the convex portion and the average distance between the centers of gravity of the adjacent convex portions.
  • the concavo-convex structures according to Examples 1 to 9 are provided so as to have the same convex lens-like shape as a whole.
  • the uneven structure body which concerns on the comparative example 1 is provided by arranging multiple single convex parts which protrude in a perpendicular direction from the surface of a base material.
  • the concavo-convex structure is provided by cutting the cone in a plane parallel to the bottom surface, and arranging the shapes of the truncated cones excluding the small conical portion apart from each other. Therefore, in the concavo-convex structure according to Comparative Example 1 and the concavo-convex structures according to Examples 1 to 9, the convex lens-like structure is constituted by a single convex portion or a plurality of convex portions. Are different from each other in terms of
  • the shape of the convex portion is measured by AFM, and the average width b of the flat surface of the top of the convex portion, the average width a of the region of the convex portion on the substrate surface, And the average width w of the convex part in h / 2 when the height of a convex part is set to h was computed.
  • the average distance between the centers of gravity of the adjacent convex portions was calculated by SEM.
  • the average distance between a, b, w and the center of gravity was calculated as an average value of each of the convex portions in one assembly structure.
  • the surface reflection spectra of the concavo-convex structures according to Examples 1 to 9 and Comparative Example 1 were measured using a spectrophotometer (V500 manufactured by JASCO Corporation). Table 1 below shows the minimum value of reflectance between wavelengths 380 nm and 780 nm. It is more preferable that the minimum value of the reflectance in the wavelength of 380 nm to 780 nm is 1% or less.
  • the convex lens-like structure is formed as a collective structure in which a plurality of convex portions are collected. Therefore, it is understood that the reflectance of the concavo-convex structure according to Examples 1 to 9 is reduced as compared to the reflectance of the concavo-convex structure according to Comparative Example 1. That is, it can be seen that the concavo-convex structures according to Examples 1 to 9 can obtain a higher antireflection effect than the concavo-convex structure according to Comparative Example 1.
  • the width w of the convex portion at h / 2 is smaller than (a + b) / 2 and the reflectance increases as the convex portion becomes thinner. It can be seen that the anti-reflection effect is reduced.
  • the concavo-convex structure 20 according to the present embodiment can be used as an optical member, and an electronic device on which the concavo-convex structure 20 according to the present embodiment is mounted is also included in the scope of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

【課題】より複雑な凹凸構造を備える凹凸構造体、光学部材、及び電子機器を提供する。 【解決手段】基材の表面に設けられた複数の凹部又は凸部から構成される集合構造を複数備え、前記基材の表面にて前記凹部又は凸部が占める領域の平均幅は、可視光帯域に属する波長以下である、凹凸構造体。

Description

凹凸構造体、光学部材及び電子機器
 本発明は、凹凸構造体、光学部材及び電子機器に関する。
 近年、入射光の波長以下の平均周期を有する凹凸構造体を用いた光学部材が広く開発されている。このような凹凸構造体は、入射光の波長よりも大きな平均周期を有する凹凸構造体とは原理的に異なる特性を示すため、より高い特性を備える光学部材を実現できる可能性があると期待されている。
 例えば、下記の特許文献1には、このような凹凸構造体として、入射光の波長以下の平均周期を有する柱状構造が形成された回折光学素子が開示されている。また、下記の特許文献1には、該回折光学素子を、レーザ干渉露光法を用いて空間選択的に露光を行うことで形成することが開示されている。
特開2007-57622号公報
 しかし、上記の特許文献1に開示された光学回折素子は、凹凸構造がレーザ干渉露光法によって形成されるため、レーザ光の干渉パターンに対応する凹凸構造以外の任意の凹凸構造を形成することができなかった。特に、上記の特許文献1に開示された光学回折素子は、複数の凹部又は凸部から構成される凹凸集合体をさらに複数配列させたような複雑な凹凸構造を取り得なかった。
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、より複雑な凹凸構造を備える凹凸構造体、該凹凸構造体が設けられた光学部材、及び該凹凸構造体が設けられた電子機器を提供することにある。
 上記課題を解決するために、本発明のある観点によれば、基材の表面に設けられた複数の凹部又は凸部から構成される集合構造を複数備え、前記基材の表面にて前記凹部又は凸部が占める領域の平均幅は、可視光帯域に属する波長以下である、凹凸構造体が提供される。
 前記基材の表面にて前記凹部又は凸部が占める領域の平均幅をaとし、前記凹部又は凸部の前記基材の表面と対向する底面又は天頂面の平均幅をbとし、前記凹部又は凸部の前記基材の表面に対して垂直方向の長さをhとする場合、前記基材の表面から前記垂直方向にh/2離れた位置における前記凹部又は凸部の断面の平均幅は、(a+b)/2以上であってもよい。
 前記集合構造内で隣接する前記凹部又は凸部の重心間の平均距離は、該凹部又は凸部が前記基材の表面にて占める領域の平均幅をそれぞれx及びxとする場合に、0.65(x/2+x/2)以上2.0(x/2+x/2)以下であってもよい。
 前記集合構造全体の平均幅は、0.2μm以上であってもよい。
 前記基材の表面にて前記凹部又は凸部が占める領域の形状は、略円形状であってもよい。
 前記集合構造内において、前記凹部又は凸部の前記基材の表面に対して垂直方向の長さの各々は、中心値が異なる少なくとも2以上のグループのいずれかに属してもよい。
 前記集合構造内において、前記凹部又は凸部が前記基材の表面にて占める領域の平均幅の各々は、中心値が異なる少なくとも2以上のグループのいずれかに属してもよい。
 前記凹部又は凸部の前記基材の表面に対して垂直方向の長さは、前記集合構造内で段階的に変化してもよい。
 前記凹部又は凸部が前記基材の表面にて占める領域の平均幅は、前記集合構造内で段階的に変化してもよい。
 前記凹部又は凸部の前記基材の表面に対して垂直方向の長さは、前記集合構造内で不規則に変化してもよい。
 前記凹部又は凸部が前記基材の表面にて占める領域の平均幅は、前記集合構造内で不規則に変化してもよい。
 前記集合構造の各々は、規則的に配列されてもよい。
 前記集合構造の各々は、不規則的に配列されてもよい。
 前記集合構造内において、前記凹部又は凸部の各々は、最密充填配置にて設けられてもよい。
 また、上記課題を解決するために、本発明の別の観点によれば、上記の凹凸構造体を用いた、又は前記凹凸構造体を転写した転写物を用いた、光学部材が提供される。
 また、上記課題を解決するために、本発明の別の観点によれば、上記の凹凸構造体を用いた、又は前記凹凸構造体を転写した転写物を用いた、電子機器が提供される。
 上記構成によれば、凹凸部の配置及び垂直長さを高い精度及び高い再現性で制御することができる。
 以上説明したように本発明によれば、より複雑な凹凸構造を備える凹凸構造体、該凹凸構造体が設けられた光学部材、及び該凹凸構造体が設けられた電子機器を提供することができる。
凹凸構造体が形成される基材を厚み方向に切断した断面図を示す。 凹凸構造体が形成される基材の一主面を垂直な方向から平面視した平面図を示す。 凹凸部の一例である凸部の具体的な構成を示す断面図である。 凹凸部の他の例である凹部の具体的な構成を示す断面図である。 凹凸部の各々の配置間隔を説明する平面図である。 凹凸部の大きさが同じ場合、又は凹凸部の大きさが異なる場合における凹凸部の配置の一例を示す模式図である。 凹凸構造体の一例を模式的に示す断面図及び平面図である。 凹凸構造体の他の例を模式的に示す断面図及び平面図である。 凹凸構造体の他の例を模式的に示す断面図及び平面図である。 凹凸構造体の他の例を模式的に示す断面図及び平面図である。 凹凸構造体の他の例を模式的に示す断面図及び平面図である。 実施例1~9に係る凹凸構造体における集合構造の模式的な斜視図である。 実施例1~9に係る凹凸構造体の模式的な平面図である。 比較例1に係る凹凸構造体における集合構造の模式的な斜視図である。 比較例1に係る凹凸構造体の模式的な平面図である。 実施例1における凸部の模式的な断面形状を示す説明図である。 実施例2における凸部の模式的な断面形状を示す説明図である。 実施例3における凸部の模式的な断面形状を示す説明図である。 実施例4における凸部の模式的な断面形状を示す説明図である。 実施例5における凸部の模式的な断面形状を示す説明図である。 実施例8における凸部の模式的な断面形状を示す説明図である。 実施例9における凸部の模式的な断面形状を示す説明図である。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 <1.凹凸構造体の構成>
 まず、図1A及び図1Bを参照して、本発明の一実施形態に係る凹凸構造体の構成について説明する。図1Aは、本実施形態に係る凹凸構造体の縦構造の一例を示す断面図であり、図1Bは、本実施形態に係る凹凸構造体の平面構造の一例を示す平面図である。なお、図1Aは、凹凸構造体が形成される基材を厚み方向に切断した断面図を示し、図1Bは、凹凸構造体が形成される基材の一主面を垂直な方向から平面視した平面図を示す。
 図1A及び図1Bに示すように、凹凸構造体20は、シート状の基材10の一主面に、凹凸部200を複数集合させた集合構造210が複数配列されることで構成される。
 凹凸構造体20は、例えば、光学部材として用いられる。凹凸構造体20は、例えば、導光板、光拡散板、マイクロレンズアレイ、フレネルレンズアレイ、回折格子、又は反射防止フィルムなどの光学部材として用いられてもよい。また、凹凸構造体20を光学部材として用いる場合、凹凸構造体20は、例えば、パーソナルコンピュータ、ラップトップ、テレビジョン装置、ウェアラブルデバイス、スマートフォン又はタブレット端末などの電子機器に用いられてもよい。
 基材10は、例えば、透明性を有する材料で構成される。基材10は、例えば、ポリカーボネート、ポリエチレンテレフタレート、ポリメチルメタアクリレート、トリアセチルセルロース(TriAcetyleCellulose:TAC)、環状オレフィンポリマー(Cyclic Olefin Polymer:COP)若しくは環状オレフィンコポリマー(Cyclic Olefin Copolymer:COC)などの有機樹脂、又は石英ガラス、ソーダライムガラス若しくは鉛ガラスなどの透明なガラス材料にて構成されてもよい。なお、「透明」とは、可視光帯域(おおよそ360nm~830nm)に属する波長を有する光の透過率が高い(例えば、光の透過率が70%以上である)ことを表す。
 凹凸部200は、基材10の厚み方向に落ち窪んだ凹構造、又は基材10の厚み方向に突出した凸構造である。なお、図2B以外では、凹凸部200として凸構造のみを図示するが、凹凸部200は凹構造であってもよいことは言うまでもない。このような凹凸構造体20の凹凸形状が反転した構造体は、例えば、凹凸構造体20を原盤(又はレプリカ原盤)とするインプリント技術を用いて、有機樹脂等に凹凸形状を転写することで効率的に形成することができる。
 凹凸部200の基材10の表面に対して垂直方向の長さ(すなわち、凹部の深さ又は凸部の高さ。以下では垂直長さとも称する)は、中心値が異なる少なくとも2以上のグループのいずれかに属するように設けられる。例えば、図1Aに示すように、凹凸部200は、垂直長さが最も長い第1の凸部222と、垂直長さが最も短い第3の凸部226と、垂直長さが第1の凸部222及び第3の凸部226の中間である第2の凸部224と、を含んでもよい。第1の凸部222、第2の凸部224、及び第3の凸部226は、垂直長さが形成ばらつき以上の差を有するように設けられ、集合構造210は、異なる垂直長さにて設けられた複数種の凹凸部200を含むように設けられる。すなわち、凹凸部200の各々は、ランダムな垂直長さに形成されるのではなく、所望の垂直長さとなるように制御されて形成され得る。なお、凹凸部200は、4種以上の垂直長さにて設けられてもよいことは言うまでもない。
 ここで、凹凸部200の基材10の表面にて占める領域の大きさは、凹凸部200の垂直長さが長くなるほど、より大きくなるように設けられ得る。例えば、第1の凸部222は、基材10の表面にて占める領域の大きさが最も大きくなるように形成され、第3の凸部226は基材10の表面にて占める領域の大きさが最も小さくなるように形成され、第2の凸部224は基材10の表面にて占める領域の大きさが第1の凸部222及び第3の凸部226の中間の大きさとなるように形成されてもよい。すなわち、凹凸部200は、垂直長さが大きくなるほど、基材10の表面にて占める領域が大きくなるように設けられてもよい。したがって、凹凸部200の基材10の表面にて占める領域の大きさも、中心値が異なる少なくとも2以上のグループのいずれかに属するように設けられることになる。
 なお、異なる垂直長さにて形成された複数種の凹凸部200(図1Aでは、第1の凸部222、第2の凸部224、及び第3の凸部226)の各々は、1つの集合構造210内に少なくとも1種以上設けられていればよい。例えば、1つの集合構造210は、第1の凸部222、第2の凸部224、及び第3の凸部226の各々をすべて含むように構成されてもよい。または、1つの集合構造210は、第1の凸部222、第2の凸部224、及び第3の凸部226のいずれかにて構成されてもよい。集合構造210内にて、第1の凸部222、第2の凸部224、及び第3の凸部226の各々が設けられる数及び配置は、集合構造210又は凹凸構造体20が実現する機能に基づいて、適宜制御することが可能である。
 例えば、集合構造210は、集合構造210内で凹凸部200の垂直長さが段階的に変化するように構成されてもよい。すなわち、集合構造210は、所定の方向に沿って凹凸部200の垂直長さが徐々に変化するように設けられてもよい。具体的には、凹凸部200の垂直長さは、集合構造210全体で所定の方向に沿って弧を描くように、又は直線となるように変化してもよい。同様に、集合構造210は、凹凸部200の基材10の表面にて占める領域の大きさ又は平均幅も段階的に変化するように構成されてもよい。
 または、例えば、集合構造210は、凹凸部200の垂直長さが不規則に変化するように構成されてもよい。すなわち、集合構造210は、凹凸部200の垂直長さがランダムに変化するように設けられてもよい。具体的には、凹凸部200の垂直長さは、集合構造210全体で規則性が見られないように変化してもよい。同様に、集合構造210は、凹凸部200の基材10の表面にて占める領域の大きさ又は平均幅がランダムに変化するように構成されてもよい。
 集合構造210は、複数の凹凸部200が集合することで構成される。例えば、図1Bに示すように、集合構造210は、基材10の表面における平面形状が略円形状である複数の凹凸部200が最密充填配置されることで構成されてもよい。このような場合、集合構造210の全体の平均幅は、例えば、少なくとも0.2μm以上に形成され、好ましくは可視光帯域に属する波長よりも大きく形成され得る。集合構造210の各々は、凹凸部200の各々の間隔よりも広い間隔で互いに離隔されてもよく、例えば、可視光帯域に属する波長よりも大きい間隔で互いに離隔されてもよい。
 基材10の表面にて凹凸部200が占める領域の平面形状は、上述したように、略円形状であってもよいが、例えば、楕円形状、又は多角形形状などであってもよい。また、集合構造210内における凹凸部200の配置は、上述したように最密充填配置であってもよいが、四方格子状配置、六方格子状配置、又は千鳥格子状配置などであってもよい。基材10の表面における凹凸部200の平面形状、及び凹凸部200の集合構造210内における配置は、集合構造210又は凹凸構造体20が実現する機能に基づいて、適宜制御することが可能である。
 凹凸部200の各々は、基材10の表面における領域の平均幅が可視光帯域に属する波長以下となるように設けられてもよい。また、集合構造210内での凹凸部200の各々の間隔は、同様に、可視光帯域に属する波長以下となるように設けられてもよい。具体的には、凹凸部200の領域の平均幅及び間隔は、100nm以上350nm以下であってもよい。凹凸部200の領域の平均幅及び間隔が上記の範囲である場合、集合構造210及び凹凸構造体20は、可視光帯域に属する入射光の反射を抑制する、いわゆるモスアイ構造として機能することができる。
 集合構造210の各々は、規則的に配列されてもよい。例えば、図1Bに示すように、集合構造210の各々は、凹凸部200の構成及び配置が同一の集合構造210が所定の間隔を置いて規則的に配列されてもよい。または、集合構造210の各々は、不規則的に配列されてもよい。例えば、集合構造210の各々は、互いにランダムな大きさの間隔を置いて不規則的に配列されてもよい。集合構造210の各々の配列は、凹凸構造体20が実現する機能に基づいて、適宜制御することが可能である。
 <2.凹部又は凸部の構成>
 続いて、図2A~図4を参照して、集合構造210内における凹凸部200の構成について、より具体的に説明する。
 まず、図2A及び図2Bを参照して、凹凸部200の具体的な構成について説明する。図2Aは、凹凸部200の一例である凸部2001の具体的な構成を示す断面図であり、図2Bは、凹凸部200の他の例である凹部2002の具体的な構成を示す断面図である。なお、図2A及び図2Bでは、凸部2001及び凹部2002は、基材10の面内方向に等方的な立体形状をしているものとする。
 図2Aに示すように、凸部2001は、長球の回転楕円体を極付近及び赤道付近で回転軸と垂直な面で切断した立体形状にて設けられてもよい。換言すると、凸部2001は、砲弾型の立体形状で設けられてもよい。
 図2Aにおいて、凸部2001の基材10の表面における幅をaとし、凸部2001の天頂部の平坦面の幅をbとし、基材10の表面から凸部2001の天頂部の平坦面までの距離(すなわち、凸部2001の高さ)をhとする。このとき、基材10の表面からh/2の高さの凸部2001の幅wは、(a+b)/2以上となることが好ましい。また、基材10の表面からh/2の高さの凸部2001の幅wは、(a+b)/2の1.2倍以上となることがより好ましい。
 凸部2001の形状が上述した条件を満たす場合、凸部2001は、基材10の表面から天頂部へ向かう輪郭が外側に膨らんだ立体形状で設けられることになる。このような形状の凸部2001によれば、集合構造210及び凹凸構造体20の反射防止特性をより向上させることができる。なお、wの上限は特に限定しないが、凸部2001の形状を考慮すると、wの上限は例えばaである。ただし、凹凸構造体20の反射防止特性を考慮すると、wは、例えば、(a+b)/2の1.41倍以下であることが好ましい。wの上限は、凹凸構造体20の用途によって、適宜選択することが可能である。
 一方、図2Bに示すように、凹部2002は、図2Aで示した凸部2001を基材10の表面を対称面として上下反転させた形状にて設けられてもよい。例えば、凹部2002は、底面が平坦なお椀型の窪み形状にて設けられてもよい。
 図2Bにおいて、凹部2002の基材10の表面における幅をaとし、及び凹部2002の底部の平坦面の幅をbとし、基材10の表面から凹部2002の底部の平坦面までの距離(すなわち、凹部2002の深さ)をhとする。このとき、基材10の表面からh/2の深さの凹部2002の幅wは、凸部2001の場合と同様に、(a+b)/2以上となることが好ましい。また、基材10の表面からh/2の深さの凹部2002の幅wは、凸部2001の場合と同様に、(a+b)/2の1.2倍以上となることがより好ましい。
 凹部2002の形状が上述した条件を満たす場合、凹部2002は、基材10の表面から底部へ向かう輪郭が外側に膨らんだ立体形状で設けられることになる。このような形状の凹部2002を備える集合構造210及び凹凸構造体20は、凹凸形状を反転させた転写物の反射防止特性をより向上させることができる。なお、wの上限は特に限定しないが、凹部2002の形状を考慮すると、wの上限は例えばaである。ただし、凹凸構造体20の反射防止特性を考慮すると、wは、例えば、(a+b)/2の1.41倍以下であることが好ましい。wの上限は、凹凸構造体20の用途によって、適宜選択することが可能である。
 次に、図3及び図4を参照して、集合構造210内における凹凸部200の配置の具体的な構成について説明する。図3は、凹凸部200の各々の配置間隔を説明する平面図である。図4は、凹凸部200の大きさが同じ場合、又は凹凸部200の大きさが異なる場合の各々における凹凸部200の配置の一例を示す模式図である。
 図3を参照して、隣接する凹凸部200の配置間隔について説明する。図3に示すように、1つの凹凸部200-1の基材10の表面における幅をx、凹凸部200-1に隣接する凹凸部200-2の基材10の表面における幅をxとする。このとき、凹凸部200-1の重心と、凹凸部200-2の重心との平均距離iは、0.65(x/2+x/2)以上2.0(x/2+x/2)以下となることが好ましい。また、凹凸部200-1の重心と、凹凸部200-2の重心との平均距離iは、0.8(x/2+x/2)以上1.2(x/2+x/2)以下となることがより好ましい。
 隣接する凹凸部200の重心間の平均距離iが上述した条件を満たす場合、隣接する凹凸部200は、互いに適切な重なり又は間隔を置いて設けられることになるため、集合構造210及び凹凸構造体20の反射防止特性をより向上させることができる。例えば、重心間の平均距離iが0.65(x/2+x/2)未満である場合、隣接する凹凸部200は、互いの重なりが大きくなりすぎることで凹凸部200の実質的な垂直長さが減少し、集合構造210及び凹凸構造体20の反射防止特性が低下するため好ましくない。また、重心間の平均距離iが2.0(x/2+x/2)超である場合、隣接する凹凸部200は、互いの間隔が大きくなりすぎることで凹凸部200の間の平坦面が増加し、集合構造210及び凹凸構造体20の反射防止特性が低下するため好ましくない。
 なお、凹凸部200の基材10の表面における平面形状が円又は楕円である場合、上記のx及びxは、凹凸部200の平面形状の円又は楕円の直径又は長径であり得る。また、このような場合、凹凸部200の重心は、凹凸部200の平面形状の円又は楕円の中心であり得る。一方、凹凸部200の基材10の表面における平面形状が多角形である場合、上記のx及びxは、凹凸部200の平面形状の多角形の外接円の直径であってもよい。また、このような場合、凹凸部200の重心は、凹凸部200の平面形状の外接円の中心であってもよい。
 図4を参照して、複数の凹凸部200の各々の間隔について説明する。図4に示すように、例えば、凹凸部200の基材10の表面に占める領域の大きさが略一定である場合(凹凸部200Aの場合)、凹凸部200Aは、最密充填配置となるように、凹凸部200の基材10の表面に占める領域の大きさと同じ間隔を置いて設けられてもよい。
 例えば、凹凸部200の基材10の表面に占める領域の大きさが変動する場合(凹凸部200Bの場合)、凹凸部200Bは、一定の間隔を置いて設けられてもよい。このような場合、凹凸部200Bは、最密充填配置にはならないものの、凹凸部200Bの形成が容易になる。
 例えば、凹凸部200の基材10の表面に占める領域の大きさが変動する場合(凹凸部200Cの場合)、凹凸部200Cは、凹凸部200の各々の基材10の表面に占める領域の大きさに応じて制御された間隔を置いて設けられてもよい。このような場合、凹凸部200Cは、凹凸部200の基材10の表面に占める領域の大きさが変動する場合でも、最密充填配置を実現することができる。本実施形態によれば、凹凸部200の各々の配置及び基材10の表面における大きさを高い精度で制御することができる。したがって、凹凸部200の基材10の表面に占める領域の大きさが変動する場合(凹凸部200Cの場合)でも、凹凸部200を最密充填配置にて形成することが可能である。
 以上に説明したように、凹凸構造体20の凹凸部200は、複数種の異なる垂直長さにて形成される。すなわち、凹凸部200の垂直長さは、中心値が異なる複数のグループのいずれかに属するように設けられる。したがって、凹凸構造体20では、凹凸部200の各々の垂直長さは、凹凸部200ごとに所定の垂直長さになるように高い精度で制御されることになる。また、凹凸構造体20は、複数の凹凸部200から構成される集合構造210が互いに離隔されるように設けられる。このため、凹凸部200の形成位置は、集合構造210内と、集合構造210間とで異なる間隔で設けられるように高い精度で制御されることになる。したがって、本実施形態に係る凹凸構造体20は、より複雑な凹凸形状を備えることができる。
 <3.凹凸構造体の具体例>
 次に、図5~図9を参照して、本実施形態に係る凹凸構造体20の具体例について説明する。図5~図9は、本実施形態に係る凹凸構造体20の一例を模式的に示す断面図及び平面図である。なお、図5~図9の平面図では、ドットハッチングが濃い円ほど、より高さが高い凸部に対応していることを表す。
 (第1の具体例)
 図5に示すように、凹凸構造体21は、凸部201を四方格子状に配列した集合構造211が所定の間隔を置いて設けられた構造であってもよい。凹凸構造体21では、集合構造211は、集合構造211内の凸部201の高さが第1の方向に段階的に増加又は減少するように設けられ、第1の方向と直交する第2の方向では、凸部201の高さが略同一の高さとなるように設けられる。したがって、図5に示す凹凸構造体21では、集合構造211は、第1の方向において全体として三角波様(のこぎり歯様)の形状を示す構造として形成され得る。このような凹凸構造体21は、例えば、モスアイ構造による反射防止能を備えた回折素子として用いることが可能である。
 (第2の具体例)
 図6に示すように、凹凸構造体22は、凸部202を四方格子状に配列した集合構造212が所定の間隔を置いて設けられた構造であってもよい。凹凸構造体22では、集合構造212は、集合構造212内の凸部202の高さが集合構造212の中央に向かうほど段階的に増加するように設けられる。したがって、図6に示す凹凸構造体22では、集合構造212は、全体として凸レンズ様の形状を示す構造として形成され得る。このような凹凸構造体22は、例えば、モスアイ構造による反射防止能を備えたマイクロレンズアレイとして用いることが可能である。
 (第3の具体例)
 図7に示すように、凹凸構造体23は、凸部203を四方格子状に配列した集合構造213が所定の間隔を置いて設けられた構造であってもよい。凹凸構造体23では、集合構造213は、集合構造213内の凸部203の高さが集合構造213の中央に向かうほど段階的に増加するように設けられ、かつ凸部203の高さが所定の範囲に収まるように同心円状に高さが減少する形状にて設けられる。したがって、図7に示す凹凸構造体23では、集合構造213は、全体としてフレネルレンズ様の形状を示す構造として形成され得る。このような凹凸構造体23は、例えば、モスアイ構造による反射防止能を備えたフレネルレンズアレイとして用いることが可能である。
 (第4の具体例)
 図8に示すように、凹凸構造体24は、凸部204を四方格子状に配列した集合構造214が所定の間隔を置いて設けられた構造であってもよい。凹凸構造体24では、集合構造214は、集合構造214内の凸部204の高さが不規則(ランダム)になるように設けられる。ただし、凸部204の高さは、中心値が異なる複数のグループのいずれかに属するように設けられるため、より厳密には、異なる高さを有する凸部204の配置が集合構造214内で不規則(ランダム)になるように設けられる。したがって、図8に示す凹凸構造体24では、集合構造214は、全体として凸部204の高さが不規則なモスアイ構造として形成され得る。このような凹凸構造体24は、例えば、干渉光及び回折光が少ない反射防止フィルム又は光拡散板として用いることが可能である。
 (第5の具体例)
 図9に示すように、凹凸構造体25は、凸部205を不規則(ランダム)な配置にて配列した集合構造215が所定の間隔を置いて設けられた構造であってもよい。凹凸構造体25では、図8に示した凹凸構造体24と同様に、集合構造215は、異なる高さを有する凸部205の配置が集合構造215内で不規則(ランダム)になるように設けられる。したがって、図9に示す凹凸構造体25では、集合構造215は、全体として凸部205の高さ及び配置が不規則なモスアイ構造として形成され得る。凹凸構造体25は、例えば、干渉光及び回折光がより少ない反射防止フィルム又は光拡散板として用いることが可能である。なお、図8に示す凹凸構造体25は、図8に示す凹凸構造体24よりも規則性が低いため、意図しない回折光又は干渉光の発生をより抑制することができる。
 <4.凹凸構造体の製造方法>
 続いて、本実施形態に係る凹凸構造体20の製造方法について簡単に説明する。
 本実施形態に係る凹凸構造体20は、レーザ光による熱リソグラフィを用いて、基材10の外周面に凹凸構造に対応するレジストパターンを形成した後、該レジストパターンをマスクとして基材10をエッチングすることで製造することができる。
 または、本実施形態に係る凹凸構造体20は、電子線描画装置などを用いた電子線リソグラフィ、フォトリソグラフィを用いたマルチパターニング、又はダイヤモンドバイトを用いた超微細切削加工などの公知の微細加工技術を用いて製造することができる。
 さらには、本実施形態に係る凹凸構造体20は、上述した製造方法にて形成された凹凸構造体20を原盤として用いたインプリント技術によって製造することができる。具体的には、凹凸構造体20(すなわち、原盤)をシート状の樹脂等に押圧し、表面の凹凸形状を転写することで、原盤と凹凸形状が反転した転写物を製造することができる。
 以下では、実施例及び比較例を参照しながら、本実施形態に係る凹凸構造体について、さらに具体的に説明する。なお、以下に示す実施例は、本実施形態に係る凹凸構造体及びその製造方法の実施可能性及び効果を示すための一条件例であり、本実施形態に係る凹凸構造体及びその製造方法が以下の実施例に限定されるものではない。
 (実施例1~9)
 以下の工程により、実施例1~9に係る凹凸構造体に対応する原盤を作製し、インプリント技術を用いて、作製した原盤の転写物(実施例1~9に係る凹凸構造体)を作製した。
 具体的には、まず、円筒形状の石英ガラスにて構成された基材(軸方向長さ100mm、外周面の肉厚4.5mm)の外周面に、スパッタ法でタングステン酸化物を55nmにて成膜し、レジスト層を形成した。次に、露光装置を用いて、波長405nmの半導体レーザ光源からのレーザ光によって熱リソグラフィを行い、実施例1~9の各々に対応する潜像をレジスト層に形成した。
 続いて、テトラメチルアンモニウムヒドロキシド(TMAH)2.38質量%水溶液(東京応化工業社製)を用いて、露光後の基材を27℃、900秒で現像処理することにより、潜像部分のレジスト層を溶解し、実施例1~9の各々に対応する凹凸構造をレジスト層に形成した。次に、現像後のレジスト層をマスクにして、CHFガス(30sccm)を用いて、ガス圧0.5Pa、投入電力150Wにて反応性イオンエッチング(Reactive Ion Etching:RIE)を行い、基材を30分間エッチングした。その後、残存したレジスト層を除去した。
 以上の工程により、外周面に凹凸構造が形成された原盤を作製し、作製した原盤を用いて転写物を作製した。具体的には、転写装置を用いて、原盤の外周面に形成された凹凸構造を紫外線硬化樹脂に転写することで、実施例1~9に係る転写物を作製した。なお、転写物のシート状基材には、ポリエチレンテレフタレート(PolyEthylene Terephthalate:PET)フィルムを用い、紫外線硬化樹脂は、メタルハライドランプにより、1000mJ/cmの紫外線を1分間照射することで硬化させた。
 (比較例1)
 マスクを用いた露光によるフォトリソグラフィを用いて比較例1に対応する潜像をレジスト層に形成した以外は、実施例1~9と同様の方法にて転写物(比較例1に係る凹凸構造体)を作製した。
 ここで、実施例1~9に係る凹凸構造体に形成された凹凸構造の模式的な形状を図10A及び図10Bに示し、比較例1に係る凹凸構造体に形成された凹凸構造の模式的な形状を図11A及び図11Bに示す。図10Aは、実施例1~9に係る凹凸構造体における集合構造の模式的な斜視図であり、図10Bは、実施例1~9に係る凹凸構造体の模式的な平面図である。図11Aは、比較例1に係る凹凸構造体における集合構造の模式的な斜視図であり、図11Bは、比較例1に係る凹凸構造体の模式的な平面図である。
 図10A及び図10Bに示すように、実施例1~9に係る凹凸構造体は、複数の凸部を集合した集合構造を複数配列することで設けられる。具体的には、凹凸構造体は、基材の表面から垂直方向に突出する凸部が平面上に最密充填となるように配置された集合構造の各々を互いに離隔して配列することで設けられる。集合構造は、中心に位置する凸部の方が段階的に高くなるように設けられることにより、全体として凸レンズ様の形状となるように設けられる。
 ここで、実施例1~9に係る凹凸構造体は、以下の表1で示すように、凸部の立体形状、及び隣接する凸部の重心間の平均距離がそれぞれ異なる。ただし、実施例1~9に係る凹凸構造体は、全体として同一の凸レンズ様の形状となるように設けられる。
 図11A及び図11Bに示すように、比較例1に係る凹凸構造体は、基材の表面から垂直方向に突出する単一の凸部を複数配列することで設けられる。具体的には、凹凸構造体は、円錐を底面に平行な平面で切断し、小円錐部分を除いた円錐台の形状を互いに離隔して配列することで設けられる。したがって、比較例1に係る凹凸構造体と、実施例1~9に係る凹凸構造体とは、凸レンズ様の構造体が単一の凸部で構成されるか、又は複数の凸部から構成されるかという点で互いに相違する。
 (評価結果)
 上記で作製した実施例1~9及び比較例1に係る凹凸構造体の評価を行った。具体的には、実施例1~9及び比較例1に係る凹凸構造体の微細構造の形状を原子間力顕微鏡(Atomic Force Microscope:AFM)及び走査型電子顕微鏡(Scanning Electoron Microscope:SEM)にて観察した。
 また、実施例1~9に係る凹凸構造体では、AFMによって凸部の形状を計測し、凸部の天頂部の平坦面の平均幅b、基材表面における凸部の領域の平均幅a、及び凸部の高さをhとした場合のh/2における凸部の平均幅wを算出した。さらに、実施例1~9に係る凹凸構造体では、SEMによって隣接する凸部の重心間の平均距離を算出した。なお、a、b、w、重心間の平均距離は、1つの集合構造内での凸部の各々の平均値として算出した。
 さらに、分光光度計(日本分光社製V500)を用いて、実施例1~9及び比較例1に係る凹凸構造体の表面反射スペクトルを測定した。下記の表1では、波長380nm~780nmの間での反射率の最小値を示す。なお、波長380nm~780nmの間での反射率の最小値は、1%以下となることがより好ましい。
 以下の表1にて、実施例1~9に係る凹凸構造体の凸部の形状及び重心間距離の測定結果、及び実施例1~9及び比較例1に係る凹凸構造体の反射率の測定結果を示す。また、AFMの測定結果から判断した実施例1~5、実施例8~9に係る原盤における凹部(転写物では凸部に対応する)の模式的な断面形状を図12A~図12Gに示す。図12A~図12Gは、それぞれ、実施例1~5、実施例8~9に係る原盤における凹部(転写物では凸部に対応する)の模式的な断面形状を示す説明図である。なお、図12A~図12Gに示す形状は、模式的なものであるため、実際の原盤又は転写物の凹凸構造の形状とは完全には一致しないことがあり得る。
Figure JPOXMLDOC01-appb-T000001
 表1の結果を参照すると、実施例1~9に係る凹凸構造体では、凸レンズ様の構造体は、複数の凸部を集合させた集合構造として形成されている。そのため、実施例1~9に係る凹凸構造体の反射率は、比較例1に係る凹凸構造体の反射率と比較して、低下することがわかる。すなわち、実施例1~9に係る凹凸構造体は、比較例1に係る凹凸構造体よりも高い反射防止効果を得られることがわかる。
 また、実施例1、4、5に係る凹凸構造体を比較すると、h/2における凸部の幅wが(a+b)/2よりも小さく、凸部が細った形状になるほど反射率が増加し、反射防止効果が低下することがわかる。
 また、実施例1、6~8に係る凹凸構造体を比較すると、重心間の平均距離が上述した好ましい範囲よりも狭い場合、凸部同士の重なりが増加し、凸部の実質的な高さが減少するため、反射率が増加し、反射防止効果が低下することがわかる。一方、実施例1、9に係る凹凸構造体を比較すると、重心間の平均距離が上述した好ましい範囲よりも広い場合、凸部の間の平坦部が増加するため、反射率が増加し、反射防止効果が低下することがわかる。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 例えば、本実施形態に係る凹凸構造体20は、光学部材として用いることも可能であり、本実施形態に係る凹凸構造体20を搭載した電子機器も本発明の範疇に含まれる。
 10   基材
 20、21、22、23、24、25    凹凸構造体
 200  凹凸部
 201、202、203、204、205  凸部
 210、211、212、213、214、215  集合構造

Claims (16)

  1.  基材の表面に設けられた複数の凹部又は凸部から構成される集合構造を複数備え、
     前記基材の表面にて前記凹部又は凸部が占める領域の平均幅は、可視光帯域に属する波長以下である、凹凸構造体。
  2.  前記基材の表面にて前記凹部又は凸部が占める領域の平均幅をaとし、前記凹部又は凸部の前記基材の表面と対向する底面又は天頂面の平均幅をbとし、前記凹部又は凸部の前記基材の表面に対して垂直方向の長さをhとする場合、
     前記基材の表面から前記垂直方向にh/2離れた位置における前記凹部又は凸部の断面の平均幅は、(a+b)/2以上である、請求項1に記載の凹凸構造体。
  3.  前記集合構造内で隣接する前記凹部又は凸部の重心間の平均距離は、該凹部又は凸部が前記基材の表面にて占める領域の平均幅をそれぞれx及びxとする場合に、0.65(x/2+x/2)以上2.0(x/2+x/2)以下である、請求項1又は2に記載の凹凸構造体。
  4.  前記集合構造全体の平均幅は、0.2μm以上である、請求項1~3のいずれか一項に記載の凹凸構造体。
  5.  前記基材の表面にて前記凹部又は凸部が占める領域の形状は、略円形状である、請求項1~4のいずれか一項に記載の凹凸構造体。
  6.  前記集合構造内において、前記凹部又は凸部の前記基材の表面に対して垂直方向の長さの各々は、中心値が異なる少なくとも2以上のグループのいずれかに属する、請求項1~5のいずれか一項に記載の凹凸構造体。
  7.  前記集合構造内において、前記凹部又は凸部が前記基材の表面にて占める領域の平均幅の各々は、中心値が異なる少なくとも2以上のグループのいずれかに属する、請求項1~6のいずれか一項に記載の凹凸構造体。
  8.  前記凹部又は凸部の前記基材の表面に対して垂直方向の長さは、前記集合構造内で段階的に変化する、請求項1~7のいずれか一項に記載の凹凸構造体。
  9.  前記凹部又は凸部が前記基材の表面にて占める領域の平均幅は、前記集合構造内で段階的に変化する、請求項1~7のいずれか一項に記載の凹凸構造体。
  10.  前記凹部又は凸部の前記基材の表面に対して垂直方向の長さは、前記集合構造内で不規則に変化する、請求項1~7のいずれか一項に記載の凹凸構造体。
  11.  前記凹部又は凸部が前記基材の表面にて占める領域の平均幅は、前記集合構造内で不規則に変化する、請求項1~7のいずれか一項に記載の凹凸構造体。
  12.  前記集合構造の各々は、規則的に配列される、請求項1~11のいずれか一項に記載の凹凸構造体。
  13.  前記集合構造の各々は、不規則的に配列される、請求項1~11のいずれか一項に記載の凹凸構造体。
  14.  前記集合構造内において、前記凹部又は凸部の各々は、最密充填配置にて設けられる、請求項1~13のいずれか一項に記載の凹凸構造体。
  15.  請求項1~14のいずれか一項に記載の凹凸構造体を用いた、又は前記凹凸構造体を転写した転写物を用いた、光学部材。
  16.  請求項1~14のいずれか一項に記載の凹凸構造体を用いた、又は前記凹凸構造体を転写した転写物を用いた、電子機器。
PCT/JP2018/046600 2017-12-26 2018-12-18 凹凸構造体、光学部材及び電子機器 WO2019131336A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/955,496 US20200319377A1 (en) 2017-12-26 2018-12-18 Concave-convex structure, optical member, and electronic apparatus
CN201880083625.5A CN111527421B (zh) 2017-12-26 2018-12-18 凹凸构造体、光学部件及电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-249061 2017-12-26
JP2017249061A JP7226915B2 (ja) 2017-12-26 2017-12-26 凹凸構造体、光学部材及び電子機器

Publications (1)

Publication Number Publication Date
WO2019131336A1 true WO2019131336A1 (ja) 2019-07-04

Family

ID=67067245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046600 WO2019131336A1 (ja) 2017-12-26 2018-12-18 凹凸構造体、光学部材及び電子機器

Country Status (5)

Country Link
US (1) US20200319377A1 (ja)
JP (2) JP7226915B2 (ja)
CN (1) CN111527421B (ja)
TW (1) TWI825055B (ja)
WO (1) WO2019131336A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7057126B2 (ja) * 2017-12-26 2022-04-19 デクセリアルズ株式会社 原盤、転写物及び原盤の製造方法
JP7418100B2 (ja) * 2019-07-17 2024-01-19 キヤノン株式会社 光学素子及び光学素子の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085831A (ja) * 2002-08-26 2004-03-18 Ntt Advanced Technology Corp 微細格子およびその製造方法
JP2007047701A (ja) * 2005-08-12 2007-02-22 Ricoh Co Ltd 光学素子
WO2013191091A1 (ja) * 2012-06-22 2013-12-27 シャープ株式会社 反射防止構造体、転写用型、これらの製造方法、及び、表示装置
KR101351596B1 (ko) * 2013-03-12 2014-01-15 주식회사 탑나노임프린팅 반사 방지재
JP2014066976A (ja) * 2012-09-27 2014-04-17 Asahi Kasei E-Materials Corp 微細凹凸成形体及び微細凹凸成形鋳型並びにそれらの製造方法
WO2014162374A1 (ja) * 2013-04-02 2014-10-09 パナソニック株式会社 光学部材および光学装置
WO2016158550A1 (ja) * 2015-03-27 2016-10-06 コニカミノルタ株式会社 表示部材及びヘッドアップディスプレイ装置
WO2017126673A1 (ja) * 2016-01-22 2017-07-27 Scivax株式会社 機能構造体

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7940462B2 (en) * 2007-08-28 2011-05-10 Nissan Motor Co., Ltd. Antireflective structure and antireflective molded body
JP4935627B2 (ja) * 2007-10-30 2012-05-23 ソニー株式会社 光学素子および光学素子作製用原盤の製造方法
US9588259B2 (en) * 2008-07-16 2017-03-07 Sony Corporation Optical element including primary and secondary structures arranged in a plurality of tracks
JP2010256869A (ja) * 2009-03-09 2010-11-11 Asahi Kasei Corp 拡散シート、光線制御ユニット及び光源ユニット
KR20110098476A (ko) 2010-02-26 2011-09-01 삼성에스디아이 주식회사 소액체성막 형성제, 소액체성막 형성방법, 이를 이용한 미세배선 형성방법 및 이를 포함하는 인쇄회로기판
WO2012096322A1 (ja) * 2011-01-12 2012-07-19 三菱レイヨン株式会社 活性エネルギー線硬化性樹脂組成物、微細凹凸構造体及び微細凹凸構造体の製造方法
KR102111381B1 (ko) * 2012-07-31 2020-05-15 다이니폰 인사츠 가부시키가이샤 반사 방지 물품, 화상 표시 장치, 반사 방지 물품의 제조용 금형 및 반사 방지 물품의 제조용 금형의 제조 방법
JP6059695B2 (ja) * 2014-09-01 2017-01-11 デクセリアルズ株式会社 光学体の製造方法
WO2016125219A1 (ja) * 2015-02-03 2016-08-11 ソニー株式会社 反射防止膜、光学部材、光学機器及び反射防止膜の製造方法
JP6637243B2 (ja) * 2015-03-09 2020-01-29 デクセリアルズ株式会社 防曇防汚積層体、及びその製造方法、物品、及びその製造方法、並びに防汚方法
EP3130559A1 (en) 2015-08-14 2017-02-15 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Fabrication of nanostructured substrated comprising a plurality of nanostructure gradients on a single substrate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085831A (ja) * 2002-08-26 2004-03-18 Ntt Advanced Technology Corp 微細格子およびその製造方法
JP2007047701A (ja) * 2005-08-12 2007-02-22 Ricoh Co Ltd 光学素子
WO2013191091A1 (ja) * 2012-06-22 2013-12-27 シャープ株式会社 反射防止構造体、転写用型、これらの製造方法、及び、表示装置
JP2014066976A (ja) * 2012-09-27 2014-04-17 Asahi Kasei E-Materials Corp 微細凹凸成形体及び微細凹凸成形鋳型並びにそれらの製造方法
KR101351596B1 (ko) * 2013-03-12 2014-01-15 주식회사 탑나노임프린팅 반사 방지재
WO2014162374A1 (ja) * 2013-04-02 2014-10-09 パナソニック株式会社 光学部材および光学装置
WO2016158550A1 (ja) * 2015-03-27 2016-10-06 コニカミノルタ株式会社 表示部材及びヘッドアップディスプレイ装置
WO2017126673A1 (ja) * 2016-01-22 2017-07-27 Scivax株式会社 機能構造体

Also Published As

Publication number Publication date
US20200319377A1 (en) 2020-10-08
JP2019113793A (ja) 2019-07-11
CN111527421A (zh) 2020-08-11
JP7488309B2 (ja) 2024-05-21
CN111527421B (zh) 2022-08-05
TWI825055B (zh) 2023-12-11
JP2022186895A (ja) 2022-12-15
TW201928406A (zh) 2019-07-16
JP7226915B2 (ja) 2023-02-21

Similar Documents

Publication Publication Date Title
JP7488309B2 (ja) 凹凸構造体、光学部材及び電子機器
US10823889B2 (en) Partially etched phase-transforming optical element
EP3355086B1 (en) Diffuser, method for designing diffuser, method for manufacturing diffuser, display device, projection device, and illumination device
JP2011107195A (ja) 光学素子および光学素子の製造方法ならびに微細凹凸構造および成形型
Lee et al. Imaging with blazed-binary diffractive elements
WO2018123465A1 (ja) 反射型拡散板、表示装置、投影装置及び照明装置
CN112782793B (zh) 微透镜阵列及其设计方法和制造方法、投影型图像显示装置
JPWO2016009826A1 (ja) 光学素子
US9529126B2 (en) Fresnel zone plate
KR100717851B1 (ko) 미세가공 기술을 이용한 마이크로렌즈 배열 시트 및 그제조방법
JPWO2006129514A1 (ja) 微細格子およびその金型
JP5961906B2 (ja) 超撥水基板及びその製造方法
JP5490216B2 (ja) 光学素子及び光学素子の製造方法
JP2011017781A (ja) 光学素子及び光学系
US20210053273A1 (en) Master, transferred object, and method of producing master
JP2008203812A (ja) モスアイ構造体およびモスアイ構造体製造方法
JP2004077957A (ja) 回折光学素子
KR101557079B1 (ko) 마이크로 렌즈 필름 및 이의 제조 방법과 마이크로 렌즈 어레이 장치 및 마이크로 렌즈 필름의 적층 모듈
JP2020024243A (ja) 反射防止構造体付き光学素子、その製造方法、製造用金型の製造方法及び撮像装置
WO2024127479A1 (ja) 光学素子および光学装置
JP6974637B2 (ja) マイクロレンズアレイ及び投影型画像表示装置
TWI792337B (zh) 具蝕刻成型偏振微小結構之光學透鏡裝置及其方法
CN116249917A (zh) 用于制造超表面的保护结构
WO2015056420A1 (ja) 凹凸構造体及びその製造方法
KR101479010B1 (ko) 마이크로렌즈 어레이 장치, 제조 방법 및 이를 구비한 태양전지 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18896818

Country of ref document: EP

Kind code of ref document: A1