WO2018123465A1 - 反射型拡散板、表示装置、投影装置及び照明装置 - Google Patents

反射型拡散板、表示装置、投影装置及び照明装置 Download PDF

Info

Publication number
WO2018123465A1
WO2018123465A1 PCT/JP2017/043624 JP2017043624W WO2018123465A1 WO 2018123465 A1 WO2018123465 A1 WO 2018123465A1 JP 2017043624 W JP2017043624 W JP 2017043624W WO 2018123465 A1 WO2018123465 A1 WO 2018123465A1
Authority
WO
WIPO (PCT)
Prior art keywords
single lens
lens group
reflective
reflection
diffusion
Prior art date
Application number
PCT/JP2017/043624
Other languages
English (en)
French (fr)
Inventor
有馬 光雄
勉 長浜
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to PL17886466.6T priority Critical patent/PL3550338T3/pl
Priority to CN201780081206.3A priority patent/CN110114698B/zh
Priority to US16/472,619 priority patent/US11002889B2/en
Priority to EP17886466.6A priority patent/EP3550338B1/en
Priority to KR1020197018544A priority patent/KR102501349B1/ko
Publication of WO2018123465A1 publication Critical patent/WO2018123465A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0043Inhomogeneous or irregular arrays, e.g. varying shape, size, height
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/284Interference filters of etalon type comprising a resonant cavity other than a thin solid film, e.g. gas, air, solid plates

Definitions

  • the present invention relates to a reflective diffusion plate, a display device, a projection device, and an illumination device.
  • Diffusers that scatter incident light in various directions are widely used in various devices such as display devices such as displays, projection devices such as projectors, and various illumination devices.
  • the diffusion mechanism of incident light in such a diffuser plate uses light refraction caused by the surface shape of the diffuser plate, and uses scattering caused by a substance present in the bulk body and having a refractive index different from that of the surroundings. It is roughly divided into One of the diffusion plates using light refraction caused by the surface shape is a so-called microlens array type diffusion plate in which a plurality of microlenses having a size of several tens of ⁇ m are arranged on the surface of a bulk body.
  • Patent Document 1 discloses a diffusion plate for a focusing screen, and the diffusion plate has a design in which the pitch and height of the microlens are varied. It has become. Specifically, in Patent Document 1 below, the pitch P of the microlens is 8 ⁇ m ⁇ P ⁇ 30 ⁇ m, and the height H of the microlens is 0.01 ⁇ P ⁇ H ⁇ 0.1 ⁇ P. The effect is disclosed.
  • Patent Document 2 discloses that the diameter (D) of a microlens constituting the microlens array is 100 ⁇ m or more and 1000 ⁇ m or less, and the surface roughness (Ra) of the microlens is 0. It is disclosed that a light diffusion effect is imparted to the lens surface by setting the thickness to 1 ⁇ m or more and 10 ⁇ m or less.
  • the arrangement pattern of the microlenses is a random arrangement pattern, but the stress concentration can be suppressed by making the height of the microlens constant. There is a denial of the introduction of randomness.
  • Patent Document 1 does not mention the radius of curvature of each microlens, and there is a problem that it is difficult to realize more uniform (flat) diffusion angle distribution characteristics. Even if the technique disclosed in Patent Document 2 is used, it is difficult to achieve more uniform (flat) diffusion angle distribution characteristics.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a reflective diffusion plate, display device, and projection capable of realizing a more uniform diffusion angle distribution characteristic. It is in providing an apparatus and an illuminating device.
  • a microlens array type diffusing plate comprising a single lens group located on the surface of a transparent substrate, each of which constitutes the single lens group
  • the aperture diameter and the radius of curvature of the single lens vary as a whole of the single lens group, and the vertex positions of the single lenses are irregularly arranged, and light that is perpendicularly incident on the single lens group.
  • the brightness distribution of the reflected light is substantially uniform in a predetermined diffusion angle range, and the angle of the angle with the surface normal direction of the transparent substrate is 20 degrees or 40 degrees.
  • a reflection type in which the relation of 0.3 ⁇ A / B ⁇ 1 is established, where A is the reflection luminance value in the surface normal direction and B is the peak reflection luminance value of the reflection diffusion component. Diffusion plate is provided
  • the boundary between the single lens adjacent to the single lens includes different curves.
  • a reflective layer is further provided on the surface of the single lens group.
  • the reflective layer may be a metal layer containing either Al or Ag, or an inorganic reflective layer containing either TiO 2 or ZnS.
  • Each of the single lenses constituting the single lens group is irregularly arranged on the transparent base material, and the maximum overlap width of the two single lenses adjacent to each other is O v [ ⁇ m],
  • the aperture diameters of the two adjacent single lenses are D 1 [ ⁇ m] and D 2 [ ⁇ m], respectively, it is preferable that the relationship represented by the following formula (2) is satisfied.
  • the transparent substrate may be a resin substrate, a resin film, or a glass substrate.
  • a display device including the above diffusion plate.
  • a projection apparatus including the above diffusion plate.
  • an illumination device including the above diffusion plate is provided.
  • the reflective diffuser according to the embodiment of the present invention described in detail below is a microlens array reflective diffuser having a function of uniformly diffusing light and uniformly expanding an optical aperture.
  • An optical body (that is, a microlens) included in such a reflective diffusion plate is such that convex surfaces having a light diffusing function have different shapes from each other, and the boundary contour portion of each lens is in contact with an adjacent lens by a different curve. It is a characteristic structure.
  • the reflective diffuser plate according to the embodiment of the present invention described in detail below is capable of emitting normal incident light with respect to collimated light in the visible light region or telecentric light having a collimated principal ray and having a certain aperture.
  • the optical body is characterized in that the homogeneity of the reflection component is extremely high within the angle component in the predetermined region, and the ratio of the front reflection luminance and the diffusion luminance of obliquely incident light is controlled.
  • the reflective diffusion plate according to the embodiment of the present invention is perturbed (in other words, the arrangement of unit cells (that is, microlenses that are single lenses) constituting the microlens array, the radius of curvature, and the circular aperture diameter).
  • the reflective diffuser according to the embodiment of the present invention has a plurality of different curved and curved regions, the region boundaries are curved surfaces that are different from each other, and the tangent directions are different from each other. It has an optical body composed of a large number of curved and curved surfaces whose trajectories are separated by different curves.
  • the features of the reflective diffuser described in detail below are as follows. 1)
  • the curved surface portion of the single lens (microlens) constituting the microlens array is a spherical body or an aspherical body. 2)
  • the arrangement of single lenses constituting the microlens array is a random arrangement.
  • the homogeneity of the diffuse reflected light can be realized by optimally selecting the reference aperture diameter D, the reference radius of curvature R, and the perturbation amount ⁇ of the single lens constituting the microlens array. 4)
  • a region having no curved or curved surface is less than 5%.
  • the boundaries of the curved regions in the microlens array are different curved surfaces.
  • a reflective layer may be provided on the surface of the microlens array.
  • the reflection distribution of 0 degree incident light (normally incident light) with respect to the microlens array exhibits a top hat characteristic within a desired diffusion angle range. 8) When the peak reflection luminance value of 0 degree incident light with respect to the microlens array is A and the peak reflection luminance value of 20 degree incident light or 40 degree incident light is B, 0.3 ⁇ A / B ⁇ 1.0. is there.
  • FIG. 1 is an explanatory view schematically showing the configuration of the reflective diffusion plate according to the present embodiment.
  • 2 and 3 are explanatory views for explaining a single lens included in the reflective diffusion plate according to the present embodiment.
  • FIG. 4 is an electron micrograph of an example of a single lens group provided in the reflective diffusion plate according to the present embodiment as viewed from above.
  • FIG. 5 is an explanatory diagram schematically showing the configuration of the reflective diffusion plate according to the present embodiment.
  • 6A to 7B are explanatory views for explaining a method of arranging the single lens groups provided in the reflective diffusion plate according to the present embodiment.
  • FIG. 8 is an explanatory view schematically showing the luminance distribution of the reflected light from the reflective diffusion plate according to the present embodiment.
  • FIG. 9 is an explanatory diagram for explaining a method of determining the distribution characteristic of reflected diffused light.
  • 10A and 10B are explanatory diagrams for explaining the reflection diffusion characteristics of the reflection type diffusion plate according to the present embodiment.
  • FIG. 11A and FIG. 11B are explanatory diagrams for explaining the reflection diffusion characteristics of the reflection type diffusion plate according to the present embodiment.
  • 12A to 12C are graphs for explaining the relationship between the aperture diameter, the radius of curvature, the amount of perturbation, and the distribution characteristics of the reflected diffused light.
  • the reflective diffuser plate 1 is a microlens array reflective diffuser plate in which a plurality of microlenses (hereinafter also referred to as “single lenses”) are disposed on a substrate. As schematically shown in FIG. 1, the reflective diffusion plate 1 includes a transparent base material 10 and a single lens group 20 formed on the surface of the transparent base material 10.
  • the transparent substrate 10 is a substrate made of a material that can be regarded as transparent in the wavelength band of light incident on the reflective diffusion plate 1 according to the present embodiment.
  • the transparent substrate 10 may be a film or a plate.
  • the material for the base material is not particularly limited. For example, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polycarbonate (polycarbonate: PC), cyclic olefin copolymer (Cyclo Olefine Polymer: COC), cyclic olefin polymer (CyPol Ole: olefin).
  • the transparent substrate 10 a known resin such as triacetyl cellulose (TAC) can be used as the transparent substrate 10, or a known optical glass such as quartz glass, borosilicate glass, white plate glass, or the like can be used.
  • TAC triacetyl cellulose
  • a known optical glass such as quartz glass, borosilicate glass, white plate glass, or the like.
  • FIG. 1 the case where the transparent base material 10 is rectangular is illustrated as an example. However, the shape of the transparent base material 10 is not limited to the rectangular shape, and for example, the reflective diffusion plate 1 is mounted. Depending on the shape of the display device, the projection device, the illumination device, etc., it may have an arbitrary shape.
  • a single lens group 20 including a plurality of single lenses 21 is formed on the surface of the transparent substrate 10.
  • the single lens group 20 includes a plurality of single lenses 21 adjacent to each other (in other words, between the single lenses 21 as schematically shown in FIG. 1). It is preferable that a gap (a flat portion) is formed).
  • the single lens 21 By disposing the single lens 21 on the transparent substrate 10 without a gap (in other words, disposing the single lens so that the filling rate of the single lens is 100%), the incident light is not scattered on the surface of the diffusion plate as it is. It is possible to suppress components that are transmitted (hereinafter also referred to as “zeroth-order transmitted light components”). As a result, in the single lens group 20 in which the plurality of single lenses 21 are arranged adjacent to each other, the diffusion performance can be further improved.
  • the single lenses 21 are not regularly arranged, but are irregularly (randomly) arranged.
  • irregular means that there is substantially no regularity regarding the arrangement of the single lenses 21 in an arbitrary region of the single lens group 20 in the reflective diffusion plate 1. Therefore, even if there is a certain regularity in the arrangement of the single lenses 21 in a minute area in an arbitrary area, those in which the arrangement of the single lenses 21 does not exist in the entire arbitrary area is “irregular”. Shall be included.
  • the irregular arrangement method of the single lenses 21 in the single lens group 20 according to this embodiment will be described in detail below.
  • the single lens 21 constituting the single lens group 20 is a convex lens.
  • the surface shape of each single lens 21 is not particularly limited, and may include only a spherical component or an aspheric component. May be.
  • the single lens group 20 not only the arrangement of the single lenses 21 as described above, but also the aperture diameter and the radius of curvature of the single lenses 21 vary throughout the single lens group 20. ing.
  • a plurality of single lenses 21 are provided so as to be adjacent to each other, the single lenses 21 are irregularly formed on the transparent substrate 10, and the aperture diameter and the radius of curvature of each single lens 21 have variations (randomness).
  • the outer shapes of the single lenses 21 are not the same as each other, but have various shapes as shown schematically in FIG. 1, and many have no symmetry. Become.
  • the curvature radius of the single lens A is r A while the curvature radius of the single lens B is r B ( ⁇ r A ).
  • the boundary between adjacent single lenses is not composed of only a straight line, but at least a part thereof includes a curve, as schematically shown in FIG.
  • the outer shape of the single lens 21 is configured by boundaries between a plurality of different curves and curved surfaces.
  • FIG. 4 is an SEM photograph in which a part of the single lens group 20 in the reflective diffusion plate according to the present embodiment is observed from above with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the reflection layer 30 is further provided on the surface of each single lens 21 constituting the single lens group 20. Is preferred. By providing such a reflective layer 30 on the surface of the single lens group 20, it is possible to further improve the reflection performance (that is, the reflectance of incident light) of the reflective diffusion plate 1 according to the present embodiment.
  • the reflective layer 30 can be formed using any material as long as a desired reflectance can be realized.
  • Examples of such a reflective layer 30 include a metal layer containing either Al or Ag, or an inorganic reflective layer containing either TiO 2 or ZnS.
  • a metal layer containing either Al or Ag for example, a metal layer such as an alloy containing Al or Ag, such as an Al simple substance, an Ag simple substance, or an AgPCu alloy can be given.
  • the inorganic reflective layer containing either TiO 2 or ZnS include an inorganic reflective layer containing TiO 2 and SiO 2 and a reflective layer containing ZnS and SiO 2 .
  • the thickness of the reflective layer 30 is not particularly limited. However, for example, since it is difficult to form the reflective layer 30 having a thickness of less than 10 nm, the thickness of the reflective layer 30 is preferably 10 nm or more. On the other hand, when the reflective layer 30 is formed using the above materials, the reflectance becomes 100% when the thickness is 200 nm or more. Therefore, from the viewpoint of cost and the like, the thickness of the reflective layer 30 is preferably 200 nm or less. The thickness of the reflective layer 30 is more preferably 100 nm or more and 200 nm or less.
  • the single lens group 20 in which the plurality of single lenses 21 having the above-described characteristics are arranged can be realized mainly by the following two arrangement methods. .
  • the first arrangement method is an arrangement method in which single lenses 21 having a reference shape are randomly arranged from the beginning.
  • this arrangement method is also referred to as a “random arrangement method”.
  • single lenses 21 having a reference shape are randomly arranged, and the shapes (that is, the aperture diameter and the radius of curvature) of the single lenses 21 are varied (perturbed). Therefore, as is apparent from the SEM photograph showing the actual arrangement of the single lens group 20 shown in FIG. 4, even when the single lens group 20 is looked down to a certain degree of macro, Regularity cannot be found in the arrangement.
  • the second arrangement method sets a reference state (hereinafter, also referred to as “initial arrangement state”) in which the single lenses 21 having a reference shape are regularly arranged, and then sets the initial arrangement state.
  • a reference state hereinafter, also referred to as “initial arrangement state”
  • the shape of the single lens 21 that is, the aperture diameter and the radius of curvature
  • the arrangement position more specifically, the vertex position of the single lens 21
  • this arrangement method is also referred to as “reference arrangement method”.
  • this arrangement method after the regular arrangement of the single lenses 21 is performed, the shape and arrangement of the single lenses 21 are randomized. Therefore, when the single lens group 20 is looked down to a certain degree of macro, the initial arrangement state is determined to some extent.
  • the layout can be estimated.
  • the flow of the random arrangement method will be briefly described with reference to FIGS. 6A and 6B.
  • the x coordinate and the y coordinate of the lens arrangement position are determined by random numbers.
  • the distance between each single lens 21 already arranged is calculated, and the overlapping width with the single lens 21 already arranged is within a preset allowable range. If so, the target single lens 21 is arranged. Conversely, if the calculated overlap width exceeds the allowable range, the single lens 21 of interest is not arranged. In this way, the initial arrangement in the random arrangement method is determined.
  • the maximum overlapping amount O v shown in Figure 6B This maximum overlapping amount O v may be regarded as the maximum value of the overlap width between the single lens 21 adjacent to each other.
  • the algorithm of the more specific random arrangement method is not particularly limited, and for example, a known method as disclosed in Japanese Patent Application Laid-Open No. 2012-181816 is used. Is possible.
  • the single lens 21 having a random shape is randomly selected by further perturbing the aperture diameter ⁇ and the curvature radius R of the single lens 21 as shown in FIG. 6B as parameters. It becomes possible to arrange
  • the maximum value of the overlapping width of two adjacent single lenses 21 in the single lens group 20 is O v [ ⁇ m]
  • the aperture diameters of the two adjacent single lenses 21 are When D 1 [ ⁇ m] and D 2 [ ⁇ m], respectively, it is preferable that the relationship represented by the following formula (101) is satisfied.
  • the relationship represented by the following formula (101) is not established, the degree of variation in parameters for realizing random arrangement becomes insufficient, and it may be difficult to realize sufficient randomness.
  • a reference initial arrangement state is first set.
  • the regular arrangement state of the single lenses 21 is not particularly limited.
  • the single lenses 21 are arranged in a square arrangement in which the vertex positions of the single lenses 21 are arranged in a square shape, or in positions corresponding to the regular hexagonal vertex and the regular hexagonal center.
  • a hexagonal arrangement or the like where the apex position of the lens 21 is arranged may be used as appropriate.
  • the regular arrangement state is a close-packed arrangement state such as a hexagonal close-packed lattice so as not to generate a flat portion as much as possible in the single lens group 20 after performing the reference arrangement method. It is preferable.
  • the lattice spacing (reference lattice pitch G in FIG. 7B) is used as a parameter.
  • the lattice spacing as a parameter is decreased from the value corresponding to the most dense pattern.
  • the single lenses come to overlap each other, and the flat portion is eliminated.
  • the lens center (vertex position) of each single lens 21 is moved randomly from the lattice point.
  • the maximum moving distance from the lattice point is used as a parameter (maximum perturbation amount M in FIG. 7B), and the product of a random number between 0 and 1 and the maximum moving distance is used as the moving distance.
  • the movement angle is also determined using random numbers.
  • the final arrangement pattern of the single lenses 21 is determined.
  • the reflection type diffuser plate 1 according to the present embodiment has a case where light enters the single lens group 20 vertically (in other words, light enters from a direction parallel to the surface normal direction of the transparent substrate 10). The luminance distribution of the reflected light of the incident light becomes substantially uniform within a predetermined diffusion angle range. In other words, the reflection type diffuser plate 1 according to the present embodiment exhibits a top hat type reflection characteristic within a predetermined diffusion angle range.
  • the reflection characteristic is the top hat type, as schematically shown in FIG. 8, the luminance distribution of the reflected light of the vertically incident light is within a desired diffusion angle range ⁇ diff .
  • ⁇ diff the luminance distribution of the reflected light of the vertically incident light is within a desired diffusion angle range ⁇ diff .
  • the distribution of the reflected diffused light from the reflective diffuser plate has homogeneity, and no periodic diffracted light is generated.
  • the top-hat type reflection characteristic as shown in FIG. 8 is not realized, the distribution of the reflected diffused light from the reflective diffuser plate is not uniform, and periodic diffracted light or the like is generated. The possibility increases.
  • the reflective diffuser of interest when the distribution of the reflected diffuse light is uniform, the reflective diffuser of interest is within a predetermined diffusion angle range with respect to the normal incident light. It is determined that the film has substantially uniform reflection diffusivity (that is, it has reached the pass line).
  • the reflective diffuser plate of interest when the distribution of reflected diffused light is uneven and not uniform, and in some cases a periodic diffraction pattern is observed, the reflective diffuser plate of interest is It is determined that the normal incident light does not have a substantially uniform reflection diffusivity within a predetermined diffusion angle range (that is, it does not reach the pass line).
  • the reflective diffuser plate 1 has a specific relationship with respect to light incident on the single lens group 20 from an oblique direction in which an angle formed with the surface normal direction of the transparent substrate 10 is a predetermined value. To establish.
  • the angle ⁇ in between the reflective diffuser plate 1 and the surface normal direction of the transparent substrate 10 is oblique from a direction of 20 degrees or 40 degrees. Focusing on the luminance distribution of the reflected diffused light generated by the reflective diffuser 1 with respect to the light incident on the light.
  • the luminance distribution of the reflected diffused light in the plane defined by the traveling direction of the incident light and the surface normal direction out of the luminance distribution of the reflected diffused light is as follows. For convenience, this is referred to as “longitude luminance distribution”. Of the luminance distribution of the reflected diffused light, the reflected light in the plane orthogonal to the plane defined by the traveling direction of the incident light and the surface normal direction. The luminance distribution is hereinafter referred to as “latitude luminance distribution” for convenience.
  • the luminance distribution is as follows.
  • the luminance distribution in the latitudinal direction is a substantially bilateral luminance distribution. It can be seen that the luminance distribution in the longitude direction is an asymmetric luminance distribution.
  • the reflection luminance value in the surface normal direction is A
  • the peak reflection luminance value of the reflection diffusion component is B
  • the incident angle ⁇ in 20 degrees
  • the diffusion angle giving the peak luminance value B is close to 50 degrees in the single lens group of the reflective diffusion plate 1 of interest in the present embodiment. This is because the aperture and the radius of curvature have a predetermined variation (that is, a perturbation amount).
  • the luminance ratio given by (A / B) above does not take a value exceeding 1. Therefore, the upper limit value of the luminance ratio (A / B) is 1.
  • the value of the brightness ratio (A / B) is less than 0.3, the unevenness of the brightness distribution of the reflected diffused light becomes too large, and it is difficult to realize more uniform diffusion angle distribution characteristics. Become. Therefore, the lower limit value of the luminance ratio (A / B) is 0.3.
  • the range of the value of the luminance ratio (A / B) is more preferably 0.5 or more and 1.0 or less.
  • the present inventors perform a well-known ray tracing simulation while changing the reference aperture diameter D, the reference curvature radius R, and the perturbation amount ⁇ , so that the reflection diffusion characteristics of the reflection type diffusion plate (more specifically, as described above)
  • the reflection and diffusion characteristics of normal incident light and the reflection and diffusion characteristics of oblique incident light were verified based on the above criteria.
  • the reflection diffusion characteristics of the reflective diffusion plate were simulated as%, 10%, 20%, or 30%.
  • the obtained results are schematically shown in the following Table 1 and FIGS. 12A to 12C.
  • the areas indicated by the white bars indicate the areas where the reflection diffusion characteristics for both the normal incident light and the oblique incident light are acceptable.
  • the present inventors have obtained a region in which both of the reflection / diffusion characteristics related to normal incidence light and the reflection / diffusion characteristics related to oblique incidence light pass, and the reflection diffusion related to normal incidence light. Further studies were made on the relational expression that gives the boundary between the characteristics and the region where at least one of the reflection diffusion characteristics regarding obliquely incident light is rejected.
  • the reference aperture diameter of the single lens group 20 is D [ ⁇ m]
  • the reference radius of curvature is R [ ⁇ m]
  • the variation ratio (perturbation amount) of each of the reference aperture diameter D and the reference curvature radius R is ⁇ [%].
  • the reflective diffuser plate 1 it is preferable that the relationship of the above formula (103) is established for the reference aperture diameter D, the reference curvature radius R, and the perturbation amount ⁇ of the single lens group 20.
  • the reflective diffusion plate 1 according to this embodiment has been described in detail above with reference to FIGS. 1 to 12C.
  • the reflective diffuser plate 1 according to this embodiment as described above is more uniform by providing randomness to the arrangement of the single lenses 21 and the shape (opening diameter and radius of curvature) of the single lenses 21. It becomes possible to realize the diffusion angle distribution characteristic. Moreover, in the reflection type diffuser plate 1 according to the present embodiment, the diffusion angle of the light transmitted through the diffuser plate 1 can be freely designed by controlling the aperture diameter and the radius of curvature of the single lens 21.
  • FIG. 13 is a flowchart showing an example of the flow of the manufacturing method of the reflective diffusion plate according to the present embodiment.
  • the substrate is cleaned (step S101).
  • a substrate may be, for example, a roll like a glass roll or a flat plate like a glass wafer.
  • a resist for example, a resist using a metal oxide or a resist using an organic substance
  • a resist forming process is realized by a coating process or dipping for a roll-shaped substrate, and is realized by various coating processes for a flat substrate.
  • an exposure process is performed on the substrate on which the resist is formed (step S105).
  • Such exposure processing includes exposure using a gray scale mask or the like (including multiple exposure by overlapping a plurality of gray scale masks), gray scale exposure on a flat plate or a roll plate, a picosecond pulse laser, a femtosecond pulse laser, or the like.
  • Various known exposure methods such as the laser exposure used can be appropriately applied.
  • step S107 the substrate after exposure is alkali-developed (step S107), and is subjected to a known sputtering process (step S109) such as Ni sputtering, whereby a master master disk for manufacturing the reflective diffusion plate 1 according to the present embodiment (for example, a glass master, a metal master, etc.) are completed (step S111). Thereafter, a mold such as a soft mold is created using the completed master master (step S113).
  • a known sputtering process such as Ni sputtering
  • step S115 a transfer process is performed on the substrate glass or the substrate film (step S115), and a reflective film, a protective film, or the like is formed as necessary (step S117).
  • the reflective diffusion plate 1 according to this embodiment is manufactured.
  • step S121 the reflective diffusion plate 1 according to the present embodiment is manufactured.
  • the reflective diffuser plate 1 according to this embodiment as described above can be appropriately mounted on a device that needs to diffuse light in order to realize its function.
  • Examples of the device that needs to diffuse light in order to realize the function include a display device such as various displays and a projection device such as a projector.
  • the reflective diffuser plate 1 according to the present embodiment can be applied to a backlight of a liquid crystal display device, and can also be used for light shaping applications. Furthermore, the reflection type diffuser plate 1 according to the present embodiment can be applied to various lighting devices.
  • the device that needs to diffuse light in order to realize the function is not limited to the above example, and the device that uses light diffusion is not limited to this well-known device. It is possible to apply the reflective diffusion plate 1 according to the embodiment.
  • the reflective diffusion plate according to the present invention will be specifically described with reference to Examples and Comparative Examples.
  • the Example shown below is only an example of the reflection type diffuser plate which concerns on this invention, and the reflection type diffuser plate which concerns on this invention is not limited to the following example.
  • Test Example 1 In the following, based on the reference aperture diameter D [ ⁇ m], the reference curvature radius R [ ⁇ m], and the perturbation amount ⁇ [%] as shown in Table 2 below using a commercially available ray tracing simulation application. Various characteristics when the single lens 21 was arranged by a random arrangement method were simulated. In the following simulation, the lens material forming the single lens 21 is a transparent resin or glass. The reflective layer 30 was formed on the surface of the single lens group 20 by forming a reflective layer using an AgPCu alloy to a thickness of 100 nm.
  • the brightness distribution of the reflected diffused light obtained by simulation has a top-hat type diffusion characteristic, the brightness distribution of the top part is homogeneous, or satisfies the reflected brightness characteristic for obliquely incident light Evaluation was performed on three points.
  • Each evaluation standard is as follows.
  • A The brightness distribution of the reflected diffused light has a top hat shape.
  • B The luminance distribution of the reflected diffused light is not a top hat shape.
  • FIGS. 14A to 16C are luminance distributions of reflected diffused light in the reflective diffuser plate of Example 1
  • FIGS. 15A to 15C are luminance distributions of reflected diffused light in the reflective diffuser plate of Example 2.
  • 16A to 16C are luminance distributions of reflected diffused light in the reflective diffuser plate of Comparative Example 1.
  • Example 3 Example 4, and Comparative Example 2 as shown in FIGS. 17 to 19, the surface shape (overhead projection trajectory) of the single lens group in the reflective diffusion plate and the state of the reflected diffused light distribution are shown. It also shows. 17 relates to the reflective diffuser of Example 3, FIG. 18 relates to the reflective diffuser of Example 4, and FIG. 19 relates to the reflective diffuser of Comparative Example 2. .
  • the reflective diffusion plate corresponding to the example of the present invention shows excellent reflective diffusion characteristics, whereas the comparative example of the present invention. It can be seen that the reflective diffuser plate corresponding to the above cannot achieve uniform reflective diffusion characteristics.
  • the lens material forming the single lens 21 is transparent resin or glass.
  • the reflective layer 30 was formed on the surface of the single lens group 20 by forming a reflective layer using an AgPCu alloy to a thickness of 100 nm.
  • FIGS. 20A to 20C The obtained results are shown in FIGS. 20A to 20C.
  • the reflection type diffusion plate in this test example corresponding to the example of the present invention exhibits excellent reflection diffusion characteristics.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

【課題】より均一な拡散角度分布特性を実現させること。 【解決手段】本発明に係る反射型拡散板は、透明基材の表面に位置する単レンズ群からなるマイクロレンズアレイ型の拡散板であって、前記単レンズ群を構成するそれぞれの単レンズが有する開口径及び曲率半径は、前記単レンズ群全体としてばらつきがあり、かつ、前記それぞれの単レンズの頂点位置は、不規則に配置されており、前記単レンズ群に垂直入射する光の反射光の輝度分布が、所定の拡散角度範囲で略均一であり、前記透明基材の表面法線方向とのなす角が20度又は40度の方向から前記単レンズ群に入射する光の少なくとも何れか一方について、前記表面法線方向の反射輝度値をAとし、反射拡散成分のピーク反射輝度値をBとしたときに、0.3≦A/B≦1の関係が成立する。

Description

反射型拡散板、表示装置、投影装置及び照明装置
 本発明は、反射型拡散板、表示装置、投影装置及び照明装置に関する。
 入射光を様々な方向へと散乱させる拡散板は、例えば、ディスプレイ等の表示装置や、プロジェクタ等の投影装置や、各種の照明装置等といった様々な装置に広く利用されている。かかる拡散板における入射光の拡散機構は、拡散板の表面形状に起因する光の屈折を利用するものと、バルク体の内部に存在する、周囲とは屈折率の異なる物質による散乱を利用するものと、に大別される。表面形状に起因する光の屈折を利用した拡散板のひとつに、数十μm程度の大きさのマイクロレンズをバルク体の表面に複数配置した、いわゆるマイクロレンズアレイ型の拡散板がある。
 かかるマイクロレンズアレイ型の拡散板として、以下の特許文献1には、焦点板用の拡散板が開示されており、かかる拡散板は、マイクロレンズのピッチ及び高さにばらつきを持たせた設計となっている。具体的には、以下の特許文献1には、マイクロレンズのピッチPを、8μm≦P≦30μmとし、マイクロレンズの高さHを、0.01×P≦H≦0.1×Pとする旨が開示されている。
 また、マイクロレンズアレイ型の拡散板として、以下の特許文献2には、マイクロレンズアレイを構成するマイクロレンズの直径(D)を100μm以上1000μm以下とし、マイクロレンズの表面粗さ(Ra)を0.1μm以上10μm以下とすることで、レンズ表面に対して光拡散効果を付与する旨が開示されている。かかる特許文献2では、上記特許文献1と同様に、マイクロレンズの配設パターンはランダム配設パターンとなっているが、マイクロレンズの高さについては、一定とすることで応力集中が抑制可能であるとし、ランダム性の導入を否定したものとなっている。
特開平3-192232号公報 特開2004-145330号公報
 しかしながら、上記特許文献1では、各マイクロレンズの曲率半径については言及されておらず、より均一(平坦)な拡散角度分布特性を実現させることが困難であるという問題があった。また、上記特許文献2に開示されている技術を用いたとしても、より均一(平坦)な拡散角度分布特性を実現させることは困難であった。
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、より均一な拡散角度分布特性を実現させることが可能な、反射型拡散板、表示装置、投影装置及び照明装置を提供することにある。
 上記課題を解決するために、本発明のある観点によれば、透明基材の表面に位置する単レンズ群からなるマイクロレンズアレイ型の拡散板であって、前記単レンズ群を構成するそれぞれの単レンズが有する開口径及び曲率半径は、前記単レンズ群全体としてばらつきがあり、かつ、前記それぞれの単レンズの頂点位置は、不規則に配置されており、前記単レンズ群に垂直入射する光の反射光の輝度分布が、所定の拡散角度範囲で略均一であり、前記透明基材の表面法線方向とのなす角が20度又は40度の方向から前記単レンズ群に入射する光の少なくとも何れか一方について、前記表面法線方向の反射輝度値をAとし、反射拡散成分のピーク反射輝度値をBとしたときに、0.3≦A/B≦1の関係が成立する反射型拡散板が提供される。
 前記開口径をD[μm]とし、前記曲率半径をR[μm]とし、前記開口径D及び前記曲率半径Rそれぞれのばらつき割合をδ[%]としたときに、以下の式(1)で表される関係が成立することが好ましい。
Figure JPOXMLDOC01-appb-M000003
 前記単レンズに隣接する他の前記単レンズとの境界は、互いに異なる曲線を含むことが好ましい。
 前記単レンズ群の表面に反射層を更に備えることが好ましい。
 前記反射層は、AlもしくはAgの何れかを含む金属層、又は、TiOもしくはZnSの何れかを含む無機反射層であってもよい。
 前記単レンズ群を構成するそれぞれの前記単レンズは、前記透明基材上に不規則に配置されており、互いに隣接する2つの前記単レンズの重なり幅の最大値をO[μm]とし、当該互いに隣接する2つの単レンズの開口径を、それぞれD[μm]、D[μm]としたときに、以下の式(2)で表される関係が成立することが好ましい。
Figure JPOXMLDOC01-appb-M000004
 前記透明基材は、樹脂基板、樹脂フィルム、又は、ガラス基板の何れかであってもよい。
 また、上記課題を解決するために、本発明の別の観点によれば、上記の拡散板を備える表示装置が提供される。
 また、上記課題を解決するために、本発明の別の観点によれば、上記の拡散板を備える投影装置が提供される。
 また、上記課題を解決するために、本発明の別の観点によれば、上記の拡散板を備える照明装置が提供される。
 以上説明したように本発明によれば、より均一な拡散角度分布特性を実現することが可能となる。
本発明の実施形態に係る反射型拡散板の構成を模式的に示した説明図である。 同実施形態に係る反射型拡散板が有する単レンズについて説明するための説明図である。 同実施形態に係る反射型拡散板が有する単レンズについて説明するための説明図である。 同実施形態に係る反射型拡散板が備える単レンズ群の一例を上方から見た電子顕微鏡写真である。 同実施形態に係る反射型拡散板の構成を模式的に示した説明図である。 同実施形態に係る反射型拡散板が備える単レンズ群の配置方法について説明するための説明図である。 同実施形態に係る反射型拡散板が備える単レンズ群の配置方法について説明するための説明図である。 同実施形態に係る反射型拡散板が備える単レンズ群の配置方法について説明するための説明図である。 同実施形態に係る反射型拡散板が備える単レンズ群の配置方法について説明するための説明図である。 同実施形態に係る反射型拡散板からの反射光の輝度分布を模式的に示した説明図である。 反射拡散光の分布特性の判定方法について説明するための説明図である。 同実施形態に係る反射型拡散板の反射拡散特性について説明するための説明図である。 同実施形態に係る反射型拡散板の反射拡散特性について説明するための説明図である。 同実施形態に係る反射型拡散板の反射拡散特性について説明するための説明図である。 同実施形態に係る反射型拡散板の反射拡散特性について説明するための説明図である。 開口径、曲率半径及び摂動量と反射拡散光の分布特性との関係を説明するためのグラフ図である。 開口径、曲率半径及び摂動量と反射拡散光の分布特性との関係を説明するためのグラフ図である。 開口径、曲率半径及び摂動量と反射拡散光の分布特性との関係を説明するためのグラフ図である。 同実施形態に係る反射型拡散板の製造方法の流れの一例を示した流れ図である。 反射型拡散板に関する試験例1の試験結果を示したグラフ図である。 反射型拡散板に関する試験例1の試験結果を示したグラフ図である。 反射型拡散板に関する試験例1の試験結果を示したグラフ図である。 反射型拡散板に関する試験例1の試験結果を示したグラフ図である。 反射型拡散板に関する試験例1の試験結果を示したグラフ図である。 反射型拡散板に関する試験例1の試験結果を示したグラフ図である。 反射型拡散板に関する試験例1の試験結果を示したグラフ図である。 反射型拡散板に関する試験例1の試験結果を示したグラフ図である。 反射型拡散板に関する試験例1の試験結果を示したグラフ図である。 反射型拡散板に関する試験例1の試験結果を示したグラフ図である。 反射型拡散板に関する試験例1の試験結果を示したグラフ図である。 反射型拡散板に関する試験例1の試験結果を示したグラフ図である。 反射型拡散板に関する試験例2の試験結果を示したグラフ図である。 反射型拡散板に関する試験例2の試験結果を示したグラフ図である。 反射型拡散板に関する試験例2の試験結果を示したグラフ図である。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
(本発明の実施形態に係る反射型拡散板の概要)
 本発明の実施形態に係る反射型拡散板について詳細に説明するに先立ち、本発明の実施形態に係る反射型拡散板の概要について、以下で簡単に言及しておく。
 以下で詳述する本発明の実施形態に係る反射型拡散板は、光の均質拡散及び光学開口の均質拡大機能を備えた、マイクロレンズアレイ型の反射型拡散板である。かかる反射型拡散板の有する光学体(すなわち、マイクロレンズ)は、光拡散機能を有する凸面が、互いに異なる形状であり、かつ、各レンズの境界輪郭部が異なる曲線により隣接するレンズと接することを特徴とする構造体である。
 上記特許文献1及び特許文献2に開示されているような、従来のマイクロレンズアレイ構造による光学体の場合、一般的なガウシアン状の光拡散機能及び画像機器におけるモアレ抑制機能を付加し得るのみであり、均質なエネルギー分布の拡散特性を満足することが難しいという問題があった。つまり、可視光領域のコリメート光や、コリメート性のある主光線を有して一定の開口を持つテレセントリック光に対して、一定領域における角度成分内でエネルギー分布の均質性が非常に高く、この角度成分の一定領域を超過するとエネルギーが急激に減少し得る光学機能(以下、「トップハット型拡散」ともいう。)に関する課題を解決できていないという問題があった。
 以下で詳述する本発明の実施形態に係る反射型拡散板は、可視光領域のコリメート光や、コリメート性のある主光線を有して一定の開口を持つテレセントリック光に対して、垂直入射光の一定領域における角度成分内で反射成分の均質性が非常に高く、斜め入射光の正面反射輝度と拡散輝度の比率を制御することを特徴とする光学体である。
 より詳細には、本発明の実施形態に係る反射型拡散板は、マイクロレンズアレイを構成する各単位セル(すなわち、単レンズであるマイクロレンズ)の配置、曲率半径、円形開口径に摂動(換言すれば、ばらつき)を持たせている。これにより、本発明の実施形態に係る反射型拡散板は、相互に異なる湾曲及び曲面の領域を複数持ち、かかる領域境界が相互に異なる曲面であり、接線方位が相互に相違している俯瞰投影軌跡が異なる曲線によって区切られる、多数の湾曲及び曲面からなる光学体を有する。これにより、上記のような課題を解決し、従来のガウス型光拡散には有していない、高均質拡散機能と光学開口制御機能とを併せ持った光学体を実現することが可能となる。
 以下で詳述する反射型拡散板の特徴は、以下の通りである。
 1)マイクロレンズアレイを構成する単レンズ(マイクロレンズ)の曲面部は、球面体、又は、非球面体である。
 2)マイクロレンズアレイを構成する単レンズの配置は、ランダム配置である。
 3)マイクロレンズアレイを構成する単レンズの基準開口径D、基準曲率半径R、摂動量δを最適に選択することで、拡散反射光の均質性を実現することができる。
 4)湾曲及び曲面を持たない領域(換言すれば、マイクロレンズアレイが配置された光学体の平坦部の広さ)は、5%未満である。
 5)マイクロレンズアレイにおける各湾曲領域の境界は、相互に異なる曲面である。
 6)マイクロレンズアレイの表面に反射層を有していてもよい。
 7)マイクロレンズアレイに対する0度入射光(垂直入射光)の反射分布は、所望の拡散角範囲内でトップハット特性を示す。
8)マイクロレンズアレイに対する0度入射光のピーク反射輝度値をAとし、20度入射光又は40度入射光のピーク反射輝度値をBとすると、0.3≦A/B≦1.0である。
 以下では、以上のような特徴を有する本発明の実施形態に係る反射型拡散板について、詳細に説明する。
(反射型拡散板について)
 以下では、図1~図12Cを参照しながら、本発明の第1の実施形態に係る反射型拡散板1について詳細に説明する。
 図1は、本実施形態に係る反射型拡散板の構成を模式的に示した説明図である。図2及び図3は、本実施形態に係る反射型拡散板が有する単レンズについて説明するための説明図である。図4は、本実施形態に係る反射型拡散板が備える単レンズ群の一例を上方から見た電子顕微鏡写真である。図5は、本実施形態に係る反射型拡散板の構成を模式的に示した説明図である。図6A~図7Bは、本実施形態に係る反射型拡散板が備える単レンズ群の配置方法について説明するための説明図である。図8は、本実施形態に係る反射型拡散板からの反射光の輝度分布を模式的に示した説明図である。図9は、反射拡散光の分布特性の判定方法について説明するための説明図である。図10A及び図10Bは、本実施形態に係る反射型拡散板の反射拡散特性について説明するための説明図である。図11A及び図11Bは、本実施形態に係る反射型拡散板の反射拡散特性について説明するための説明図である。図12A~図12Cは、開口径、曲率半径及び摂動量と反射拡散光の分布特性との関係を説明するためのグラフ図である。
 本実施形態に係る反射型拡散板1は、基材上に複数のマイクロレンズ(以下、「単レンズ」とも称する。)が配置された、マイクロレンズアレイ型の反射型拡散板である。かかる反射型拡散板1は、図1に模式的に示したように、透明基材10と、透明基材10の表面に形成された単レンズ群20と、を有している。
<透明基材10について>
 透明基材10は、本実施形態に係る反射型拡散板1に入射する光の波長帯域において、透明とみなすことが可能な材質からなる基材である。かかる透明基材10は、フィルム状のものであっても良いし、板状のものであっても良い。かかる基材の材質については、特に限定するものではない。例えば、ポリメチルメタクリレート(polymenthyl methacrylate:PMMA)、ポリエチレンテレフタレート(Polyethylene terephthalate:PET)、ポリカーボネート(polycarbonate:PC)、環状オレフィン・コポリマー(Cyclo Olefin Copolymer:COC)、環状オレフィンポリマー(Cyclo Olefin Polymer:COP)、トリアセチルセルロース(Triacetylcellulose:TAC)等といった公知の樹脂を透明基材10として用いることも可能であるし、石英ガラス、ホウケイ酸ガラス、白板ガラス等といった公知の光学ガラスを用いることも可能である。図1では、透明基材10が矩形である場合を例に挙げて図示を行っているが、透明基材10の形状は矩形に限定されるものではなく、例えば反射型拡散板1が実装される表示装置、投影装置、照明装置等の形状に応じて、任意の形状を有していてもよい。
<単レンズ群20について>
 透明基材10の表面には、複数の単レンズ21からなる単レンズ群20が形成されている。本実施形態に係る反射型拡散板1において、単レンズ群20は、図1に模式的に示したように、複数の単レンズ21が互いに隣接するように(換言すれば、単レンズ21間に隙間(平坦部)が存在しないように)形成されることが好ましい。透明基材10上に単レンズ21を隙間なく配置させる(換言すれば、単レンズの充填率が100%となるように配置させる)ことで、入射光のうち拡散板表面で散乱せずにそのまま透過してしまう成分(以下、「0次透過光成分」ともいう。)を抑制することが可能となる。その結果、複数の単レンズ21が互いに隣接するように配置された単レンズ群20では、拡散性能を更に向上させることが可能となる。
 また、本実施形態に係る単レンズ群20では、図1に模式的に示したように、各単レンズ21は、規則的に配置されているのではなく、不規則に(ランダムに)配置されている。ここで、「不規則」とは、反射型拡散板1における単レンズ群20の任意の領域において、単レンズ21の配置に関する規則性が実質的に存在しないことを意味する。従って、任意の領域での微小領域において単レンズ21の配置にある種の規則性が存在したとしても、任意の領域全体として単レンズ21の配置に規則性が存在しないものは、「不規則」に含まれるものとする。なお、本実施形態に係る単レンズ群20における単レンズ21の不規則な配置方法については、以下で改めて詳述する。
 本実施形態において、単レンズ群20を構成する単レンズ21は、凸レンズとなっている。また、本実施形態に係る単レンズ群20では、各単レンズ21の表面形状は、特に限定されるものではなく、球面成分のみを含むものであってもよいし、非球面成分が含まれていてもよい。
 また、本実施形態に係る単レンズ群20では、上記のような各単レンズ21の配置のみならず、各単レンズ21の開口径及び曲率半径についても、単レンズ群20全体でばらつきを有している。
 複数の単レンズ21が互いに隣接するように設けられ、単レンズ21が透明基材10上に不規則に形成され、かつ、各単レンズ21の開口径及び曲率半径にばらつき(ランダム性)を持たせることで、それぞれの単レンズ21の外形は、互いに同一の形状とはならず、図1に模式的に示したように様々な形状を有するようになり、対称性を有しなくなるものが多くなる。
 このような場合、図2に模式的に示したように、単レンズAでは曲率半径がrであるのに対し、単レンズBでは曲率半径がr(≠r)となるという状況も多く生じるようになる。隣接する単レンズの曲率半径が異なる場合、隣接する単レンズ間の境界は直線のみで構成されるのではなく、その少なくとも一部に曲線を含むようになり、図3に模式的に示したように、単レンズ21の外形(単レンズ21を俯瞰した場合の外形の投影軌跡)は、互いに異なる複数の湾曲及び曲面の境界で構成されるようになる。単レンズ間の境界の少なくとも一部に曲線が含まれることで、単レンズ間の境界での配置の規則性が更に崩れることとなり、回折成分を更に低減することが可能となる。
 図4は、本実施形態に係る反射型拡散板における単レンズ群20の一部を、走査型電子顕微鏡(Scanning Electron Microscope:SEM)により上方から観察した場合のSEM写真である。図4から明らかなように、単レンズ群20を構成する単レンズ21の外形(俯瞰投影軌跡)は、様々な形状を有しており、単レンズ21の開口径も互いに相違していることがわかる。
<反射層30について>
 また、本実施形態に係る反射型拡散板1では、図5に模式的に示したように、単レンズ群20を構成する各単レンズ21の表面に、反射層30が更に設けられていることが好ましい。かかる反射層30を単レンズ群20の表面に設けることで、本実施形態に係る反射型拡散板1の反射性能(すなわち、入射光の反射率)を更に向上させることが可能となる。
 かかる反射層30は、所望の反射率を実現することが可能なものであれば、任意の材質を用いて形成することが可能である。このような反射層30として、例えば、AlもしくはAgの何れかを含む金属層、又は、TiOもしくはZnSの何れかを含む無機反射層を挙げることができる。Al又はAgの何れかを含む金属層としては、例えば、Al単体、Ag単体、又は、AgPCu合金等のように、Al又はAgを含有する合金等の金属層を挙げることができる。また、TiOもしくはZnSの何れかを含む無機反射層としては、例えば、TiO及びSiOを含有する無機反射層や、ZnS及びSiOを含有する反射層等を挙げることができる。
 また、かかる反射層30の厚みについては、特に限定するものではない。ただし、例えば10nm未満の厚みを有する反射層30を形成することは困難が伴うことから、反射層30の厚みは、10nm以上であることが好ましい。一方、上記のような材質を用いて反射層30を形成した場合、厚みが200nm以上となることで、100%の反射率を示すようになる。そのため、コスト性等の観点から、反射層30の厚みは、200nm以下であることが好ましい。かかる反射層30の厚みは、より好ましくは、100nm以上200nm以下である。
<単レンズ21の配置方法について>
 以下では、以上説明したような単レンズ21の配置方法について、具体的に説明する。
 本実施形態に係る反射型拡散板1において、上記のような特徴を有する複数の単レンズ21が配置された単レンズ群20は、主に以下の2つの配置方法により実現することが可能である。
 第一の配置方法は、基準となる形状を有する単レンズ21を、初めからランダムに配置していく配置方法である。以下、この配置方法を、「ランダム配置方法」ともいう。この配置方法では、基準となる形状を有する単レンズ21をランダムに配置した上で、単レンズ21の形状(すなわち、開口径及び曲率半径)をばらつかせる(摂動させる)。そのため、図4に示した、実際の単レンズ群20の配置の様子を示したSEM写真から明らかなように、ある程度マクロ的に単レンズ群20を俯瞰した場合であっても、単レンズ21の配置に規則性を見出すことはできない。
 第二の配列方法は、基準となる形状を有する単レンズ21を規則的に配列させた基準となる状態(以下、「初期配列状態」ともいう。)をひとまず設定した上で、かかる初期配列状態から、単レンズ21の形状(すなわち、開口径及び曲率半径)と、配置位置(より詳細には、単レンズ21の頂点位置)と、をばらつかせる(摂動させる)方式である。以下、この配置方法を、「基準配置方法」ともいう。この配置方法では、規則的な単レンズ21の配列を経たうえで、単レンズ21の形状及び配置にランダム性を持たせるため、ある程度マクロ的に単レンズ群20を俯瞰すると、初期配列状態をある程度推定できるような配置となっている。
[ランダム配置方法について]
 まず、図6A及び図6Bを参照しながら、ランダム配置方法の流れについて、簡単に説明する。
 ランダム配置方法では、図6Aに示したように、レンズ配置位置をxy座標系で考えた場合に、レンズ配置位置のx座標及びy座標を、乱数で決定していく。この際、着目している単レンズ21について、既に配置されている各単レンズ21との距離を計算し、既に配置されている単レンズ21との重なり幅が、予め設定されている許容範囲内であれば、着目している単レンズ21を配置していくようにする。逆に、計算した重なり幅が許容範囲を超える場合には、着目している単レンズ21は配置しないようにする。このようにして、ランダム配置方法における初期配列が決定される。
 上記のような配置方法における許容範囲が、図6Bに示した最大重ね合わせ量Oである。この最大重ね合わせ量Oは、互いに隣接する単レンズ21との重なり幅の最大値として捉えることが可能である。
 以上がランダム配置方法の概略であるが、より具体的なランダム配置方法のアルゴリズムは特に限定されるものではなく、例えば、特開2012-181816号公報に開示されているような公知の方法を利用することが可能である。
 以上のようにして初期配列を決定した後、図6Bに示したような単レンズ21の開口径φや曲率半径Rをパラメータとして更に摂動させることにより、ランダムな形状を有する単レンズ21を、ランダムに配置させることが可能となり、平坦部の発生を抑制することが可能となる。
 以上のようなランダム配置方法において、単レンズ群20における、互いに隣接する2つの単レンズ21の重なり幅の最大値をO[μm]とし、互いに隣接する2つの単レンズ21の開口径を、それぞれD[μm]、D[μm]としたときに、以下の式(101)で表される関係が成立することが好ましい。下記式(101)で表される関係が成立しない場合には、ランダム配置を実現するためのパラメータのばらつき度合いが不十分となり、十分なランダム性を実現することが困難となる可能性がある。
Figure JPOXMLDOC01-appb-M000005
[基準配置方法について]
 続いて、図7A及び図7Bを参照しながら、基準配置方法の流れについて、簡単に説明する。
 図7Aに示したように、基準配置方法では、まず、基準となる初期配列状態をまず設定する。単レンズ21の規則的な配列状態は、特に限定するものではなく、単レンズ21の頂点位置が正方形状に配置される四角配置や、正六角形の頂点及び正六角形の中心に対応する位置に単レンズ21の頂点位置が配置される六角配置等を適宜利用すればよい。この際、基準配置方法を実施した後の単レンズ群20に、なるべく平坦部を生じさせないようにするために、規則的な配列状態は、六方最密格子等のような最密配列状態にすることが好ましい。
 かかる基準配置方法では、図7A左側中段の図に示したように、格子間隔(図7Bにおける基準格子ピッチG)をパラメータとする。その上で、図7A左側下段の図に示したように、パラメータである格子間隔を、最密パターンに対応する値から小さくしていく。これにより、図7A右側上段の図に示したように、各単レンズが重なりあうようになり、平坦部が無くなる。
 その後、図7A右側中段の図に示したように、各単レンズ21のレンズ中心(頂点位置)を、格子点からランダムに動かしていく。具体的には、格子点からの最大移動距離をパラメータとし(図7Bにおける最大摂動量M)、0~1の乱数と最大移動距離との積を移動距離として、個々に決定していく。また、移動角度についても、乱数を用いて決定していく。これにより、図7A右側下段の図に示したように、最終的な単レンズ21の配置パターンが決定することとなる。
 その後、図7Bに示したような単レンズ21の開口径φや曲率半径Rをパラメータとして更に摂動させることにより、ランダムな形状を有する単レンズ21を、ランダムに配置させることが可能となる。
 以上、図6A~図7Bを参照しながら、本実施形態に係る単レンズ21の配置方法について、具体的に説明した。
<反射型拡散板1の反射拡散特性について>
 本実施形態に係る反射型拡散板1は、単レンズ群20に光が垂直入射する場合(換言すれば、透明基材10の表面法線方向と平行な方向から光が入射する場合)に、かかる入射光の反射光の輝度分布が、所定の拡散角度範囲内で略均一となる。換言すれば、本実施形態に係る反射型拡散板1は、所定の拡散角度範囲内でトップハット型の反射特性を示す。
 ここで、本実施形態において反射特性がトップハット型であるとは、図8に模式的に示したように、垂直入射した光の反射光の輝度分布について、所望の拡散角度範囲θdiff内において、反射光輝度値が、反射光輝度のピーク値Nittopを中心として、±10%の範囲内に収まっている状態が実現されていることをいう。
 図8に示したような状態が実現されることで、反射型拡散板からの反射拡散光の分布は、均質性を有するようになり、周期的な回折光等も発生しなくなる。一方、図8に示したようなトップハット型の反射特性が実現されていない場合には、反射型拡散板からの反射拡散光の分布は、均質ではなくなり、周期的な回折光等が発生する可能性が高くなる。
 本実施形態において、例えば図9左側の図に示したように、反射拡散光の分布が均一である場合、着目する反射型拡散板は、垂直入射光に対して、所定の拡散角度範囲内で略均一な反射拡散性を有している(すなわち、合格ラインに達している)と判断する。一方、図9右側の図に示したように、反射拡散光の分布にムラが見られて均一ではなく、場合によっては周期的な回折パターンが観察される場合、着目する反射型拡散板は、垂直入射光に対して、所定の拡散角度範囲内で略均一な反射拡散性を有していない(すなわち、合格ラインに達していない)と判断する。
 なお、図9左側に示した反射拡散特性は、基準開口径D=80μm、基準曲率半径R=100μm、摂動量δ=5%、単レンズの重なり幅の最大値(すなわち、最大重ね合せ量)O=40μmである反射型拡散板の反射拡散特性である。また、図9右側に示した反射拡散特性は、基準開口径D=80μm、基準曲率半径R=500μm、摂動量δ=0%、最大重ね合せ量O=36μmである反射型拡散板の反射拡散特性である。
 また、本実施形態に係る反射型拡散板1は、透明基材10の表面法線方向とのなす角が所定の値となる斜め方向から単レンズ群20に入射する光について、特定の関係が成立する。
 具体的には、図10Aに模式的に示したように、反射型拡散板1に対して、透明基材10の表面法線方向とのなす角θinが20度又は40度の方向から斜めに入射してくる光について、反射型拡散板1によって生じる反射拡散光の輝度分布に着目する。ここで、図10Bに模式的に示したように、反射拡散光の輝度分布のうち、入射光の進行方向と表面法線方向とで規定される平面における反射拡散光の輝度分布を、以下では便宜的に「経度方向の輝度分布」と称することとし、反射拡散光の輝度分布のうち、入射光の進行方向と表面法線方向とで規定される平面に対して直交する平面における反射光の輝度分布を、以下では便宜的に「緯度方向の輝度分布」と称することとする。
 本実施形態に係る反射拡散板1に対して、入射角度θin=0度で入射してくる光(すなわち、表面法線方向と平行な方向から反射拡散板1に対して垂直入射する光)については、図11Aに一例を示したように、反射拡散光の経度方向の輝度分布と緯度方向の輝度分布とは、ほぼ同一の分布形状となり、拡散角度=0度を中心として、ほぼ左右対称となるような輝度分布となる。
 一方、本実施形態に係る反射拡散板1に対して、入射角度θin=20度又は40度で入射してくる光について、反射拡散光の緯度方向の輝度分布については、入射角度θin=0度の場合と同様に、拡散角度=0度を中心として、ほぼ左右対称となるような輝度分布となる一方で、反射拡散光の経度方向の輝度分布については、拡散角度=0度を中心として、左右非対称となる輝度分布となる。図11Bは、入射角度θin=20度で入射してくる光の反射拡散光の輝度分布の一例を示したものであるが、緯度方向の輝度分布はほぼ左右対称な輝度分布となる一方で、経度方向の輝度分布は、左右非対称な輝度分布となっていることがわかる。
 本実施形態では、図11Bに示したような斜め入射時の反射拡散光の輝度分布(より詳細には、入射角度θin=20度又は40度における反射拡散光の輝度分布)の少なくとも何れか一方に関して、面法線方向の反射輝度値をAとし、反射拡散成分のピーク反射輝度値をBとしたときに、0.3≦A/B≦1の関係が成立する。
 図11Bに示した例の場合、拡散角度=0度における反射輝度値が、上記の輝度値Aとなり、拡散角度50度近傍における経度方向の輝度分布のピーク値が、上記の輝度値Bとなる。なお、入射角度θin=20度であるにも関わらず、ピーク輝度値Bを与える拡散角度が50度近傍となるのは、本実施形態で着目する反射拡散板1の単レンズ群において、開口径及び曲率半径が所定のばらつき(すなわち、摂動量)を有しているからである。
 上記の(A/B)で与えられる輝度比は、1超過の値を取ることはない。従って、輝度比(A/B)の上限値は、1となる。一方、輝度比(A/B)の値が0.3未満となる場合には、反射拡散光の輝度分布のムラが大きくなりすぎて、より均一な拡散角度分布特性を実現させることが困難となる。従って、輝度比(A/B)の下限値は、0.3となる。輝度比(A/B)の値の範囲は、より好ましくは、0.5以上1.0以下である。
 本発明者らは、基準開口径D、基準曲率半径R、摂動量δを変えながら公知の光線追跡シミュレーションを実施して、反射型拡散板の反射拡散特性(より詳細には、上記のような垂直入射光の反射拡散特性、及び、斜め入射光の反射拡散特性)について、上記のような基準で検証を行った。具体的には、本発明者らは、基準開口径D=30μm、50μm、又は、80μmとし、基準曲率半径R=30μm、100μm、又は、500μmとした場合に、摂動量δ=0%、5%、10%、20%、又は、30%として、反射型拡散板の反射拡散特性についてシミュレーションを行った。
 得られた結果を、以下の表1及び図12A~図12Cに模式的に示した。ここで、図12A~図12Cにおいて、白抜きのバーで示した領域が、垂直入射光及び斜め入射光の双方についての反射拡散特性が、合格となった領域を示している。
Figure JPOXMLDOC01-appb-T000006
 
 得られた上記のような評価結果に基づき、本発明者らは、垂直入射光に関する反射拡散特性、及び、斜め入射光に関する反射拡散特性の双方が合格となる領域と、垂直入射光に関する反射拡散特性、又は、斜め入射光に関する反射拡散特性の少なくとも何れか一方が不合格となる領域と、の境界を与える関係式について、更なる検討を行った。その結果、単レンズ群20の基準開口径をD[μm]とし、基準曲率半径をR[μm]とし、基準開口径D及び基準曲率半径Rそれぞれのばらつき割合(摂動量)をδ[%]としたときに、以下の式(103)で表される関係が成立する場合に、垂直入射光に関する反射拡散特性、及び、斜め入射光に関する反射拡散特性の双方が合格となる可能性が極めて高くなることを知見した。
Figure JPOXMLDOC01-appb-M000007
 従って、本実施形態に係る反射拡散板1では、単レンズ群20の基準開口径D、基準曲率半径R、及び、摂動量δについて、上記式(103)の関係が成立することが好ましい。
 以上、図1~図12Cを参照しながら、本実施形態に係る反射型拡散板1について、詳細に説明した。
 以上説明したような本実施形態に係る反射型拡散板1は、単レンズ21の配置と、単レンズ21の形状(開口径及び曲率半径)と、にランダム性を持たせることにより、より均一な拡散角度分布特性を実現することが可能となる。また、本実施形態に係る反射型拡散板1では、単レンズ21の開口径や曲率半径を制御することで、拡散板1を透過した光の拡散角を自由に設計することが可能となる。
(反射型拡散板の製造方法の一例について)
 以下では、図13を参照しながら、本発明の実施形態に係る反射型拡散板1の製造方法の一例について、簡単に説明する。図13は、本実施形態に係る反射型拡散板の製造方法の流れの一例を示した流れ図である。
 本実施形態に係る反射型拡散板の製造方法では、まず、基盤の洗浄が実施される(ステップS101)。かかる基盤は、例えば、ガラスロールのようなロール状のものであってもよく、ガラスウェハのような平板状のものであってもよい。
 次に、洗浄後の基盤に対して、レジスト(例えば、金属酸化物を用いたレジストや、有機物を用いたレジスト等)が形成される(ステップS103)。かかるレジストの形成処理は、ロール状の基盤に対しては、塗布処理又はディッピングにより実現され、平板状の基盤に対しては、各種のコーティング処理により実現される。
 その後、レジストの形成された基盤に対して、露光処理が実施される(ステップS105)。かかる露光処理は、グレースケールマスク等を利用した露光(複数のグレースケールマスクの重ね合わせによる多重露光を含む。)、平板又はロール板に対するグレースケール露光、ピコ秒パルスレーザやフェムト秒パルスレーザ等を用いたレーザ露光など、公知の様々な露光方法を適宜適用することが可能である。
 その後、露光後の基盤をアルカリ現像し(ステップS107)、Niスパッタ等の公知のスパッタ処理(ステップS109)を施すことにより、本実施形態に係る反射型拡散板1を製造する際のマスター原盤(例えば、ガラスマスターやメタルマスター等)が完成する(ステップS111)。その後、完成したマスター原盤を用いて、ソフトモールド等といったモールドが作成される(ステップS113)。
 次に、製造されたモールドを利用して、基板ガラスや基板フィルム等に転写処理を実施し(ステップS115)、必要に応じて反射膜や保護膜等を成膜する(ステップS117)ことで、本実施形態に係る反射型拡散板1が製造される。
 一方、ガラス基板に対して直接加工を施す場合には、ステップS107におけるアルカリ現像処理に引き続き、CF等の公知の化合物を用いたドライエッチング処理を実施し(ステップS119)、その後、必要に応じて反射膜や保護膜等を成膜する(ステップS121)ことで、本実施形態に係る反射型拡散板1が製造される。
 なお、図13に示した製造方法の流れは、あくまでも一例であって、本実施形態に係る反射型拡散板の製造方法が図13に示した例に限定されるものではない。
(反射型拡散板の適用例)
 次に、本実施形態に係る反射型拡散板1の適用例について、簡単に説明する。
 以上説明したような本実施形態に係る反射型拡散板1は、その機能を実現するために光を拡散させる必要がある装置に対して、適宜実装することが可能である。機能を実現するために光を拡散させる必要がある装置としては、例えば、各種のディスプレイ等の表示装置や、プロジェクタ等の投影装置を挙げることができる。
 また、本実施形態に係る反射型拡散板1は、液晶表示装置のバックライトに対して適用することも可能であり、光整形の用途にも用いることが可能である。更に、本実施形態に係る反射型拡散板1は、各種の照明装置に対しても適用することが可能となる。
 なお、機能を実現するために光を拡散させる必要がある装置は、上記の例に限定されるものではなく、光の拡散を利用する装置であればその他の公知の装置に対しても、本実施形態に係る反射型拡散板1を適用することが可能である。
 続いて、実施例及び比較例を示しながら、本発明に係る反射型拡散板について、具体的に説明する。なお、以下に示す実施例は、あくまでも本発明に係る反射型拡散板の一例にすぎず、本発明に係る反射型拡散板が下記の例に限定されるものではない。
(試験例1)
 以下では、市販の光線追跡シミュレーション用アプリケーションを利用して、以下の表2に示したような基準開口径D[μm]、基準曲率半径R[μm]、及び、摂動量δ[%]に基づき単レンズ21をランダム配置方法により配置した場合の諸特性を、シミュレートした。なお、以下のシミュレーションでは、単レンズ21を形成するレンズ材料を、透明樹脂又はガラスとした。また、反射層30としては、単レンズ群20の表面に対し、AgPCu合金を用いた反射層を100nm成膜した条件とした。
 シミュレーションにより得られた反射拡散光の輝度分布について、トップハット型の拡散特性を有しているか、トップ部の輝度分布が均質性を有しているか、斜め入射光に関する反射輝度特性を満足しているか、の3点に関して、評価を行った。なお、各評価基準は、以下の通りである。
[トップハット型の拡散特性]
  A:反射拡散光の輝度分布がトップハット形状である。
  B:反射拡散光の輝度分布がトップハット形状ではない。
[均質性]
  A:垂直入射光に対する反射拡散光の輝度分布においてトップ部の輝度変化が10%以下
  B:垂直入射光に対する反射拡散光の輝度分布においてトップ部の輝度変化が10%超過
[斜め入射光に関する反射輝度特性]
  A:20度入射光及び40度入射光の少なくとも何れか一方の輝度比(A/B)が0.3≦A/B≦1の範囲内
  B:20度入射光及び40度入射光の双方の輝度比(A/B)が0.3≦A/B≦1の範囲外
 得られた評価結果を、以下の表2にまとめて示した。
Figure JPOXMLDOC01-appb-T000008
 また、上記実施例1、実施例2及び比較例1については、図14A~図16Cとして、得られた反射拡散光の輝度分布を示している。図14A~図14Cは、実施例1の反射型拡散板における反射拡散光の輝度分布であり、図15A~図15Cは、実施例2の反射型拡散板における反射拡散光の輝度分布であり、図16A~図16Cは、比較例1の反射型拡散板における反射拡散光の輝度分布である。
 更に、上記実施例3、実施例4及び比較例2については、図17~図19として、反射型拡散板における単レンズ群の表面形状(俯瞰投影軌跡)と反射拡散光の分布の様子とを併せて示している。図17は、実施例3の反射型拡散板に関するものであり、図18は、実施例4の反射型拡散板に関するものであり、図19は、比較例2の反射型拡散板に関するものである。
 上記表2、及び、図14A~図19からも明らかなように、本発明の実施例に対応する反射型拡散板では、優れた反射拡散特性を示しているのに対し、本発明の比較例に対応する反射型拡散板では、均質な反射拡散特性を実現できていないことがわかる。
(試験例2)
 続いて、試験例1と同様にして、基準開口径D=80μm、基準曲率半径R=200μm、及び、摂動量δ=10%として、単レンズ21をランダム配置方法により配置した場合の反射拡散特性を、シミュレートした。なお、かかるシミュレーションでは、単レンズ21を形成するレンズ材料を、透明樹脂又はガラスとした。また、反射層30としては、単レンズ群20の表面に対し、AgPCu合金を用いた反射層を100nm成膜した条件とした。
 得られた結果を、図20A~図20Cに示した。
 図20Aは、入射角度θin=0度における反射拡散特性を示したグラフ図であり、図20Bは、入射角度θin=20度における反射拡散特性を示したグラフ図であり、図20Cは、入射角度θin=40度における反射拡散特性を示したグラフ図である。
 ここで、本試験例において、入射角度θin=20度における輝度比(A/B)の値は、0.65となり、入射角度θin=40度における輝度比(A/B)の値は、0となった。
 図20A~図20Cから明らかなように、本発明の実施例に対応する本試験例での反射型拡散板は、優れた反射拡散特性を示していることがわかる。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
  1  反射型拡散板
 10  透明基材
 20  単レンズ群
 21  単レンズ
 30  反射層
 

Claims (10)

  1.  透明基材の表面に位置する単レンズ群からなるマイクロレンズアレイ型の拡散板であって、
     前記単レンズ群を構成するそれぞれの単レンズが有する開口径及び曲率半径は、前記単レンズ群全体としてばらつきがあり、かつ、前記それぞれの単レンズの頂点位置は、不規則に配置されており、
     前記単レンズ群に垂直入射する光の反射光の輝度分布が、所定の拡散角度範囲で略均一であり、
     前記透明基材の表面法線方向とのなす角が20度又は40度の方向から前記単レンズ群に入射する光の少なくとも何れか一方について、前記表面法線方向の反射輝度値をAとし、反射拡散成分のピーク反射輝度値をBとしたときに、0.3≦A/B≦1の関係が成立する、反射型拡散板。
  2.  前記開口径をD[μm]とし、前記曲率半径をR[μm]とし、前記開口径D及び前記曲率半径Rそれぞれのばらつき割合をδ[%]としたときに、以下の式(1)で表される関係が成立する、請求項1に記載の反射型拡散板。
    Figure JPOXMLDOC01-appb-M000001
  3.  前記単レンズに隣接する他の前記単レンズとの境界は、互いに異なる曲線を含む、請求項1又は2に記載の反射型拡散板。
  4.  前記単レンズ群の表面に反射層を更に備える、請求項1~3の何れか1項に記載の反射型拡散板。
  5.  前記反射層は、AlもしくはAgの何れかを含む金属層、又は、TiOもしくはZnSの何れかを含む無機反射層である、請求項4に記載の反射型拡散板。
  6.  前記単レンズ群を構成するそれぞれの前記単レンズは、前記透明基材上に不規則に配置されており、
     互いに隣接する2つの前記単レンズの重なり幅の最大値をO[μm]とし、当該互いに隣接する2つの単レンズの開口径を、それぞれD[μm]、D[μm]としたときに、以下の式(2)で表される関係が成立する、請求項1~5の何れか1項に記載の反射型拡散板。
    Figure JPOXMLDOC01-appb-M000002
  7.  前記透明基材は、樹脂基板、樹脂フィルム、又は、ガラス基板の何れかである、請求項1~6の何れか1項に記載の反射型拡散板。
  8.  請求項1~7の何れか1項に記載の反射型拡散板を備える、表示装置。
  9.  請求項1~7の何れか1項に記載の反射型拡散板を備える、投影装置。
  10.  請求項1~7の何れか1項に記載の反射型拡散板を備える、照明装置。
     
PCT/JP2017/043624 2016-12-28 2017-12-05 反射型拡散板、表示装置、投影装置及び照明装置 WO2018123465A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL17886466.6T PL3550338T3 (pl) 2016-12-28 2017-12-05 Odblaskowa płytka dyfuzyjna, urządzenie wyświetlające, urządzenie projekcyjne i urządzenie oświetleniowe
CN201780081206.3A CN110114698B (zh) 2016-12-28 2017-12-05 反射型扩散板、显示装置、投影装置及照明装置
US16/472,619 US11002889B2 (en) 2016-12-28 2017-12-05 Reflective diffuser plate, display device, projection device, and lighting device
EP17886466.6A EP3550338B1 (en) 2016-12-28 2017-12-05 Reflective diffuser plate, display device, projection device, and lighting device
KR1020197018544A KR102501349B1 (ko) 2016-12-28 2017-12-05 반사형 확산판, 표시 장치, 투영 장치 및 조명 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-256464 2016-12-28
JP2016256464A JP6826433B2 (ja) 2016-12-28 2016-12-28 反射型拡散板、表示装置、投影装置及び照明装置

Publications (1)

Publication Number Publication Date
WO2018123465A1 true WO2018123465A1 (ja) 2018-07-05

Family

ID=62710982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043624 WO2018123465A1 (ja) 2016-12-28 2017-12-05 反射型拡散板、表示装置、投影装置及び照明装置

Country Status (7)

Country Link
US (1) US11002889B2 (ja)
EP (1) EP3550338B1 (ja)
JP (1) JP6826433B2 (ja)
KR (1) KR102501349B1 (ja)
CN (1) CN110114698B (ja)
PL (1) PL3550338T3 (ja)
WO (1) WO2018123465A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3862798A4 (en) * 2018-10-03 2021-11-17 Toppan Printing Co., Ltd. COLORING STRUCTURE

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11531232B2 (en) 2020-01-24 2022-12-20 Brightview Technologies, Inc. Optical film for back light unit and back light unit including same
CN111239869B (zh) * 2020-03-19 2022-02-22 宁波舜宇车载光学技术有限公司 扩散板
US11592599B2 (en) * 2020-04-23 2023-02-28 Luminit Llc Flat top diffuser for laser application
JP2021189393A (ja) * 2020-06-04 2021-12-13 Eneos株式会社 マイクロレンズアレイを用いた光拡散板及びその製造方法
CN111929978A (zh) * 2020-10-15 2020-11-13 成都菲斯特科技有限公司 一种投影屏幕及投影系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03192232A (ja) 1989-12-21 1991-08-22 Nikon Corp 焦点板
JP2004145330A (ja) 2002-10-04 2004-05-20 Keiwa Inc 光学シート及びこれを用いたバックライトユニット
JP2006500621A (ja) * 2002-09-20 2006-01-05 コーニング・インコーポレーテッド 光線成形及び均一化のためのランダムマイクロレンズアレイ
JP2012181816A (ja) 2011-02-07 2012-09-20 Sony Corp 透明導電性素子およびその製造方法、入力装置ならびに電子機器
WO2016051766A1 (ja) * 2014-09-30 2016-04-07 株式会社クラレ 拡散板及び拡散板の製造方法
WO2016051785A1 (ja) * 2014-09-30 2016-04-07 株式会社クラレ 拡散板及び拡散板の設計方法
WO2016143350A1 (ja) * 2015-03-12 2016-09-15 株式会社クラレ 拡散板
JP2016186601A (ja) * 2015-03-27 2016-10-27 リコーインダストリアルソリューションズ株式会社 反射型拡散板およびこれを用いた光学機器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5903392A (en) 1997-05-19 1999-05-11 Dai Nippon Printing Co., Ltd. Reflecting screen
US7215393B2 (en) * 2000-07-28 2007-05-08 Matsushita Electric Industrial Co., Ltd. Reflective plate and display device using the plate
WO2002010804A1 (en) * 2000-07-31 2002-02-07 Rochester Photonics Corporation Structure screens for controlled spreading of light
KR20100006501A (ko) * 2008-07-09 2010-01-19 주식회사 두산 고확산 집광 렌즈 시트 및 이를 이용한 백라이트 어셈블리
JP5950505B2 (ja) * 2011-04-08 2016-07-13 キヤノン株式会社 屈折率分布構造体とその製造方法、屈折率分布構造体を備えた画像表示装置
KR102471578B1 (ko) * 2016-05-25 2022-11-25 에이엠에스 센서스 싱가포르 피티이. 리미티드. 마이크로렌즈 어레이 확산기들

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03192232A (ja) 1989-12-21 1991-08-22 Nikon Corp 焦点板
JP2006500621A (ja) * 2002-09-20 2006-01-05 コーニング・インコーポレーテッド 光線成形及び均一化のためのランダムマイクロレンズアレイ
JP2004145330A (ja) 2002-10-04 2004-05-20 Keiwa Inc 光学シート及びこれを用いたバックライトユニット
JP2012181816A (ja) 2011-02-07 2012-09-20 Sony Corp 透明導電性素子およびその製造方法、入力装置ならびに電子機器
WO2016051766A1 (ja) * 2014-09-30 2016-04-07 株式会社クラレ 拡散板及び拡散板の製造方法
WO2016051785A1 (ja) * 2014-09-30 2016-04-07 株式会社クラレ 拡散板及び拡散板の設計方法
WO2016143350A1 (ja) * 2015-03-12 2016-09-15 株式会社クラレ 拡散板
JP2016186601A (ja) * 2015-03-27 2016-10-27 リコーインダストリアルソリューションズ株式会社 反射型拡散板およびこれを用いた光学機器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3862798A4 (en) * 2018-10-03 2021-11-17 Toppan Printing Co., Ltd. COLORING STRUCTURE

Also Published As

Publication number Publication date
US20200386919A1 (en) 2020-12-10
EP3550338A1 (en) 2019-10-09
US11002889B2 (en) 2021-05-11
CN110114698B (zh) 2022-04-05
JP6826433B2 (ja) 2021-02-03
CN110114698A (zh) 2019-08-09
KR102501349B1 (ko) 2023-02-17
JP2018109669A (ja) 2018-07-12
PL3550338T3 (pl) 2023-10-23
KR20190097077A (ko) 2019-08-20
EP3550338B1 (en) 2023-07-12
EP3550338A4 (en) 2020-08-12

Similar Documents

Publication Publication Date Title
WO2018123465A1 (ja) 反射型拡散板、表示装置、投影装置及び照明装置
JP7217319B2 (ja) 光学体、拡散板、表示装置、投影装置及び照明装置
WO2017057744A1 (ja) 拡散板、表示装置、投影装置及び照明装置
WO2017073251A1 (ja) 拡散板、拡散板の設計方法、拡散板の製造方法、表示装置、投影装置及び照明装置
CN110161602B (zh) 漫射板、漫射板的设计方法、显示装置、投影装置和照明装置
JP2017083815A (ja) 拡散板、拡散板の設計方法、拡散板の製造方法、表示装置、投影装置及び照明装置
EP4027177A1 (en) Diffusion plate, display device, projection device, and illumination device
US20210325574A1 (en) Light diffuser plate, image display device, and lighting device
US20230384490A1 (en) Diffusion plate, display device, projection device, lighting device, and remote sensing light source
WO2023190682A1 (ja) 拡散板および装置
WO2023190680A1 (ja) 拡散板、表示装置、投影装置および照明装置
WO2021079923A1 (ja) 拡散板、表示装置、投影装置及び照明装置
JP2023152876A (ja) 拡散板および装置
EP3839584A1 (en) Light-diffusing plate, image display device, and lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886466

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197018544

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017886466

Country of ref document: EP

Effective date: 20190704