WO2014162374A1 - 光学部材および光学装置 - Google Patents
光学部材および光学装置 Download PDFInfo
- Publication number
- WO2014162374A1 WO2014162374A1 PCT/JP2013/007241 JP2013007241W WO2014162374A1 WO 2014162374 A1 WO2014162374 A1 WO 2014162374A1 JP 2013007241 W JP2013007241 W JP 2013007241W WO 2014162374 A1 WO2014162374 A1 WO 2014162374A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical member
- protrusion
- protrusion group
- group
- region
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/118—Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
Definitions
- the present invention relates to an optical member or an optical device, such as an optical film, a lens, or a display, having an optical function such as antireflection on the surface.
- the antireflection layer 3 is formed on the surface of the planar substrate 2.
- the antireflection layer 3 serving as the interface has a moth-eye structure, which is below the light wavelength.
- the refractive index is gradually changed by forming innumerable fine irregularities.
- the antireflection layer 3 includes a remaining film 31 having a film thickness T and a fine protrusion group 32 arranged in a group.
- the protrusion group 32 has a protrusion height H, and a repetition distance of each protrusion, that is, a pitch P.
- Such a concavo-convex structure is generally formed using a nanoimprint method. Specifically, a resin having a property of being cured by ultraviolet rays or heat is applied onto the flat substrate 2 and pressed using a molding die having a reverse shape of a desired uneven shape, and then irradiated with ultraviolet rays or It is cured by heating, and the molding die is released.
- Patent Document 1 is characterized in that the projection group 32 is arranged in an arc shape, and the conical convex shape is an elliptical shape having the circumferential direction as a major axis. Moreover, in patent document 2, the top of the convex part in the protrusion group 32 is couple
- a mark region is provided only at a specific position in a member, and only the region is formed with a concavo-convex structure having an arrangement and height different from those of other regions. It is described to prevent duplication.
- JP 2009-109755 A International Publication Number WO2010 / 143503A1 JP 2007-79005 A
- Patent Documents 1 and 2 have a problem that it is difficult to identify the cause when a defect such as a film is formed by some means. Specifically, when a variation in performance due to the collapse of the concavo-convex structure is confirmed on the film, it may be due to the inclusion of foreign matters during molding, or due to defects in the mold used for molding described above. It is difficult to determine whether Even if it is possible to limit the possibility of defects in the mold, rather than foreign objects during molding, the size of the film should be small enough to fit on various analytical sample stands such as a microscope. In order to identify the position of the entire film and the original mold with high accuracy, the fine structure on the film is an infinite number of repeating irregular structures. It takes a lot of time and cost.
- Patent Document 3 and the like provide a mark region at an arbitrary position of the mold and the member and change the arrangement and height of the concavo-convex structure only in that region, so analysis based on the position is possible.
- the film itself is arbitrarily cut once depending on the size of the device to which the film formed on the large area is to be attached, so there is no mark depending on the film, and it is the same if it is singulated on the sample stage for analysis. There are cases where location is impossible.
- the present invention solves the above-mentioned conventional problems, and provides an optical member that can easily identify the cause of a defect and provide feedback to a molding die in an optical member having a plurality of uneven structures on the surface. With the goal.
- an optical member of the present invention is an optical member having a plurality of projection groups having a size corresponding to a wavelength having an antireflection function on the surface, wherein the projection group is defined as the first projection group and the first projection group.
- the first protrusion group is composed of a second protrusion group having different protrusion heights or pitches between the protrusions, and the first protrusion group is different from the first protrusion group in the periodic position on the surface. It is characterized by being surrounded by two protrusion groups.
- the optical member of the present invention is an optical member having a plurality of projection groups having a size corresponding to a wavelength having an antireflection function on the surface, wherein the projection group is a grating or a circumference formed in an arbitrary pattern. Furthermore, it is characterized by being surrounded by a raised shape centered on a polygonal line.
- the first protrusion group is formed on the surface of the optical member having a plurality of first protrusion groups and second protrusion groups having a size corresponding to a wavelength having an antireflection function.
- the thickness of the first remaining film in the first region is different from the thickness of the second remaining film in the second region where the second protrusion group is formed on the surface, and the first remaining film is the second remaining film. It is characterized by being surrounded by.
- the first protrusion group in which a plurality of protrusions having a size corresponding to a wavelength having an antireflection function is formed on the surface is formed by a flat portion having a flat shape on which the uneven structure is not formed. It is characterized by being surrounded.
- any lattice in the second region in the optical member can be obtained.
- mapping only whether or not there is a defect occurrence location in the region it is possible to grasp the defect occurrence location in the entire optical member and also the position in the mold used for molding the optical member with high accuracy. Accordingly, it is possible to provide an optical member or apparatus that can easily identify the cause of a defect and feed back to the molding die, thereby realizing improvement in the quality and yield of the member.
- Sectional schematic diagram of the optical member in Embodiment 1 of the present invention Schematic plan view of the optical member in the same embodiment
- planar schematic diagram of the optical member of Embodiment 2 of this invention Plane schematic diagram of another example of the optical member of the same embodiment
- planar schematic diagram of the optical member of Embodiment 2 of this invention Plane schematic diagram of another example of the optical member of the same embodiment
- Sectional schematic diagram of the optical member in Embodiment 2 of this invention Plane schematic diagram of another example of the optical member of the same embodiment
- Sectional schematic diagram of the optical member in Embodiment 3 of the present invention Sectional schematic diagram of another Example of the optical member in the same embodiment
- Sectional schematic diagram of the optical member in Embodiment 4 of the present invention Sectional schematic diagram of another Example of the optical member in the same embodiment Sectional
- FIG. 1A is a cross-sectional view of an optical member according to an embodiment of the present invention
- FIG. 1B is a plan view of the optical member as viewed from the surface of the member.
- an antireflection layer 3 is formed on a flat substrate 2.
- a residual film 31 having a film thickness T and a fine projection group 32 are arranged in a group thereon.
- the protrusion group 32 includes a first area D1 and a second area D2 where protrusions having different shapes are formed.
- the protrusions in the first region D1 are formed with a height H1 and a protrusion repetition distance, that is, a pitch P1.
- the protrusions in the second region D2 are formed such that the height is H2, and the protrusion repetition distance, that is, the pitch is P2.
- the projection group formed in the first region D1 is called a first projection group 321 and the projection group formed in the second region D2 is called a second projection group 322.
- the first protrusion group 321 is surrounded by the second protrusion group 322.
- the second protrusion group 322 is formed on a lattice line having a principal axis in an arbitrary first direction in the surface of the optical member and a second direction that forms a certain angle with the first direction.
- the second region D2 is arranged in a lattice pattern with respect to the entire surface of the optical member 1, that is, in parallel with each of the vertical and horizontal directions of the paper.
- the lattice spacing is W.
- the second protrusion is different from the first protrusion group 321 in the height of the protrusion and the center-to-center distance between the adjacent protrusions with respect to the first protrusion group 321 in the first region D1 formed on the substantially entire surface of the optical member 1.
- the reason why the protrusions 322 are periodically formed over the lattice-shaped second region D2 can easily identify the cause of the defect in the optical member 1 and the defect of the molding die. Described below.
- the optical member 1 shown in the first embodiment is a fine projection group formed with a size of about 300 nm that is less than or equal to the visible light wavelength, the first projection group 321 and the first projection group 321 having different shapes are used. The region where the two projection groups 322 exist cannot be determined, and the visual quality of the optical member is not impaired.
- an apparatus that directly measures a minute shape of 300 nm or less itself such as an atomic force microscope or a scanning electron microscope
- an evaluation apparatus that uses a difference in fluorescence intensity depending on the height of a protrusion such as a confocal laser microscope
- the minute difference in reflectance between the first protrusion group 321 and the second protrusion group 322 having different shapes is used to distinguish between the first region D1 and the second region D2 in a laser microscope or the like.
- the position of the second region D2 having a shape different from that of the first protrusion group 321 can be specified.
- the second region D2 is used, and the position coordinates up to the lattice region closest to the defect occurrence location are highly magnified and highly accurate on various analytical instruments. If it is memorized, it is possible to map only the lattice region of the second region D2 where the defect occurs in the optical member 1 with a relatively low magnification laser microscope. It is possible to grasp the defect occurrence position in the whole and the position in the mold used for molding the optical member 1 with high accuracy.
- a molding die having a sufficiently small size as compared with the area of the optical member 1 is prepared, and the die is repeatedly transferred and molded regularly at an arbitrary pitch. There is a case. In this case, it is possible to quickly determine whether or not the cause of the defect is in the mold by determining whether or not the defect of the optical member is present in the same cycle as the pitch transferred by the mold. it can.
- the pitches P1 and P2 need to be equal to or less than the visible light wavelength as a distance necessary for giving the member an antireflection effect, and are approximately 300 nm or less.
- the heights H1 and H2 are preferably 150 nm or more because they must be formed with an aspect ratio of 0.5 or more with respect to the width of the protrusion.
- the pitch P1 and the height H1 of the first protrusion group 321 in the first region D1 are about 1/2 of P2, and H1 is about 1/2 or more of H2. It is desirable.
- the pitch W at which the second region D2 is arranged needs to be formed so that the second region D2 always exists in the individual optical member when the optical member 1 is cut when using various analytical instruments. Therefore, the pitch W is desirably the maximum size that needs to be cut when used on various analytical instruments, for example, about 10 mm.
- the first protrusion group 321 and the second protrusion group 322 are formed by previously forming a resin that is cured by ultraviolet rays or heat on the flat base material 2, and forming a reverse mold having a desired protrusion shape.
- the pressing shape is transferred, and the ultraviolet ray is irradiated or heated so as to be cured, but more specifically, it can be manufactured by any of the implementations of FIGS. 2A, 2B, and 2C.
- the molding surface of the mold 4 corresponds to the first and second protrusion groups 321 and 322 having different pitches and heights in the first region D1 and the second region D2 shown in FIGS. 1A and 1B.
- Recesses d1 and d2 are formed, and the first and second protrusion groups 321 and 322 having a reverse shape are formed by transferring the resin 30 formed on the flat substrate 2 with the mold 4 as it is. .
- the planar base 2 is formed using a mold 42 having the width of the first region D1, which has only the concave portion d1 having the reverse shape of the first projection group 321 over the entire surface. A portion of the resin 30 is transferred.
- (b) by using the same mold 42 used in (a), only the portion of the second region D2 is overlapped, and the concave portion of the mold is compared with the first protrusion group 321 already transferred. The transfer is performed again with a half-pitch shift so that the positions of do not match completely.
- the pitches P1 and P2 and the heights H1 and H2 are different from each other, but the first region D1 and the second region D2 can be discriminated only by any difference.
- the projection height H2 and pitch P2 of the second projection group 322 in the second region D2 formed in a lattice shape are respectively represented by the projections of the first projection group 321 in the other first regions D1.
- the shape difference of the projection group for having the advantages shown in the present embodiment is not limited to this, and conversely, the projection height H2 and the pitch P2 respectively. However, it may be larger than the projection height H1 and the pitch P1.
- the arrangement of the protrusions is a square lattice arrangement, but may be a three-way arrangement.
- Embodiment 2 3 and 4 are plan views of the optical member according to Embodiment 2 of the present invention as viewed from the member surface.
- the second region D2 is arranged in a grid pattern with respect to the entire surface of the optical member 1, that is, parallel to the vertical and horizontal directions on the paper surface.
- the second area D2 can be displayed on the screen on the analytical instrument.
- the region where the second region D2 is arranged is an annular shape arranged at a predetermined pitch as shown in FIG. 3, or arranged at a predetermined pitch as shown in FIG.
- the second protrusion group 322 is formed on each circumference having an arbitrary diameter with a point arranged at an arbitrary interval and arrangement in the surface of the optical member 1 as the center.
- the second protrusion group 322 is formed on a polygonal outline having a side with an arbitrary length centered on points arranged at arbitrary intervals in the surface of the optical member 1. Yes.
- FIG. 3 (Embodiment 3) 5 to 8 show a third embodiment of the present invention.
- all the first protrusion groups 321 formed in the first region D1 have the same shape
- all the second protrusion groups 322 formed in the second region D2 have the same shape.
- the shape of the first protrusion group 321 formed in the region D1 and the shape of the second protrusion group 322 formed in the second region D2 may be different.
- the height of the second projection group 322 increases as the shape of the second projection group 322 in the second region D2 moves away from the boundary with the first region D1 and approaches the inside of the second region D2. It is formed to have a shape that gradually changes, such as gradually becoming smaller. When formed in this way, the change in reflectance due to the height of the protrusion can be made moderate, and the visual quality without impairing the detection sensitivity of the first region D1 and the second region D2 in various analytical instruments. Can be improved.
- the height of the protrusions of the second protrusion group 322 is the same as that of the first protrusion group 321, and the height of the base end of the protrusion is different from that of the first protrusion group 321. That is, the film thickness of the second remaining film 311 in the first protrusion group 321 formed in the first region D1 is different from the film thickness T2 of the second remaining film 312 in the second protrusion group 322 formed in the second region D2. Even if formed so that T1 is different, the difference in external light transmittance due to the difference in the remaining film can be distinguished in various analyses, and the same effect can be obtained.
- the film thickness is not uniform in the first region D1 and the second region D2 as shown in FIG. 6, but in the second region D2 where the second protrusion group 322 is formed, If the film thickness T2 of the second residual film 312 is formed so as to gradually change, such as gradually decreasing to the film thickness T1 of the first residual film 311 over the boundary with the first region D1.
- the change in the transmittance due to the film thickness can be moderated, and the visual quality can be improved without impairing the detection sensitivity in various analytical instruments.
- the pitch of the second protrusion group 322 is changed to the boundary with the first region D1. It can also be realized by forming the second projection group 322 away from the inner side of the second region D2 where the second projection group 322 is formed so as to gradually change.
- the second protrusion group 322 is formed in the second region D2.
- the second region D2 has an uneven structure on the surface. Even in this case, the detection sensitivity of the first region D1 and the second region D2 on the analytical instrument can be improved.
- the width of the second region D2 is desirably several tens of ⁇ m or less.
- each flat second region D ⁇ b> 2 where no protrusion is formed is centered on a point arranged at an arbitrary interval and arrangement in the surface of the optical member and has an arbitrary diameter. Form on the circumference.
- the flat second region D ⁇ b> 2 where no protrusion is formed is centered on points arranged at an arbitrary interval within the surface of the optical member 1, and a side having an arbitrary length is formed. It forms on the polygonal outline which has.
- (Embodiment 4) 9 and 10 show a fourth embodiment of the present invention.
- the first region D1 and the second region D2 are divided into the protrusion shape and film thickness of the first protrusion group 321 in the first region D1 and the second protrusion group 322 in the second region D2.
- the present invention is not limited to this.
- the same effect can be obtained even when the projection height H changes gently at an arbitrary period as shown in FIG. 9 or the film thickness 31 changes gradually as shown in FIG. Is obtained.
- the quality deteriorates only when the optical member is viewed from the first viewing direction A in the drawing as compared with the case where the optical member is viewed from the second viewing direction B in the drawing.
- the pasting direction may be limited so that the first viewing direction A is downward or left in the figure.
- the direction in which the optical member is attached to the display may be determined. At this time, utilizing the fact that the optical characteristics are different between the case of viewing from the first viewing direction A and the case of viewing from the second viewing direction B, the vertical and horizontal orientations of the members are confirmed in advance from these optical characteristics and pasted. By attaching, it is possible to prevent a defect due to a pasting mistake.
- the fine structure of the plurality of protrusions protruding from the upper surface of the remaining film 31 on the surface of the flat substrate 2 is described as a protrusion group having an antireflection function.
- the concavo-convex structure having an optical function is not limited to this. For example, as shown in FIG. 12, a concave or concave shape that is recessed from the surface of the remaining film 31 having a thickness T toward the substrate 2, a linear concavo-convex structure, a prism shape, or the like. Various shapes are possible.
- the present invention solves optical quality problems in display products and lens products in general, and can improve the quality and yield of optical members and devices having a plurality of uneven structures on the surface.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Surface Treatment Of Optical Elements (AREA)
Abstract
Description
例えば、図11Aと図11Bに見られる光学部材1は、平面基材2の表面に反射防止層3が形成されている。空気とフィルムやレンズ基材などの屈折率の差に起因し生じる各界面の反射を抑えるために、界面となる反射防止層3には、モスアイ(Moth-eye)構造と呼ばれる、光波長以下の細かい凹凸が無数に形成することで屈折率を緩やかに変化させている。反射防止層3は、膜厚Tを有する残膜31と、その上に微細な突起群32が群を成して配置されている。突起群32は、その突起高さがHであり、各突起の繰り返し距離、すなわち、ピッチがPである。
(実施の形態1)
図1Aは本発明の実施の形態の光学部材の断面図、図1Bはこの光学部材を部材表面から見た平面図である。
突起群32は、異なる形状の突起が形成された第1領域D1,第2領域D2がある。第1領域D1の突起は、高さがH1、突起繰り返し距離、すなわちピッチがP1に形成されている。第2領域D2の突起は、高さがH2、突起繰り返し距離、すなわちピッチがP2に形成されている。第1領域D1に形成されている突起群を第1突起群321と呼び、第2領域D2に形成されている突起群を第2突起群322と呼ぶ。第1突起群321は第2突起群322で囲まれている。第2突起群322は、光学部材の表面内の任意の第1方向および第1方向と一定の角度をなす第2方向を主軸とした格子線上に形成されている。具体的には、図1Bに図示するように、第2領域D2は、光学部材1全面に対し格子状、すなわち、紙面の上下および左右の各方向に対し平行に配置されている。その格子間隔はWである。
ピッチP1,P2は、部材に反射防止効果を持たせるために必要な距離として、可視光波長以下である必要があり、およそ300nm以下となる。それに対し高さH1,H2は、突起の幅に対し0.5以上のアスペクト比を有し形成する必要があるため、150nm以上が望ましい。
なお、図1Bでは便宜上、格子状に形成された第2領域D2内の第2突起群322の突起高さH2およびピッチP2それぞれを、その他の第1領域D1内の第1突起群321の突起高さH1およびピッチP1と比べ小さくなるように図示しているが、本実施例で示す利点を有するための突起群の形状差はこの限りでなく、逆に、突起高さH2およびピッチP2それぞれが、突起高さH1およびピッチP1と比べ大きくなっても良い。また、図1Bでは、各突起の配列を正方格子配列としているが、三方配列でも良い。
図3,図4はそれぞれ本発明の実施の形態2の光学部材を、部材表面から見た平面図である。
図4の場合には、第2突起群322は、光学部材1の表面内に任意の間隔で配置された点を中心とし、任意の長さの辺を有する多角形の外形線上に形成されている。
図5~図8はそれぞれ本発明の実施の形態3を示す。
実施の形態1,2では、第1領域D1に形成される第1突起群321は全て同形状、第2領域D2に形成される第2突起群322も全て同形状であったが、第1領域D1に形成される第1突起群321の形状、第2領域D2に形成される第2突起群322の形状を異ならせることもできる。
図9,図10はそれぞれ本発明の実施の形態4を示す。
上記の各実施の形態では、第1領域D1と第2領域D2に分け、第1領域D1内の第1突起群321と第2領域D2内の第2突起群322との突起形状や膜厚の違いについて記述したが、本発明はこの限りではない。
なお、この明細書の実施の形態では、平面基板2の表面上の残膜31の上面から突出した複数の突部の微細構造を、反射防止の機能を有する突起群として記載しているが、光学機能を有する凹凸構造はこの限りではなく、例えば、図12に示すように、厚みTの残膜31の表面から基板2に向かって凹んだ陥没形状や線状の凹凸構造、またプリズム形状など、種々の形状が考えられる。
2 平面基材
3 反射防止層
30 反射防止層形成工程における成膜された樹脂層
31 反射防止層形成後の残膜
32 突起群
D1 第1領域
D2 第2領域
311 第1残膜
312 第2残膜
321 第1突起群
322 第2突起群
P1 第1突起群321のピッチ
H1 第1突起群321の突起高さ
P2 第2突起群322のピッチ
H2 第2突起群322の突起高さ
T1 第1突起群321の残膜の膜厚
T2 第2突起群322の残膜の膜厚
W 第2領域D2が形成される間隔
Claims (10)
- 表面に反射防止機能を有する波長に相当するサイズの複数の突起群を有した光学部材において、
前記突起群を、第1突起群と、前記第1突起群とは突起の高さあるいは突起間のピッチが異なる第2突起群で構成し、
前記第1突起群は、前記第1突起群とは前記表面における周期的な位置が異なる前記第2突起群で囲まれていることを特徴とする、
光学部材。 - 前記第2突起群は、前記光学部材の表面内の任意の第1方向および前記第1方向と一定の角度をなす第2方向を主軸とした格子線上に形成されていることを特徴とする、
請求項1に記載の光学部材。 - 前記第2突起群は、前記光学部材の表面内の任意の間隔および配列で配置された点を中心とし、任意の径を有する各円周上に形成されていることを特徴とする、
請求項1に記載の光学部材。 - 前記第2突起群は、前記光学部材の表面内に任意の間隔で配置された点を中心とし、任意の長さの辺を有する多角形の外形線上に形成されていることを特徴とする、
請求項1に記載の光学部材。 - 前記第2突起群の突起は、前記第1突起群が形成されている領域との境界から離れて前記第2突起群が形成されている領域の内側に近付くほど次第に変化するように形状が形成されている、または突起の高さが前記第1突起群と同じで、突起の基端の高さが前記第1突起群とは異なる、または突起の高さが前記第1突起群と同じで、突起の基端の高さが前記第1突起群とは異なるとともに、前記第1突起群が形成されている領域との境界から離れて前記第2突起群が形成されている領域の内側に近付くほど前記基端の高さが次第変化している、
請求項1から4の何れかに記載の光学部材。 - 前記第2突起群は、パターンの繰り返しで形成されており、前記パターン内で、前記突起群の突起高さ、ピッチ、あるいは残膜の厚さが次第に変化することを特徴とする、
請求項1から4の何れかに記載の光学部材。 - 表面に、反射防止機能を有する波長に相当するサイズの複数の突起群を有した光学部材において、
前記突起群は、任意のパターンで形成された格子もしくは円周、さらには多角形状の線を中心とした隆起形状によって囲まれていることを特徴とする、
光学部材。 - 表面に、反射防止機能を有する波長に相当するサイズの複数の第1突起群と第2突起群を有した光学部材において、
前記第1突起群が表面に形成されている第1領域の第1残膜の厚さと、
前記第2突起群が表面に形成されている第2領域の第2残膜の厚さとが異なり、第1残膜は第2残膜で囲まれていることを特徴とする、
光学部材。 - 反射防止機能を有する波長に相当するサイズの複数の突起が表面に形成された第1突起群は、表面に凹凸構造が形成されていない平坦形状の平坦部によって囲まれていることを特徴とする、
光学部材。 - 請求項1から9の何れかに記載の光学部材を表面に有する光学装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015509613A JP6089313B2 (ja) | 2013-04-02 | 2013-12-10 | 光学部材および光学装置 |
EP13881431.4A EP2983015B1 (en) | 2013-04-02 | 2013-12-10 | Optical member |
US14/764,076 US20150362634A1 (en) | 2013-04-02 | 2013-12-10 | Optical member and optical apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-076664 | 2013-04-02 | ||
JP2013076664 | 2013-04-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014162374A1 true WO2014162374A1 (ja) | 2014-10-09 |
Family
ID=51657709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/007241 WO2014162374A1 (ja) | 2013-04-02 | 2013-12-10 | 光学部材および光学装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20150362634A1 (ja) |
EP (1) | EP2983015B1 (ja) |
JP (1) | JP6089313B2 (ja) |
WO (1) | WO2014162374A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016090660A (ja) * | 2014-10-30 | 2016-05-23 | 大日本印刷株式会社 | 反射防止物品、画像表示装置、反射防止物品の製造方法、反射防止物品の賦型用金型、反射防止物品の賦型用金型の製造方法 |
JP2017044943A (ja) * | 2015-08-28 | 2017-03-02 | キヤノン電子株式会社 | 反射防止微細構造体、光学フィルタ、及び光量調整装置並びに光学装置 |
JP2018018048A (ja) * | 2016-07-19 | 2018-02-01 | パナソニックIpマネジメント株式会社 | 光学用部材及びその製造方法 |
JP2018527629A (ja) * | 2015-08-14 | 2018-09-20 | マツクス−プランク−ゲゼルシヤフト ツール フエルデルング デル ヴイツセンシヤフテン エー フアウMAX−PLANCK−GESELLSCHAFT ZUR FOeRDERUNG DER WISSENSCHAFTEN E.V. | 単一基板上に複数のナノ構造勾配を含むナノ構造基板の製造 |
WO2019131336A1 (ja) * | 2017-12-26 | 2019-07-04 | デクセリアルズ株式会社 | 凹凸構造体、光学部材及び電子機器 |
US10698136B2 (en) | 2016-07-19 | 2020-06-30 | Panasonic Intellectual Property Management Co., Ltd. | Optical member and method for manufacturing the same |
CN111511516A (zh) * | 2017-12-26 | 2020-08-07 | 迪睿合株式会社 | 原盘、转印物以及原盘的制造方法 |
WO2021019307A1 (en) * | 2019-07-29 | 2021-02-04 | Menicon Co., Ltd. | Systems and methods for forming ophthalmic lens including meta optics |
JP2023090718A (ja) * | 2022-04-07 | 2023-06-29 | デクセリアルズ株式会社 | 原盤、転写物及び原盤の製造方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015220313A (ja) * | 2014-05-16 | 2015-12-07 | ソニー株式会社 | 固体撮像装置およびその製造方法、並びに電子機器 |
KR101970061B1 (ko) * | 2016-12-01 | 2019-04-17 | 김영수 | 휴대기기에 적용되는 미세요철을 포함하는 투명부재 |
KR102375975B1 (ko) * | 2017-04-28 | 2022-03-17 | 삼성디스플레이 주식회사 | 표시 장치, 유기 발광 표시 장치 및 헤드 마운트 표시 장치 |
KR102648614B1 (ko) * | 2018-10-04 | 2024-03-19 | 삼성디스플레이 주식회사 | 표시 장치 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007079005A (ja) | 2005-09-13 | 2007-03-29 | Canon Inc | 複製防止光学素子 |
JP2008164996A (ja) * | 2006-12-28 | 2008-07-17 | Nissan Motor Co Ltd | 発色性反射防止構造及び構造体 |
JP2009109755A (ja) | 2007-10-30 | 2009-05-21 | Sony Corp | 光学素子および光学素子作製用原盤の製造方法 |
JP2010117694A (ja) * | 2008-11-17 | 2010-05-27 | Shuji Iwata | 反射防止機能を有する機能性基板とその製造方法 |
WO2010143503A1 (ja) | 2009-06-12 | 2010-12-16 | シャープ株式会社 | 反射防止膜、表示装置及び透光部材 |
WO2011111697A1 (ja) * | 2010-03-09 | 2011-09-15 | シャープ株式会社 | 陽極酸化層の形成方法、型の製造方法および反射防止膜の製造方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002062419A (ja) * | 2000-06-07 | 2002-02-28 | Canon Inc | 回折光学素子、該回折光学素子を有する光学機器 |
JP4575748B2 (ja) * | 2003-10-27 | 2010-11-04 | パナソニック株式会社 | 光量分布制御素子、並びにそれを用いた光学機器 |
CN100501458C (zh) * | 2003-10-27 | 2009-06-17 | 松下电器产业株式会社 | 光量分布控制元件及使用该元件的光学装置 |
CN1950724A (zh) * | 2004-05-12 | 2007-04-18 | 松下电器产业株式会社 | 光学元件及其制造方法 |
JP2007047701A (ja) * | 2005-08-12 | 2007-02-22 | Ricoh Co Ltd | 光学素子 |
JP4535121B2 (ja) * | 2007-11-28 | 2010-09-01 | セイコーエプソン株式会社 | 光学素子及びその製造方法、液晶装置、電子機器 |
RU2468397C2 (ru) * | 2008-05-27 | 2012-11-27 | Шарп Кабусики Кайся | Пленка для предотвращения отражения и дисплейное устройство |
US9588259B2 (en) * | 2008-07-16 | 2017-03-07 | Sony Corporation | Optical element including primary and secondary structures arranged in a plurality of tracks |
JP5257066B2 (ja) * | 2008-12-26 | 2013-08-07 | ソニー株式会社 | 光学素子、表示装置、反射防止機能付き光学部品、および原盤 |
JP5299361B2 (ja) * | 2010-06-18 | 2013-09-25 | セイコーエプソン株式会社 | 光学素子、液晶装置、電子機器 |
CN104395784B (zh) * | 2012-06-22 | 2016-09-07 | 夏普株式会社 | 防反射结构体、转印用模具、它们的制造方法和显示装置 |
-
2013
- 2013-12-10 US US14/764,076 patent/US20150362634A1/en not_active Abandoned
- 2013-12-10 WO PCT/JP2013/007241 patent/WO2014162374A1/ja active Application Filing
- 2013-12-10 JP JP2015509613A patent/JP6089313B2/ja active Active
- 2013-12-10 EP EP13881431.4A patent/EP2983015B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007079005A (ja) | 2005-09-13 | 2007-03-29 | Canon Inc | 複製防止光学素子 |
JP2008164996A (ja) * | 2006-12-28 | 2008-07-17 | Nissan Motor Co Ltd | 発色性反射防止構造及び構造体 |
JP2009109755A (ja) | 2007-10-30 | 2009-05-21 | Sony Corp | 光学素子および光学素子作製用原盤の製造方法 |
JP2010117694A (ja) * | 2008-11-17 | 2010-05-27 | Shuji Iwata | 反射防止機能を有する機能性基板とその製造方法 |
WO2010143503A1 (ja) | 2009-06-12 | 2010-12-16 | シャープ株式会社 | 反射防止膜、表示装置及び透光部材 |
WO2011111697A1 (ja) * | 2010-03-09 | 2011-09-15 | シャープ株式会社 | 陽極酸化層の形成方法、型の製造方法および反射防止膜の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2983015A4 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016090660A (ja) * | 2014-10-30 | 2016-05-23 | 大日本印刷株式会社 | 反射防止物品、画像表示装置、反射防止物品の製造方法、反射防止物品の賦型用金型、反射防止物品の賦型用金型の製造方法 |
JP2018527629A (ja) * | 2015-08-14 | 2018-09-20 | マツクス−プランク−ゲゼルシヤフト ツール フエルデルング デル ヴイツセンシヤフテン エー フアウMAX−PLANCK−GESELLSCHAFT ZUR FOeRDERUNG DER WISSENSCHAFTEN E.V. | 単一基板上に複数のナノ構造勾配を含むナノ構造基板の製造 |
JP2017044943A (ja) * | 2015-08-28 | 2017-03-02 | キヤノン電子株式会社 | 反射防止微細構造体、光学フィルタ、及び光量調整装置並びに光学装置 |
US10698136B2 (en) | 2016-07-19 | 2020-06-30 | Panasonic Intellectual Property Management Co., Ltd. | Optical member and method for manufacturing the same |
JP2018018048A (ja) * | 2016-07-19 | 2018-02-01 | パナソニックIpマネジメント株式会社 | 光学用部材及びその製造方法 |
WO2019131336A1 (ja) * | 2017-12-26 | 2019-07-04 | デクセリアルズ株式会社 | 凹凸構造体、光学部材及び電子機器 |
JP2019113793A (ja) * | 2017-12-26 | 2019-07-11 | デクセリアルズ株式会社 | 凹凸構造体、光学部材及び電子機器 |
CN111511516A (zh) * | 2017-12-26 | 2020-08-07 | 迪睿合株式会社 | 原盘、转印物以及原盘的制造方法 |
CN111527421A (zh) * | 2017-12-26 | 2020-08-11 | 迪睿合株式会社 | 凹凸构造体、光学部件及电子设备 |
CN111511516B (zh) * | 2017-12-26 | 2022-10-11 | 迪睿合株式会社 | 原盘、转印物以及原盘的制造方法 |
JP7226915B2 (ja) | 2017-12-26 | 2023-02-21 | デクセリアルズ株式会社 | 凹凸構造体、光学部材及び電子機器 |
WO2021019307A1 (en) * | 2019-07-29 | 2021-02-04 | Menicon Co., Ltd. | Systems and methods for forming ophthalmic lens including meta optics |
JP2022542164A (ja) * | 2019-07-29 | 2022-09-29 | 株式会社メニコン | メタオプティクスを含む眼科用レンズを形成するためのシステム及び方法 |
JP2023090718A (ja) * | 2022-04-07 | 2023-06-29 | デクセリアルズ株式会社 | 原盤、転写物及び原盤の製造方法 |
JP7535152B2 (ja) | 2022-04-07 | 2024-08-15 | デクセリアルズ株式会社 | 転写物 |
Also Published As
Publication number | Publication date |
---|---|
EP2983015A4 (en) | 2016-06-01 |
EP2983015B1 (en) | 2021-10-27 |
US20150362634A1 (en) | 2015-12-17 |
JP6089313B2 (ja) | 2017-03-08 |
EP2983015A1 (en) | 2016-02-10 |
JPWO2014162374A1 (ja) | 2017-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6089313B2 (ja) | 光学部材および光学装置 | |
CN108139519B (zh) | 低对比度的基于氮化硅的超颖表面 | |
Wu et al. | High numerical aperture microlens arrays of close packing | |
EP3203277B1 (en) | Diffuser plate and method for designing diffuser plate | |
KR101945661B1 (ko) | 확산판 | |
CN109900717A (zh) | 使用斜率数据的用于半导体衬底的检查方法及检查装置 | |
CN114593689B (zh) | 光纤端面检测方法及装置 | |
JPWO2010073675A1 (ja) | 回折光学素子の製造方法および回折光学素子 | |
WO2016181206A1 (en) | The measurement setup for determining position of focal plane and effective focal length of an optical system and the method of determining position of focal plane and effective focal length of an optical system | |
TW201947276A (zh) | 超穎鏡單元、半導體故障解析裝置及半導體故障解析方法 | |
EP3642562A1 (de) | Kalibriernormal und verfahren zu seiner herstellung | |
Ashraf et al. | Geometrical characterization techniques for microlens made by thermal reflow of photoresist cylinder | |
EP3100100B1 (en) | Fabricating lenses using gravity | |
KR20160010974A (ko) | 광 변환 모듈 및 광학 측정 시스템 | |
Zamkotsian et al. | Surface characterization of micro-optical components by Foucault’s knife-edge method: the case of a micromirror array | |
CN114450778A (zh) | 带薄膜晶圆的膜厚分布的测量方法 | |
US20190176157A1 (en) | Measurement apparatus and sample holder used in the same | |
JP6686462B2 (ja) | 階調露光用テストマスク | |
JP5742234B2 (ja) | 光学素子用成形型、光学素子の製造方法、および光学素子 | |
TIEN | High Speed Confocal 3D Profilometer: Design, Development, Experimental Results | |
KR100795543B1 (ko) | 마이크로 광학소자 어레이의 3차원 표면조도 측정장치 | |
US7310136B2 (en) | Method and apparatus for measuring prism characteristics | |
JP2023102697A (ja) | 計測装置および計測方法 | |
US20190323820A1 (en) | An artifact for improving vertical resolution of radiation-based imaging | |
Ang et al. | Note: Real time three-dimensional topography measurement of microfluidic devices with pillar structures using confocal microscope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13881431 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015509613 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14764076 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013881431 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |