WO2019125085A1 - 바이폴라 전극을 포함하는 플렉서블 이차전지 - Google Patents

바이폴라 전극을 포함하는 플렉서블 이차전지 Download PDF

Info

Publication number
WO2019125085A1
WO2019125085A1 PCT/KR2018/016542 KR2018016542W WO2019125085A1 WO 2019125085 A1 WO2019125085 A1 WO 2019125085A1 KR 2018016542 W KR2018016542 W KR 2018016542W WO 2019125085 A1 WO2019125085 A1 WO 2019125085A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
solid electrolyte
electrolyte layer
sheet
current collector
Prior art date
Application number
PCT/KR2018/016542
Other languages
English (en)
French (fr)
Inventor
이정필
엄인성
강성중
김효식
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880049073.6A priority Critical patent/CN111033852B/zh
Priority to US16/635,409 priority patent/US11201357B2/en
Priority to JP2020503722A priority patent/JP7047207B2/ja
Priority to EP18893276.8A priority patent/EP3678247A4/en
Publication of WO2019125085A1 publication Critical patent/WO2019125085A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/75Wires, rods or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/78Shapes other than plane or cylindrical, e.g. helical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/029Bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a flexible secondary battery including a bipolar electrode, and more particularly, to a flexible secondary battery including a bipolar electrode capable of realizing a high voltage.
  • a secondary cell is a device that converts external electrical energy into a form of chemical energy, stores it, and produces electricity when needed.
  • the term “rechargeable battery” also means that the battery can be recharged several times.
  • Common secondary batteries include lead acid batteries, NiCd batteries, NiMH batteries, Li-ion batteries, and Li-ion polymer batteries. Secondary batteries provide both economic and environmental advantages over single-use primary batteries.
  • Secondary cells are currently used for low power applications. Such as a device that assists the starting of a vehicle, a portable device, a tool, and an uninterruptible power supply.
  • Background Art [0002] Recent developments in wireless communication technology have led to the popularization of portable devices and the tendency to wirelessize many types of conventional devices, and demand for secondary batteries is exploding.
  • hybrid vehicles and electric vehicles are being put to practical use in terms of prevention of environmental pollution, and these next generation vehicles employ secondary battery technology to reduce the value and weight and increase the life span.
  • a secondary battery is a cylindrical, square, or pouch type battery. This is because the secondary battery is manufactured by inserting an electrode assembly composed of a cathode, an anode, and a separator into a pouch-shaped case of a cylindrical or rectangular metal can or an aluminum laminate sheet, and injecting an electrolyte into the electrode assembly. Therefore, since a certain space for mounting the secondary battery is indispensably required, there is a problem that the cylindrical shape, the square shape, or the pouch shape of the secondary battery acts as a constraint on the development of various types of portable devices. Therefore, there is a demand for a flexible battery whose shape is easily deformed.
  • the cable-type secondary battery which is an example of the flexible battery, has a horizontal cross-section of a predetermined shape and has a linear structure elongated in the longitudinal direction with respect to a horizontal cross-section, and is flexible.
  • Such a cable-type secondary battery may be formed by sequentially laminating an internal electrode, an electrolyte layer, and an external electrode having an electrode active material layer around a wire-like current collector.
  • Such a cable type secondary battery is generally limited in the use range because of low voltage. Further, when a liquid electrolyte is used in the formation of the cable-type secondary battery, serial connection of the unit cells is difficult, so that there is a limitation in realizing a high-voltage cell.
  • a plasma display panel comprising: an electrode support; A sheet-like internal electrode spirally wound on the outside of the electrode support; A first solid electrolyte layer in the form of a sheet wound spirally on the outside of the internal electrode; A sheet-like bipolar electrode spirally wound on the outer side of the first solid electrolyte layer; A second solid electrolyte layer of a sheet shape spirally wound on the outer side of the bipolar electrode; And a sheet-like external electrode spirally wound on the outside of the second solid electrolyte layer, wherein the first solid electrolyte layer and the second solid electrolyte layer include an organic solid electrolyte, and the internal electrode and the external electrode Wherein the bipolar electrode has an insulation coated portion at both ends in the longitudinal direction of one side facing the first solid electrolyte layer and the second solid electrolyte layer, A secondary battery is provided.
  • the inner electrode and the outer electrode may be wound such that an insulating coating portion provided at both ends in the longitudinal direction faces the first solid electrolyte layer and the second solid electrolyte layer, respectively.
  • At least one sheet-like solid electrolyte layer and a sheet-like bipolar electrode may be further provided between the bipolar electrode and the second solid electrolyte layer.
  • the organic solid electrolyte may be at least one selected from the group consisting of polyethylene oxide (PEO), polypropylene oxide (PPO), polyethylene imine (PEI), polyethylene sulphide (PES), and polyvinyl acetate ),
  • the lengthwise insulating coating portions provided on the sheet-like internal electrode, the bipolar electrode, and the external electrode may independently have a width of 1 to 50%, specifically 5 to 10%, based on the width of the sheet-like electrode.
  • the insulated coating portion may include at least one of Fe, Ca, Ba, Zn, Al, Ni, Sn, Cu, Cr, Cd, Nd, Mn, Mo, Si, Ti, W, Bi, Sr, Li, Y, Mg, And V, oxides, carbides, nitrides, or a mixture of two or more of these elements.
  • the insulating coating portion may include an oxide-based solid electrolyte.
  • the oxide-based solid electrolyte is Li-AO solid electrolyte having the structure (where, A is La, Zr, Ti, Al, P, I or which may be those of a combination of two or more types), such as Li 3x La 2/3 x TiO 3 (LLTO) (0 ⁇ x ⁇ 1), Li 7 La 3 Zr 2 O 12 (LLZO), Li 1 + x Al x Ti 2 -X (PO 4 ) 3 (LATP) 1), Li 1 + x Al x Ge 2 -X (PO 4 ) 3 (LAGP) (0 ⁇ x ⁇ 1), Li 1 .
  • A is La, Zr, Ti, Al, P, I or which may be those of a combination of two or more types
  • A is La, Zr, Ti, Al, P, I or which may be those of a combination of two or more types
  • A is La, Zr, Ti, Al, P, I or which may be those of a combination of two or more types
  • A is La, Zr, Ti, Al
  • the internal electrode includes an internal current collector and an internal electrode active material layer formed on one surface of the internal current collector
  • the external electrode includes an external current collector and an external electrode active material layer formed on one surface of the external current collector
  • the electrode may include a bipolar electrode current collector, a positive electrode active material layer formed on one surface of the current collector, and a negative electrode active material layer formed on the other surface of the current collector.
  • the sheet-like internal electrode, the first solid electrolyte layer, the bipolar electrode, the second solid electrolyte layer, and the external electrode may have a strip structure extending in one direction.
  • the electrode support may have an open structure in which a space is formed therein.
  • the electrode support may comprise one or more spirally wound wires, one or more spirally wound sheets, a twisted wire, a linear wire, a hollow fiber, a mesh-like support, two or more linear wire supports disposed parallel to each other, And may include two or more wound-type wire-shaped supports.
  • the internal electrode current collector core portion, the lithium ion supply core portion including the electrolyte, or the filler core portion may be formed in the space formed in the electrode support.
  • the flexible secondary battery according to an embodiment of the present invention includes an internal electrode, a bipolar electrode, and an external electrode separated from each other by a solid electrolyte layer. By increasing the number of the bipolar electrodes as needed, Voltage range can be designed.
  • the inner electrode, the bipolar electrode, and the outer electrode are provided with insulating coating portions at both ends in the longitudinal direction on the side facing the solid electrolyte layer made of organic material It is possible to suppress the occurrence of a short circuit by damaging the solid electrolyte layer having low strength at both ends of each electrode during the cell assembly process due to the nature of the organic material.
  • the electrode support having an open structure in a spiral shape like a spring structure while being sheet-like, And has flexibility to mitigate stress due to external forces.
  • FIG. 1 shows a structure of a flexible secondary battery according to an embodiment of the present invention.
  • FIG. 2 shows a structure of a sheet-like internal electrode included in a flexible secondary battery according to an embodiment of the present invention.
  • FIG. 3A shows a structure of a sheet-type bipolar electrode included in a flexible secondary battery according to an embodiment of the present invention.
  • FIG. 3B shows a structure in which at least one sheet-like bipolar electrode included in a flexible secondary battery according to an embodiment of the present invention and a solid electrolyte layer are disposed therebetween.
  • FIG. 4 shows a structure of a sheet-like external electrode included in a flexible secondary battery according to an embodiment of the present invention.
  • FIG. 5 shows a flexible secondary battery according to an embodiment of the present invention.
  • One embodiment of the present invention is an electrode assembly comprising: an electrode support; A sheet-like internal electrode spirally wound on the outside of the electrode support; A first solid electrolyte layer in the form of a sheet wound spirally on the outside of the internal electrode; A sheet-like bipolar electrode spirally wound on the outer side of the first solid electrolyte layer; A second solid electrolyte layer of a sheet shape spirally wound on the outer side of the bipolar electrode; And a sheet-like external electrode spirally wound on the outside of the second solid electrolyte layer, wherein the first solid electrolyte layer and the second solid electrolyte layer comprise an organic solid electrolyte, and the internal electrode and the external electrode Wherein the bipolar electrode has an insulation coated portion at both ends in the longitudinal direction of one side facing the first solid electrolyte layer and the second solid electrolyte layer,
  • the present invention relates to a secondary battery.
  • " spiral " used in the present invention refers to a spiral or helix in English and refers to a shape similar to a shape of a general spring in a certain range.
  • " outer side " used in the present invention means an outer region of a corresponding portion, and includes both a portion abutted to the surface of the portion and a portion formed apart from the portion, and in the latter case, Another layer may be interposed.
  • the flexible secondary battery includes an electrode support 100, a sheet-like internal electrode 200 spirally wound on the outside of the electrode support 100; A first solid electrolyte layer 300 of a sheet shape wound spirally on the outer side of the internal electrode 200; A sheet-like bipolar electrode 400 spirally wound on the outer side of the first solid electrolyte layer; A second solid electrolyte layer 500 of a sheet shape wound spirally on the outer side of the bipolar electrode; And a sheet-like outer electrode 600 spirally wound on the outer side of the second solid electrolyte layer.
  • the sheet-like internal electrode, the first solid electrolyte layer, the bipolar electrode, the second solid electrolyte layer, and the external electrode may have a stripe structure extending in one direction, each of which may be spirally wound And may be formed by being wound in a spiral shape so as to overlap each other.
  • the internal electrode 200 includes an internal current collector 210 surrounding the outside of the electrode support 100, and a current collector 210 formed on one surface of the internal current collector. And an internal electrode active material layer 220.
  • the internal electrode active material layer 220 faces the first solid electrolyte layer 300.
  • the bipolar electrode 400 includes a bipolar electrode current collector 410, a positive electrode active material layer formed on one surface of the current collector, and a negative electrode active material layer formed on the other surface of the current collector. And the cathode active material layer and the anode active material layer face the first solid electrolyte layer 300 or the second solid electrolyte layer 400, respectively.
  • the bipolar electrode is a unit cell including a positive electrode layer and a negative electrode layer simultaneously on a current collector. Each of the electrode layers faces a solid electrolyte layer, thereby allowing the flow of Li ions through the solid electrolyte layer, While the electrons flow through the current collector.
  • the unit cells of such a bipolar electrode can be electrochemically separated and can be connected in series, and the operating voltage can be adjusted according to the number of bipolar electrodes connected in series.
  • the bipolar electrode is applied together with the solid electrolyte, so that the energy density of the bipolar electrode can be higher than that of the conventional method using the liquid electrolyte.
  • a bipolar electrode 400 including a bipolar electrode collector 410, a positive electrode active material layer formed on one surface of the current collector, and a negative electrode active material layer formed on the other surface of the current collector, And a second bipolar electrode current collector 430 formed between the first solid electrolyte layer 500 and the second solid electrolyte layer 500.
  • the bipolar electrode 430 includes a positive electrode active material layer and a negative electrode active material layer formed on both surfaces thereof, As shown in FIG. That is, in the present invention, it is possible to design various voltage ranges from a low voltage to a high voltage by increasing the number of the bipolar electrodes as necessary.
  • the external electrode 600 includes an external current collector 620 and an external electrode active material layer 610 formed on one surface of the external current collector, (610) faces the second solid electrolyte layer.
  • the first solid electrolyte layer 300 and the second solid electrolyte layer 500 include an organic solid electrolyte and serve as mediators for transferring lithium ions.
  • the organic solid electrolyte may be at least one selected from the group consisting of polyethylene oxide (PEO), polypropylene oxide (PPO), polyethylene imine (PEI), polyethylene sulphide (PES), and polyvinyl acetate ),
  • the first solid electrolyte layer 300 and the second solid electrolyte layer 500 are formed between the inner electrode 200 and the bipolar electrode 400 and between the bipolar electrode 400 and the outer electrode 600,
  • the solid electrolyte layer applied to the present invention may have a relatively low mechanical strength due to the nature of the organic solid electrolyte.
  • the edges of each electrode may break through the solid electrolyte layer and cause a short circuit.
  • the side faces facing the respective solid electrolyte layers in the internal electrode, the bipolar electrode, and the external electrode, that is, the internal electrode active material layer 220 of the internal electrode 200
  • the outer electrode active material layer 610 of the electrode 600 and the bipolar electrode 400 have the insulating coating portions at both ends in the longitudinal direction in the cathode active material layer and the anode active material layer corresponding to both sides.
  • the inner electrode 200 and the outer electrode 600 are wound such that the insulating coating portions provided at both ends in the longitudinal direction of the secondary battery assembly face the first solid electrolyte layer and the second solid electrolyte layer, respectively .
  • an insulating coating portion (indicated by a dotted line) of the external electrode 600 is located on the inner side of the external electrode, that is, inwardly facing the second solid electrolyte layer 500.
  • one longitudinal insulating coating (shown as "C" in each drawing) provided on the surface of each electrode layer in the sheet-like internal electrode, bipolar electrode and external electrode, And may have a width of 1 to 50%, specifically 5 to 10%, based on the width of the film.
  • the width of the insulated coating portion satisfies the above range, the decrease in the energy density is small and the occurrence rate of the electric short can be reduced.
  • the flexible secondary battery of the present invention has a structure in which sheet-like electrodes (internal electrode, external electrode, bipolar electrode) having a predetermined width are sequentially wound around a spiral outside of an electrode support. At this time, the sheet-like electrode has a narrow width and does not have a solid portion (a portion where no electrode active material layer is formed) separately.
  • an uncoated portion having no electrode active material layer is separately provided at the time of manufacturing the electrode for introducing the insulating coating portion into the non-coated portion, uniformity of loading of the electrode active material layer, slitting and the like The processability of the electrode of the present invention will be lowered.
  • the inner electrode and the outer electrode are provided at both ends in the longitudinal direction of one side facing the first solid electrolyte layer and the second solid electrolyte layer,
  • the bipolar electrode has insulating coating portions at both ends in the longitudinal direction of both sides.
  • the insulating coating portion may be of any insulating material and can prevent shorting due to contact between electrodes due to high strength even if the edge portion of the electrode damages the solid electrolyte layer.
  • the insulating coating portion may include oxide, nitride, carbide, etc., alone or in combination.
  • the insulating coating portion may be formed of a metal such as Fe, Ca, Ba, Zn, Al, Ni, Sn, Cu, Cr, Cd, Nd, Mn, Mo, Si, Ti, W, Bi, Sr, Li, , Hf, and V, or a mixture of two or more thereof. More specifically, a material applicable to such an insulating coating portion is selected from the group consisting of HfO 2 , SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , SiO 2 , Y 2 O 3 , Al 2 O 3 , SiC, WC, TiO 2, etc., or a mixture of two or more thereof.
  • a metal such as Fe, Ca, Ba, Zn, Al, Ni, Sn, Cu, Cr, Cd, Nd, Mn, Mo, Si, Ti, W, Bi, Sr, Li, , Hf, and V, or a mixture of two or more thereof.
  • the oxide may include an oxide-based solid electrolyte
  • the oxide-based solid electrolyte may be Li-AO (where A may be La, Zr, Ti, Al, P, I or a combination of two or more thereof) ) solid electrolyte having a structure of, for example, Li 3x La 2 / 3x TiO 3 (LLTO) (0 ⁇ x ⁇ 1), Li 7 La 3 Zr 2 O 12 (LLZO), Li 1 + x Al x Ti 2 -X (PO 4) 3 (LATP ) (0 ⁇ x ⁇ 1), Li 1 + x Al x Ge 2 -X (PO 4) 3 (LAGP) (0 ⁇ x ⁇ 1), Li 1.
  • LLTO Li 3x La 2 / 3x TiO 3
  • LLZO Li 7 La 3 Zr 2 O 12
  • Li 1 + x Al x Ti 2 -X (PO 4) 3 (LATP ) (0 ⁇ x ⁇ 1)
  • the insulating coating part may be formed by dispersing an insulating material such as oxide, carbide, or nitride as a main material in a dispersion medium and adding a suitable binder resin, an additive and the like when necessary to obtain a slurry , And coating the slurry on the edge portions of the respective electrodes to a predetermined width.
  • an insulating material such as oxide, carbide, or nitride as a main material in a dispersion medium and adding a suitable binder resin, an additive and the like when necessary to obtain a slurry , And coating the slurry on the edge portions of the respective electrodes to a predetermined width.
  • the edges are considerably sharp due to the burrs generated in the electrode stamping process when the electrode assembly is manufactured.
  • solid electrolyte membranes serving as separators in all solid-state cells have low strength.
  • the cell of the battery cell will not operate as a battery due to an electric short due to the contact of the edge of the battery cell with the cathode surface or the battery cell. Therefore, a method for solving the problem according to the edge burr of the anode has been studied, and as a method, a process of applying a polymer film to the edge portion has been applied.
  • Such a padded polymer film may be higher than the strength of a conventional solid electrolyte membrane, but still has limitations in solving the edge burr problem of the anode. In order to effectively prevent short-circuiting, it is necessary to eliminate the cause of the edge burr. As a result, in one embodiment of the present invention, in order to prevent the solid electrolyte layer from being physically damaged due to the edge of the anode and to prevent short-circuit by the solid electrolyte layer, the oxide- May be applied to the insulating coating portion.
  • the oxide-based solid electrolyte has both ends in the longitudinal direction of one side of the inner electrode and the outer electrode facing the first solid electrolyte layer and the second solid electrolyte layer, And may be introduced into the insulating coating portion at both ends in the longitudinal direction.
  • the sheet-like electrode is wound by tension at the time of manufacture, the bur is more likely to damage the solid electrolyte layer, so that it is very difficult to introduce the oxide- Can be advantageous.
  • the sheet-like solid electrolyte layers may have a longer width and a length than the current collectors included in each electrode.
  • the matrix of the solid electrolyte in the solid electrolyte layer is preferably a polymer or a ceramic glass as a basic framework.
  • the strength of the polymer electrolyte is weak, especially when the thickness is reduced.
  • the electrolyte of the gel type polymer in which ions are more easily transferred than in the case of a solid is not excellent in mechanical properties. Therefore, in order to compensate for this, a support may be included, and as the support, a pore structure support or a crosslinked polymer may be used. Since the electrolyte layer of the present invention can serve as a separation membrane, a separate separation membrane may not be used.
  • the solid electrolyte layer of the present invention may further comprise a lithium salt.
  • the lithium salt can improve the ionic conductivity and the reaction rate.
  • Examples of the lithium salt include LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloro available borane lithium, lower aliphatic carboxylic acid lithium, and tetraphenyl lithium borate, etc. have.
  • the inner electrode is a cathode
  • the side opposite to the inner electrode in the bipolar electrode is a positive electrode layer
  • the opposite side is a negative electrode layer
  • the outer electrode is an anode
  • the cathode layer may be a cathode layer and the cathode layer may be a cathode layer on the opposite side to the inner electrode.
  • the internal electrode, the bipolar electrode, and the external electrode each have an electrode active material layer formed on the sheet-like current collector.
  • the sheet-like current collector can reduce the resistance of the battery, thereby improving the performance of the battery.
  • the electrode current collector is of the wire type, it is possible to solve the problem that the resistance factor according to the small surface area is large and the rate characteristic of the battery due to the battery resistance during the high rate charging and discharging may be deteriorated.
  • the inner electrode and the outer electrode may further include a polymer film layer on the other surface of each current collector.
  • the polymer film layer serves to support the internal current collector and the external current collector, Thereby making it possible to form the entire structure into a thin film having a thinner thickness.
  • the inner collector and the outer collector may be formed on the polymer film layer by vapor deposition or the like.
  • the polymer film layer may be formed of any one selected from the group consisting of polyolefins, polyesters, polyimides, and polyamides, or a mixture of two or more thereof.
  • the electrode active material layer of the present invention acts to transfer ions through the current collector, and the migration of these ions is caused by interactions of ions from the electrolyte layer and release of ions to the electrolyte layer.
  • Such an electrode active material layer can be divided into a negative electrode active material layer and a positive electrode active material layer.
  • the negative electrode active material layer may be formed of natural graphite, artificial graphite or carbonaceous material as an active material; Lithium-containing titanium composite oxide (LTO), metals (Me) with Si, Sn, Li, Zn, Mg, Cd, Ce, Ni or Fe; An alloy composed of the metal (Me); An oxide of the metal (Me) (MeOx); And a composite of the metal (Me) and carbon, or a mixture of two or more thereof.
  • LTO lithium-containing titanium composite oxide
  • the electrode may include a cathode active material, and the cathode active material layer may include LiCoO 2 , LiNiO 2 2, LiMn 2 O 4, LiCoPO 4, LiFePO 4, LiNiMnCoO 2 , and LiNi 1-xy- z Co x M1 y M2 z O 2 (M1 and M2 are independently selected from Al, Ni, Co, Fe, Mn each other, V, X, y and z are independently selected from the group consisting of Cr, Ti, W, Ta, Mg and Mo, z ⁇ 0.5, x + y + z? 1), or a mixture of two or more thereof.
  • the electrode active material layer includes an electrode active material, a binder, and a conductive material, and forms an electrode by bonding with a current collector.
  • a current collector When the electrode is deformed such as folded or severely bent by an external force, the electrode active material is desorbed. The deterioration of the electrode active material results in deterioration of battery performance and battery capacity.
  • the current collector since the current collector has elasticity, it plays a role of dispersing the force at the time of deformation according to the external force, so that the deformation of the electrode active material layer is small and thus the desorption of the active material can be prevented.
  • the conductive material may include any one selected from the group consisting of carbon black, acetylene black, ketjen black, carbon fiber, carbon nanotube, and graphene, or a mixture of two or more thereof.
  • the binder may be selected from the group consisting of polyvinylidene fluoride (PVDF), polyvinylidene fluoride-co-hexafluoro propylene, polyvinylidene fluoride-trichlorethylene polyvinylidene fluoride-co-trichlorethylene, polybutyl acrylate, polymethyl methacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, Polyethylene-co-vinyl acetate, polyethylene oxide, polyarylate, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, Cellulose acetate propionate, cyanoe thylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan, carboxyl methyl cellulose, styrene butadiene rubber (styrene butadiene rubber
  • a plurality of depressions may be formed on at least one surface.
  • the plurality of depressions may have a continuous pattern, or may have an intermittent pattern. That is, they may have a continuous pattern of recesses spaced apart from each other in the longitudinal direction, or may have an intermittent pattern in which a plurality of holes are formed.
  • the plurality of holes may be circular or polygonal.
  • the inner current collector and the bipolar electrode current collector may be made of stainless steel, aluminum, nickel, titanium, sintered carbon or copper; Or surfaces of stainless steel surface treated with carbon, nickel, titanium or silver; Aluminum-cadmium alloy; A nonconductive polymer surface-treated with a conductive material; Or a conductive polymer.
  • the collector collects electrons generated by the electrochemical reaction of the active material or supplies electrons necessary for the electrochemical reaction, and generally uses a metal such as copper or aluminum.
  • a metal such as copper or aluminum.
  • the lightweight property of the battery can be achieved by using the polymer current collector in place of the metal current collector.
  • the conductive material examples include polyacetylene, polyaniline, polypyrrole, polythiophene, polysulfuronitrile, indium tin oxide (ITO), silver, palladium and nickel.
  • the conductive polymer may include polyacetylene, polyaniline, polypyrrole, Polyphenylene sulfide, opene and polysulfuronitrile.
  • the kind of the nonconductive polymer used in the current collector is not particularly limited.
  • Examples of the external current collector of the present invention include stainless steel, aluminum, nickel, titanium, sintered carbon or copper; Stainless steel surface-treated with carbon, nickel, titanium or silver; Aluminum-cadmium alloy; A nonconductive polymer surface-treated with a conductive material; Conductive polymer; A metal paste containing a metal powder of Ni, Al, Au, Ag, Al, Pd / Ag, Cr, Ta, Cu, Ba or ITO; Or a carbon paste containing graphite, carbon black or a carbon powder which is a carbon nanotube.
  • the conductive material and the conductive polymer may be the same materials as those used in the above-described internal current collector.
  • the electrode support may be an open structure having a space formed therein.
  • An open structure is a structure in which the open structure is an interface and the material moves freely through the interface from the inside to the outside.
  • Such an open-ended electrode support may be one or more spirally wound wires, one or more sheets wound spirally, a hollow fiber, or a mesh-like support, and the electrolyte may freely move into the inner electrode active material and the outer electrode active material, it is possible to have pores on the surface to facilitate wetting.
  • the electrode support may be two or more linear wire supports arranged parallel to each other, or two or more wire-like supports spirally wound to intersect with each other.
  • the electrode support of the open structure maintains the linear shape of the secondary battery and can prevent deformation of the battery structure due to external force and prevents collapse or deformation of the electrode structure to secure flexibility of the secondary battery .
  • the hollow fiber may be selected from the group consisting of polyethylene, polypropylene, polytetrafluoroethylene, polyvinylidene fluoride, polyacrylonitrile, polyimide, polyethylene terephthalate, polyamide imide, polyester imide, polyethersulfone, Can be obtained by a conventional hollow fiber forming method using one or more kinds of polymers selected from the group consisting of
  • the wound wire-like support may have the same shape as a spring structure composed of a polymer or a metal.
  • the polymer may be made of a material which is not reactive with an electrolyte and is excellent in chemical resistance, and examples of the material of the hollow fiber described above or the examples of the polymer for a binder described above may be used.
  • the metal may be the same as the metal constituting the current collector described above.
  • the diameter of the electrode support may be 0.1 to 10 mm, and the surface may have pores having a diameter of 100 nm to 10 m.
  • the electrode support according to an embodiment of the present invention may have a structure without an internal space, and examples thereof may be a linear wire, or a twisted wire.
  • a linear wire or a twisted wire may also be formed of the above-mentioned polymer or metal.
  • the linear wire refers to a wire shape extending linearly in the longitudinal direction
  • the twisted wire refers to a wire shape in which such a linear wire does not form an inner space but is twisted and twisted by itself.
  • the internal electrode collector core portion may be formed in a space formed inside the electrode support.
  • the internal electrode current collector core portion may be a carbon nanotube, stainless steel, aluminum, nickel, titanium, sintered carbon or copper; Stainless steel surface-treated with carbon, nickel, titanium or silver; Aluminum-cadmium alloy; A nonconductive polymer surface-treated with a conductive material; Or a conductive polymer.
  • the flexible secondary battery according to an embodiment of the present invention has a horizontal cross section of a predetermined shape and may have a linear structure elongated in the longitudinal direction with respect to a horizontal cross section. Therefore, the flexible secondary battery of the present invention can have flexibility and can be deformed freely.
  • the predetermined shape means that the shape is not particularly limited, and any shape that does not impair the essence of the present invention is possible.
  • the flexible secondary battery may further include a protective coating, which is formed on the outer surface of the external current collector to protect the electrode against moisture and external impacts in the air, do.
  • an ordinary polymer resin including a moisture barrier layer may be used as the protective coating.
  • aluminum or a liquid crystal polymer excellent in moisture barrier performance may be used as the moisture barrier layer, and PET, PVC, HDPE, or epoxy resin may be used as the polymer resin.
  • a flexible secondary battery includes an electrode support 100; A sheet-like internal electrode 200 spirally wound on the outside of the electrode support 100, a first solid electrolyte layer 300 in the form of a spiral wound on the outside of the internal electrode 200; A sheet-like bipolar electrode 400 spirally wound on the outer side of the first solid electrolyte layer 300; A second solid electrolyte layer 500 in the form of a sheet wound spirally on the outer side of the bipolar electrode 400; A sheet-like outer electrode 600 spirally wound on the outer side of the second solid electrolyte layer 500; An aluminum pouch layer 700 formed on the outer side of the outer electrode, and a polymer protective cover 800 formed on the outer side of the aluminum pouch layer 700.
  • the pouch layer may include a moisture barrier layer made of a metal such as aluminum, an insulating layer formed on one surface of the moisture barrier layer and formed of a polyimide such as polyester or nylon such as PET, and an insulating layer formed on the other surface of the moisture barrier layer , A thermo-adhesive layer formed of polypropylene, polycarbonate, polyethylene, or the like.
  • the polymer protective sheath 800 may be a packaging by overmolding of a polymeric material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

본 발명은 전극 지지체; 상기 전극 지지체의 외측에 나선형으로 권취되어 있는 시트형의 내부전극; 상기 내부전극의 외측에 나선형으로 권취되어 있는 시트형의 제1 고체전해질층; 상기 제1 고체전해질층의 외측에 나선형으로 권취되어 있는 시트형의 바이폴라(bipolar) 전극; 상기 바이폴라 전극의 외측에 나선형으로 권취되어 있는 시트형의 제2 고체전해질층; 및 상기 제2 고체전해질층의 외측에 나선형으로 권취되어 있는 시트형의 외부전극을 포함하고, 상기 제1 고체전해질층 및 제2 고체전해질층은 유기 고체전해질을 포함하며, 상기 내부전극 및 외부전극은 상기 제1 고체전해질층 및 제2 고체전해질층에 각각 대면하는 일 측면의 길이 방향의 양 단부에 절연 코팅부를 구비하고, 상기 바이폴라 전극은 양 측면의 길이 방향의 양 단부에 절연 코팅부를 구비하는 플렉시블 이차전지에 관한 것이다.

Description

바이폴라 전극을 포함하는 플렉서블 이차전지
본 발명은 바이폴라 전극을 포함하는 플렉서블 이차전지에 관한 것으로, 더욱 자세하게는 고전압 구현이 가능한 바이폴라 전극을 포함하는 플렉서블 이차전지에 관한 것이다.
본 출원은 2017년 12월 21일에 출원된 한국출원 제10-2017-0177376호에 기초한 우선권을 주장하며, 해당 출원의 명세서에 개시된 모든 내용은 본 출원에 원용된다.
최근 이차 전지는 외부의 전기 에너지를 화학 에너지의 형태로 바꾸어 저장해 두었다가 필요할 때에 전기를 만들어 내는 장치를 말한다. 여러 번 충전할 수 있다는 뜻으로 "충전식 전지"(rechargeable battery)라는 명칭도 쓰인다. 흔히 쓰이는 이차전지로는 납 축전지, 니켈 카드뮴 전지(NiCd), 니켈 수소 축전지(NiMH), 리튬 이온 전지(Li-ion), 리튬 이온 폴리머 전지(Li-ion polymer)가 있다. 이차 전지는 한 번 쓰고 버리는 일차 전지에 비해 경제적인 이점과 환경적인 이점을 모두 제공한다.
이차 전지는 현재 낮은 전력을 사용하는 곳에 쓰인다. 이를테면 자동차의 시동을 돕는 기기, 휴대용 장치, 도구, 무정전 전원 장치를 들 수 있다. 최근 무선통신 기술의 발전은 휴대용 장치의 대중화를 주도하고 있으며, 종래의 많은 종류의 장치들을 무선화하는 경향도 있어, 이차전지에 대한 수요가 폭발하고 있다. 또한, 환경오염 등의 방지 측면에서 하이브리드 자동차, 전기 자동차가 실용화되고 있는데, 이들 차세대 자동차들은 이차전지를 사용하여 값과 무게를 줄이고 수명을 늘리는 기술을 채용하고 있다.
일반적으로 이차전지는 원통형, 각형 또는 파우치형의 전지가 대부분이다. 이는 이차전지는 음극, 양극 및 분리막으로 구성된 전극조립체를 원통형 또는 각형의 금속캔이나 알루미늄 라미네이트 시트의 파우치형 케이스 내부에 장착하고, 상기 전극 조립체에 전해질을 주입시켜 제조하기 때문이다. 따라서, 이차전지 장착을 위한 일정한 공간이 필수적으로 요구되므로, 이러한 이차전지의 원통형, 각형 또는 파우치형의 형태는 다양한 형태의 휴대용 장치의 개발에 대한 제약으로 작용하게 되는 문제점이 있다. 이에, 형태의 변형이 용이한 플렉시블 전지가 요구되고 있다.
상기 플렉서블 전지의 한 예인 케이블형 이차전지는 소정 형상의 수평 단면을 가지며 수평 단면에 대한 길이방향으로 길게 늘어진 선형 구조로서, 가요성을 가지므로 변형이 자유롭다. 이러한 케이블형 이차전지는 와이어형 집전체의 둘레에 전극 활물질층이 형성된 내부전극, 전해질층 및 외부전극이 순차적으로 적층되어 형성될 수 있다.
이러한 케이블형 이차전지는 일반적으로 전압이 낮아 사용범위가 한정되어 있다. 또한, 케이블형 이차전지 형성시 액체 전해액을 사용하는 경우, 단위셀의 직렬 연결이 어려워 고전압 셀을 구현하는데 한계가 있다.
많은 전기 기기들이 낮은 전압에서 구동되도록 설계되기도 하지만, 최근 수요가 증가하고 있는 전기 자동차 등은 고전압 시스템에서 구동되기 때문에, 다양한 전압 범위를 충족시키면서 형태의 변형이 용이한 플렉시블 전지의 개발이 필요하다.
따라서 본 발명이 해결하고자 하는 과제는, 변형이 용이하고 고전압 구현이 가능한 신규한 선형 구조의 플렉시블 이차전지를 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명의 일 측면에 따르면, 전극 지지체; 상기 전극 지지체의 외측에 나선형으로 권취되어 있는 시트형의 내부전극; 상기 내부전극의 외측에 나선형으로 권취되어 있는 시트형의 제1 고체전해질층; 상기 제1 고체전해질층의 외측에 나선형으로 권취되어 있는 시트형의 바이폴라(bipolar) 전극; 상기 바이폴라 전극의 외측에 나선형으로 권취되어 있는 시트형의 제2 고체전해질층; 및 상기 제2 고체전해질층의 외측에 나선형으로 권취되어 있는 시트형의 외부전극을 포함하고, 상기 제1 고체전해질층 및 제2 고체전해질층은 유기 고체전해질을 포함하며, 상기 내부전극 및 외부전극은 상기 제1 고체전해질층 및 제2 고체전해질층에 각각 대면하는 일 측면의 길이 방향의 양 단부에 절연 코팅부를 구비하고, 상기 바이폴라 전극은 양 측면의 길이 방향의 양 단부에 절연 코팅부를 구비하는 플렉시블 이차전지가 제공된다.
상기 내부전극 및 외부전극은 길이 방향의 양 단부에 구비된 절연 코팅부가 상기 제1 고체전해질층 및 제2 고체전해질층에 각각 대면하도록 권취될 수 있다.
상기 바이폴라 전극과 상기 제2 고체전해질층 사이에, 하나 이상의 시트형 고체전해질층 및 시트형 바이폴라 전극을 더 구비할 수 있다.
상기 유기 고체전해질은 폴리에틸렌 옥사이드(polyethylene oxide, PEO), 폴리프로필렌 옥사이드(polypropylene oxide, PPO), 폴리에틸렌 이민(polyethylene imine, PEI), 폴리에틸렌 설파이드(polyethylene sulphide, PES) 및 폴리비닐아세테이트 (polyvinyl acetate, PVAc)로부터 선택되는 고체 고분자 전해질, 또는 폴리에틸렌 옥사이드(polyethylene oxide, PEO), 폴리비닐리덴플루오라이드(polyvinylidene fluoride, PVdF), 폴리비닐리덴플루오라이드-헥사플루오로프로필렌(poly(vinylidene fluoride-hexafluoropropylene, PVdF-HFP), 폴리메틸메타아크릴레이트(poly(methyl methacrylate), PMMA), 폴리아크릴로니트릴(polyacrylonitrile, PAN) 및 폴리비닐아세테이트 (polyvinyl acetate, PVAc)로부터 선택되는 고분자를 사용하는 겔형 고분자 전해질일 수 있다.
상기 시트형의 내부전극, 바이폴라 전극 및 외부전극에 구비된 길이 방향의 절연 코팅부는 각각 독립적으로 상기 시트형 전극의 폭을 기준으로 1 내지 50%, 구체적으로 5 내지 10%의 폭을 가질 수 있다.
상기 절연 코팅부는 Fe, Ca, Ba, Zn, Al, Ni, Sn, Cu, Cr, Cd, Nd, Mn, Mo, Si, Ti, W, Bi, Sr, Li, Y, Mg, Ce, Hf, 및 V로 이루어진 군으로부터 선택된 원소의 산화물, 탄화물, 질화물, 또는 이들 중 2 이상의 혼합물을 포함할 수 있다.
상기 절연 코팅부는 산화물계 고체전해질을 포함할 수 있다.
상기 산화물계 고체전해질은 Li-A-O(여기서, A는 La, Zr, Ti, Al, P, I 또는 이들의 2종 이상의 조합일 수 있음)의 구조를 갖는 고체전해질, 예컨대 Li3xLa2 /3-xTiO3(LLTO)(0<x<1), Li7La3Zr2O12(LLZO), Li1 + xAlxTi2 -X(PO4)3(LATP)(0<x<1), Li1 + xAlxGe2 -X(PO4)3(LAGP)(0<x<1), Li1 . 4Zn(GeO4)4, Li3N, Li3 + yPO4 - xNx (LIPON)(0<x<4, 0<y<3), Li3.6Si0.6P0.4O4 또는 이들의 혼합물을 포함할 수 있다.
상기 내부전극은 내부집전체 및 상기 내부집전체의 일면에 형성된 내부전극 활물질층을 포함하고, 상기 외부전극은 외부집전체 및 상기 외부집전체의 일면에 형성된 외부전극 활물질층을 포함하며, 상기 바이폴라 전극은 바이폴라전극 집전체, 상기 집전체의 일면에 형성된 양극 활물질층, 및 상기 집전체의 타면에 형성된 음극 활물질층을 포함할 수 있다.
상기 시트형의 내부전극, 제1 고체전해질층, 바이폴라 전극, 제2 고체전해질층 및 외부전극은 일측 방향으로 연장된 스트립 구조일 수 있다.
상기 전극 지지체는 내부에 공간이 형성되어 있는 열린 구조일 수 있다.
상기 전극 지지체는 나선형으로 권취된 하나 이상의 와이어, 나선형으로 권취된 하나 이상의 시트, 꼬인 와이어, 선형 와이어, 중공사, 메쉬형 지지체, 서로 평행하게 배치된 2 이상의 선형 와이어 지지체, 또는 서로 교차하도록 나선형으로 권취된 2개 이상의 와이어형 지지체를 포함할 수 있다.
상기 전극 지지체의 내부에 형성되어 있는 공간에, 내부전극 집전체 코어부, 전해질을 포함하는 리튬이온 공급 코어부, 또는 충진 코어부가 형성될 수 있다.
상기 플렉시블 이차전지의 외면을 둘러싸도록 형성된 보호피복을 더 포함할 수 있다.
본 발명의 일 실시형태에 따른 플렉시블 이차전지는 내부전극, 바이폴라 전극 및 외부전극을 고체전해질층에 의해 분리되는 형태로 구비하고, 필요에 따라 상기 바이폴라 전극의 수를 증가시킴으로써 저전압에서 고전압까지의 다양한 전압 범위의 설계가 가능하다.
또한, 본 발명에서는 플렉시블 이차전지에 고체전해질층을 적용하기 위한 수단으로, 상기 내부전극, 바이폴라 전극 및 외부전극은 유기계로 이루어진 고체전해질층과 대면하는 측면의 길이 방향의 양 단부에 절연 코팅부를 구비함으로써, 전지 조립 공정시에 각 전극의 양 단부가 유기계 재질의 특성상 낮은 강도를 갖는 고체전해질층을 손상시켜 단락이 발생하는 현상을 억제할 수 있다.
뿐만 아니라, 본 발명의 일 실시형태에 따르면, 열린 구조의 전극 지지체 상에 상기와 같은 여러 전극 및 다수의 고체 전해질층이 시트형이면서 스프링 구조와 같이 나선 모양으로 권취되어 있으므로, 선형의 형상을 유지할 수 있고 외부 힘에 의한 스트레스를 완화할 수 있는 유연성을 갖는다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시형태를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시형태에 따른 플렉시블 이차전지의 구조를 나타낸 것이다.
도 2는 본 발명의 일 실시형태에 따른 플렉시블 이차전지에 포함된 시트형 내부전극의 구조를 나타낸 것이다.
도 3a은 본 발명의 일 실시형태에 따른 플렉시블 이차전지에 포함된 시트형 바이폴라 전극의 구조를 나타낸 것이다.
도 3b는 본 발명의 일 실시형태에 따른 플렉시블 이차전지에 포함된 1 이상의 시트형 바이폴라 전극 및 그 사이에 고체전해질층이 배치된 구조를 나타낸 것이다.
도 4는 본 발명의 일 실시형태에 따른 플렉시블 이차전지에 포함된 시트형 외부전극의 구조를 나타낸 것이다.
도 5은 본 발명의 일 실시형태에 따른 플렉시블 이차전지를 나타낸 것이다.
이하, 본 발명을 도면을 참조하여 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명의 일 실시형태는 전극 지지체; 상기 전극 지지체의 외측에 나선형으로 권취되어 있는 시트형의 내부전극; 상기 내부전극의 외측에 나선형으로 권취되어 있는 시트형의 제1 고체전해질층; 상기 제1 고체전해질층의 외측에 나선형으로 권취되어 있는 시트형의 바이폴라(bipolar) 전극; 상기 바이폴라 전극의 외측에 나선형으로 권취되어 있는 시트형의 제2 고체전해질층; 및 상기 제2 고체전해질층의 외측에 나선형으로 권취되어 있는 시트형의 외부전극을 포함하며, 상기 제1 고체전해질층 및 제2 고체전해질층은 유기 고체전해질을 포함하고, 상기 내부전극 및 외부전극은 상기 제1 고체전해질층 및 제2 고체전해질층에 각각 대면하는 일 측면의 길이 방향의 양 단부에 절연 코팅부를 구비하고, 상기 바이폴라 전극은 양 측면의 길이 방향의 양 단부에 절연 코팅부를 구비하는 플렉시블 이차전지에 관한 것이다.
본 발명에서 사용된 용어 '나선형'이란 영문상으로 스파이럴(spiral) 또는 헬릭스(helix)로 표현되며, 일정 범위를 비틀려 돌아간 모양으로, 일반적인 스프링의 형상과 유사한 형상을 통칭한다.
또한, 본 발명에서 사용된 용어 '외측'은 해당 부분의 외부 영역을 의미하는 것으로서 해당 부분의 표면에 맞닿은 부분 및 이격되어 형성되는 부분을 모두 포함하며, 후자의 경우 해당 부분과 이격되어 형성되는 부분 사이에 또 다른 층이 개재될 수도 있다.
본 발명의 일 실시형태에 따른 플렉시블 이차전지는, 도 1을 참조할 때, 전극 지지체(100), 상기 전극 지지체(100)의 외측에 나선형으로 권취되어 있는 시트형의 내부전극(200); 상기 내부전극(200)의 외측에 나선형으로 권취되어 있는 시트형의 제1 고체전해질층(300); 상기 제1 고체전해질층의 외측에 나선형으로 권취되어 있는 시트형의 바이폴라(bipolar) 전극(400); 상기 바이폴라 전극의 외측에 나선형으로 권취되어 있는 시트형의 제2 고체전해질층(500); 및 상기 제2 고체전해질층의 외측에 나선형으로 권취되어 있는 시트형의 외부전극(600)을 포함을 포함한다.
상기 시트형의 내부전극, 제1 고체전해질층, 바이폴라 전극, 제2 고체전해질층 및 외부전극은 일측 방향으로 연장된 스트립(strip, 띠) 구조일 수 있으며, 이들 각각은 서로 겹치지 않도록 나선형으로 권취되거나 서로 겹치도록 나선형으로 권취되어 형성될 수 있다.
본 발명의 일 실시형태에서, 도 1 및 2를 참조할 때, 상기 내부전극(200)은 상기 전극 지지체(100)의 외측을 둘러싸고 있는 내부집전체(210) 및 상기 내부집전체의 일면에 형성된 내부전극 활물질층(220)을 포함하며, 상기 내부전극 활물질층(220)이 제1 고체전해질층(300)과 대면하고 있다.
한편, 도 1 및 도 3a를 참조할 때, 상기 바이폴라 전극(400)은 바이폴라전극 집전체(410), 상기 집전체의 일면에 형성된 양극 활물질층, 및 상기 집전체의 타면에 형성된 음극 활물질층을 포함하며, 상기 양극활물질층 및 상기 음극 활물질층은 각각 제1 고체전해질층(300) 또는 제2 고체전해질층(400)과 대면하고 있다. 상기 바이폴라 전극은 집전체 상에 양극층 및 음극층을 동시에 포함하는 구조의 단위 셀이며, 각각의 전극층이 고체전해질층과 대면하고 있어 상기 고체전해질층을 통해 Li 이온의 흐름은 가능케 하면서 전자의 흐름은 억제되는 한편, 전자는 집전체를 통해 흐르게 된다. 이러한 바이폴라 전극의 단위 셀은 전기화학적으로 분리될 수 있어 직렬 연결이 가능하고, 직렬 연결되는 바이폴라 전극의 개수에 따라서 작동전압의 조절이 가능하다.
따라서, 상기 바이폴라 전극은 고체전해질과 함께 적용됨으로써, 액체 전해질이 적용된 기존 전지의 병렬 연결 방식보다 높은 에너지 밀도를 구현할 수 있다.
또한, 도 1 및 도 3b를 참조할 때, 상기 바이폴라전극 집전체(410), 상기 집전체의 일면에 형성된 양극 활물질층, 및 상기 집전체의 타면에 형성된 음극 활물질층을 포함하는 바이폴라 전극(400)과 상기 제2 고체전해질층(500) 사이에, 하나 이상의 시트형 고체전해질층(420) 및 또 다른 바이폴라전극 집전체(430) 및 이의 양면에 형성된 양극 활물질층과 음극 활물질층을 포함하는 바이폴라 전극을 더 구비될 수 있다. 즉, 본 발명에서는 필요에 따라 상기 바이폴라 전극의 수를 증가시킴으로써 저전압에서 고전압까지의 다양한 전압 범위의 설계가 가능하다.
그리고, 도 1 및 도 4를 참조할 때, 상기 외부전극(600)은 외부집전체(620) 및 상기 외부집전체의 일면에 형성된 외부전극 활물질층(610)을 포함하며, 상기 외부전극활물질층(610)이 제2 고체전해질층과 대면하고 있다.
한편, 상기 제1 고체전해질층(300) 및 제2 고체전해질층(500)은 유기 고체전해질을 포함하여 리튬 이온을 전달하는 매개체 역할을 한다. 상기 유기 고체전해질은 폴리에틸렌 옥사이드(polyethylene oxide, PEO), 폴리프로필렌 옥사이드(polypropylene oxide, PPO), 폴리에틸렌 이민(polyethylene imine, PEI), 폴리에틸렌 설파이드(polyethylene sulphide, PES) 및 폴리비닐아세테이트 (polyvinyl acetate, PVAc)로부터 선택되는 고체 고분자 전해질, 또는 폴리에틸렌 옥사이드(polyethylene oxide, PEO), 폴리비닐리덴플루오라이드(polyvinylidene fluoride, PVdF), 폴리비닐리덴플루오라이드-헥사플루오로프로필렌(poly(vinylidene fluoride-hexafluoropropylene, PVdF-HFP), 폴리메틸메타아크릴레이트(poly(methyl methacrylate), PMMA), 폴리아크릴로니트릴(polyacrylonitrile, PAN) 및 폴리비닐아세테이트 (polyvinyl acetate, PVAc)로부터 선택되는 고분자를 사용하는 겔형 고분자 전해질일 수 있다.
이러한 제1 고체전해질층(300) 및 제2 고체전해질층(500)은 각각 상기 내부전극(200)과 상기 바이폴라 전극(400)의 사이, 그리고 상기 바이폴라 전극(400)과 상기 외부전극(600)의 사이에 위치하여 이들 전극을 격리시키는데, 본 발명에 적용된 고체전해질층의 재질이 유기계 고체전해질로 이루어지는 특성상 상대적으로 낮은 기계적 강도를 가질 수 있으며, 이로 인해 플렉서블 이차전지의 조립 공정시에 각 구성요소가 권취되는 과정에서 각 전극의 에지(edge) 부위가 고체전해질층을 뚫고 단락을 유발할 수 있다.
이러한 문제를 극복하기 위해서, 본 발명에서는 상기 내부전극, 상기 바이폴라 전극 및 상기 외부전극에서 각각의 고체전해질층과 대면하는 측면, 즉 상기 내부전극(200)의 내부전극 활물질층(220), 상기 외부전극(600)의 외부전극활물질층(610), 그리고 상기 바이폴라 전극(400)에서는 양측면에 해당하는 양극활물질층 및 음극 활물질층에서 길이 방향의 양 단부에 절연 코팅부가 구비되도록 이차전지를 구성하였다. 이에 따라, 상기 내부전극(200) 및 외부전극(600)은 이차전지 조립시에 길이 방향의 양 단부에 구비된 절연 코팅부가 상기 제1 고체전해질층 및 제2 고체전해질층에 각각 대면하도록 권취된다. 예컨대, 도 1 및 도 5를 참조할 때, 외부전극(600)의 절연 코팅부(점선으로 표시됨)는 외부전극의 내측, 즉 안쪽에 위치하여 제2 고체전해질층(500)과 대면하고 있다.
도 2 내지 4에 있어서, 상기 시트형의 내부전극, 바이폴라 전극 및 외부전극에서 각 전극층 표면에 구비된 길이 방향의 절연 코팅부(각 도면에서 "C"로 도시됨) 하나는 각각 독립적으로 상기 시트형 전극의 폭을 기준으로 1 내지 50%, 구체적으로 5 내지 10%의 폭을 가질 수 있다. 상기 절연 코팅부의 폭이 상기 범위를 만족하는 경우에, 에너지 밀도의 감소가 적고 전기적 단락(short)의 발생율을 낮출 수 있다.
본 발명의 플렉시블 이차전지는 소정의 폭을 갖는 시트형의 전극들(내부전극, 외부전극, 바이폴라 전극)을 전극 지지체의 외측에 나선형으로 순차적으로 권취되어 있는 구조를 갖는다. 이때, 시트형의 전극은 그 폭이 좁고, 무지부(전극활물질층이 형성되어 있지 않는 부분)를 별도로 가지고 있지 않는다.
만일, 이 무지부에 상기 절연 코팅부를 도입하기 위하여, 전극의 제조시에, 전극활물질층이 형성되지 않은 무지부를 별도로 구비하는 경우, 전극활물질층 로딩(loading) 균일성, 슬리팅(slitting) 등의 전극 제조 공정성이 떨어지게 될 것이다.
또한, 상기 절연 코팅부가 별개의 독립적인 시트 형태로 플렉시블 이차전지에 도입이 되는 경우, 플렉시블 이차전지의 필수 요구사항 가요성(flexibility)이 떨어져 수명 특성이 낮아질 수 있다. 따라서, 본 발명의 플렉시블 이차전지는 전지 조립 시 생기는 단락을 방지하기 위하여, 상기 내부전극 및 외부전극은 상기 제1 고체전해질층 및 제2 고체전해질층에 각각 대면하는 일 측면의 길이 방향의 양 단부에 절연 코팅부를 구비하고, 상기 바이폴라 전극은 양 측면의 길이 방향의 양 단부에 절연 코팅부를 구비한다.
상기 절연 코팅부는 절연성을 가지면서, 전극의 에지(edge) 부위가 고체전해질층을 손상시켜 관통하더라도 높은 강도로 인해 전극간의 접촉에 의한 단락을 방지할 수 있는 재료이면, 적용이 가능하다.
본 발명의 일 실시예에 따르면, 상기 절연 코팅부는 산화물, 질화물, 탄화물 등을 단독 또는 2종 이상 포함할 수 있다.
구체적으로, 상기 절연 코팅부는 Fe, Ca, Ba, Zn, Al, Ni, Sn, Cu, Cr, Cd, Nd, Mn, Mo, Si, Ti, W, Bi, Sr, Li, Y, Mg, Ce, Hf, 및 V로 이루어진 군으로부터 선택된 원소의 산화물, 탄화물, 질화물, 또는 이들 중 2 이상의 혼합물을 포함할 수 있다. 더 구체적으로는, 이러한 절연 코팅부에 적용가능한 재료는 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, SiO2, Y2O3, Al2O3, SiC , WC, TiO2 등의 단독 또는 2종 이상의 혼합물일 수 있다. 또한 상기 산화물로는 산화물계 고체전해질을 포함할 수 있으며, 상기 산화물계 고체전해질은 Li-A-O(여기서, A는 La, Zr, Ti, Al, P, I 또는 이들의 2종 이상의 조합일 수 있음)의 구조를 갖는 고체전해질, 예컨대 Li3xLa2 /3- xTiO3(LLTO)(0<x<1), Li7La3Zr2O12(LLZO), Li1 + xAlxTi2 -X(PO4)3(LATP)(0<x<1), Li1 + xAlxGe2 -X(PO4)3(LAGP)(0<x<1), Li1 . 4Zn(GeO4)4, Li3N, Li3 + yPO4 -xNx (LIPON)(0<x<4, 0<y<3), Li3 . 6Si0 .6P0. 4O4 또는 이들의 혼합물을 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 절연 코팅부는 주재료로서 전술한 산화물, 탄화물, 질화물 등의 절연 재료를 분산매에 분산시키고, 여기에 필요한 경우 적절한 바인더 수지, 첨가제 등을 첨가하여 슬러리를 수득한 후, 상기 슬러리를 각 전극의 에지 부분 상에 소정의 폭으로 코팅함으로써 형성될 수 있다.
전극 조립체 제조 시 일반적으로 전극 타발 공정에서 발생하는 버(burr)로 인해 에지 부위가 상당히 날카롭다. 기존 리튬 이온 전지에서 사용하던 일반 분리막과 대비하여, 전고체전지에서 분리막 역할을 하는 고체전해질막은 강도가 낮다. 전고체전지는 전지 조립 후 양극의 에지가 음극 면에 직접 닿거나 매우 가까워져 전기적으로 단락(short)이 발생하여 전지로서 작동을 하지 못하게 될 가능성이 높다. 따라서, 양극의 에지 버(edge burr)에 따른 문제를 해결할 방안이 연구되었고, 그 일 방안으로서 상기 에지 버 부위에 고분자계 필름을 덧대는 공정이 적용되었다. 이렇게 덧대진 고분자계 필름은 기존 고체전해질막의 강도보다 높겠지만, 여전히 양극의 에지 버 문제를 해결하는데 한계가 있었다. 효과적으로 단락 방지를 하기 위해서는 양극 에지 버(edge burr)의 생성 원인을 제거하는 것이 필요하다. 그 결과, 본 발명의 일 실시예에서는, 고체전해질층이 양극 에지 버로 인해 물리적으로 손상되어, 고체전해질층에 의한 단락을 방지하고자, 종래의 고분자계 필름 보다 강도면에서 탁월하게 우수한 산화물계 고체전해질을 절연 코팅부에 적용할 수 있다. 구체적으로, 상기 산화물계 고체전해질은, 상기 제1 고체전해질층 및 제2 고체전해질층에 각각 대면하는 상기 내부전극 및 외부전극의 일 측면의 길이 방향의 양 단부와, 상기 바이폴라 전극의 양 측면의 길이 방향의 양 단부에 절연 코팅부로 도입될 수 있다.
특히, 본 발명인 플렉시블 이차전지의 경우 제조시 시트형 전극 등을 장력(tension)을 주어 권취하기 때문에 버가 고체전해질층을 손상시키는 힘이 더 크기 때문에, 절연 코팅부로 산화물계 고체전해질을 도입하는 것이 매우 유리할 수 있다.
그리고, 상기 시트형의 고체전해질층들은 각 전극에 포함된 집전체에 비해 더 긴 폭과 길이를 가질 수 있다.
한편, 상기 고체전해질층에서 고체전해질의 매트릭스(matrix)는 고분자 또는 세라믹 글라스를 기본골격으로 하는 것이 바람직하다. 일반적으로 고분자 전해질은 강도가 약하며, 특히 두께가 감소할 경우 강도가 함께 약해진다. 한편, 고체인 경우보다 이온의 이동이 용이한 겔형 고분자의 전해질은 기계적 특성이 우수하지 않다. 따라서, 이러한 점을 보완하기 위해서 지지체를 포함할 수 있으며, 상기 지지체로는 기공구조 지지체 또는 가교 고분자가 사용될 수 있다. 본 발명의 전해질층은 분리막의 역할이 가능하므로 별도의 분리막을 사용하지 않을 수 있다.
본 발명의 고체전해질층은, 리튬염을 더 포함할 수 있다. 리튬염은 이온 전도도 및 반응속도를 향상시킬 수 있는데, 이들의 비제한적인 예로는, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로보란리튬, 저급지방족카르본산리튬 및 테트라페닐붕산리튬 등을 사용할 수 있다.
본 발명의 일 실시형태에서, 상기 내부전극은 음극, 상기 바이폴라 전극에서 내부전극과 대향하는 측은 양극층 및 그 반대측은 음극층, 그리고 상기 외부전극은 양극이거나, 상기 내부전극은 양극, 상기 바이폴라 전극에서 내부전극과 대향하는 측은 음극층 및 그 반대측은 양극층, 그리고 상기 외부전극은 음극일 수 있다.
상기 내부전극, 바이폴라 전극 및 외부전극은 각각 시트형 집전체 상에 전극 활물질층이 형성된 것으로, 상기 시트형 집전체는 전지의 저항을 감소시킬 수 있고, 이를 통해 전지의 성능을 개선시킬 수 있다. 예컨대, 전극 집전체가 와이어형인 경우 작은 표면적에 따른 저항 요소가 크다는 점과, 고율 충방전시 전지 저항에 따른 전지의 율특성이 떨어질 수 있다는 점을 해결할 수 있다.
상기 내부전극 및 상기 외부전극은 각각의 집전체의 타면에 고분자 필름층을 추가로 포함할 수 있으며, 이러한 고분자 필름층은 내부집전체 및 외부집전체를 지지하는 역할을 하여 내부집전체 및 외부집전체를 각각 보다 얇은 두께의 박막으로 형성하는 것을 가능하게 한다. 예를 들면, 내부집전체 및 외부집전체는 상기 고분자 필름층의 위에 기상 증착 등의 방식으로 형성될 수 있다.
상기 고분자 필름층은, 폴리올레핀, 폴리에스테르, 폴리이미드 및 폴리아미드로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물로 형성될 수 있다.
본 발명의 전극 활물질층은 집전체를 통해서 이온을 이동시키는 작용을 하고, 이들 이온의 이동은 전해질층으로부터의 이온의 흡장 및 전해질층으로의 이온의 방출을 통한 상호작용에 의한다.
이러한 전극 활물질층은 음극 활물질층과 양극 활물질층으로 구분할 수 있다.
구체적으로, 상기 음극 활물질층은 활물질로서 천연흑연, 인조흑연 또는 탄소질재료; 리튬 함유 티타늄 복합 산화물(LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe인 금속류(Me); 상기 금속류(Me)로 구성된 합금류; 상기 금속류(Me)의 산화물(MeOx); 및 상기 금속류(Me)와 탄소와의 복합체로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물이 사용될 수 있고, 전극이 양극 활물 포함할 수 있고, 상기 양극 활물질층은 활물질로서 LiCoO2, LiNiO2, LiMn2O4, LiCoPO4, LiFePO4, LiNiMnCoO2 및 LiNi 1-x-y- zCoxM1yM2zO2(M1 및 M2는 서로 독립적으로 Al, Ni, Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg 및 Mo로 이루어진 군으로부터 선택된 어느 하나이고, x, y 및 z는 서로 독립적으로 산화물 조성 원소들의 원자 분율로서 0 ≤ x < 0.5, 0 ≤ y < 0.5, 0 ≤ z < 0.5, x+y+z ≤ 1임)로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물이 사용될 수 있다.
전극 활물질층은 전극 활물질, 바인더 및 도전재를 포함하며 집전체와 결합하여 전극을 구성한다. 전극이 외부의 힘에 의해서 접히거나 심하게 구부러지는 등의 변형이 일어나는 경우에는, 전극 활물질의 탈리가 발생하게 된다. 이러한 전극 활물질의 탈리로 인하여 전지의 성능 및 전지 용량의 저하가 발생하게 된다. 하지만, 집전체가 탄성을 가지므로 외부의 힘에 따른 변형시에 힘을 분산하는 역할을 하므로 전극 활물질층에 대한 변형이 적게 일어나고 따라서 활물질의 탈리를 예방할 수 있다.
상기 도전재는, 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 탄소 섬유, 탄소 나노튜브 및 그래핀으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함할 수 있다.
상기 바인더는, 폴리비닐리덴 풀루오라이드 (polyvinylidene fluoride, PVDF), 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidene fluoride-co-hexafluoro propylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리부틸 아크릴레이트 (polybutyl acrylate), 폴리메틸 메타크릴레이트 (polymethyl methacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌 옥사이드 (polyethylene oxide), 폴리아릴레이트 (polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose), 스티렌부타디엔 고무 (styrene-butadiene rubber), 아크릴로니트릴스티렌부타디엔 공중합체 (acrylonitrile-styrene-butadiene copolymer) 및 폴리이미드 (polyimide)로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
또한, 상기 각 전극에 사용된 집전체의 표면적을 증가시키기 위해, 적어도 일면에, 복수의 함입부가 형성될 수 있다. 이때, 상기 복수의 함입부는, 연속적인 패턴을 갖거나, 또는 단속적인 패턴을 가질 수 있다. 즉, 서로 이격되어 길이방향으로 형성된 연속적인 패턴의 함입부를 가지거나, 또는 복수개의 구멍들이 형성된 단속적인 패턴을 가질 수 있다. 상기 복수개의 구멍들은 원형일 수도 있고, 다각형일 수도 있다.
본 발명의 일 실시형태에서, 상기 내부집전체 및 상기 바이폴라전극 집전체로는 스테인리스스틸, 알루미늄, 니켈, 티탄, 소성탄소 또는 구리; 또는 스테인리스스틸의 표면에 카본, 니켈, 티탄 또는 은으로 표면처리된 것; 알루미늄-카드뮴합금; 도전재로 표면처리된 비전도성 고분자; 또는 전도성 고분자를 사용하여 제조된 것이 바람직하다.
집전체는 활물질의 전기화학 반응에 의해 생성된 전자를 모으거나 전기화학반응에 필요한 전자를 공급하는 역할을 하는 것으로, 일반적으로 구리나 알루미늄 등의 금속을 사용한다. 특히, 도전재로 표면처리된 비전도성 고분자 또는 전도성 고분자로 이루어진 고분자 전도체를 사용하는 경우에는 구리나 알루미늄과 같은 금속을 사용한 경우보다 상대적으로 가요성이 우수하다. 또한, 금속 집전체를 대체하여 고분자 집전체를 사용하여 전지의 경량성을 달성할 수 있다.
이러한 도전재로는 폴리아세틸렌, 폴리아닐린, 폴리피롤, 폴리티오펜, 폴리설퍼니트리드, ITO(Indum Tin Oxide), 은, 팔라듐 및 니켈 등이 가능하며, 전도성 고분자는 폴리아세틸렌, 폴리아닐린, 폴리피롤, 폴리티오펜 및 폴리설퍼니트리드 등이 사용가능하다. 다만, 집전체에 사용되는 비전도성 고분자는 특별히 종류를 한정하지는 않는다.
본 발명의 외부집전체로는 스테인리스스틸, 알루미늄, 니켈, 티탄, 소성탄소 또는 구리; 카본, 니켈, 티탄 또는 은으로 표면처리된 스테인리스스틸; 알루미늄-카드뮴합금; 도전재로 표면처리된 비전도성 고분자; 전도성 고분자; Ni, Al, Au, Ag, Al, Pd/Ag, Cr, Ta, Cu, Ba 또는 ITO인 금속분말을 포함하는 금속 페이스트; 또는 흑연, 카본블랙 또는 탄소나노튜브인 탄소분말을 포함하는 탄소 페이스트로 제조된 것을 사용할 수 있다. 이때, 상기 도전재 및 전도성 고분자는 전술한 내부집전체에서 사용되는 것과 동일한 것이 사용될 수 있다.
본 발명의 일 실시형태에서, 상기 전극 지지체는 내부에 공간이 형성되어 있는 열린 구조일 수 있다. 열린 구조라 함은 그 열린 구조를 경계면으로 하고, 이러한 경계면을 통과하여 내부에서 외부로의 물질의 이동이 자유로운 형태의 구조를 말하는 것이다.
이러한 열린 구조의 전극 지지체는, 나선형으로 권취된 하나 이상의 와이어, 나선형으로 권취된 하나 이상의 시트, 중공사, 또는 메쉬형 지지체일 수 있고, 전해질이 내부전극 활물질 및 외부전극 활물질로 자유롭게 이동하여 웨팅(wetting)을 원활히 할 수 있는 기공을 표면에 가질 수도 있다.
또한, 상기 전극 지지체는 서로 평행하게 배치된 2 이상의 선형 와이어 지지체, 또는 서로 교차하도록 나선형으로 권취된 2개 이상의 와이어형 지지체일 수도 있다.
상기 열린 구조의 전극 지지체는, 이차전지의 선형의 형상을 유지시키며, 외부의 힘에 의한 전지 구조의 변형을 방지할 수 있으며, 전극 구조의 붕괴 또는 변형을 방지하여 이차전지의 가요성을 확보할 수 있다.
상기 중공사는, 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로에틸렌, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리이미드, 폴리에틸렌테레프탈레이트, 폴리아미드 이미드, 폴리에스테르 이미드, 폴리에테르 설폰, 및 폴리설폰으로 이루어진 군으로부터 선택된 1종 이상의 고분자를 이용하여, 통상의 중공사 형성 방법에 의해 얻어질 수 있다.
그리고, 상기 권취된 와이어형 지지체는, 고분자 또는 금속으로 구성된 스프링 구조와 같은 형상으로 이루어질 수 있다. 이때 상기 고분자는 전해질과 반응성이 없는 내화학성이 우수한 재료로 이루어질 수 있고 그 예로는 전술한 중공사의 재료 또는 전술한 바인더용 고분자의 예들과 동일한 것이 사용될 수 있다. 또한, 상기 금속은 전술한 집전체를 구성하는 금속과 동일한 것이 사용될 수 있다.
이때, 상기 전극 지지체의 지름은 0.1 내지 10 mm일 수 있고, 표면에는 100 nm 내지 10 ㎛의 직경을 갖는 기공을 가질 수 있다.
또한, 본 발명의 일 실시형태에 따른 전극 지지체는 내부의 공간이 없는 구조일 수 있고, 그 예로는 선형의 와이어, 또는 꼬인 와이어일 수 있다. 이러한 선형의 와이어 또는 꼬인 와이어도 전술한 고분자 또는 금속으로 형성될 수 있다. 이때, 선형의 와이어라 함은, 길이 방향으로 선형으로 연장된 와이어 형태를 말하고, 꼬인 와이어는 이러한 선형의 와이어가 내부의 공간을 형성하지 않고, 그 자체로 뒤틀려 꼬여진 와이어 형태를 말한다.
그리고, 상기 전극 지지체의 내부에 형성되어 있는 공간에, 내부전극 집전체 코어부가 형성될 수 있다.
이때, 상기 내부전극 집전체 코어부는, 카본나노튜브, 스테인리스스틸, 알루미늄, 니켈, 티탄, 소성탄소 또는 구리; 카본, 니켈, 티탄 또는 은으로 표면처리된 스테인리스스틸; 알루미늄-카드뮴합금; 도전재로 표면처리된 비전도성 고분자; 또는 전도성 고분자로 제조될 수 있다.
본 발명의 일 실시형태에 따른 플렉시블 이차전지는 소정 형상의 수평 단면을 가지며, 수평 단면에 대한 길이방향으로 길게 늘어진 선형구조를 가질 수 있다. 따라서, 본 발명의 플렉시블 이차전지는 가요성을 가질 수 있어, 변형이 자유로울 수 있다. 여기서, 소정의 형상이라 함은 특별히 형상을 제한하지 않는다는 것으로, 본 발명의 본질을 훼손하지 않는 어떠한 형상도 가능하다는 의미이다.
본 발명의 일 실시형태에 따르면, 상기 플렉시블 이차전지는 보호피복을 추가로 구비할 수 있으며, 상기 보호피복은 절연체로서 공기 중의 수분 및 외부충격에 대하여 전극을 보호하기 위해 외부집전체의 외면에 형성한다.
상기 보호피복으로는 수분 차단층을 포함하는 통상의 고분자 수지를 사용할 수 있다. 이때, 상기 수분 차단층으로 수분 차단 성능이 우수한 알루미늄이나 액정고분자 등이 사용될 수 있고, 상기 고분자 수지로는 PET, PVC, HDPE 또는 에폭시 수지 등이 사용될 수 있다.
도 5을 참조하면, 본 발명의 일 실시형태의 플렉시블 이차전지는 전극 지지체(100); 상기 전극 지지체(100)의 외측에 나선형으로 권취되어 형성된 시트형의 내부전극(200), 상기 내부전극(200)의 외측에 나선형으로 권취되어 있는 시트형의 제1 고체전해질층(300); 상기 제1 고체전해질층(300)의 외측에 나선형으로 권취되어 있는 시트형의 바이폴라 전극(400); 상기 바이폴라 전극(400)의 외측에 나선형으로 권취되어 있는 시트형의 제2 고체전해질층(500); 상기 제2 고체전해질층(500)의 외측에 나선형으로 권취되어 있는 시트형의 외부전극(600); 상기 외부전극의 외측에 형성된 알루미늄 파우치층(700), 및 상기 알루미늄 파우치층(700)의 외측에 형성된 고분자 보호피복(800)을 구비한다.
상기 파우치층은 알루미늄 등의 금속으로 이루어진 수분차단층, 상기 수분차단층의 일면에 형성되고, PET와 같은 폴리에스테르 또는 나일론과 같은 폴라이마드로 형성된 절연층, 및 상기 수분차단층의 타면에 형성되고, 폴리프로필렌, 폴리카보네이트, 폴리에틸렌 등으로 형성된 열접착층을 구비할 수 있다. 또한, 상기 고분자 보호피복(800)은 고분자 재료의 오버몰딩에 의한 패키징일 수 있다.
이상에서 본 발명은 비록 한정된 실시형태와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
[부호의 설명]
100: 전극 지지체
200: 내부전극
300: 제1 고체전해질층
400: 바이폴라 전극
500: 제2 고체전해질층
600: 외부전극
700: 알루미늄 파우치층
800: 고분자 보호피복

Claims (14)

  1. 전극 지지체;
    상기 전극 지지체의 외측에 나선형으로 권취되어 있는 시트형의 내부전극;
    상기 내부전극의 외측에 나선형으로 권취되어 있는 시트형의 제1 고체전해질층;
    상기 제1 고체전해질층의 외측에 나선형으로 권취되어 있는 시트형의 바이폴라(bipolar) 전극;
    상기 바이폴라 전극의 외측에 나선형으로 권취되어 있는 시트형의 제2 고체전해질층; 및
    상기 제2 고체전해질층의 외측에 나선형으로 권취되어 있는 시트형의 외부전극을 포함하고,
    상기 제1 고체전해질층 및 제2 고체전해질층은 유기 고체전해질을 포함하며,
    상기 내부전극 및 외부전극은 상기 제1 고체전해질층 및 제2 고체전해질층에 각각 대면하는 일 측면의 길이 방향의 양 단부에 절연 코팅부를 구비하고, 상기 바이폴라 전극은 양 측면의 길이 방향의 양 단부에 절연 코팅부를 구비하는 플렉시블 이차전지.
  2. 제1항에 있어서,
    상기 내부전극 및 외부전극은 길이 방향의 양 단부에 구비된 절연 코팅부가 상기 제1 고체전해질층 및 제2 고체전해질층에 각각 대면하도록 권취되어 있는 플렉시블 이차전지.
  3. 제1항에 있어서,
    상기 바이폴라 전극과 상기 제2 고체전해질층 사이에, 하나 이상의 시트형 고체전해질층 및 시트형 바이폴라 전극을 더 구비하는 플렉시블 이차전지.
  4. 제1항에 있어서,
    상기 유기 고체전해질이 폴리에틸렌 옥사이드(polyethylene oxide, PEO), 폴리프로필렌 옥사이드(polypropylene oxide, PPO), 폴리에틸렌 이민(polyethylene imine, PEI), 폴리에틸렌 설파이드(polyethylene sulphide, PES) 및 폴리비닐아세테이트 (polyvinyl acetate, PVAc)로부터 선택되는 고체 고분자 전해질, 또는
    폴리에틸렌 옥사이드(polyethylene oxide, PEO), 폴리비닐리덴플루오라이드(polyvinylidene fluoride, PVdF), 폴리비닐리덴플루오라이드-헥사플루오로프로필렌(poly(vinylidene fluoride-hexafluoropropylene, PVdF-HFP), 폴리메틸메타아크릴레이트(poly(methyl methacrylate), PMMA), 폴리아크릴로니트릴(polyacrylonitrile, PAN) 및 폴리비닐아세테이트 (polyvinyl acetate, PVAc)로부터 선택되는 고분자를 사용하는 겔형 고분자 전해질인 플렉시블 이차전지.
  5. 제1항에 있어서,
    상기 시트형의 내부전극, 바이폴라 전극 및 외부전극에 구비된 길이 방향의 절연 코팅부는 각각 독립적으로 상기 시트형 전극의 폭을 기준으로 1 내지 50%의 폭을 갖는 플렉시블 이차전지.
  6. 제1항에 있어서,
    상기 절연 코팅부는 Fe, Ca, Ba, Zn, Al, Ni, Sn, Cu, Cr, Cd, Nd, Mn, Mo, Si, Ti, W, Bi, Sr, Li, Y, Mg, Ce, Hf, 및 V로 이루어진 군으로부터 선택된 원소의 산화물, 탄화물, 질화물, 또는 이들 중 2 이상의 혼합물을 포함하는 플렉시블 이차전지.
  7. 제1항에 있어서,
    상기 절연 코팅부는 산화물계 고체전해질을 포함하는 플렉시블 이차전지.
  8. 제7항에 있어서,
    상기 산화물계 고체전해질은 Li3xLa2 /3- xTiO3(LLTO)(0<x<1), Li7La3Zr2O12(LLZO), Li1+xAlxTi2-X(PO4)3(LATP)(0<x<1), Li1 + xAlxGe2 -X(PO4)3(LAGP)(0<x<1), Li1 . 4Zn(GeO4)4, Li3N, Li3 + yPO4 - xNx (LIPON)(0<x<4, 0<y<3), Li3 . 6Si0 .6P0. 4O4 또는 이들의 혼합물을 포함하는 플렉시블 이차전지.
  9. 제1항에 있어서,
    상기 내부전극은 내부집전체 및 상기 내부집전체의 일면에 형성된 내부전극 활물질층을 포함하고,
    상기 외부전극은 외부집전체 및 상기 외부집전체의 일면에 형성된 외부전극 활물질층을 포함하는 플렉시블 이차전지.
  10. 제1항에 있어서,
    상기 바이폴라 전극은 바이폴라전극 집전체, 상기 집전체의 일면에 형성된 양극 활물질층, 및 상기 집전체의 타면에 형성된 음극 활물질층을 포함하는 플렉시블 이차전지.
  11. 제1항에 있어서,
    상기 시트형의 내부전극, 제1 고체전해질층, 바이폴라 전극, 제2 고체전해질층 및 외부전극은 일측 방향으로 연장된 스트립 구조인 플렉시블 이차전지.
  12. 제1항에 있어서,
    상기 전극 지지체는 내부에 공간이 형성되어 있는 열린 구조인 플렉시블 이차전지.
  13. 제1항에 있어서,
    상기 전극 지지체는 나선형으로 권취된 하나 이상의 와이어, 나선형으로 권취된 하나 이상의 시트, 꼬인 와이어, 선형 와이어, 중공사, 메쉬형 지지체, 서로 평행하게 배치된 2 이상의 선형 와이어 지지체, 또는 서로 교차하도록 나선형으로 권취된 2개 이상의 와이어형 지지체를 포함하는 플렉시블 이차전지.
  14. 제1항에 있어서,
    상기 플렉시블 이차전지의 외면을 둘러싸도록 형성된 보호피복을 더 포함하는 플렉시블 이차전지.
PCT/KR2018/016542 2017-12-21 2018-12-21 바이폴라 전극을 포함하는 플렉서블 이차전지 WO2019125085A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880049073.6A CN111033852B (zh) 2017-12-21 2018-12-21 包括双极电极的柔性二次电池
US16/635,409 US11201357B2 (en) 2017-12-21 2018-12-21 Flexible secondary battery comprising bipolar electrode
JP2020503722A JP7047207B2 (ja) 2017-12-21 2018-12-21 バイポーラ電極を含むフレキシブル二次電池
EP18893276.8A EP3678247A4 (en) 2017-12-21 2018-12-21 FLEXIBLE SECONDARY BATTERY INCLUDING A BIPOLAR ELECTRODE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0177376 2017-12-21
KR20170177376 2017-12-21

Publications (1)

Publication Number Publication Date
WO2019125085A1 true WO2019125085A1 (ko) 2019-06-27

Family

ID=66994964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016542 WO2019125085A1 (ko) 2017-12-21 2018-12-21 바이폴라 전극을 포함하는 플렉서블 이차전지

Country Status (6)

Country Link
US (1) US11201357B2 (ko)
EP (1) EP3678247A4 (ko)
JP (1) JP7047207B2 (ko)
KR (1) KR102259381B1 (ko)
CN (1) CN111033852B (ko)
WO (1) WO2019125085A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102148511B1 (ko) * 2017-09-01 2020-08-27 주식회사 엘지화학 음극 활물질의 제조방법 및 이를 이용한 음극 활물질 및 리튬 이차전지
CN112151859B (zh) * 2020-09-30 2024-04-12 香港科技大学 一种具有两种表面的复合固体电解质及其制备方法
CN114583252B (zh) * 2022-02-24 2023-09-15 广西科技大学 一种不可燃复合基固态电解质膜的制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130266876A1 (en) * 2010-12-14 2013-10-10 Emefcy Ltd. Spirally wound microbial fuel cell
KR20150146433A (ko) * 2014-06-19 2015-12-31 주식회사 엘지화학 케이블형 이차전지
KR20160098095A (ko) * 2015-02-09 2016-08-18 주식회사 엘지화학 케이블형 이차전지
KR20170017376A (ko) 2015-08-06 2017-02-15 주식회사 휴비스 수축율이 감소된 메타아라미드 섬유 제조방법 및 그 장치
KR101735513B1 (ko) * 2014-10-31 2017-05-15 주식회사 엘지화학 바인더 필름을 포함하는 케이블 배터리 및 이의 제조 방법
KR20170093753A (ko) * 2016-02-05 2017-08-16 주식회사 엘지화학 케이블형 이차전지

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134719A (ja) * 1995-11-09 1997-05-20 Fuji Photo Film Co Ltd 非水二次電池
JPH09231993A (ja) * 1996-02-22 1997-09-05 Toyota Motor Corp 円筒型電池
JP3419311B2 (ja) * 1998-07-15 2003-06-23 トヨタ自動車株式会社 バイポーラ型リチウムイオン2次電池
JP4066763B2 (ja) 2002-09-30 2008-03-26 日産自動車株式会社 バイポーラー電池とその製造方法並びに車両
JP4042619B2 (ja) * 2003-05-13 2008-02-06 日産自動車株式会社 ポリマー固体電解質膜およびその製造方法、ならびにそれを用いた固体高分子電池。
JP2009163942A (ja) * 2007-12-28 2009-07-23 Panasonic Corp 非水系二次電池およびその製造方法
CN201340888Y (zh) * 2009-01-08 2009-11-04 东莞新能源科技有限公司 锂离子电池
CN101853964B (zh) * 2009-03-31 2013-01-30 比亚迪股份有限公司 一种非水电解液锂离子二次电池及其制备方法
JP5664414B2 (ja) * 2011-03-31 2015-02-04 Tdk株式会社 バイポーラ型2次電池
JP5720779B2 (ja) * 2011-05-27 2015-05-20 トヨタ自動車株式会社 バイポーラ全固体電池
EP2822084B1 (en) * 2013-05-07 2016-12-14 LG Chem, Ltd. Cable-type secondary battery
DE202014010605U1 (de) * 2013-05-07 2016-02-18 Lg Chem, Ltd. Kabelartige Sekundärbatterie
JP6038298B2 (ja) * 2013-05-07 2016-12-07 エルジー・ケム・リミテッド ケーブル型二次電池及びその製造方法
JP2016066520A (ja) * 2014-09-25 2016-04-28 昭和電工パッケージング株式会社 蓄電デバイス
KR101664629B1 (ko) * 2014-12-31 2016-10-11 현대자동차주식회사 바이폴라 전고체 전지의 제조방법
CN108140898B (zh) 2015-10-21 2021-05-25 株式会社Lg化学 线缆型二次电池
US10770732B2 (en) * 2015-10-21 2020-09-08 Lg Chem, Ltd. Cable-type secondary battery including spaced spring inner electrode support wound on outside of winding core
CN207134440U (zh) * 2017-08-16 2018-03-23 深圳市龙廷科技有限公司 一种电缆型锂离子电池
US10446840B2 (en) * 2017-11-07 2019-10-15 City University Of Hong Kong Rechargeable zinc-ion batteries having flexible shape memory

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130266876A1 (en) * 2010-12-14 2013-10-10 Emefcy Ltd. Spirally wound microbial fuel cell
KR20150146433A (ko) * 2014-06-19 2015-12-31 주식회사 엘지화학 케이블형 이차전지
KR101735513B1 (ko) * 2014-10-31 2017-05-15 주식회사 엘지화학 바인더 필름을 포함하는 케이블 배터리 및 이의 제조 방법
KR20160098095A (ko) * 2015-02-09 2016-08-18 주식회사 엘지화학 케이블형 이차전지
KR20170017376A (ko) 2015-08-06 2017-02-15 주식회사 휴비스 수축율이 감소된 메타아라미드 섬유 제조방법 및 그 장치
KR20170093753A (ko) * 2016-02-05 2017-08-16 주식회사 엘지화학 케이블형 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3678247A4

Also Published As

Publication number Publication date
EP3678247A1 (en) 2020-07-08
KR102259381B1 (ko) 2021-06-01
CN111033852B (zh) 2023-04-18
US11201357B2 (en) 2021-12-14
KR20190075860A (ko) 2019-07-01
JP2020529101A (ja) 2020-10-01
JP7047207B2 (ja) 2022-04-05
EP3678247A4 (en) 2020-12-16
US20210036378A1 (en) 2021-02-04
CN111033852A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
KR101440939B1 (ko) 이차전지용 전극, 그를 포함하는 이차전지 및 케이블형 이차전지
KR101573381B1 (ko) 케이블형 이차전지용 패키징 및 그를 포함하는 케이블형 이차전지
WO2014035192A1 (ko) 케이블형 이차전지용 음극 및 그를 포함하는 케이블형 이차전지
KR101479460B1 (ko) 이차전지용 전극, 그를 포함하는 이차전지 및 케이블형 이차전지
WO2013055188A1 (ko) 케이블형 이차전지
WO2013055185A2 (ko) 케이블형 이차전지
WO2013062335A1 (ko) 이차전지용 음극 및 이를 구비하는 이차전지
WO2013055190A1 (ko) 케이블형 이차전지
KR101483239B1 (ko) 케이블형 이차전지용 패키징 및 그를 포함하는 케이블형 이차전지
WO2015105369A1 (ko) 안전 분리막을 가진 전극조립체 및 이를 포함하는 이차전지
WO2013066117A1 (ko) 케이블형 이차전지
WO2013055187A1 (ko) 케이블형 이차전지
WO2014077635A1 (ko) 무선 충전이 가능한 케이블형 이차전지
WO2017039398A1 (ko) 케이블형 이차전지 및 이의 제조방법
WO2019125085A1 (ko) 바이폴라 전극을 포함하는 플렉서블 이차전지
WO2017069586A1 (ko) 케이블형 이차전지
WO2015194908A1 (ko) 중공형의 케이블형 이차전지용 패키징 및 그를 포함하는 케이블형 이차전지
KR101829856B1 (ko) 길이방향으로 연장된 전극 조립체를 포함하는 케이블형 이차전지 및 파우치형 이차전지
WO2017135790A1 (ko) 케이블형 이차전지
WO2017069585A1 (ko) 케이블형 이차전지
WO2015194909A1 (ko) 케이블형 이차전지
KR101654680B1 (ko) 이차전지용 전극 및 그를 포함하는 케이블형 이차전지
WO2018034463A1 (ko) 침상 도체로 인한 단락을 방지하는 인슐레이터 어셈블리를 포함하는 전지셀
KR101735513B1 (ko) 바인더 필름을 포함하는 케이블 배터리 및 이의 제조 방법
WO2014058279A1 (ko) 케이블형 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893276

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503722

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018893276

Country of ref document: EP

Effective date: 20200330

NENP Non-entry into the national phase

Ref country code: DE