WO2018034463A1 - 침상 도체로 인한 단락을 방지하는 인슐레이터 어셈블리를 포함하는 전지셀 - Google Patents
침상 도체로 인한 단락을 방지하는 인슐레이터 어셈블리를 포함하는 전지셀 Download PDFInfo
- Publication number
- WO2018034463A1 WO2018034463A1 PCT/KR2017/008727 KR2017008727W WO2018034463A1 WO 2018034463 A1 WO2018034463 A1 WO 2018034463A1 KR 2017008727 W KR2017008727 W KR 2017008727W WO 2018034463 A1 WO2018034463 A1 WO 2018034463A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- missing
- battery cell
- needle
- insulator
- conductor
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/76—Containers for holding the active material, e.g. tubes, capsules
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/76—Containers for holding the active material, e.g. tubes, capsules
- H01M4/765—Tubular type or pencil type electrodes; tubular or multitubular sheaths or covers of insulating material for said tubular-type electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
- H01M50/584—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
- H01M50/586—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
- H01M50/584—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
- H01M50/59—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2200/00—Safety devices for primary or secondary batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a battery cell comprising an insulator assembly that prevents short circuits due to acicular conductors.
- the battery cell is a cylindrical battery and a rectangular battery in which the electrode assembly is embedded in a cylindrical or rectangular metal can, and the pouch type battery in which the electrode assembly is embedded in a pouch type case of an aluminum laminate sheet according to the shape of the battery case. Are classified.
- battery cells are classified according to the structure of the electrode assembly consisting of a positive electrode, a negative electrode, and a separator, typically, a jelly of a structure in which the long sheet-like positive electrode and the negative electrode wound around the separator -Roll (electrode) electrode assembly, a stack (stacked type) electrode assembly in which a plurality of positive and negative electrodes cut in units of a predetermined size are sequentially stacked with a separator, and the positive and negative electrodes of a predetermined unit are interposed through a separator After the bicells or full cells, which are unit cells stacked in one state, are disposed on the separation film, the stacked / folding electrode assembly having the wound structure or the bicells or full cells ) And an electrode assembly having a stacked structure with a separator interposed therebetween.
- a jelly of a structure in which the long sheet-like positive electrode and the negative electrode wound around the separator -Roll (electrode) electrode assembly a stack (stacked type) electrode assembly in which a plurality
- battery cells including an electrode assembly including a bicell or a full cell which have a simple manufacturing process, a low manufacturing cost, and high structural applicability corresponding to various types of devices have been attracting attention.
- the electrode assembly when the electrode assembly is penetrated by a sharp needle-like conductor having electrical conductivity, such as a nail, the positive electrode and the negative electrode are electrically connected by the needle-like conductor, the current flows to the needle-resistant low-resistance conductor. At this time, deformation of the penetrated electrode occurs, and high resistance heat is generated by a current flowing through the contact resistance portion between the positive electrode active material and the negative electrode active material.
- the oxide structure of the positive electrode active material collapses and thermal runaway occurs, which may act as a main cause of ignition or explosion of the electrode assembly and the battery cell.
- the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
- a battery cell comprising an insulator assembly capable of ensuring stability for the needle conductor.
- a battery cell comprising an electrode assembly, an electrolyte solution and a cell case
- An electrically insulating insulator assembly is attached to an outer side of at least one side of both sides of the electrode assembly in the stacking direction of the electrodes;
- the portion of the insulator assembly into which the needle end of the needle conductor is introduced is missing, penetrating the electrode assembly together with the needle conductor, and the through hole plane of the electrode assembly is caused by the missing portion of the insulator assembly. It is characterized in that the shape is determined.
- the missing insulator assembly portion is configured to determine the penetrating form of the electrode assembly, so that the needle conductor is formed in the through hole. The possibility of contacting the electrode inside the electrode assembly can be significantly reduced.
- the planar area of the missing insulator assembly site is configured to be larger than the widest area of the vertical cross-section in the needle conductor, whereby the missing insulator assembly site has a larger planar area than the vertical cross-sectional area of the needle conductor. It can form a sphere.
- the needle conductor defined in the present invention can be understood as a long, sharp member such as a nail, a screw or a bolt.
- the insulator assembly has a structure in which two or more insulators are stacked;
- the insulator assembly comprises a single insulator or a structure in which two or more insulators are stacked;
- the insulator may have a structure including an insulating body and a plurality of missing patterns formed on the insulating body.
- the insulating body is a polyimide, silicon, Teflon, aramid fiber (Aramid fiber), glass fiber (Glass fiber), UHMWPE fiber (Ultra-highmolecular-weight polyethylene fiber) and PBO fiber (Polybenzoxazole fiber) excellent in insulation It may be one or more selected.
- Two or more insulators in the insulator assembly may have a stacked structure in which the missing portion patterns formed in the insulators do not overlap each other.
- Such a laminated structure can be arranged in a relatively close to the pattern of the missing portion on the plane, it is possible to minimize the formation of blind spots for the penetration of the needle conductor.
- a single insulator has a relatively thin thickness, which is advantageous in terms of thickness and volume of a battery cell.
- At least one surface of the outer surface of the insulator may be coated with an insulating coating agent such as fluorine, enamel, and silicon.
- the needle end portion of the needle conductor introduced into the insulator assembly can penetrate the electrode assembly together with the needle conductor in a state in which the missing pattern is missing from the insulating body.
- a missing part made of metal, high strength plastic, or ceramic so as to have a tensile strength that does not break when penetrating the electrode assembly;
- a needle conductor guide part which is perforated at a plane size of 50% to 80% of the plane of the missing part at a portion adjacent to the center of the missing part;
- the missing portion may pass through the needle assembly along the needle conductor and penetrate the electrode assembly in a state of being dropped from the insulating main body.
- the total planar area of the missing pattern is 7 mm 2 to determine the shape and area of the through-hole plane in which the missing part is formed in the electrode assembly.
- 20 mm 2 To 95 mm 2 Can be.
- the planar area is set in consideration of the general size of nails, screws, bolts, etc. in the art, the diameter of the general needle conductor is approximately 1 mm to 10 mm, forming a missing portion having a planar area larger than their vertical cross-sectional area Since the planar diameter of the through hole is larger than the diameters of the needle conductor, the possibility of the needle conductor contacting the electrodes in the through hole is significantly lowered.
- the missing portion in order for the missing portion to penetrate the electrode assembly, the missing portion must have a strength that does not break during the penetrating process.
- the tensile strength of the missing portion may be 1 Kg / cm to 10 Kg / cm.
- the high-strength plastic is polyamide, polyacetyl, polycarbonate, polyester resin, polyphenylene oxide, polyolefin, polyimide, silicon, Teflon, aramid fiber (Aramid fiber), glass fiber (Glass fiber), UHMWPE It may be made of one selected from fiber (Ultra-highmolecular-weight polyethylene fiber) and PBO fiber (Polybenzoxazole fiber).
- the insulating body may also be made of the high strength plastic.
- the metal may be one, or two or more alloys selected from the group consisting of aluminum, copper, SUS, duranium, palladium, platinum, nickel, and molybdenum, but is not limited thereto.
- the surface of the metal may be an organic insulating coating, an inorganic insulating coating or an anodizing treatment.
- the acicular conductor inducing part may further include an insulating film, which may be elongated along the acicular end of the acicular conductor.
- Such an insulating film is stretched in a form surrounding the needle-shaped conductor and the missing portion by the frictional force, thereby preventing direct contact between the needle-shaped conductor and the electrodes.
- the insulating layer may have a thickness of at least 15 micrometers or more, and in detail, may be 20 micrometers thick. This is in consideration of the elongation of the insulating film. When the thickness of the insulating film is less than 15 micrometers, it is not preferable that the stretching to the extent of wrapping the acicular conductor and the missing portion cannot be expected.
- the insulating layer may be a safety-reinforcing separator (SRS) separator of an organic / inorganic composite porous layer.
- SRS safety-reinforcing separator
- the SRS separator does not generate high temperature heat shrinkage due to the heat resistance of the inorganic particles, even when the electrode assembly is penetrated by the needle conductor, the elongation of the insulating layer can be maintained.
- the SRS separator may have a structure in which an active layer component including inorganic particles and a binder polymer is coated on a polyolefin-based separator substrate.
- Such an SRS separator may have a uniform pore structure formed by an interstitial volume between inorganic particles as an active layer component in addition to the pore structure included in the separator substrate itself, and the pores may be formed on the outside of the electrode assembly. Not only can the shock be considerably alleviated, the smooth movement of lithium ions through the pores, and a large amount of electrolyte can be filled to show a high impregnation rate, thereby improving battery performance.
- the separator substrate and the active layer are present in a form in which the pores of the surface of the polyolefin-based separator substrate and the active layer are entangled with each other (anchoring), so that the separator substrate and the active layer may be physically firmly bonded, wherein the separator substrate and the active layer are physically
- it may have a thickness ratio of 9: 1 to 1: 9, and in detail, may have a thickness ratio of 5: 5.
- one of the active layer components formed on the surface of the polyolefin-based separator substrate and / or a part of the pores of the substrate is an inorganic particle commonly used in the art.
- the inorganic particles may serve as a kind of spacer capable of forming micro pores by allowing the formation of empty spaces between the inorganic particles and maintaining a physical form.
- the inorganic particles since the inorganic particles generally have a property that physical properties do not change even at a high temperature of 200 degrees Celsius or more, the formed organic / inorganic composite porous film has excellent heat resistance.
- the inorganic particles are not particularly limited as long as they are electrochemically stable. That is, the inorganic particles that can be used in the present invention are not particularly limited as long as the oxidation and / or reduction reactions do not occur in the operating voltage range of the battery to be applied (for example, 0 to 5 V on the basis of Li / Li +). In particular, in the case of using inorganic particles having ion transfer ability, since the ion conductivity in the electrochemical device can be increased to improve the performance, it is preferable that the ion conductivity is as high as possible.
- the inorganic particles have a high density, it is not only difficult to disperse during coating, but also has a problem of weight increase during battery manufacturing, and therefore, it is preferable that the density is as small as possible.
- an inorganic material having a high dielectric constant it is possible to contribute to an increase in the degree of dissociation of an electrolyte salt such as lithium salt in the liquid electrolyte, thereby improving the ionic conductivity of the electrolyte.
- the inorganic particles may be at least one selected from the group consisting of (a) inorganic particles having piezoelectricity and (b) inorganic particles having lithium ion transfer capability.
- the piezoelectric inorganic particles are insulators at normal pressure, but mean a material having electrical properties through electrical structure change when a predetermined pressure is applied.
- the piezoelectricity inorganic particles not only exhibit a high dielectric constant having a dielectric constant of 100 or more, but also have a constant pressure. When tension or compression is applied, electric charge is generated so that one side is positively charged and the other side is negatively charged, thereby generating a potential difference between both surfaces.
- the positive electrode and the negative electrode may not directly contact due to the inorganic particles coated on the separator when the internal short circuit of both electrodes occurs due to an external impact such as a needle conductor.
- the piezoelectricity of the inorganic particles due to the piezoelectricity of the inorganic particles, the potential difference in the particles is generated, which results in electron transfer between the two electrodes, that is, a minute current flow, thereby reducing the voltage of the gentle battery and thereby improving safety.
- Examples of the inorganic particles having piezoelectric properties include BaTiO 3 , Pb (Zr, Ti) O 3 (PZT), Pb 1 - xLa x Zr 1-y Ti y O 3 (PLZT), PB (Mg 3 Nb 2/3 ) One or more selected from the group consisting of O 3 -PbTiO 3 (PMN-PT) and hafnia (HfO 2 ), but is not limited thereto.
- the inorganic particles having a lithium ion transfer capacity refers to inorganic particles containing lithium elements but having a function of transferring lithium ions without storing lithium, and the inorganic particles having lithium ion transfer ability are present in the particle structure. Since the lithium ions can be transferred and moved due to a kind of defect, the lithium ion conductivity in the battery is improved, thereby improving battery performance.
- Examples of the inorganic particles having the lithium ion transfer ability include lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), and lithium aluminum Titanium phosphate (Li x Al y Ti z (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 3), (LiAlTiP) x O y series glass (0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 13), lithium lanthanum titanate (Li x La y TiO 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), lithium germanium thiophosphate (Li x Ge y P z S w , 0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ w ⁇ 5), lithium nitride (Li
- the composition ratio of the inorganic particles and the binder polymer as the active layer component is not particularly limited, but may be controlled within a range of 10:90 to 99: 1% by weight, and preferably 80:20 to 99: 1% by weight. If the ratio is less than 10: 90% by weight, the polymer content becomes excessively large, resulting in a decrease in pore size and porosity due to a decrease in the void space formed between the inorganic particles, resulting in deterioration of final cell performance. When the ratio is exceeded, the polymer content is too small, and thus the mechanical properties of the final organic / inorganic composite porous separator may be degraded due to the weakening of the adhesion between the inorganic materials.
- the active layer in the organic / inorganic composite porous separator may further include other additives commonly known in addition to the above-described inorganic particles and polymers.
- the substrate coated with a mixture of the inorganic particles and the binder polymer as the active layer component may be a polyolefin-based separator commonly used in the art.
- the polyolefin-based separator components include high density polyethylene, linear low density polyethylene, low density polyethylene, ultra high molecular weight polyethylene, polypropylene, or derivatives thereof.
- the missing portion may be coupled to the missing pattern and the insulating body in a structure that is easy to lose from the insulating body, which will be described in detail with reference to the following non-limiting examples.
- the insulating main body is perforated with an opening corresponding to the planar shape of the missing portion, and the insulator is formed in such a manner that an adhesive is added to the interface thereof in a state where the missing part is inserted into the opening. It may be a structure in which the and the missing pattern is combined.
- an opening corresponding to the planar shape of the missing portion is perforated in the insulating main body, and the insulator is formed such that the interface thereof is fused to each other in a state where the missing part is inserted into the opening. It may be a structure in which a deletion pattern is combined.
- the insulator may have a structure in which the insulated body and the missing pattern are integrally formed in a form in which the insulated body and the missing portion are partitioned along the notch or the cut line.
- planar shape of the missing pattern is not particularly limited, and may be, for example, circular, oval or polygonal in plan view.
- the present invention also provides a battery cell according to a second aspect of the present invention for achieving the above object.
- the battery cell is a battery cell including an electrode assembly, an electrolyte and a cell case,
- At least one of the surfaces constituting the cell case is provided with an electrically insulating insulator assembly
- the through-hole plane shape formed therein is determined while penetrating the cell case and the electrode assembly together with the needle conductor in a state where a part of the insulator assembly is missing.
- the battery cell is configured such that, when the needle conductor penetrates, instead of the needle conductor, the missing insulator assembly portion determines the penetrating shape of the electrode assembly, so that the needle conductor is formed in the through hole.
- the possibility of contacting the inner electrode can be significantly reduced.
- the insulator assembly may be added to at least one of the inner surfaces and / or at least one of the outer surfaces of the cell case.
- the specific structure and working structure of the insulator assembly may be the same as in the first embodiment.
- the type of the battery cell is not particularly limited, but as a specific example, lithium ion (Li-ion) secondary battery, lithium polymer (Li-polymer) having the advantages of high energy density, discharge voltage, output stability, etc. ) A secondary battery, or a lithium secondary battery such as a lithium-ion polymer secondary battery.
- a lithium secondary battery is composed of a positive electrode, a negative electrode, a separator, and a lithium salt-containing nonaqueous electrolyte.
- the positive electrode is manufactured by, for example, applying a mixture of a positive electrode active material, a conductive material, and a binder on a positive electrode current collector and / or an extension current collector, and then drying the composition, and optionally adding a filler to the mixture. do.
- the positive electrode current collector and / or the extension current collector is generally made to a thickness of 3 to 500 micrometers.
- the positive electrode current collector and the extension current collector are not particularly limited as long as they have high conductivity without causing chemical change in the battery.
- stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum Surface treated with carbon, nickel, titanium, silver or the like on the surface of the stainless steel may be used.
- the positive electrode current collector and the extension current collector may form fine irregularities on the surface thereof to increase adhesion of the positive electrode active material, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
- the conductive material is typically added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
- a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
- the binder is a component that assists the bonding of the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
- binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
- the filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
- the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
- the negative electrode is manufactured by coating and drying a negative electrode active material on a negative electrode current collector and / or an extension current collector, and optionally, the components as described above may be further included if necessary.
- the negative electrode current collector and / or the extension current collector is generally made to a thickness of 3 to 500 micrometers.
- Such a negative electrode current collector and / or an extension current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
- copper, stainless steel, aluminum, nickel, titanium, calcined carbon, Surface treated with carbon, nickel, titanium, silver, or the like on the surface of copper or stainless steel, aluminum-cadmium alloy, and the like can be used.
- fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
- carbon such as hardly graphitized carbon and graphite type carbon
- Me: Mn, Fe, Pb, Ge; Me' Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen, 0 ⁇ x ⁇ 1; 1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and metal oxides such as Bi 2
- the separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
- the pore diameter of the separator is generally from 0.01 to 10 micrometers, the thickness is generally from 5 to 300 micrometers.
- olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
- a solid electrolyte such as a polymer
- the solid electrolyte may also serve as a separator.
- the electrolyte may be a lithium salt-containing non-aqueous electrolyte, and consists of a non-aqueous electrolyte and a lithium salt.
- nonaqueous electrolyte nonaqueous organic solvents, organic solid electrolytes, inorganic solid electrolytes, and the like are used, but not limited thereto.
- non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma Butyl lactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorone, formamide, dimethylformamide, dioxolon , Acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl propionate can be
- organic solid electrolyte examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymers containing ionic dissociating groups and the like can be used.
- Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
- the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide have.
- pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, Nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride and the like may be added.
- pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide
- Nitrobenzene derivatives sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyr
- a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-Ethylene) may be further included. Carbonate), PRS (Propene sultone) may be further included.
- lithium salts such as LiPF 6 , LiClO 4 , LiBF 4 , LiN (SO 2 CF 3 ) 2, and the like, may be prepared by cyclic carbonate of EC or PC, which is a highly dielectric solvent, and DEC, DMC, or EMC, which are low viscosity solvents.
- Lithium salt-containing non-aqueous electrolytes can be prepared by adding them to a mixed solvent of linear carbonates.
- the battery cell according to the present invention is configured such that, when the needle conductor penetrates, instead of the needle conductor, the missing insulator assembly portion determines the penetrating form of the electrode assembly. There is an advantage that the possibility of contact with the electrode inside the electrode assembly is low.
- FIG. 1 and 2 are schematic views of a battery cell according to an embodiment of the present invention.
- FIG. 3 is a schematic diagram of a part of an insulator constituting an insulator assembly according to one embodiment of the present invention.
- FIG. 4 is a schematic diagram of a process of a missing pattern in the insulator assembly according to the penetration of the needle conductor;
- FIG. 5 is a schematic diagram of an insulator assembly according to another embodiment of the present invention.
- FIG. 6 is a schematic view of a battery cell according to another embodiment of the present invention.
- FIG. 1 is a schematic view of a battery cell 100 according to an embodiment of the present invention
- Figure 2 is a vertical cross-sectional view of the side of the battery cell 100
- Figure 3 is an insulator assembly 200 ) Is shown.
- an electrode assembly 30 including an anode, a cathode, and a separator disposed therebetween is embedded in a pouch-type cell case 20 together with an electrolyte.
- the outer periphery of the outer circumferential end of the cell case 20 is sealed while the electrode leads 60 and 70 connected to the electrode tabs 40 and 50 of the assembly 30 protrude out of the cell case 20.
- an electrically insulating insulator assembly 200 is added to the outer side of the upper surface of the electrode assembly 30 in the stacking direction of the electrodes.
- the insulator assembly 200 shown in FIG. 3 includes an insulator body 210 and one insulator 201 including a plurality of missing patterns 220 formed on the insulator body 210.
- the dropping pattern 220 may be formed at a portion adjacent to the center of the dropping portion 222 and the dropping portion 222 made of metal, high strength plastic or ceramic so as to have a hardness that does not break when penetrating the electrode assembly 30.
- Acicular conductor guide portion 224 perforated to a planar size of 70% relative to a planar surface of 222.
- the insulating body 210 has a structure in which openings corresponding to the planar shape of the missing portion 222 are perforated, and in the state where the missing portion 222 is inserted into the opening of the insulating main body 210, the interface thereof is formed.
- the adhesive is added to the form, the insulating body 210 and the missing pattern 220 is coupled.
- the missing portion 222 may be dropped from the insulating body 210.
- the insulating body 210 and the missing pattern 220 may be formed in such a manner that their interfaces are fused to each other in a state where the missing portion 222 is inserted into the opening instead of the adhesive. May be combined.
- Such fusion may be fusion by heat, fusion by welding, fusion by soldering, or the like, but is not limited thereto.
- the total planar area of the missing pattern 220 that is, the sum of the planar areas of the missing part 222 and the needle conductor guide part 224 may be approximately 30 mm 2 , and among these, the planar area of the needle conductor guide part 224. May consist of approximately 20 mm 2 .
- the needle-like conductor 1 such as a nail having a diameter of about 5 mm
- the needle-shaped conductor guide portion 224 of the needle-shaped conductor 1 When fixed to the needle end, the missing portion 222 progresses in the penetrating direction along the needle conductor 1 in a state of being dropped from the insulating main body 210 and penetrates the electrode assembly 30.
- the diameter of the common nail is 5 mm
- the total area of the missing pattern 220 and the planar area of the needle conductor guide part 224 are set.
- the scope of the present invention is not limited only by the above numerical values.
- the size or shape of the missing pattern 220 may be variously configured.
- the through-hole 2 of the electrode assembly 30 determines the planar shape, the through-hole 2 has a larger planar area than the needle-like conductor 1, and thus the needle-shaped conductor 1 and the through-hole 2
- the inner surface, i.e., a space is formed between the electrodes, can significantly suppress the problem of the direct contact between the needle conductor 1 and the electrode.
- FIG. 4 schematically illustrates a process in which the missing pattern 220 acts in the insulator assembly 200 according to the penetration of the needle conductor 1.
- the needle end of the needle conductor 1 is introduced into the needle conductor guide part 224.
- the needle conductor 1 is fixed in the needle conductor guide portion 224.
- the missing part 222 will be dropped from the insulating main body 210.
- the missing portion 222 Since the missing portion 222 has a larger planar area than the needle conductor 1, the missing portion 222 fixed to the needle end side of the needle conductor 1 penetrates the electrodes of the electrode assembly 30 in order.
- the needle-shaped conductor 1 since the needle-shaped conductor 1 has a size smaller than the size of the through hole 2, it does not directly contact an electrode.
- an insulating assembly for preparing the penetration of the needle conductor 1 is added to the outer surface of the electrode assembly 30, and thus the stability of the battery cell 100 with respect to the needle conductor 1 is greatly improved. Can be.
- the needle conductor guide portion 224 may have a structure in which the missing portion 222 is simply perforated, and an insulating film having a high elongation in the perforated state is added thereto.
- the insulator assembly 300 has a structure in which a first insulator 311 and a second insulator 312 are stacked.
- the first insulator 311 is formed on the insulating body in a state in which hexagonal missing patterns 311 are spaced apart at regular intervals.
- hexagonal missing patterns 321 are formed on the insulating body.
- two or more insulators in the insulator assembly 300 are stacked in such a manner that the missing portion patterns 311 and 321 formed in the insulators 310 and 320 are not overlapped with each other.
- This structure can minimize the formation of blind spots for the penetration of the needle-like conductor bar 311, 321 are arranged in a relatively tight plane.
- FIG. 6 is a schematic view of a battery cell according to another embodiment of the present invention.
- the basic structure of the battery cell 400 shown in FIG. 6, that is, the electrode assembly and the battery case is the same as the battery cell 100 shown in FIGS. 1 to 4, but the insulator assemblies 410 and 412 are the electrode assembly. It is added to the upper and lower surfaces of the battery case 420, not the outer surface.
- each of the insulator assemblies 410 and 412 are the same as the insulator assembly 200 shown in FIGS. 1 to 4 or the insulator assembly 300 shown in FIG. 5.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Cell Separators (AREA)
Abstract
본 발명은 인슐레이터 어셈블리(insulator assembly)를 포함하는 전지셀에 관한 것으로, 침상 도체가 상기 인슐레이터 어셈블리를 관통할 때, 침상 도체의 침상 단부가 도입되는 인슐레이터 어셈블리의 부위가 결락되면서 침상 도체와 함께 전극조립체를 관통하여, 상기 인슐레이터 어셈블리의 결락 부위에 의해 전극조립체의 관통구 평면 형상이 결정되는 것을 특징으로 하는 전지셀을 제공한다.
Description
본 발명은 침상 도체로 인한 단락을 방지하는 인슐레이터 어셈블리를 포함하는 전지셀에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있고, 그에 따라 다양한 요구에 부응할 수 있는 이차전지(또는 '전지셀')에 대한 많은 연구가 행해지고 있다.
이러한, 전지셀은 전지케이스의 형상에 따라, 전극조립체가 원통형 또는 각형의 금속 캔에 내장되어 있는 원통형 전지 및 각형 전지와, 전극조립체가 알루미늄 라미네이트 시트의 파우치형 케이스에 내장되어 있는 파우치형 전지로 분류된다.
또한, 전지셀은 양극, 음극 및 분리막으로 이루어진 전극조립체가 어떤 구조로 이루어져 있는지에 따라 분류되기도 하는 바, 대표적으로는, 긴 시트형의 양극들과 음극들을 분리막이 개재된 상태에서 권취한 구조의 젤리-롤(권취형) 전극조립체, 소정 크기의 단위로 절취한 다수의 양극과 음극들을 분리막을 개재한 상태로 순차적으로 적층한 스택형(적층형) 전극조립체, 소정 단위의 양극과 음극들을 분리막을 개재한 상태로 적층한 단위셀인 바이셀(bicell) 또는 풀셀(full cell)들을 분리필름상에 배치한 후, 권취한 구조의 스택/폴딩형 전극조립체, 또는 바이셀(bicell) 또는 풀셀(full cell)들을 분리막을 개재한 상태로 스택한 구조의 전극조립체 등을 들 수 있다.
최근에는, 제조 공정이 간편하고, 제조 단가가 낮을 뿐만 아니라, 디바이스의 다양한 형태에 대응하여, 구조적 응용성이 높은 바이셀 또는 풀셀을 포함하는 전극조립체를 포함하는 전지셀이 주목 받고 있다.
한편, 전극조립체는 못과 같이 전기 전도성을 가지는 날카로운 침상 도체로 관통될 경우에, 양극과 음극이 침상 도체에 의해 전기적으로 연결되면서 전류가 저항이 낮은 침상 도체로 흐르게 된다. 이 때, 관통된 전극의 변형이 발생하고, 양극 활물질과 음극 활물질간의 접촉 저항부에 통전되는 전류에 의해 높은 저항열이 발생하게 된다. 상기 열로 인하여 전극조립체의 온도가 임계치 이상으로 상승하게 되면, 양극 활물질의 산화물 구조가 붕괴되어 열폭주 현상이 발생하게 되며 이는 전극조립체 및 전지셀을 발화 또는 폭발시키는 주요한 원인으로 작용할 수 있다.
또한, 침상 도체에 의해 휘어진 전극 활물질 또는 집전체가 상호 대면하는 반대극과 접촉하는 경우에는 저항열 보다 높은 발열이 발생하는 바, 전술한 열 폭주현상을 더욱 가속화 시킬 수 있으며, 이러한 문제점은 다수의 전극들이 포함된 바이셀 및 이를 포함하는 전극조립체에서 더욱 심각하게 발생할 수 있다.
따라서, 단락, 발화, 폭발 등을 방지하여 보다 안전성을 향상시키는 구조의 전지셀에 대한 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
구체적으로, 본 발명의 목적은, 침상 도체에 대한 안정성을 담보할 수 있는 인슐레이터 어셈블리를 포함하는 전지셀을 제공하는 것이다.
이러한 목적을 달성하기 위한 본 발명의 제 1 형태에 따른 전지셀은,
전극조립체, 전해액 및 셀 케이스를 포함하는 전지셀로서,
전극들의 적층 방향에서 전극조립체의 양면 중 적어도 일면의 외측에는 전기절연성의 인슐레이터 어셈블리(insulator assembly)가 부가되어 있으며;
침상 도체가 상기 인슐레이터 어셈블리를 관통할 때, 침상 도체의 침상 단부가 도입되는 인슐레이터 어셈블리의 부위가 결락되면서 침상 도체와 함께 전극조립체를 관통하여, 상기 인슐레이터 어셈블리의 결락 부위에 의해 전극조립체의 관통구 평면 형상이 결정되는 것을 특징으로 한다.
이를 더욱 상세하게 설명하면, 본 발명에 따른 전지셀에서는 침상 도체가 관통할 때, 침상 도체 대신, 결락된 인슐레이터 어셈블리 부위가 전극조립체의 관통 형태를 결정하도록 구성되어 있어, 침상 도체가 관통구 내에서 전극조립체 내측의 전극에 접촉될 가능성을 현저하게 감소시킬 수 있다.
따라서, 본 발명에서는 결락된 인슐레이터 어셈블리 부위의 평면적이 침상 도체에서 수직 단면 너비가 가장 넓은 부위 보다 크도록 구성되어 있으며, 이로서 상기 결락된 인슐레이터 어셈블리 부위가 침상 도체의 수직 단면적 대비 더 큰 평면적을 가지는 관통구를 형성할 수 있는 것이다.
본 발명에서 정의한 침상 도체란 못, 나사, 볼트 등의 날카롭고 긴 형태의 부재들로 이해할 수 있다.
이에, 이하에서는 침상 도체의 하나의 예로서 단부가 날카로운 못으로 가정하고, 인슐레이터 어셈블리의 구체적인 구조와 작용 구조를 상세하게 설명한다.
하나의 구체적인 예에서, 상기 인슐레이터 어셈블리는 인슐레이터 둘 이상이 적층되어 있는 구조로 이루어져 있고;
상기 인슐레이터 어셈블리는 단일 인슐레이터 또는 인슐레이터 둘 이상이 적층되어 있는 구조로 이루어져 있으며;
상기 인슐레이터는, 절연성 본체, 및 상기 절연성 본체 상에 형성되어 있는 복수의 결락 패턴들을 포함하고 있는 구조일 수 있다.
상기 절연성 본체는 절연성이 우수한 폴리이미드, 실리콘, 테프론, 아라미드 파이버(Aramid fiber), 글라스 파이버(Glass fiber), UHMWPE 파이버(Ultra-highmolecular-weight polyethylene fiber) 및 PBO 파이버(Polybenzoxazole fiber)로 이루어진 군에서 선택된 1종 이상일 수 있다.
상기 인슐레이터 어셈블리에서 둘 이상의 인슐레이터들은, 각각의 인슐레이터에 형성되어 있는 결락부 패턴들이 상호 중첩되지 않는 형태로 적층된 구조일 수 있다.
이러한 적층 구조는 평면 상으로 결락부 패턴들이 상대적으로 촘촘하게 배열될 수 있으므로, 침상 도체의 관통에 대한 사각 지대 형성을 최소화할 수 있다.
이와는 달리, 단일 인슐레이터의 경우에는 상대적으로 얇은 두께를 가지는 바, 전지셀의 두께나 체적 측면에서 유리하다.
경우에 따라서는 인슐레이터의 외면들 중 적어도 일면에는 불소, 에나멜, 실리콘 등의 절연성 코팅제가 도포되어 있을 수 있다.
본 발명에서는 침상 도체가 결락 패턴을 관통할 때, 인슐레이터 어셈블리로 도입되는 침상 도체의 침상 단부에 의해, 상기 결락 패턴이 절연성 본체로부터 결락된 상태로 침상 도체와 함께 전극조립체를 관통할 수 있다.
이러한 결락 패턴은,
전극조립체의 관통 시 파손되지 않는 인장강도를 가지도록 금속, 고강도 플라스틱 또는 세라믹으로 이루어진 결락부; 및
상기 결락부의 중심부와 인접한 부위에서, 결락부의 평면적 대비 50% 내지 80%의 평면적 크기로 천공되어 있는 침상 도체 유도부;
를 포함하고;
침상 도체 유도부가 침상 도체의 침상 단부에 고정되면, 결락부는 절연성 본체로부터 결락된 상태에서 침상 도체를 따라 관통 방향으로 진행하며 전극조립체를 관통할 수 있다.
이처럼, 침상 도체의 불가피한 침투 시, 침상 도체가 아닌, 침상 도체에 고정된 결락부가 전극조립체를 관통하게 되면서, 침상 도체가 전극들에 직접 접촉되는 현상이 억제될 수 있다.
하나의 구체적인 예에서, 상기 결락부가 전극조립체에 형성되는 관통구 평면 형상과 면적을 결정하도록, 결락 패턴의 총 평면적이 7 mm2
내지 200 mm2
일 수 있으며, 상세하게는 20 mm2
내지 95 mm2
일 수 있다.
상기 평면적은, 당업계의 일반적인 못, 나사, 볼트 등의 크기를 고려하여 설정된 것으로, 일반적인 침상 도체들의 직경이 대략 1 mm 내지 10 mm인 바, 이들의 수직 단면적보다 큰 평면적을 가지는 결락부가 형성하는 관통구의 평면상 직경이 상기 침상 도체의 직경들보다 크기 때문에, 침상 도체가 관통구 내에서 전극들에 접촉될 가능성이 현저히 낮아진다.
이처럼, 결락부가 전극조립체를 관통하기 위해서는 관통 과정에서 파손되지 않을 정도의 강도를 가져야 하며, 이를 위해 본 발명에서는 상기 결락부의 인장강도가 1 Kg/cm 내지 10 Kg/cm 일 수 있다.
본 발명에서, 상기 고강도 플라스틱은 폴리아마이드, 폴리아세틸, 폴리카보네이트, 폴리에스터수지, 폴리페닐렌옥사이드, 폴리올레핀, 폴리이미드, 실리콘, 테프론, 아라미드 파이버(Aramid fiber), 글라스 파이버(Glass fiber), UHMWPE 파이버(Ultra-highmolecular-weight polyethylene fiber) 및 PBO 파이버(Polybenzoxazole fiber)에서 선택되는 하나로 이루어질 수 있다.
경우에 따라서는, 상기 절연성 본체 또한, 상기 고강도 플라스틱으로 이루어질 수 있다.
상기 금속은 알루미늄, 구리, SUS, 두라늄, 팔라디움, 플레티늄, 니켈 및 몰리브덴으로 이루어진 군에서 선택되는 1종, 또는 2종 이상의 합금일 수 있으나, 이들만으로 한정되는 것은 아니다.
경우에 따라서는, 상기 금속의 표면이 유기계 절연 코팅, 무기계 절연 코팅 또는 아노다이징(anodizing) 처리되어 있을 수 있다.
하나의 구체적인 예에서, 상기 침상 도체 유도부에는 침상 도체의 침상 단부를 따라 연신될 수 있는, 절연막이 추가로 부가되어 있을 수 있다.
이러한 절연막은 마찰력에 의해, 침상 도체 및 결락부를 감싸는 형태로 연신되면서, 침상 도체와 전극들이 직접 접촉되는 것을 방지할 수 있다.
상기 절연막의 두께는 적어도 15 마이크로미터 이상의 두께로 이루어질 수 있고, 상세하게는, 20 마이크로미터의 두께 일 수 있다. 이는 절연막의 연신율을 고려한 것으로, 절연막의 두께가 15 마이크로미터 미만인 경우, 침상 도체와 결락부를 감쌀 정도의 연신을 기대할 수 없는 바, 바람직하지 않다.
상기 절연막은 유/무기 복합 다공성의 SRS(Safety-Reinforcing Separators) 분리막일 수 있다.
이러한 SRS 분리막은 무기물 입자의 내열성으로 인해 고온 열수축이 발생하지 않는바, 침상 도체에 의해 전극조립체가 관통되더라도, 절연막의 연신율을 유지할 수 있다.
상기 SRS 분리막은 폴리올레핀 계열 분리막 기재상에 무기물 입자와 바인더 고분자를 포함하는 활성층 성분이 도포된 구조일 수 있다.
이러한, SRS 분리막은 분리막 기재 자체에 포함된 기공 구조와 더불어 활성층 성분인 무기물 입자들간의 빈 공간(interstitial volume)에 의해 형성된 균일한 기공 구조를 가질 수 있고, 상기 기공은 전극조립체에 가해지는 외부의 충격을 상당히 완화 시킬 수 있을 뿐만 아니라, 기공을 통해 리튬 이온의 원활한 이동이 이루어지고, 다량의 전해액이 채워져 높은 함침율을 나타낼 수 있으므로, 전지의 성능 향상을 함께 도모할 수 있다.
상기 분리막 기재와 활성층은 폴리올레핀 계열 분리막 기재 표면의 기공과 활성층이 상호 엉켜있는 형태(anchoring)로 존재하여 분리막 기재와 활성층이 물리적으로 견고하게 결합할 수 있으며, 이 때, 상기 분리막 기재와 활성층은 물리적 결합력과 분리막 상에 존재하는 기공 구조를 고려하여 9 : 1 내지 1 : 9의 두께 비를 가질 수 있으며, 상세하게는 5 : 5의 두께 비를 가질 수 있다.
상기 SRS 분리막에서, 폴리올레핀 계열 분리막 기재의 표면 및/또는 기재 중 기공부 일부에 형성되는 활성층 성분 중 하나는 당 업계에서 통상적으로 사용되는 무기물 입자이다.
상기 무기물 입자는 무기물 입자들간 빈 공간의 형성을 가능하게 하여 미세 기공을 형성하는 역할과 물리적 형태를 유지할 수 있는 일종의 스페이서(spacer) 역할을 겸하게 된다. 또한, 상기 무기물 입자는 일반적으로 섭씨 200도 이상의 고온이 되어도 물리적 특성이 변하지 않는 특성을 갖기 때문에, 형성된 유/무기 복합 다공성 필름이 탁월한 내열성을 갖게 된다.
상기 무기물 입자는 전기화학적으로 안정하기만 하면 특별히 제한되지 않는다. 즉, 본 발명에서 사용할 수 있는 무기물 입자는 적용되는 전지의 작동 전압 범위(예컨대, Li/Li+ 기준으로 0~5V)에서 산화 및/또는 환원 반응이 일어나지 않는 것이면 특별히 제한되지 않는다. 특히, 이온 전달 능력이 있는 무기물 입자를 사용하는 경우, 전기 화학 소자 내의 이온 전도도를 높여 성능 향상을 도모할 수 있으므로, 가능한 한 이온 전도도가 높은 것이 바람직하다. 또한, 상기 무기물 입자가 높은 밀도를 갖는 경우, 코팅시 분산시키는데 어려움이 있을 뿐만 아니라 전지 제조시 무게 증가의 문제점도 있으므로, 가능한 밀도가 작은 것이 바람직하다. 또한, 유전율이 높은 무기물인 경우, 액체 전해질 내 전해질 염, 예컨대 리튬염의 해리도 증가에 기여하여 전해액의 이온 전도도를 향상시킬 수 있다.
전술한 이유들로 인해, 상기 무기물 입자는 (a) 압전성(piezoelectricity)을 갖는 무기물 입자 및 (b) 리튬 이온 전달 능력을 갖는 무기물 입자로 구성된 군으로부터 선택된 1종 이상일 수 있다.
상기 압전성(piezoelectricity) 무기물 입자는 상압에서는 부도체이나, 일정 압력이 인가되었을 경우 내부 구조 변화에 의해 전기가 통하는 물성을 갖는 물질을 의미하는 것으로서, 유전율 상수가 100 이상인 고유전율 특성을 나타낼 뿐만 아니라 일정 압력을 인가하여 인장 또는 압축되는 경우 전하가 발생하여 한 면은 양으로, 반대편은 음으로 각각 대전됨으로써, 양쪽 면 간에 전위차가 발생하는 기능을 갖는 물질이다.
상기와 같은 특징을 갖는 무기물 입자를 다공성 활성층 성분으로 사용하는 경우, 침상 도체와 같은 외부 충격에 의해 양 전극의 내부 단락이 발생하는 경우 분리막에 코팅된 무기물 입자로 인해 양극과 음극이 직접 접촉하지 않을 뿐만 아니라, 무기물 입자의 압전성으로 인해 입자 내 전위차가 발생하게 되고 이로 인해 양 전극 간의 전자 이동, 즉 미세한 전류의 흐름이 이루어짐으로써, 완만한 전지의 전압 감소 및 이로 인한 안전성 향상을 도모할 수 있다.
상기 압전성을 갖는 무기물 입자의 예로는BaTiO3, Pb(Zr,Ti)O3 (PZT), Pb1
-xLaxZr1-yTiyO3 (PLZT), PB(Mg3Nb2/3)O3-PbTiO3 (PMN-PT) 및 hafnia (HfO2)로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 이에 한정되는 것은 아니다.
상기 리튬 이온 전달 능력을 갖는 무기물 입자는 리튬 원소를 함유하되 리튬을 저장하지 아니하고 리튬 이온을 이동시키는 기능을 갖는 무기물 입자를 지칭하는 것으로서, 리튬 이온 전달 능력을 갖는 무기물 입자는 입자 구조 내부에 존재하는 일종의 결함(defect)으로 인해 리튬 이온을 전달 및 이동시킬 수 있기 때문에, 전지 내 리튬 이온 전도도가 향상되고, 이로 인해 전지 성능 향상을 도모할 수 있다.
상기 리튬 이온 전달 능력을 갖는 무기물 입자의 예로는 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0<x<2, 0<y<3), 리튬알루미늄티타늄포스페이트 (LixAlyTiz(PO4)3, 0<x<2, 0<y<1, 0<z<3), (LiAlTiP)xOy 계열 glass(0<x<4, 0<y<13), 리튬란탄티타네이트 (LixLayTiO3, 0<x<2, 0<y<3), 리튬게르마니움티오포스페이트 (LixGeyPzSw, 0<x<4, 0<y<1, 0<z<1, 0<w<5), 리튬나이트라이드 (LixNy, 0<x<4, 0<y<2), SiS2 (LixSiySz, 0<x<3, 0<y<2, 0<z<4) 계열 glass 및 P2S5 (LixPySz, 0<x<3, 0<y< 3, 0<z<7) 계열 glass로 이루어진 군으로부터 선택된 1종 이상일 수 있으나 이에 한정되는 것은 아니다.
상기 활성층 성분인 무기물 입자 및 바인더 고분자의 조성비는 크게 제약은 없으나, 10:90 내지 99:1 중량% 비범위 내에서 조절 가능하며, 80:20 내지 99:1 중량% 비 범위가 바람직하다. 10:90 중량% 비 미만인 경우, 고분자의 함량이 지나치게 많게 되어 무기물 입자들 사이에 형성된 빈 공간의 감소로 인한 기공 크기 및 기공도가 감소되어 최종 전지 성능 저하가 야기되며, 반대로 99:1 중량% 비를 초과하는 경우, 고분자 함량이 너무 적기 때문에 무기물 사이의 접착력 약화로 인해 최종 유/무기 복합 다공성 분리막의 기계적 물성이 저하될 수 있다.
상기 유/무기 복합 다공성 분리막 중 활성층은 전술한 무기물 입자 및 고분자 이외에, 통상적으로 알려진 기타 첨가제를 더 포함할 수 있다.
상기 유/무기 복합 다공성 분리막에서, 상기 활성층 구성 성분인 무기물 입자와 바인더 고분자의 혼합물로 코팅되는 기재(substrate)는 당 업계에서 통상적으로 사용되는 폴리올레핀 계열 분리막일 수 있다. 상기 폴리올레핀 계열 분리막 성분의 예로는 고밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 초고분자량 폴리에틸렌, 폴리프로필렌 또는 이들의 유도체 등이 있다.
한편, 결락부가 절연성 본체로부터 결락되기 용이한 구조로 결락 패턴과 절연성 본체와 결합되어 있을 수 있으며, 이에 대해 하기 비제한적인 예들을 통해 상세하게 설명한다.
하나의 구체적인 예에서, 상기 절연성 본체에는 결락부의 평면 형상에 대응하는 개구가 천공되어 있고, 인슐레이터는, 상기 결락부가 개구에 삽입된 상태에서, 이들의 계면에 접착제가 부가되어 있는 형태로, 절연성 본체와 결락 패턴이 결합된 구조일 수 있다.
또 다른 구체적인 예에서, 상기 절연성 본체에는 결락부의 평면 형상에 대응하는 개구가 천공되어 있고, 인슐레이터는, 상기 결락부가 개구에 삽입된 상태에서, 이들의 계면이 상호 융착되어 있는 형태로, 절연성 본체와 결락 패턴이 결합된 구조일 수 있다.
이들 예와는 달리, 인슐레이터는, 노치 또는 절취선을 경계로 절연성 본체와 결락부가 구획되어 있는 형태로 절연성 본체와 결락 패턴이 일체를 이루고 있는 구조일 수 있다.
상기 결락 패턴의 평면 형상은, 특별히 한정되는 것은 아니며, 예를 들어, 평면상으로 원형, 타원형, 또는 다각형일 수 있다.
본 발명은 또한, 상기 목적을 달성하기 위한 본 발명의 제 2 형태에 따른 전지셀을 제공한다.
구체적으로, 상기 전지셀은 전극조립체, 전해액 및 셀 케이스를 포함하는 전지셀로서,
상기 셀 케이스를 이루는 면들 중, 적어도 어느 일면에는 전기절연성인 인슐레이터 어셈블리(insulator assembly)가 부가되어 있으며;
침상 도체가 인슐레이터 어셈블리를 관통할 때, 상기 인슐레이터 어셈블리의 일부가 결락된 상태로 침상 도체와 함께 셀 케이스와 전극조립체를 관통하면서, 이들에 형성되는 관통구 평면 형상을 결정하는 것을 특징으로 한다.
상기 전지셀 역시, 앞선 제1형태와 마찬가지로, 침상 도체가 관통할 때, 침상 도체 대신, 결락된 인슐레이터 어셈블리 부위가 전극조립체의 관통 형태를 결정하도록 구성되어 있어, 침상 도체가 관통구 내에서 전극조립체 내측의 전극에 접촉될 가능성을 현저하게 감소시킬 수 있다.
하나의 구체적인 예에서, 상기 인슐레이터 어셈블리는 셀 케이스의 내면들 중 적어도 한면 및/또는 외면들 중 적어도 한면에 부가되어 있을 수 있다.
상기 인슐레이터 어셈블리의 구체적인 구조와 작용 구조는 앞선 제1형태와 동일할 수 있다.
본 발명에서 전지셀은 그것의 종류가 특별히 한정되는 것은 아니지만, 구체적인 예로서, 높은 에너지 밀도, 방전 전압, 출력 안정성 등의 장점을 가진 리튬 이온(Li-ion) 이차전지, 리튬 폴리머(Li-polymer) 이차전지, 또는 리튬 이온 폴리머(Li-ion polymer) 이차전지 등과 같은 리튬 이차전지일 수 있다.
일반적으로, 리튬 이차전지는 양극, 음극, 분리막, 및 리튬염 함유 비수 전해액으로 구성되어 있다.
상기 양극은, 예를 들어, 양극 집전체 및/또는 연장 집전부 상에 양극 활물질, 도전재 및 바인더의 혼합물을 도포한 후 건조하여 제조되며, 필요에 따라서는, 상기 혼합물에 충진제를 더 첨가하기도 한다.
상기 양극 집전체 및/또는 연장 집전부는 일반적으로 3 내지 500 마이크로미터의 두께로 만든다. 이러한 양극 집전체 및 연장 집전부는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 양극 집전체 및 연장 집전부는 그것의 표면에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1
-
xMxO2
(여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2
-
xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
상기 음극은 음극 집전체 및/또는 연장 집전부 상에 음극 활물질을 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 성분들이 선택적으로 더 포함될 수도 있다.
상기 음극 집전체 및/또는 연장 집전부는 일반적으로 3 내지 500 마이크로미터의 두께로 만들어진다. 이러한 음극 집전체 및/또는 연장 집전부는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질로는, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1
-
xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있다.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 마이크로미터이고, 두께는 일반적으로 5 ~ 300 마이크로미터다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
상기 전해액은 리튬염 함유 비수계 전해액일 수 있고, 비수 전해액과 리튬염으로 이루어져 있다. 비수 전해액으로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용되지만 이들만으로 한정되는 것은 아니다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 비수 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬 수 있다.
하나의 구체적인 예에서, LiPF6, LiClO4, LiBF4, LiN(SO2CF3)2 등의 리튬염을, 고유전성 용매인 EC 또는 PC의 환형 카보네이트와 저점도 용매인 DEC, DMC 또는 EMC의 선형 카보네이트의 혼합 용매에 첨가하여 리튬염 함유 비수계 전해질을 제조할 수 있다.
이상에서 설명한 바와 같이, 본 발명에 따른 전지셀은, 침상 도체가 관통할 때, 침상 도체 대신, 결락된 인슐레이터 어셈블리 부위가 전극조립체의 관통 형태를 결정하도록 구성되어 있어, 침상 도체가 관통구 내에서 전극조립체 내측의 전극에 접촉될 가능성이 낮은 장점이 있다.
도 1 및 도 2는 본 발명의 하나의 실시예에 따른 전지셀의 모식도들이다;
도 3는 본 발명의 하나의 실시예에 따른 인슐레이터 어셈블리를 구성하는 인슐레이터 일부의 모식도이다;
도 4에는 침상 도체의 관통에 따른 인슐레이터 어셈블리 중, 결락 패턴이 작용하는 과정에 대한 모식도이다;
도 5는 본 발명의 또 다른 실시예에 따른 인슐레이터 어셈블리의 모식도이다;
도 6은 본 발명의 또 다른 실시예에 따른 전지셀의 모식도이다.
이하에서는, 본 발명의 실시예에 따른 도면을 참조하여 설명하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
도 1에는 본 발명의 하나의 실시예에 따른 전지셀(100)의 모식도가 도시되어 있고, 도 2에는 전지셀(100)의 측면에 대한 수직 단면도가 도시되어 있으며, 도 3에는 인슐레이터 어셈블리(200)의 모식도가 도시되어 있으며,
먼저, 도 1을 참조하면, 전지셀(100)은 파우치형의 셀 케이스(20) 내부에 양극, 음극 및 이들 사이에 배치되는 분리막으로 이루어진 전극조립체(30)가 전해액과 함께 내장되어 있고, 전극조립체(30)의 전극 탭들(40, 50)과 연결된 전극리드들(60, 70)이 셀 케이스(20)의 외측으로 돌출된 상태로 셀 케이스(20)의 외주 단부인 외주변들이 밀봉되는 구조로 이루어져 있다.
또한, 전극들의 적층 방향에서 전극조립체(30)의 상면의 외측에는 전기절연성의 인슐레이터 어셈블리(200)가 부가되어 있다.
도 3에 도시된 인슐레이터 어셈블리(200)는, 절연성 본체(210), 및 절연성 본체(210) 상에 형성되어 있는 복수의 결락 패턴들(220)을 포함하는 하나의 인슐레이터(201)를 포함한다.
결락 패턴(220)은, 전극조립체(30)의 관통 시 파손되지 않는 경도를 가지도록 금속, 고강도 플라스틱 또는 세라믹으로 이루어진 결락부(222)와 결락부(222)의 중심부와 인접한 부위에서, 결락부(222)의 평면적 대비 70%의 평면적 크기로 천공되어 있는 침상 도체 유도부(224)를 포함한다.
여기서, 절연성 본체(210)에는 결락부(222)의 평면 형상에 대응하는 개구가 천공된 구조로 이루어져 있으며, 결락부(222)가 절연성 본체(210)의 개구에 삽입된 상태에서, 이들의 계면에 접착제가 부가되어 있는 형태로, 절연성 본체(210)와 결락 패턴(220)이 결합되어 있다.
따라서, 접착제에 의한 접착력 이상의 외력이 결락부(222)에 인가되면, 결락부(222)가 절연성 본체(210)로부터 결락될 수 있다.
도면에 도시하지는 않았지만, 경우에 따라서는 상기 접착제 대신, 결락부(222)가 개구에 삽입된 상태에서, 이들의 계면이 상호 융착되어 있는 형태로, 절연성 본체(210)와 결락 패턴(220)이 결합될 수도 있다.
이러한 융착은 열에 의한 융착이나, 용접에 의한 융착, 솔더링에 의한 융착 등일 수 있으나, 이들만으로 한정되는 것은 아니다.
결락 패턴(220)의 총 평면적, 즉, 결락부(222)와 침상 도체 유도부(224)의 평면상의 면적 합은 대략 30 mm2 일 수 있으며, 이 중에서도 상기 침상 도체 유도부(224)의 평면상 면적은 대략 20 mm2로 구성될 수 있다. 이러한 구조에서는 직경이 대략 5 mm인 못과 같은 침상 도체(1)가 침상 도체 유도부(224)를 통과하면서 전지셀(100)을 관통할 때, 침상 도체 유도부(224)가 침상 도체(1)의 침상 단부에 고정되면, 결락부(222)는 절연성 본체(210)로부터 결락된 상태에서 침상 도체(1)를 따라 관통 방향으로 진행하며 전극조립체(30)를 관통하게 된다.
참고로, 이상에서는 일반적인 못의 직경인 5 mm로 가정하여, 결락 패턴(220)의 총 면적과 침상 도체 유도부(224)의 평면적을 설정한 것으로, 상기 수치만으로 본 발명의 범주가 한정되는 것은 아니며, 다양한 침상 도체(1)에 대비하기 위해 결락 패턴(220)의 크기나 형상을 다양하게 구성할 수 있음은 물론이다.
따라서, 침상 도체(1)가 아닌, 침상 도체(1)에 고정된 결락부(222)가 전지셀(100)을 관통하고, 그에 따라, 침상 도체(1) 대비 평면적이 넓은 결락부(222)가 전극조립체(30)의 관통구(2) 평면 형상을 결정하므로, 관통구(2)는 침상 도체(1) 대비, 평면상 면적이 넓어지며, 그에 따라 침상 도체(1)와 관통구(2) 내면, 즉, 전극들 사이에 공간이 형성되어 침상 도체(1)와 전극이 직접 접촉되는 문제를 상당히 억제할 수 있다.
이에 대해서는 도 4에 보다 구체적으로 도시되어 있다. 도 4에는 침상 도체(1)의 관통에 따른 인슐레이터 어셈블리(200) 중, 결락 패턴(220)이 작용하는 과정이 모식적으로 도시되어 있다.
도 4를 참조하면, 침상 도체(1)가 최초에 전지셀(100)의 전지케이스를 관통한 후, 침상 도체(1)의 침상 단부가 침상 도체 유도부(224)에 도입된다. 그러나, 침상 도체 유도부(224) 대비 침상 도체(1)의 직경이 크기 때문에, 침상 도체(1)는 침상 도체 유도부(224) 내에 고정된다.
이 상태에서 침상 도체(1)의 운동이 계속되면, 결락부(222)가 절연성 본체(210)로부터 결락되게 된다.
결락부(222)는 침상 도체(1) 대비 평면적이 넓기 때문에, 침상 도체(1)의 침상 단부 측에 고정된 결락부(222)가 전극조립체(30)의 전극들을 차례로 관통한다.
따라서, 침상 도체(1)는 관통구(2)의 크기 대비 작은 크기를 가지므로, 전극에 직접 접촉되지 않는다.
이상과 같이, 본 발명에서는 전극조립체(30) 외면에 침상 도체(1)의 관통에 대비하기 위한 절연성 어셈블리가 부가되어 있는바, 침상 도체(1)에 대한 전지셀(100)의 안정성이 크게 향상될 수 있다.
한편, 도면에 별도로 도시하지는 않았지만, 상기 침상 도체 유도부(224)는 결락부(222)가 단순 천공된 구조, 상기 천공된 상태에서 연신율이 높은 절연막이 부가되어 있는 형태일 수 있다.
도 5를 참조하면, 인슐레이터 어셈블리(300)는 제 1 인슐레이터(311)와 제 2 인슐레이터(312)가 적층된 구조로 이루어져 있다.
제 1 인슐레이터(311)에는 평면상으로 육각형의 결락 패턴들(311)이 일정 간격으로 이격된 상태로 절연성 본체 상에 형성되어 있다.
제 2 인슐레이터(312)는 평면상으로 제 1 인슐레이터(311)의 결락 패턴들(311)에 대해 중첩되지 않는 위치에서, 육각형의 결락 패턴들(321)이 절연성 본체 상에 형성되어 있다.
따라서, 인슐레이터 어셈블리(300)에서 둘 이상의 인슐레이터들은, 각각의 인슐레이터(310, 320)에 형성되어 있는 결락부 패턴들(311, 321)이 상호 중첩되지 않는 형태로 적층된 구조이다.
이러한 구조는 평면 상으로 결락부 패턴들(311, 321)이 상대적으로 촘촘하게 배열되어 있는 바, 침상 도체의 관통에 대한 사각 지대 형성을 최소화할 수 있다.
도 6에는 본 발명의 또 다른 실시예에 따른 전지셀의 모식도가 도시되어 있다.
도 6에 도시된 전지셀(400)의 기본 구조, 즉, 전극조립체, 전지케이스 등은 도 1 내지 도 4에 도시된 전지셀(100)과 동일하나, 인슐레이터 어셈블리(410, 412)가 전극조립체 외면이 아닌, 전지케이스(420)의 상면과 하면에 부가되어 있다.
다만, 인슐레이터 어셈블리(410, 412) 각각의 구체적인 구조와 작용 구조는 앞선 도 1 내지 도 4에 도시된 인슐레이터 어셈블리(200) 또는 도 5에 도시된 인슐레이터 어셈블리(300)과 동일하다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 수행하는 것이 가능할 것이다.
Claims (16)
- 전극조립체, 전해액 및 셀 케이스를 포함하는 전지셀로서,전극들의 적층 방향에서 전극조립체의 양면 중 적어도 일면의 외측에는 전기절연성의 인슐레이터 어셈블리(insulator assembly)가 부가되어 있으며;침상 도체가 상기 인슐레이터 어셈블리를 관통할 때, 침상 도체의 침상 단부가 도입되는 인슐레이터 어셈블리의 부위가 결락되면서 침상 도체와 함께 전극조립체를 관통하여, 상기 인슐레이터 어셈블리의 결락 부위에 의해 전극조립체의 관통구 평면 형상이 결정되는 것을 특징으로 하는 전지셀.
- 제 1 항에 있어서,상기 인슐레이터 어셈블리는 단일 인슐레이터 또는 인슐레이터 둘 이상이 적층되어 있는 구조로 이루어져 있고;상기 인슐레이터는, 절연성 본체, 및 상기 절연성 본체 상에 형성되어 있는 복수의 결락 패턴들을 포함하고 있는 구조인 것을 특징으로 하는 전지셀.
- 제 2 항에 있어서, 상기 인슐레이터 어셈블리에서 둘 이상의 인슐레이터들은, 각각의 인슐레이터에 형성되어 있는 결락 패턴들이 상호 중첩되지 않는 형태로 적층되어 있는 것을 특징으로 하는 전지셀.
- 제 2 항에 있어서, 침상 도체가 결락 패턴을 관통할 때, 인슐레이터 어셈블리로 도입되는 침상 도체의 침상 단부에 의해, 상기 결락 패턴이 절연성 본체로부터 결락된 상태로 침상 도체와 함께 전극조립체를 관통하는 것을 특징으로 하는 전지셀.
- 제 4 항에 있어서, 상기 결락 패턴은,전극조립체의 관통시 파손되지 않는 인장강도를 가지도록 금속, 고강도 플라스틱 또는 세라믹으로 이루어진 결락부; 및상기 결락부의 중심부와 인접한 부위에서, 결락부의 평면적 대비 50% 내지 80%의 평면적 크기로 천공되어 있는 침상 도체 유도부;를 포함하고;침상 도체 유도부가 침상 도체의 침상 단부에 고정되면, 결락부는 절연성 본체로부터 결락된 상태에서 침상 도체를 따라 관통 방향으로 진행하며 전극조립체를 관통하는 것을 특징으로 하는 전지셀.
- 제 5 항에 있어서, 상기 결락 패턴이 전극조립체에 형성되는 관통구 평면 형상과 면적을 결정하도록, 결락 패턴의 총 평면적이 7 mm2 내지 200 mm2 인 것을 특징으로 하는 전지셀.
- 제 5 항에 있어서, 상기 결락 패턴의 총 평면적은 20 mm2 내지 95 mm2 인 것을 특징으로 하는 전지셀.
- 제 5 항에 있어서, 상기 인장강도는 1 Kg/cm 내지 10 Kg/cm 인 것을 특징으로 하는 전지셀.
- 제 5 항에 있어서, 상기 고강도 플라스틱은 폴리아마이드, 폴리아세틸, 폴리카보네이트, 폴리에스터수지, 폴리페닐렌옥사이드, 폴리올레핀, 폴리이미드, 실리콘, 테프론, 아라미드 파이버(Aramid fiber), 글라스 파이버(Glass fiber), UHMWPE 파이버(Ultra-highmolecular-weight polyethylene fiber) 및 PBO 파이버(Polybenzoxazole fiber)에서 선택되는 하나로 이루어진 것을 특징으로 하는 전지셀.
- 제 5 항에 있어서, 상기 금속은 알루미늄, 구리, SUS, 두라늄, 팔라디움, 플레티늄, 니켈 및 몰리브덴으로 이루어진 군에서 선택되는 1종, 또는 2종 이상의 합금인 것을 특징으로 하는 전지셀.
- 제 10 항에 있어서, 상기 금속의 표면은 유기계 절연 코팅, 무기계 절연 코팅 또는 아노다이징(anodizing) 처리되어 있는 것을 특징으로 하는 전지셀.
- 제 5 항에 있어서, 상기 침상 도체 유도부에는 침상 도체의 침상 단부를 따라 연신될 수 있는, 절연막이 추가로 부가되어 있는 것을 특징으로 하는 전지셀.
- 제 5 항에 있어서, 상기 절연성 본체에는 결락부의 평면 형상에 대응하는 개구가 천공되어 있고, 상기 결락부가 개구에 삽입된 상태에서, 이들의 계면에 접착제가 부가되어 있는 형태로, 절연성 본체와 결락 패턴이 결합되어 있는 것을 특징으로 하는 전지셀.
- 제 5 항에 있어서, 상기 절연성 본체에는 결락부의 평면 형상에 대응하는 개구가 천공되어 있고, 상기 결락부가 개구에 삽입된 상태에서, 이들의 계면이 상호 융착되어 있는 형태로, 절연성 본체와 결락 패턴이 결합되어 있는 것을 특징으로 하는 전지셀.
- 제 5 항에 있어서, 노치 또는 절취선을 경계로 절연성 본체와 결락부가 구획되어 있는 형태로 절연성 본체와 결락 패턴이 일체를 이루고 있는 것을 특징으로 하는 전지셀.
- 제 5 항에 있어서, 상기 결락 패턴은, 평면상으로 원형, 타원형, 또는 다각형인 것을 특징으로 하는 전지셀.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780004249.1A CN108292786B (zh) | 2016-08-17 | 2017-08-11 | 包括用于防止由钉子引起的短路的绝缘体组件的电池单元 |
JP2018524789A JP6666442B2 (ja) | 2016-08-17 | 2017-08-11 | 針状導体による短絡を防止するインシュレータアセンブリを含む電池セル |
US15/772,638 US10903529B2 (en) | 2016-08-17 | 2017-08-11 | Battery cell comprising insulator assembly for preventing short circuit caused by nail |
EP17841646.7A EP3367492B1 (en) | 2016-08-17 | 2017-08-11 | Battery cell comprising insulator assembly for preventing needle-shaped conductor from causing short circuit |
PL17841646T PL3367492T3 (pl) | 2016-08-17 | 2017-08-11 | Ogniwo akumulatorowe zawierające zespół izolatora do zapobiegania wywoływaniu zwarcia przez przewodnik w kształcie igły |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160104552A KR102051554B1 (ko) | 2016-08-17 | 2016-08-17 | 침상 도체로 인한 단락을 방지하는 인슐레이터 어셈블리를 포함하는 전지셀 |
KR10-2016-0104552 | 2016-08-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018034463A1 true WO2018034463A1 (ko) | 2018-02-22 |
Family
ID=61196915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/008727 WO2018034463A1 (ko) | 2016-08-17 | 2017-08-11 | 침상 도체로 인한 단락을 방지하는 인슐레이터 어셈블리를 포함하는 전지셀 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10903529B2 (ko) |
EP (1) | EP3367492B1 (ko) |
JP (1) | JP6666442B2 (ko) |
KR (1) | KR102051554B1 (ko) |
CN (1) | CN108292786B (ko) |
PL (1) | PL3367492T3 (ko) |
WO (1) | WO2018034463A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111261951A (zh) * | 2018-11-30 | 2020-06-09 | 本田技研工业株式会社 | 二次电池和梳状电极 |
KR102607707B1 (ko) * | 2022-09-06 | 2023-11-29 | 주식회사티엠프라자 | 이차전지용 가스제거모듈 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130033551A (ko) * | 2011-09-27 | 2013-04-04 | 주식회사 엘지화학 | 우수한 제조 공정성과 안전성의 이차전지 |
US20130193927A1 (en) * | 2012-01-18 | 2013-08-01 | Li-Tec Battery Gmbh | Electrochemical energy storage device, battery having at least two such electrochemical energy storage devices, and method for operating such an electrochemical energy strorage device |
KR20140065956A (ko) * | 2012-11-22 | 2014-05-30 | 삼성에스디아이 주식회사 | 이차 전지 |
KR20150092572A (ko) * | 2014-02-05 | 2015-08-13 | 주식회사 엘지화학 | 최외각에 절연성 액상물질을 내장한 안전부재가 구비되어 있는 전지모듈 및 이를 포함하는 전지팩 |
KR20160084817A (ko) * | 2015-01-06 | 2016-07-14 | 주식회사 엘지화학 | 안전성이 향상된 전극 조립체 및 이를 포함하는 이차전지 |
KR20160089153A (ko) * | 2015-01-19 | 2016-07-27 | 에스케이이노베이션 주식회사 | 리튬 이차 전지 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3765094B2 (ja) * | 1996-12-28 | 2006-04-12 | 株式会社ジーエス・ユアサコーポレーション | 非水電解液電池 |
KR100611940B1 (ko) * | 2003-11-21 | 2006-08-11 | 주식회사 엘지화학 | 안전성이 향상된 전기화학 전지 |
US9105930B2 (en) | 2006-12-18 | 2015-08-11 | Prologium Holding Inc. | Electricity supply system and electricity supply element thereof |
KR101025277B1 (ko) | 2007-10-30 | 2011-03-29 | 삼성에스디아이 주식회사 | 전극 조립체 및 이를 구비하는 이차 전지 |
FR2960705B1 (fr) | 2010-05-27 | 2012-08-17 | Batscap Sa | Batterie au lithium protegee contre l'intrusion d'elements pointus |
KR101533993B1 (ko) | 2012-04-30 | 2015-07-06 | 주식회사 엘지화학 | 시트 부재 및 필름 부재를 포함하고 있는 전지모듈 |
US10367186B2 (en) * | 2013-01-18 | 2019-07-30 | Samsung Sdi Co., Ltd. | Secondary battery including an insulating member |
JP2015053134A (ja) | 2013-09-05 | 2015-03-19 | 株式会社豊田自動織機 | 蓄電装置 |
KR101684391B1 (ko) * | 2014-01-10 | 2016-12-08 | 주식회사 엘지화학 | 안전 분리막을 가진 전극조립체 및 이를 포함하는 이차전지 |
KR101686600B1 (ko) * | 2014-07-04 | 2016-12-14 | 주식회사 엘지화학 | 전해액 함침용 홀을 포함하고 있는 전지셀 |
KR101749409B1 (ko) * | 2015-08-28 | 2017-06-21 | 주식회사 제낙스 | 이차 전지 및 이의 제조 방법 |
KR20170050188A (ko) | 2015-10-29 | 2017-05-11 | 현대자동차주식회사 | 내부단락방지필름 및 이를 포함하는 배터리 |
-
2016
- 2016-08-17 KR KR1020160104552A patent/KR102051554B1/ko active IP Right Grant
-
2017
- 2017-08-11 WO PCT/KR2017/008727 patent/WO2018034463A1/ko active Application Filing
- 2017-08-11 PL PL17841646T patent/PL3367492T3/pl unknown
- 2017-08-11 JP JP2018524789A patent/JP6666442B2/ja active Active
- 2017-08-11 US US15/772,638 patent/US10903529B2/en active Active
- 2017-08-11 CN CN201780004249.1A patent/CN108292786B/zh active Active
- 2017-08-11 EP EP17841646.7A patent/EP3367492B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130033551A (ko) * | 2011-09-27 | 2013-04-04 | 주식회사 엘지화학 | 우수한 제조 공정성과 안전성의 이차전지 |
US20130193927A1 (en) * | 2012-01-18 | 2013-08-01 | Li-Tec Battery Gmbh | Electrochemical energy storage device, battery having at least two such electrochemical energy storage devices, and method for operating such an electrochemical energy strorage device |
KR20140065956A (ko) * | 2012-11-22 | 2014-05-30 | 삼성에스디아이 주식회사 | 이차 전지 |
KR20150092572A (ko) * | 2014-02-05 | 2015-08-13 | 주식회사 엘지화학 | 최외각에 절연성 액상물질을 내장한 안전부재가 구비되어 있는 전지모듈 및 이를 포함하는 전지팩 |
KR20160084817A (ko) * | 2015-01-06 | 2016-07-14 | 주식회사 엘지화학 | 안전성이 향상된 전극 조립체 및 이를 포함하는 이차전지 |
KR20160089153A (ko) * | 2015-01-19 | 2016-07-27 | 에스케이이노베이션 주식회사 | 리튬 이차 전지 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3367492A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111261951A (zh) * | 2018-11-30 | 2020-06-09 | 本田技研工业株式会社 | 二次电池和梳状电极 |
CN111261951B (zh) * | 2018-11-30 | 2023-07-18 | 本田技研工业株式会社 | 二次电池和梳状电极 |
KR102607707B1 (ko) * | 2022-09-06 | 2023-11-29 | 주식회사티엠프라자 | 이차전지용 가스제거모듈 |
Also Published As
Publication number | Publication date |
---|---|
JP6666442B2 (ja) | 2020-03-13 |
CN108292786A (zh) | 2018-07-17 |
EP3367492A1 (en) | 2018-08-29 |
JP2018537816A (ja) | 2018-12-20 |
EP3367492B1 (en) | 2019-07-03 |
KR102051554B1 (ko) | 2019-12-03 |
CN108292786B (zh) | 2021-06-22 |
EP3367492A4 (en) | 2018-08-29 |
US10903529B2 (en) | 2021-01-26 |
US20200194847A1 (en) | 2020-06-18 |
KR20180020061A (ko) | 2018-02-27 |
PL3367492T3 (pl) | 2019-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016060521A1 (ko) | 전기절연층이 코팅되어 있는 전극탭 및 이를 포함하는 이차전지 | |
WO2016048028A1 (ko) | 절연층을 포함하는 이차전지용 케이스 및 이를 포함하는 리튬 이차전지 | |
WO2015105369A1 (ko) | 안전 분리막을 가진 전극조립체 및 이를 포함하는 이차전지 | |
WO2017188605A1 (ko) | 규격화된 구조에 기반하여 제조 공정성이 우수하면서도 전극리드의 절연 성능이 향상된 전지셀 및 이를 포함하는 전지팩 | |
WO2013118982A1 (ko) | 신규한 구조의 이차전지 | |
WO2016056875A2 (ko) | 전극조립체 및 이의 제조방법 | |
WO2013002497A2 (ko) | 우수한 제조 공정성과 안전성의 이차전지 | |
WO2015105365A1 (ko) | 고 연신 특성의 분리막을 가진 전극조립체 및 이를 포함하는 이차전지 | |
WO2019203571A1 (ko) | 비대칭 구조의 이차전지용 난연 분리막 | |
WO2018048126A1 (ko) | 균일한 품질을 가지는 전극들의 제조 방법 및 이를 포함하는 전극조립체 제조 방법 | |
WO2013048037A2 (ko) | 우수한 제조 공정성과 안전성의 이차전지 | |
WO2016140454A1 (ko) | 접착력이 강화된 분리막을 포함하는 전지셀 | |
WO2016163654A1 (ko) | 안전성이 향상된 스택-폴딩형 전극조립체 및 이를 포함하는 리튬이차전지 | |
KR101675976B1 (ko) | 고 연신 특성의 분리막을 가진 전극조립체 및 이를 포함하는 이차전지 | |
WO2018034463A1 (ko) | 침상 도체로 인한 단락을 방지하는 인슐레이터 어셈블리를 포함하는 전지셀 | |
WO2020159083A1 (ko) | 절연층이 형성되어 있는 전극을 포함하는 스택형 전극조립체 및 이를 포함하는 리튬 이차전지 | |
WO2017119675A1 (ko) | 확장된 전극 리드를 포함하는 전지셀 | |
KR20160033894A (ko) | 기계적 강도가 향상된 분리막을 포함하는 전극조립체 및 이를 포함하는 리튬 이차전지 | |
KR101675944B1 (ko) | 고 연신 특성의 분리막을 가진 전극조립체 및 이를 포함하는 이차전지 | |
WO2016140453A1 (ko) | 전극 리드를 통한 전기 연결 구조를 효율적으로 구성할 수 있는 비정형 구조의 전지셀 | |
WO2018199604A1 (ko) | 절연 부재, 절연 부재의 제조방법 및 상기 절연 부재를 포함하는 원통형 전지의 제조방법 | |
WO2017213336A1 (ko) | 비정형 구조의 전극조립체 제조 방법 및 비정형 전극조립체 | |
WO2021029574A1 (ko) | 단락유도부재를 포함하는 전기화학소자 및 이를 이용한 안전성 평가방법 | |
KR101684381B1 (ko) | 안전 분리막을 가진 전극조립체 및 이를 포함하는 이차전지 | |
KR101868205B1 (ko) | 단위셀을 2회 이상 감싸는 분리필름을 포함하는 전극조립체 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018524789 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017841646 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |