WO2019127939A1 - 一种天线罩基材及其制备方法 - Google Patents

一种天线罩基材及其制备方法 Download PDF

Info

Publication number
WO2019127939A1
WO2019127939A1 PCT/CN2018/079867 CN2018079867W WO2019127939A1 WO 2019127939 A1 WO2019127939 A1 WO 2019127939A1 CN 2018079867 W CN2018079867 W CN 2018079867W WO 2019127939 A1 WO2019127939 A1 WO 2019127939A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyphenylene ether
masterbatch
parts
ceramic
treated
Prior art date
Application number
PCT/CN2018/079867
Other languages
English (en)
French (fr)
Inventor
刘若鹏
赵治亚
袁茂彪
Original Assignee
深圳光启尖端技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光启尖端技术有限责任公司 filed Critical 深圳光启尖端技术有限责任公司
Priority to EP18896095.9A priority Critical patent/EP3733776A4/en
Priority to JP2020555271A priority patent/JP7135102B2/ja
Publication of WO2019127939A1 publication Critical patent/WO2019127939A1/zh
Priority to US16/910,797 priority patent/US11512172B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • C08F283/08Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals on to polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2451/08Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2471/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2471/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/28Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome

Definitions

  • the present invention relates to a radome, and more particularly to a radome substrate and a method of manufacturing the same.
  • the radome substrates used in the market mainly include polytetrafluoroethylene (PTFE), polyimide (PI), etc., and the materials have high rigidity, high heat distortion temperature, and excellent electrical properties, but polytetrafluoroethylene.
  • PTFE polytetrafluoroethylene
  • PI polyimide
  • the material and processing cost of polyimide are high, and the processing temperature range of polytetrafluoroethylene is narrow, while the molecular structure rigidity of polyphenylene ether is large, and the product is prone to stress cracking, which is not suitable for secondary thermal processing.
  • the present invention provides a radome substrate and a method of preparing the same.
  • a radome base material which comprises, in parts by weight, 5 to 10 parts of polyphenylene ether resin, 70 to 85 parts of ceramic mother particles, and 10 to 15 parts of hollow microbead master batches. , 1 to 3 parts of a compatibilizer, and 0.1 to 0.3 parts of a lubricant.
  • the ceramic mother particles are obtained by granulating a ceramic powder after surface modification treatment with a coupling agent, and mixing with polyphenylene ether; the ceramic powder comprises rutile TiO2, BaO6SrTi2 A combination of one or more of SrTiO3, BaTiO3, CaCu3Ti4O12.
  • the hollow microbead masterbatch is obtained by granulating hollow glass microbeads after surface modification treatment with a coupling agent, mixing with polyphenylene ether.
  • the coupling agent includes one or more of ⁇ -aminopropyltriethoxysilane, ⁇ -(2,3-epoxypropoxy), propyltrimethoxysilane. Combination of species.
  • the compatibilizing agent comprises a maleic anhydride grafted polyphenylene ether (PPO-g-MAH), a glycidyl methacrylate grafted polyphenylene ether (PPO-g-GMA) Or a combination of the two; and the graft ratio of the maleic anhydride grafted polyphenylene ether and the glycidyl methacrylate grafted polyphenylene ether is 0.5% to 1.0%, respectively.
  • PPO-g-MAH maleic anhydride grafted polyphenylene ether
  • PPO-g-GMA glycidyl methacrylate grafted polyphenylene ether
  • the lubricant comprises glyceryl monostearate, N,N-ethylenebisstearic acid amide, vinyl bis stearamide, vinyl stearamide, polysiloxane a combination of one or more of them.
  • a method for preparing the above radome substrate comprising: surface treating a ceramic powder, and uniformly mixing the surface treated ceramic powder with polyphenylene ether, And granulating to obtain ceramic masterbatch; surface treating the hollow glass microbeads, and uniformly mixing the surface treated hollow glass microbeads with polyphenylene ether, and granulating to obtain hollow microbead masterbatch; 5 to 10 parts of polyphenylene ether resin, 70 to 85 parts of the ceramic master batch, 10 to 15 parts of the hollow microbead masterbatch, 1 to 3 parts of compatibilizer, and 0.1 to 0.3 parts of lubrication The agent is uniformly mixed, and the radome substrate is obtained after hot pressing.
  • the ceramic powder in the step of preparing the ceramic mother particles, is subjected to a coupling agent in an amount of 0.3% to 0.5% by weight based on the total weight of the ceramic mother particles.
  • Surface treatment, and the weight of the ceramic powder and the polyphenylene ether after surface treatment used are respectively 80% to 85% and 10% to 20% of the total weight of the ceramic mother particles;
  • the hollow glass microbead masterbatch In the step of hollow microbead masterbatch, the hollow glass microbead is surface-treated with a coupling agent having a weight of 0.3% to 0.5% by weight based on the total weight of the hollow microbead masterbatch, and the surface used
  • the treated hollow glass microbeads and the polyphenylene ether have a weight of 50% to 55% and 45% to 55%, respectively, of the total weight of the hollow microbead masterbatch.
  • the coupling agent comprises one of ⁇ -aminopropyltriethoxysilane, ⁇ -(2,3-epoxypropoxy), propyltrimethoxysilane. a combination of one or more;
  • the compatibilizer comprises a maleic anhydride grafted polyphenylene ether (PPO-g-MAH), a glycidyl methacrylate grafted polyphenylene ether (PPO-g-GMA) Or a combination of the two;
  • the lubricant comprises glyceryl monostearate, N, N-ethylene bis stearic acid amide, vinyl bis stearamide, vinyl stearamide, polysiloxane A combination of one or more.
  • the method further comprises: drying the ceramic powder and the polyphenylene ether in an oven at 85-115 ° C. 2 ⁇ 3h; and before the step of surface treating the hollow glass microspheres, further comprising drying the hollow glass microbeads and the polyphenylene ether in an oven at 85-115° C. for 2 to 3 hours;
  • the hot press performs the hot pressing, and the operating temperature of the hot press is 230 to 280 ° C, and the operating pressure is 20 to 50 MPa.
  • the present invention comprises a masterbatch prepared by coupling a ceramic powder treated with a coupling agent and a hollow glass bead treated with a coupling agent, respectively, with a polyphenylene ether, and then added.
  • the compatibilizing agent can improve the interfacial bonding strength between the polyphenylene ether resin, the ceramic masterbatch and the hollow microbead masterbatch, and improve the uniformity of distribution of the ceramic powder and the hollow glass microbead in the polyphenylene ether resin.
  • the invention provides a lightweight high dielectric constant and stress crack resistant polyphenylene ether radome substrate, which effectively improves the stress crack resistance of the polyphenylene ether substrate.
  • FIG. 1 is a process flow diagram of preparing a radome substrate in accordance with an embodiment of the present invention.
  • the invention provides a radome substrate and a preparation method thereof, wherein the preparation method of the radome substrate comprises the following steps:
  • the ceramic powder is surface-treated, and the surface-treated ceramic powder is uniformly mixed with polyphenylene ether, and granulated to obtain a ceramic master batch.
  • the ceramic powder and the polyphenylene ether are first dried in an oven at 85-115 ° C for 2 to 3 hours; then, the ceramic powder is surface-treated, and the surface-treated ceramic powder is uniformly mixed with the polyphenylene ether. And granulating to produce ceramic masterbatch.
  • the ceramic powder is surface-treated with a coupling agent having a weight of 0.3% to 0.5% by weight based on the total weight of the ceramic mother particles, and the weight of the surface-treated ceramic powder and polyphenylene ether used are respectively It accounts for 80%-85% and 10%-20% of the total weight of the ceramic masterbatch.
  • the coupling agent comprises one or a combination of ⁇ -aminopropyltriethoxysilane, ⁇ -(2,3-epoxypropoxy), propyltrimethoxysilane.
  • the hollow glass microbeads are surface-treated, and the surface-treated hollow glass microbeads are uniformly mixed with polyphenylene ether, and granulated to obtain hollow microbead masterbatch.
  • the hollow glass microspheres and the polyphenylene ether are dried in an oven at 85-115 ° C for 2 to 3 hours, respectively, and then the hollow glass microbeads are surface-treated, and the surface-treated hollow glass microbeads and polyphenylene are treated.
  • the ether was uniformly mixed and granulated to obtain hollow microbead masterbatch.
  • the hollow glass microbeads are surface-treated with a coupling agent having a weight of 0.3% to 0.5% by weight based on the total weight of the hollow microbead masterbatch, and the surface treated hollow glass microbeads and polyphenylene are used.
  • the weight of the ether is from 50% to 55% and from 45% to 55%, respectively, based on the total weight of the hollow microbead masterbatch.
  • the coupling agent comprises one or a combination of ⁇ -aminopropyltriethoxysilane, ⁇ -(2,3-epoxypropoxy), propyltrimethoxysilane.
  • step S105 in Fig. 1 5 to 10 parts of polyphenylene ether resin, 70 to 85 parts of ceramic master batch, 10 to 15 parts of hollow microbead masterbatch, 1 to 3 parts of compatibilizing agent, and 0.1 to 0.3 are taken.
  • the lubricant is uniformly mixed, and the radome substrate is obtained after hot pressing.
  • the compatibilizing agent comprises one or a combination of maleic anhydride grafted polyphenylene ether (PPO-g-MAH), glycidyl methacrylate grafted polyphenylene ether (PPO-g-GMA), and horse
  • PPO-g-MAH maleic anhydride grafted polyphenylene ether
  • PPO-g-GMA glycidyl methacrylate grafted polyphenylene ether
  • horse The graft ratio of the anhydride-grafted polyphenylene ether and the glycidyl methacrylate grafted polyphenylene ether is 0.5%-1.0%, respectively
  • the lubricant includes glyceryl monostearate, N,N-ethylene double hard A combination of one or more of a fatty acid amide, a vinyl bis stearamide, a vinyl stearamide, a polysiloxane.
  • hot pressing is carried out by a hot press, the operating temperature of the hot press is
  • the ceramic powder and polyphenylene ether were dried in an oven at 85 ° C for 3 h, and the surface of the ceramic powder was treated with a coupling agent ⁇ -aminopropyltriethoxysilane to mix the coupling agent-treated ceramic powder with polyphenylene ether. It is uniform and granulated by a granulator to prepare a ceramic master batch.
  • the ceramic powder is surface-treated with a coupling agent having a weight of 0.3% by weight based on the total weight of the ceramic mother particles, and the weight of the surface-treated ceramic powder and polyphenylene ether used respectively constitutes the total of the ceramic master batches. 80% and 20% by weight.
  • the hollow glass microspheres and polyphenylene ether were dried in an oven at 85 ° C for 3 h, and the surface of the hollow glass microspheres was treated with a coupling agent ⁇ -aminopropyltriethoxysilane, and the coupling agent treated hollow glass microbeads were mixed with
  • the phenyl ether was uniformly mixed and granulated by a granulator to prepare hollow microbead masterbatch.
  • the hollow glass microbeads are surface-treated with a coupling agent having a weight of 0.3% by weight based on the total weight of the hollow microbead masterbatch, and the surface treated hollow glass microspheres and polyphenylene ether are used to occupy hollow microspheres, respectively. 50% and 50% of the total weight of the masterbatch.
  • the parts by weight weigh 5 parts of polyphenylene ether resin, 85 parts of ceramic masterbatch, 10 parts of hollow microbead masterbatch, 1 part of compatibilizer glycidyl methacrylate grafted polyphenylene ether (PPO-g- GMA), 0.1 part of lubricant N, N-ethylene bis stearic acid amide is added to a high-mixer and uniformly mixed, and the substrate is formed by a hot press to obtain a radome substrate, wherein the operating temperature of the hot press The operating pressure was 230 MPa and the operating pressure was 20 MPa.
  • PPO-g- GMA compatibilizer glycidyl methacrylate grafted polyphenylene ether
  • the ceramic powder and polyphenylene ether were dried in an oven at 115 ° C for 2 h, and the surface of the ceramic powder was treated with a coupling agent ⁇ -(2,3-epoxypropoxy).
  • the coupling agent-treated ceramic powder and polyphenylene were treated.
  • the ether was uniformly mixed and granulated by a granulator to prepare a ceramic master batch.
  • the ceramic powder is surface-treated with a coupling agent having a weight of 0.4% by weight based on the total weight of the ceramic mother particles, and the weight of the surface-treated ceramic powder and polyphenylene ether used respectively accounts for the total of the ceramic master batches, respectively. 85% and 15% by weight.
  • the hollow glass microspheres and polyphenylene ether were dried in an oven at 115 ° C for 2 h, and the surface of the hollow glass microspheres was treated with a coupling agent ⁇ -(2,3-epoxypropoxy), and the coupling agent-treated hollow glass microbeads were treated. It is uniformly mixed with polyphenylene ether and granulated by a granulator to prepare hollow microbead masterbatch.
  • the hollow glass microbeads are surface-treated with a coupling agent having a weight of 0.4% by weight based on the total weight of the hollow microbead masterbatch, and the surface treated hollow glass microspheres and polyphenylene ether are used to occupy the hollow microspheres, respectively. 55% and 45% of the total weight of the masterbatch.
  • the parts by weight weigh 10 parts of polyphenylene ether resin, 70 parts of ceramic masterbatch, 150 parts of hollow microbead masterbatch, and 3 parts of compatibilizer glycidyl methacrylate grafted polyphenylene ether (PPO-g- GMA), 0.3 parts of lubricant glyceryl monostearate was mixed into a high-mixer and uniformly mixed, and the substrate was molded by a hot press to obtain a radome substrate, wherein the operating temperature of the hot press was 250 ° C, operating pressure It is 30 MPa.
  • PPO-g- GMA compatibilizer glycidyl methacrylate grafted polyphenylene ether
  • the ceramic powder and polyphenylene ether were dried in an oven at 90 ° C for 2.5 h, and the surface of the ceramic powder was treated with a coupling agent ⁇ -aminopropyltriethoxysilane.
  • the coupling agent-treated ceramic powder and polyphenylene ether were treated.
  • the mixture was uniformly mixed and granulated by a granulator to prepare a ceramic master batch.
  • the ceramic powder is surface-treated with a coupling agent having a weight of 0.5% by weight based on the total weight of the ceramic mother particles, and the weight of the surface-treated ceramic powder and polyphenylene ether used respectively constitutes the total of the ceramic master batches. 82% and 18% by weight.
  • the hollow glass microspheres and polyphenylene ether were dried in an oven at 90 ° C for 2.5 h, and the surface of the hollow glass microspheres was treated with a coupling agent ⁇ -aminopropyltriethoxysilane, and the coupling agent treated hollow glass microbeads were treated with
  • the polyphenylene ether was uniformly mixed and granulated by a granulator to prepare hollow microbead masterbatch.
  • the hollow glass microspheres are surface-treated with a coupling agent having a weight of 0.5% by weight based on the total weight of the hollow microbead masterbatch, and the surface treated hollow glass microspheres and polyphenylene ether used respectively occupy hollow microspheres 45% and 55% of the total weight of the masterbatch.
  • the parts by weight weigh 5 parts of polyphenylene ether resin, 81 parts of ceramic masterbatch, 13 parts of hollow microbead masterbatch, and 1 part of compatibilizer glycidyl methacrylate grafted polyphenylene ether (PPO-g- GMA), 0.1 part of lubricant polysiloxane is mixed into a high-mixer and uniformly mixed, and the substrate is formed by a hot press to obtain a radome substrate, wherein the operating temperature of the hot press is 270 ° C, and the operating pressure is 50 MPa. .
  • PPO-g- GMA compatibilizer glycidyl methacrylate grafted polyphenylene ether
  • the ceramic powder and polyphenylene ether were dried in an oven at 110 ° C for 2 h, and the surface of the ceramic powder was treated with a coupling agent ⁇ -(2,3-epoxypropoxy).
  • the coupling agent-treated ceramic powder and polystyrene were treated.
  • the ether was uniformly mixed and granulated by a granulator to prepare a ceramic master batch.
  • the ceramic powder is surface-treated with a coupling agent having a weight of 0.4% by weight based on the total weight of the ceramic mother particles, and the weight of the surface-treated ceramic powder and polyphenylene ether used respectively accounts for the total of the ceramic master batches, respectively. 83% and 17% by weight.
  • the hollow glass microspheres and polyphenylene ether were dried in an oven at 110 ° C for 2 h, and the surface of the hollow glass microspheres was treated with a coupling agent ⁇ -(2,3-epoxypropoxy), and the coupling agent-treated hollow glass microbeads were treated. It is uniformly mixed with polyphenylene ether and granulated by a granulator to prepare hollow microbead masterbatch.
  • the hollow glass microbeads are surface-treated with a coupling agent having a weight of 0.4% by weight based on the total weight of the hollow microbead masterbatch, and the surface treated hollow glass microspheres and polyphenylene ether are used to occupy the hollow microspheres, respectively. 52% and 48% of the total weight of the masterbatch.
  • the parts by weight weigh 8 parts of polyphenylene ether resin, 77 parts of ceramic masterbatch, 12 parts of hollow microbead masterbatch, and 3 parts of compatibilizer glycidyl methacrylate grafted polyphenylene ether (PPO-g- GMA), 0.2 parts of lubricant vinyl stearamide was mixed into a high-mixer and uniformly mixed, and the substrate was molded by a hot press to obtain a radome substrate.
  • the operating temperature of the hot press was 280 ° C, and the operating pressure was 40MPa.
  • the ceramic powder and polyphenylene ether were dried in an oven at 100 ° C for 3 h, and the surface of the ceramic powder was treated with a coupling agent of propyltrimethoxysilane.
  • the coupling agent-treated ceramic powder was uniformly mixed with the polyphenylene ether and passed through.
  • the granulator is granulated to produce a ceramic master batch.
  • the ceramic powder is surface-treated with a coupling agent having a weight of 0.4% by weight based on the total weight of the ceramic mother particles, and the weight of the surface-treated ceramic powder and polyphenylene ether used respectively accounts for the total of the ceramic master batches, respectively. 83% and 17% by weight.
  • the hollow glass microspheres and polyphenylene ether were dried in an oven at 100 ° C for 3 h, and the surface of the hollow glass microspheres was treated with a coupling agent of propyltrimethoxysilane.
  • the coupling agent-treated hollow glass microbeads were uniformly mixed with the polyphenylene ether. And granulated by a granulator to prepare hollow microbead masterbatch.
  • the hollow glass microbeads are surface-treated with a coupling agent having a weight of 0.4% by weight based on the total weight of the hollow microbead masterbatch, and the surface treated hollow glass microspheres and polyphenylene ether are used to occupy the hollow microspheres, respectively. 53% and 47% of the total weight of the masterbatch.
  • the parts by weight weigh 10 parts of polyphenylene ether resin, 79 parts of ceramic masterbatch, 10 parts of hollow microbead masterbatch, 1 part of compatibilizer maleic anhydride grafted polyphenylene ether (PPO-g-MAH), 0.1 part of the lubricant vinyl bisstearamide was uniformly mixed in a high-mixer, and the substrate was molded by a hot press to obtain a radome substrate, wherein the hot press was operated at a temperature of 240 ° C and an operating pressure of 35 MPa.
  • PPO-g-MAH compatibilizer maleic anhydride grafted polyphenylene ether
  • the ceramic powder and polyphenylene ether were dried in an oven at 88 ° C for 2.5 h, and the surface of the ceramic powder was treated with a coupling agent of propyltrimethoxysilane, and the coupling agent-treated ceramic powder was uniformly mixed with the polyphenylene ether, and The ceramic master batch is obtained by granulation by a granulator.
  • the ceramic powder is surface-treated with a coupling agent having a weight of 0.4% by weight based on the total weight of the ceramic mother particles, and the weight of the surface-treated ceramic powder and polyphenylene ether used respectively accounts for the total of the ceramic master batches, respectively. 84% and 16% by weight.
  • the hollow glass microspheres and polyphenylene ether were dried in an oven at 88 ° C for 2.5 h, and the surface of the hollow glass microspheres was treated with a coupling agent of propyltrimethoxysilane, and the coupling agent-treated hollow glass microbeads were mixed with polyphenylene ether. It is uniform and granulated by a granulator to prepare hollow microbead masterbatch.
  • the hollow glass microspheres are surface-treated with a coupling agent having a weight of 0.5% by weight based on the total weight of the hollow microbead masterbatch, and the surface treated hollow glass microspheres and polyphenylene ether used respectively occupy hollow microspheres
  • the total weight of the masterbatch is 54% and 46%.
  • the parts by weight weigh 7 parts of polyphenylene ether resin, 75 parts of ceramic masterbatch, 11 parts of hollow microbead masterbatch, 2 parts of compatibilizer maleic anhydride grafted polyphenylene ether (PPO-g-MAH), 0.15 parts of lubricant N, N-ethylene bis stearic acid amide was added to a high-mixer and uniformly mixed, and the substrate was molded by a hot press to obtain a radome substrate, wherein the operating temperature of the hot press was 260 ° C. The operating pressure is 45 MPa.
  • PPO-g-MAH compatibilizer maleic anhydride grafted polyphenylene ether
  • the radome substrate prepared according to the method provided by the embodiment of the invention effectively improves the stress cracking resistance of the radome substrate while maintaining the substrate density and the dielectric constant.
  • the invention can improve the polyphenylene ether resin and the ceramic master batch by preparing the coupling agent-treated ceramic powder and the coupling agent-treated hollow glass microspheres together with the polyphenylene ether as the master batch, and then adding the compatibilizing agent.
  • the interfacial bonding strength between the hollow microbead masterbatch improves the uniformity of distribution of the ceramic powder and the hollow glass microbead in the polyphenylene ether resin. Controlling the proportion and content of ceramic powder and hollow glass microbeads can optimize the stacking arrangement of ceramic powder and hollow glass microspheres, and effectively reduce the stress concentration between polyphenylene ether and ceramic powder and hollow glass microbeads.
  • the stress cracking defects of the radome substrate made of polyphenylene ether are effectively improved.
  • the invention provides a lightweight high dielectric constant and stress crack resistant polyphenylene ether radome substrate, which effectively improves the stress crack resistance of the polyphenylene ether substrate.

Abstract

一种天线罩基材及其制备方法,其中,天线罩基材包括:5~10份聚苯醚树脂,70~85份陶瓷母粒,10~15份空心微珠母粒,1~3份相容剂,以及0.1~0.3份润滑剂。制备得到的天线罩基材不仅具有高介电常数,还具有耐应力开裂的性能。

Description

一种天线罩基材及其制备方法 技术领域
本发明涉及一种天线罩,更具体地,涉及一种天线罩基材及其制备方法。
背景技术
目前,市场上使用的天线罩基材主要有聚四氟乙烯(PTFE)、聚酰亚胺(PI)等,该类材料具有刚性大、热变形温度高、电性能优良,但聚四氟乙烯、聚酰亚胺的材料与加工成本高,其中聚四氟乙烯加工温度范围窄,而聚苯醚分子结构刚性大,制品易出现应力开裂,不宜二次热加工处理。
技术问题
现有技术中,聚苯醚基材虽然也可用于制备天线罩基材,但未提到聚苯醚树脂的应力开裂和相应的解决方案。根据现有技术制备的天线罩基材及二次热处理中存在局部明显的裂痕。
技术解决方案
为了解决现有技术中存在的缺陷,本发明提供了一种天线罩基材及其制备方法。
根据本发明的一个方面,提供了一种天线罩基材,按重量份数计,包括:5~10份聚苯醚树脂,70~85份陶瓷母粒,10~15份空心微珠母粒,1~3份相容剂,以及0.1~0.3份润滑剂。
在上述天线罩基材中,所述陶瓷母粒是陶瓷粉体经偶联剂进行表面改性处理之后,与聚苯醚混合后造粒所得;所述陶瓷粉体包括金红石型TiO2、BaO6SrTi2、SrTiO3、BaTiO3、CaCu3Ti4O12中的一种或者多种的组合。
在上述天线罩基材中,所述空心微珠母粒是空心玻璃微珠经偶联剂进行表面改性处理之后,与聚苯醚混合后造粒所得。
在上述天线罩基材中,所述偶联剂包括γ-氨丙基三乙氧基硅烷、γ-(2,3-环氧丙氧)、丙基三甲氧基硅烷中的一种或者多种的组合。
在上述天线罩基材中,所述相容剂包括马来酸酐接枝聚苯醚(PPO-g-MAH)、甲基丙烯酸缩水甘油酯接枝聚苯醚(PPO-g-GMA)的一种或者两种的组合;并且所述马来酸酐接枝聚苯醚和所述甲基丙烯酸缩水甘油酯接枝聚苯醚的接枝率分别为0.5%~1.0%。
在上述天线罩基材中,所述润滑剂包括单硬脂酸甘油酯、N,N-亚乙基双硬脂酸酰胺、乙烯基双硬脂酰胺、乙烯基硬脂酰胺、聚硅氧烷中的一种或者多种的组合。
根据本发明的另一方面,还提供了一种上述天线罩基材的制备方法,包括:对陶瓷粉体进行表面处理,并将表面处理后的所述陶瓷粉体与聚苯醚混合均匀,并造粒制得陶瓷母粒;对空心玻璃微珠进行表面处理,并将表面处理后的所述空心玻璃微珠与聚苯醚混合均匀,并造粒制得空心微珠母粒;按重量份数计,取5~10份聚苯醚树脂,70~85份所述陶瓷母粒,10~15份所述空心微珠母粒,1~3份相容剂,以及0.1~0.3份润滑剂混合均匀,热压后制得天线罩基材。
在上述天线罩基材的制备方法中,在制备所述陶瓷母粒的步骤中,使用重量占所述陶瓷母粒的总重量的0.3%~0.5%的偶联剂对所述陶瓷粉体进行表面处理,且所使用的表面处理后的所述陶瓷粉体和所述聚苯醚的重量分别占所述陶瓷母粒的总重量的80%~85%和10%~20%;以及在制备所述空心微珠母粒的步骤中,使用重量占所述空心微珠母粒的总重量的0.3%~0.5%的偶联剂对所述空心玻璃微珠进行表面处理,且所使用的表面处理后的所述空心玻璃微珠和所述聚苯醚的重量分别占所述空心微珠母粒的总重量的50%~55%和45%~55%。
在上述天线罩基材的制备方法中,所述偶联剂包括γ-氨丙基三乙氧基硅烷、γ-(2,3-环氧丙氧)、丙基三甲氧基硅烷中的一种或者多种的组合;所述相容剂包括马来酸酐接枝聚苯醚(PPO-g-MAH)、甲基丙烯酸缩水甘油酯接枝聚苯醚(PPO-g-GMA)的一种或者两种的组合;所述润滑剂包括单硬脂酸甘油酯、N,N-亚乙基双硬脂酸酰胺、乙烯基双硬脂酰胺、乙烯基硬脂酰胺、聚硅氧烷中的一种或者多种的组合。
在上述天线罩基材的制备方法中,在对所述陶瓷粉体进行表面处理的步骤之前,还包括:将所述陶瓷粉体、所述聚苯醚分别于85~115℃烘箱中干燥2~3h;以及在对所述空心玻璃微珠进行表面处理的步骤之前,还包括将所述空心玻璃微珠、所述聚苯醚分别于85~115℃烘箱中干燥2~3h;其中,通过热压机实施所述热压,所述热压机的操作温度为230~280℃,操作压力为20~50MPa。
为了改善聚苯醚基材的耐应力差的缺陷,本发明通过将偶联剂处理的陶瓷粉体和经偶联剂处理的空心玻璃微珠分别与聚苯醚制成母粒,然后再加入相容剂,可提高聚苯醚树脂、陶瓷母粒、空心微珠母粒间的界面结合强度,改善陶瓷粉体、空心玻璃微珠在聚苯醚树脂中的分布均匀性。特别是通过加入马来酸酐接枝聚苯醚(PPO-g-MAH)、甲基丙烯酸缩水甘油酯接枝聚苯醚(PPO-g-GMA)的一种或者两种的组合作为相容剂,可以有效提高聚苯醚树脂、陶瓷母粒、空心微珠母粒之间的界面结合力。控制陶瓷粉体与空心玻璃微珠比例及含量可优化陶瓷粉体、空心玻璃微珠的堆积排布方式,有效降低聚苯醚与陶瓷粉体、空心玻璃微珠间的应力集中。在保持基材密度和介电常数的基础上,有效改善了聚苯醚制作的天线罩基材耐应力开裂缺陷。
有益效果
本发明提供了一种轻质高介电常数且耐应力开裂的聚苯醚天线罩基材,有效改善聚了苯醚基材的耐应力开裂性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例的制备天线罩基材的工艺流程图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种天线罩基材及其制备方法,其中,天线罩基材的制备方法包括以下步骤:
 如图1中的步骤S101所示,对陶瓷粉体进行表面处理,并将表面处理后的陶瓷粉体与聚苯醚混合均匀,并造粒制得陶瓷母粒。具体地,首先将陶瓷粉体、聚苯醚分别于85~115℃烘箱中干燥2~3h;然后,对陶瓷粉体进行表面处理,并将表面处理后的陶瓷粉体与聚苯醚混合均匀,并造粒制得陶瓷母粒。在该步骤中,使用重量占陶瓷母粒的总重量的0.3%~0.5%的偶联剂对陶瓷粉体进行表面处理,且所使用的表面处理后的陶瓷粉体和聚苯醚的重量分别占陶瓷母粒的总重量的80%~85%和10%~20%。其中,偶联剂包括γ-氨丙基三乙氧基硅烷、γ-(2,3-环氧丙氧)、丙基三甲氧基硅烷中的一种或者多种的组合。
如图1中的步骤S103所示,对空心玻璃微珠进行表面处理,并将表面处理后的空心玻璃微珠与聚苯醚混合均匀,并造粒制得空心微珠母粒。具体地,首先,将空心玻璃微珠、聚苯醚分别于85~115℃烘箱中干燥2~3h,然后对空心玻璃微珠进行表面处理,并将表面处理后的空心玻璃微珠与聚苯醚混合均匀,并造粒制得空心微珠母粒。在该步骤中,使用重量占空心微珠母粒的总重量的0.3%~0.5%的偶联剂对空心玻璃微珠进行表面处理,且所使用的表面处理后的空心玻璃微珠和聚苯醚的重量分别占空心微珠母粒的总重量的50%~55%和45%~55%。其中,偶联剂包括γ-氨丙基三乙氧基硅烷、γ-(2,3-环氧丙氧)、丙基三甲氧基硅烷中的一种或者多种的组合。
如图1中的步骤S105所示,取5~10份聚苯醚树脂,70~85份陶瓷母粒,10~15份空心微珠母粒,1~3份相容剂,以及0.1~0.3份润滑剂混合均匀,热压后制得天线罩基材。其中,相容剂包括马来酸酐接枝聚苯醚(PPO-g-MAH)、甲基丙烯酸缩水甘油酯接枝聚苯醚(PPO-g-GMA)的一种或者两种的组合,马来酸酐接枝聚苯醚和甲基丙烯酸缩水甘油酯接枝聚苯醚的接枝率分别为0.5%~1.0%;润滑剂包括单硬脂酸甘油酯、N,N-亚乙基双硬脂酸酰胺、乙烯基双硬脂酰胺、乙烯基硬脂酰胺、聚硅氧烷中的一种或者多种的组合。在该步骤中,通过热压机实施热压,热压机的操作温度为230~280℃,操作压力为20~50MPa。
下面将结合具体实施例对本发明中的技术方案进行清楚、完整地描述。
实施例 1
(1)制备陶瓷母粒
陶瓷粉体、聚苯醚分别于85℃烘箱中干燥3h,以偶联剂γ-氨丙基三乙氧基硅烷处理陶瓷粉体表面,将偶联剂处理的陶瓷粉体与聚苯醚混合均匀,并通过造粒机造粒,从而制得陶瓷母粒。
其中,使用重量占陶瓷母粒的总重量的0.3%的偶联剂对陶瓷粉体进行表面处理,且所使用的表面处理后的陶瓷粉体和聚苯醚的重量分别占陶瓷母粒的总重量的80%和20%。
(2)制备空心微珠母粒
空心玻璃微珠、聚苯醚分别于85℃烘箱中干燥3h,以偶联剂γ-氨丙基三乙氧基硅烷处理空心玻璃微珠表面,将偶联剂处理的空心玻璃微珠与聚苯醚混合均匀,并通过造粒机造粒,从而制得空心微珠母粒。
其中,使用重量占空心微珠母粒的总重量的0.3%的偶联剂对空心玻璃微珠进行表面处理,且所使用的表面处理后的空心玻璃微珠和聚苯醚分别占空心微珠母粒的总重量的50%和50%。
(3)制备天线罩基材
按照重量份数,分别称取5份聚苯醚树脂、85份陶瓷母粒、10份空心微珠母粒、1份相容剂甲基丙烯酸缩水甘油酯接枝聚苯醚(PPO-g-GMA)、0.1份润滑剂N,N-亚乙基双硬脂酸酰胺加入高混机中混合均匀,并通过热压机成型基材,得到天线罩基材,其中,热压机的操作温度为230℃,操作压力为20MPa。
实施例 2
(1)制备陶瓷母粒
陶瓷粉体、聚苯醚分别于115℃烘箱中干燥2h,以偶联剂γ-(2,3-环氧丙氧)处理陶瓷粉体表面,将偶联剂处理的陶瓷粉体与聚苯醚混合均匀,并通过造粒机造粒,从而制得陶瓷母粒。
其中,使用重量占陶瓷母粒的总重量的0.4%的偶联剂对陶瓷粉体进行表面处理,且所使用的表面处理后的陶瓷粉体和聚苯醚的重量分别占陶瓷母粒的总重量的85%和15%。
(2)制备空心微珠母粒
空心玻璃微珠、聚苯醚分别于115℃烘箱中干燥2h,以偶联剂γ-(2,3-环氧丙氧)处理空心玻璃微珠表面,将偶联剂处理的空心玻璃微珠与聚苯醚混合均匀,并通过造粒机造粒,从而制得空心微珠母粒。
其中,使用重量占空心微珠母粒的总重量的0.4%的偶联剂对空心玻璃微珠进行表面处理,且所使用的表面处理后的空心玻璃微珠和聚苯醚分别占空心微珠母粒的总重量的55%和45%。
(3)制备天线罩基材
按照重量份数,分别称取10份聚苯醚树脂、70份陶瓷母粒、150份空心微珠母粒、3份相容剂甲基丙烯酸缩水甘油酯接枝聚苯醚(PPO-g-GMA)、0.3份润滑剂单硬脂酸甘油酯加入高混机中混合均匀,并通过热压机成型基材,得到天线罩基材,其中,热压机的操作温度为250℃,操作压力为30MPa。
实施例 3
(1)制备陶瓷母粒
陶瓷粉体、聚苯醚分别于90℃烘箱中干燥2.5h,以偶联剂γ-氨丙基三乙氧基硅烷处理陶瓷粉体表面,将偶联剂处理的陶瓷粉体与聚苯醚混合均匀,并通过造粒机造粒,从而制得陶瓷母粒。
其中,使用重量占陶瓷母粒的总重量的0.5%的偶联剂对陶瓷粉体进行表面处理,且所使用的表面处理后的陶瓷粉体和聚苯醚的重量分别占陶瓷母粒的总重量的82%和18%。
(2)制备空心微珠母粒
空心玻璃微珠、聚苯醚分别于90℃烘箱中干燥2.5h,以偶联剂γ-氨丙基三乙氧基硅烷处理空心玻璃微珠表面,将偶联剂处理的空心玻璃微珠与聚苯醚混合均匀,并通过造粒机造粒,从而制得空心微珠母粒。
其中,使用重量占空心微珠母粒的总重量的0.5%的偶联剂对空心玻璃微珠进行表面处理,且所使用的表面处理后的空心玻璃微珠和聚苯醚分别占空心微珠母粒的总重量的45%和55%。
(3)制备天线罩基材
按照重量份数,分别称取5份聚苯醚树脂、81份陶瓷母粒、13份空心微珠母粒、1份相容剂甲基丙烯酸缩水甘油酯接枝聚苯醚(PPO-g-GMA)、0.1份润滑剂聚硅氧烷加入高混机中混合均匀,并通过热压机成型基材,得到天线罩基材,其中,热压机的操作温度为270℃,操作压力为50MPa。
实施例 4
(1)制备陶瓷母粒
陶瓷粉体、聚苯醚分别于110℃烘箱中干燥2h,以偶联剂γ-(2,3-环氧丙氧)处理陶瓷粉体表面,将偶联剂处理的陶瓷粉体与聚苯醚混合均匀,并通过造粒机造粒,从而制得陶瓷母粒。
其中,使用重量占陶瓷母粒的总重量的0.4%的偶联剂对陶瓷粉体进行表面处理,且所使用的表面处理后的陶瓷粉体和聚苯醚的重量分别占陶瓷母粒的总重量的83%和17%。
(2)制备空心微珠母粒
空心玻璃微珠、聚苯醚分别于110℃烘箱中干燥2h,以偶联剂γ-(2,3-环氧丙氧)处理空心玻璃微珠表面,将偶联剂处理的空心玻璃微珠与聚苯醚混合均匀,并通过造粒机造粒,从而制得空心微珠母粒。
其中,使用重量占空心微珠母粒的总重量的0.4%的偶联剂对空心玻璃微珠进行表面处理,且所使用的表面处理后的空心玻璃微珠和聚苯醚分别占空心微珠母粒的总重量的52%和48%。
(3)制备天线罩基材
按照重量份数,分别称取8份聚苯醚树脂、77份陶瓷母粒、12份空心微珠母粒、3份相容剂甲基丙烯酸缩水甘油酯接枝聚苯醚(PPO-g-GMA)、0.2份润滑剂乙烯基硬脂酰胺加入高混机中混合均匀,并通过热压机成型基材,得到天线罩基材,其中,热压机的操作温度为280℃,操作压力为40MPa。
实施例 5
(1)制备陶瓷母粒
陶瓷粉体、聚苯醚分别于100℃烘箱中干燥3h,以偶联剂丙基三甲氧基硅烷处理陶瓷粉体表面,将偶联剂处理的陶瓷粉体与聚苯醚混合均匀,并通过造粒机造粒,从而制得陶瓷母粒。
其中,使用重量占陶瓷母粒的总重量的0.4%的偶联剂对陶瓷粉体进行表面处理,且所使用的表面处理后的陶瓷粉体和聚苯醚的重量分别占陶瓷母粒的总重量的83%和17%。
(2)制备空心微珠母粒
空心玻璃微珠、聚苯醚分别于100℃烘箱中干燥3h,以偶联剂丙基三甲氧基硅烷处理空心玻璃微珠表面,将偶联剂处理的空心玻璃微珠与聚苯醚混合均匀,并通过造粒机造粒,从而制得空心微珠母粒。
其中,使用重量占空心微珠母粒的总重量的0.4%的偶联剂对空心玻璃微珠进行表面处理,且所使用的表面处理后的空心玻璃微珠和聚苯醚分别占空心微珠母粒的总重量的53%和47%。
(3)制备天线罩基材
按照重量份数,分别称取10份聚苯醚树脂、79份陶瓷母粒、10份空心微珠母粒、1份相容剂马来酸酐接枝聚苯醚(PPO-g-MAH)、0.1份润滑剂乙烯基双硬脂酰胺加入高混机中混合均匀,并通过热压机成型基材,得到天线罩基材,其中,热压机的操作温度为240℃,操作压力为35MPa。
实施例 6
(1)制备陶瓷母粒
陶瓷粉体、聚苯醚分别于88℃烘箱中干燥2.5h,以偶联剂丙基三甲氧基硅烷处理陶瓷粉体表面,将偶联剂处理的陶瓷粉体与聚苯醚混合均匀,并通过造粒机造粒,从而制得陶瓷母粒。
其中,使用重量占陶瓷母粒的总重量的0.4%的偶联剂对陶瓷粉体进行表面处理,且所使用的表面处理后的陶瓷粉体和聚苯醚的重量分别占陶瓷母粒的总重量的84%和16%。
(2)制备空心微珠母粒
空心玻璃微珠、聚苯醚分别于88℃烘箱中干燥2.5h,以偶联剂丙基三甲氧基硅烷处理空心玻璃微珠表面,将偶联剂处理的空心玻璃微珠与聚苯醚混合均匀,并通过造粒机造粒,从而制得空心微珠母粒。
其中,使用重量占空心微珠母粒的总重量的0.5%的偶联剂对空心玻璃微珠进行表面处理,且所使用的表面处理后的空心玻璃微珠和聚苯醚分别占空心微珠母粒的总重量的54%和46%。
(3)制备天线罩基材
按照重量份数,分别称取7份聚苯醚树脂、75份陶瓷母粒、11份空心微珠母粒、2份相容剂马来酸酐接枝聚苯醚(PPO-g-MAH)、0.15份润滑剂N,N-亚乙基双硬脂酸酰胺加入高混机中混合均匀,并通过热压机成型基材,得到天线罩基材,其中,热压机的操作温度为260℃,操作压力为45MPa。
 
通过视觉观察天线罩基材是否开裂,结果发现,实施例1-6制备得到的天线罩基材均没有出现开裂现象。
根据本发明实施例提供的方法制备得到的天线罩基材在保持基材密度和介电常数的基础上,有效改善了天线罩基材耐应力开裂缺陷。
本发明通过将偶联剂处理的陶瓷粉体和经偶联剂处理的空心玻璃微珠分别与聚苯醚制成母粒,然后再加入相容剂,可提高聚苯醚树脂、陶瓷母粒、空心微珠母粒间的界面结合强度,改善陶瓷粉体、空心玻璃微珠在聚苯醚树脂中的分布均匀性。控制陶瓷粉体与空心玻璃微珠比例及含量可优化陶瓷粉体、空心玻璃微珠的堆积排布方式,有效降低聚苯醚与陶瓷粉体、空心玻璃微珠间的应力集中。在保持基材密度和介电常数的基础上,有效改善了聚苯醚制作的天线罩基材耐应力开裂缺陷。
本发明提供了一种轻质高介电常数且耐应力开裂的聚苯醚天线罩基材,有效改善聚了苯醚基材的耐应力开裂性能。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种天线罩基材,其特征在于,按重量份数计,包括:
    5~10份聚苯醚树脂,70~85份陶瓷母粒,10~15份空心微珠母粒,1~3份相容剂,以及0.1~0.3份润滑剂。
  2. 根据权利要求1所述的天线罩基材,其特征在于,所述陶瓷母粒是陶瓷粉体经偶联剂进行表面改性处理之后,与聚苯醚混合后造粒所得;所述陶瓷粉体包括金红石型TiO 2、BaO 6SrTi 2、SrTiO 3、BaTiO 3、CaCu 3Ti 4O 12中的一种或者多种的组合。
  3. 根据权利要求1所述的天线罩基材,其特征在于,所述空心微珠母粒是空心玻璃微珠经偶联剂进行表面改性处理之后,与聚苯醚混合后造粒所得。
  4. 根据权利要求2或3所述的天线罩基材,其特征在于,所述偶联剂包括γ-氨丙基三乙氧基硅烷、γ-(2,3-环氧丙氧)、丙基三甲氧基硅烷中的一种或者多种的组合。
  5. 根据权利要求1所述的天线罩基材,其特征在于,所述相容剂包括马来酸酐接枝聚苯醚(PPO-g-MAH)、甲基丙烯酸缩水甘油酯接枝聚苯醚(PPO-g-GMA)的一种或者两种的组合;并且所述马来酸酐接枝聚苯醚和所述甲基丙烯酸缩水甘油酯接枝聚苯醚的接枝率分别为0.5%~1.0%。
  6. 根据权利要求1所述的天线罩基材,其特征在于,所述润滑剂包括单硬脂酸甘油酯、N,N-亚乙基双硬脂酸酰胺、乙烯基双硬脂酰胺、乙烯基硬脂酰胺、聚硅氧烷中的一种或者多种的组合。
  7. 一种权利要求1-6中任一项所述的天线罩基材的制备方法,其特征在于,包括:
    对陶瓷粉体进行表面处理,并将表面处理后的所述陶瓷粉体与聚苯醚混合均匀,并造粒制得陶瓷母粒;
    对空心玻璃微珠进行表面处理,并将表面处理后的所述空心玻璃微珠与聚苯醚混合均匀,并造粒制得空心微珠母粒;
    按重量份数计,取5~10份聚苯醚树脂,70~85份所述陶瓷母粒,10~15份所述空心微珠母粒,1~3份相容剂,以及0.1~0.3份润滑剂混合均匀,热压后制得天线罩基材。
  8. 根据权利要求7所述的天线罩基材的制备方法,其特征在于,在制备所述陶瓷母粒的步骤中,使用重量占所述陶瓷母粒的总重量的0.3%~0.5%的偶联剂对所述陶瓷粉体进行表面处理,且所使用的表面处理后的所述陶瓷粉体和所述聚苯醚的重量分别占所述陶瓷母粒的总重量的80%~85%和10%~20%;以及
    在制备所述空心微珠母粒的步骤中,使用重量占所述空心微珠母粒的总重量的0.3%~0.5%的偶联剂对所述空心玻璃微珠进行表面处理,且所使用的表面处理后的所述空心玻璃微珠和所述聚苯醚的重量分别占所述空心微珠母粒的总重量的50%~55%和45%~55%。
  9. 根据权利要求8所述的天线罩基材的制备方法,其特征在于,所述偶联剂包括γ-氨丙基三乙氧基硅烷、γ-(2,3-环氧丙氧)、丙基三甲氧基硅烷中的一种或者多种的组合;所述相容剂包括马来酸酐接枝聚苯醚(PPO-g-MAH)、甲基丙烯酸缩水甘油酯接枝聚苯醚(PPO-g-GMA)的一种或者两种的组合;所述润滑剂包括单硬脂酸甘油酯、N,N-亚乙基双硬脂酸酰胺、乙烯基双硬脂酰胺、乙烯基硬脂酰胺、聚硅氧烷中的一种或者多种的组合。
  10. 根据权利要求7所述的天线罩基材的制备方法,其特征在于,在对所述陶瓷粉体进行表面处理的步骤之前,还包括:将所述陶瓷粉体、所述聚苯醚分别于85~115℃烘箱中干燥2~3h;以及
    在对所述空心玻璃微珠进行表面处理的步骤之前,还包括将所述空心玻璃微珠、所述聚苯醚分别于85~115℃烘箱中干燥2~3h;
    其中,通过热压机实施所述热压,所述热压机的操作温度为230~280℃,操作压力为20~50MPa。
PCT/CN2018/079867 2017-12-26 2018-03-21 一种天线罩基材及其制备方法 WO2019127939A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18896095.9A EP3733776A4 (en) 2017-12-26 2018-03-21 RADOME SUBSTRATE AND MANUFACTURING METHOD FOR IT
JP2020555271A JP7135102B2 (ja) 2017-12-26 2018-03-21 レドーム基材及びその製造方法
US16/910,797 US11512172B2 (en) 2017-12-26 2020-06-24 Radome substrate and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711435107.9A CN109957228A (zh) 2017-12-26 2017-12-26 一种天线罩基材及其制备方法
CN201711435107.9 2017-12-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/910,797 Continuation US11512172B2 (en) 2017-12-26 2020-06-24 Radome substrate and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2019127939A1 true WO2019127939A1 (zh) 2019-07-04

Family

ID=67022351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079867 WO2019127939A1 (zh) 2017-12-26 2018-03-21 一种天线罩基材及其制备方法

Country Status (5)

Country Link
US (1) US11512172B2 (zh)
EP (1) EP3733776A4 (zh)
JP (1) JP7135102B2 (zh)
CN (1) CN109957228A (zh)
WO (1) WO2019127939A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111073257B (zh) * 2019-12-23 2022-08-12 南京海兆新材料有限公司 一种5g专用ppo陶瓷母粒及注塑产品和应用
CN112646344A (zh) * 2020-12-23 2021-04-13 郑州圣莱特空心微珠新材料有限公司 制备天线罩的材料及其制备方法
CN113549327B (zh) * 2021-07-30 2023-07-25 深圳陶陶科技有限公司 复合材料、复合材料注塑料、复合材料产品及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200562A (ja) * 2004-01-16 2005-07-28 Asahi Kasei Chemicals Corp 強化ポリフェニレンエーテル系樹脂組成物
KR20090097031A (ko) * 2008-03-10 2009-09-15 (주)에이스안테나 탄소 나노 튜브를 이용한 전도성 중합체 및 이의 제조 방법
JP2011116870A (ja) * 2009-12-04 2011-06-16 Mitsubishi Engineering Plastics Corp 誘電体用樹脂組成物及び誘電体アンテナ部品
CN103625063A (zh) * 2012-08-23 2014-03-12 上海杰事杰新材料(集团)股份有限公司 一种asa/as与改性ppo共挤材料、制备方法及其用途
CN106893303A (zh) * 2015-12-18 2017-06-27 深圳光启高等理工研究院 一种高介电常数轻质介质基材及其制备方法
CN107459805A (zh) * 2016-06-06 2017-12-12 华为技术有限公司 一种基站天线罩及其制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274615A (ja) * 2000-03-24 2001-10-05 Asahi Kasei Corp 誘電特性に優れたアンテナ用レドーム
CN100441637C (zh) * 2002-12-20 2008-12-10 通用电气公司 热固性复合材料组合物、方法及产品
JP5293537B2 (ja) * 2009-09-28 2013-09-18 三菱エンジニアリングプラスチックス株式会社 ミリ波レーダー用カバー及びミリ波レーダー
US9914803B2 (en) * 2013-06-28 2018-03-13 Saint-Gobain Performance Plastics Corporation Cyanate resin blends and radomes including them
CN106336643B (zh) * 2015-07-10 2020-06-16 深圳光启创新技术有限公司 复合基板及其制造方法和应用
CN105440665B (zh) * 2015-12-11 2018-03-20 会通新材料股份有限公司 一种低填充高导热绝缘尼龙/聚苯醚合金及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200562A (ja) * 2004-01-16 2005-07-28 Asahi Kasei Chemicals Corp 強化ポリフェニレンエーテル系樹脂組成物
KR20090097031A (ko) * 2008-03-10 2009-09-15 (주)에이스안테나 탄소 나노 튜브를 이용한 전도성 중합체 및 이의 제조 방법
JP2011116870A (ja) * 2009-12-04 2011-06-16 Mitsubishi Engineering Plastics Corp 誘電体用樹脂組成物及び誘電体アンテナ部品
CN103625063A (zh) * 2012-08-23 2014-03-12 上海杰事杰新材料(集团)股份有限公司 一种asa/as与改性ppo共挤材料、制备方法及其用途
CN106893303A (zh) * 2015-12-18 2017-06-27 深圳光启高等理工研究院 一种高介电常数轻质介质基材及其制备方法
CN107459805A (zh) * 2016-06-06 2017-12-12 华为技术有限公司 一种基站天线罩及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3733776A4 *

Also Published As

Publication number Publication date
EP3733776A1 (en) 2020-11-04
JP2021508761A (ja) 2021-03-11
CN109957228A (zh) 2019-07-02
US11512172B2 (en) 2022-11-29
JP7135102B2 (ja) 2022-09-12
US20200332075A1 (en) 2020-10-22
EP3733776A4 (en) 2021-08-25

Similar Documents

Publication Publication Date Title
WO2019127939A1 (zh) 一种天线罩基材及其制备方法
WO2017133080A1 (zh) 一种低收缩高强度大规格陶瓷板及其制备方法
CN106735170B (zh) 一种大件金属件的注射成型方法
CN108097866B (zh) 一种提高无机粘结剂砂强度的方法
CN110655379A (zh) 一种纳米复合隔热板及其制备方法
CN105945207A (zh) 一种高强度耐高温覆膜砂
CN1243619C (zh) 一种硅溶胶粘结剂及其制造方法
CN112375255A (zh) 一种纳米填料和环氧复合绝缘材料及其制备方法和环氧复合绝缘部件
CN105903888A (zh) 一种耐高温易溃散覆膜砂
CN109852030A (zh) 复合介质基材及其制备方法
KR101136106B1 (ko) 탄소원이 코팅된 탄화규소 복합 분말 및 반응소결 탄화규소 소결체의 제조방법
TWI400218B (zh) 核殼式無機聚合物複合材料及其製法
CN113788683A (zh) 一种SiC陶瓷粉体的制备方法
CN106009574A (zh) 一种抗菌型的3d打印用磁性复合材料
CN106009166A (zh) 一种多硅烷改性耐热光缆料及其制备方法
CN111574196A (zh) 球磨介质及其制备方法与应用
CN107652680A (zh) 一种纳米氧化铝改性聚酰亚胺杂化薄膜及其制备方法
CN109133976A (zh) 一种多孔氧化铝制备方法
KR102187447B1 (ko) 도자타일용 고유동성 과립분말의 제조방법
CN115321826B (zh) 一种水溶性微晶玻璃基型芯及其制备方法
KR102347575B1 (ko) 도자타일용 고유동성 과립분말의 제조방법 및 도자타일의 제조방법
CN110157021B (zh) 一种提高聚偏氟乙烯散热性能的方法
JPS6350480A (ja) ガラス状炭素被覆体の製造方法
JPH02129062A (ja) フェライト焼結体の製造方法
KR20160100512A (ko) 세라믹 파우더의 성형방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896095

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020555271

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018896095

Country of ref document: EP

Effective date: 20200727