WO2013118982A1 - 신규한 구조의 이차전지 - Google Patents

신규한 구조의 이차전지 Download PDF

Info

Publication number
WO2013118982A1
WO2013118982A1 PCT/KR2013/000358 KR2013000358W WO2013118982A1 WO 2013118982 A1 WO2013118982 A1 WO 2013118982A1 KR 2013000358 W KR2013000358 W KR 2013000358W WO 2013118982 A1 WO2013118982 A1 WO 2013118982A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
metal layer
secondary battery
negative electrode
active material
Prior art date
Application number
PCT/KR2013/000358
Other languages
English (en)
French (fr)
Inventor
오경수
구자훈
김성종
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48947714&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013118982(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from KR1020120012341A external-priority patent/KR20130091086A/ko
Priority claimed from KR1020120015088A external-priority patent/KR101326082B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2014548694A priority Critical patent/JP6008981B2/ja
Priority to CN201380004178.7A priority patent/CN103988339A/zh
Priority to EP13746261.0A priority patent/EP2772964B1/en
Publication of WO2013118982A1 publication Critical patent/WO2013118982A1/ko
Priority to US14/080,458 priority patent/US8895169B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/171Lids or covers characterised by the methods of assembling casings with lids using adhesives or sealing agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery having a novel structure, and more particularly, a separator including a cathode including a cathode active material coating on at least one surface of a cathode current collector and a cathode including an anode active material coating on at least one surface of an anode current collector.
  • the present invention relates to a secondary battery comprising a combination of a first metal layer used for bonding to an electrode support and / or a battery case, and a second metal layer having a lower resistance than the first metal layer.
  • secondary batteries are classified into cylindrical batteries and rectangular batteries in which the electrode assembly is embedded in a cylindrical or rectangular metal can, and pouch-type batteries in which the electrode assembly is embedded in a pouch type case of an aluminum laminate sheet. .
  • the cylindrical battery has the advantage of relatively large capacity and structurally stable.
  • the electrode assembly embedded in the battery case is a power generator capable of charging and discharging composed of a laminated structure of a cathode, a separator, and a cathode.
  • a plurality of positive and negative electrodes of size are classified into a stack type in which a plurality of positive and negative electrodes are sequentially stacked in a state where a separator is interposed.
  • the jelly-roll type electrode assembly has advantages of easy manufacturing and high energy density per weight.
  • FIG. 1 schematically shows a vertical cross-sectional perspective view of a typical cylindrical battery.
  • the cylindrical battery 100 accommodates a jelly-roll type (wound) electrode assembly 120 in a cylindrical can 130, injects electrolyte into the cylindrical can 130, and then cylindrical can 130.
  • a jelly-roll type (wound) electrode assembly 120 in a cylindrical can 130, injects electrolyte into the cylindrical can 130, and then cylindrical can 130.
  • the electrode assembly 120 has a structure in which a cathode 121, a cathode 122, and a separator 123 are interposed therebetween, and are wound in a round shape.
  • a cylindrical center pin is formed at its core (center of jelly-roll). 150 is inserted.
  • the center pin 150 is generally made of a metal material to impart a predetermined strength, and has a hollow cylindrical structure in which a plate is rounded.
  • the center pin 150 acts as a passage for fixing and supporting the electrode assembly and for discharging gas generated by internal reaction during charging and discharging and operation.
  • lithium secondary batteries have the disadvantage of low safety.
  • the battery when the battery is overcharged to about 4.5 V or more, decomposition reaction of the positive electrode active material occurs, dendrite growth of lithium metal at the negative electrode, decomposition reaction of electrolyte solution, and the like occur. In this process, heat is accompanied, so that the decomposition reaction and a number of side reactions are rapidly progressed, and the air supply may cause the battery to ignite and explode.
  • a general cylindrical battery includes a current interrupting member (CID) and a safety vent (CID) and a safety vent for interrupting current and releasing internal pressure during abnormal operation of the battery. It is attached to the space between the top caps 140.
  • the top cap 10 forms a positive electrode terminal in a protruding shape, and an exhaust port is perforated, and a battery resistance increases significantly when a temperature rises inside the battery, thereby blocking a current.
  • PTC device positive temperature coefficient element: 20
  • the safety vent 30 for exhausting the gas in a normal state is protruding downward, the safety vent 30 for exhausting the gas is bursting while the shape is reversed when the pressure rises inside the battery, and the upper one side is safe
  • the connection plate 50 coupled to the vent 30 and connected to the anode of the electrode assembly 40 at one lower end thereof is sequentially located.
  • the anode of the electrode assembly 40 is connected to the top cap 10 via the anode lead 42, the connection plate 50, the safety vent 30, and the PTC element 20 to conduct electricity. Achieve.
  • the conventional negative electrode lead uses a single material such as nickel and has a single size.
  • a material having a lower resistance than nickel such as copper
  • the present invention aims to solve the problems of the prior art and the technical problem that has been requested from the past.
  • At least one of the positive electrode lead coupled to the positive electrode non-coated portion and the negative electrode lead coupled to the negative electrode uncoated portion includes: a first metal layer and a first metal layer used for bonding to the electrode uncoated portion and / or to a battery case; When it is configured to be made of a combination of the second metal layer having a relatively low resistance, it was confirmed that the resistance and heat generation can be reduced by the second metal layer having low resistance during use of the secondary battery, and thus the present invention has been completed.
  • the secondary battery according to the present invention has a cathode in which a cathode including a cathode active material coating part on at least one surface of the cathode current collector and a cathode including an anode active material coating part on at least one surface of the anode current collector are wound with a separator interposed therebetween.
  • the rolled electrode assembly (“jelly-roll") and the electrolyte are embedded in the battery case,
  • At least one of the positive electrode lead coupled to the positive electrode uncoated portion and the negative electrode lead coupled to the negative electrode uncoated portion is a first metal layer used for bonding to the electrode uncoated portion and / or to the battery case and relative to the first metal layer. It consists of a combination of a second metal layer of low resistance.
  • At least one of the positive electrode lead coupled to the positive electrode non-coated portion and the negative electrode lead coupled to the negative electrode non-coated portion is a material used for coupling to the electrode uncoated portion and / or to the battery case.
  • the first metal layer having a relatively high resistance ensures a predetermined coupling force to the electrode support and the battery case, and has a low resistance.
  • the resistance of the positive electrode lead and / or the negative electrode lead may be reduced by the second metal layer to reduce resistance and heat generation generated in the electrode lead during use of the secondary battery.
  • the battery case may be a cylindrical can, a rectangular can, or a pouch-type case according to a shape, and in order to manufacture a cylindrical battery having a relatively large capacity and structurally stable, the battery case is preferably made of a cylindrical can.
  • the first metal layer may be a structure bonded to the electrode supporting portion or the battery case by a welding method.
  • the welding method may preferably be resistance welding, and the relatively high resistance of the first metal layer provides high bonding force to the electrode support or the battery case in such resistance welding.
  • the resistance of the second metal layer has a size of 10 to 70% with respect to the resistance of the first metal layer.
  • the resistance of the second metal layer is less than 10% with respect to the resistance of the first metal layer, it may be difficult to achieve the desired effect in the present invention, on the contrary, when the resistance of the second metal layer exceeds 70%, the performance of the battery may be reduced due to the high resistance difference between the metal layers. It is not preferable because it may be caused.
  • the electrode lead which is composed of a combination of the first metal layer and the second metal layer, may have a resistance value of 2.0 to 5.0 m ⁇ as a whole, which is composed of a single metal layer (eg, a first metal layer material) having the same cross-sectional area.
  • the resistance of the electrode lead consisting of) is about 7.5%, which is a 50% decrease in resistance.
  • the bonding of the first metal layer and the second metal layer is not particularly limited as long as the bonding method can be easily achieved with each other, but may be achieved by, for example, a dissimilar material bonding method.
  • the dissimilar material bonding method may be a thermal fusion method, a rolling method, a chemical bonding method, a laser welding, a spot welding, a plating method, or a coating method, and a rolling method is particularly preferable in terms of manufacturing process.
  • the coupling structure of the first metal layer and the second metal layer may be variously configured.
  • the first metal layer and the second metal layer may be a structure that is coupled up and down.
  • the first metal layer may be coupled to both sides of the second metal layer, respectively.
  • a structure in which the anode lead is formed of aluminum or an aluminum alloy and the cathode lead is formed of nickel or a nickel alloy is mainly used.
  • a negative electrode lead formed of nickel or a nickel alloy has a high resistance of nickel itself, which causes a lot of heat during charging and discharging of a secondary battery.
  • a portion where the negative electrode plate and the negative electrode lead are welded, and a portion where the battery case and the negative electrode lead which are aluminum are welded to different metals may not be easy to weld, and furthermore, heat may be generated due to high internal resistance during charge and discharge. This can be concentrated bar, which causes a high temperature short circuit there is a problem that causes the explosion of the secondary battery.
  • the first metal layer may be a nickel layer or an aluminum layer
  • the second metal layer may be formed of a copper layer or a silver layer, and may have a relatively low resistance.
  • the problem that heat generation occurs due to an increase in resistance can be fundamentally solved.
  • the positive electrode lead and / or negative electrode lead may be selected from a combination of a nickel layer and a copper layer, a combination of a nickel layer and a silver layer, a combination of an aluminum layer and a copper layer, or a combination of an aluminum layer and a silver layer, depending on a desired resistance. Of course, it can be used selectively.
  • the anode lead or cathode lead may preferably be made of 5 to 95% copper and 95 to 5% nickel on a thickness basis, and more preferably, the anode lead or cathode lead is 50% copper on a thickness basis. And 50% nickel.
  • the copper layer when the nickel layer is formed at a thickness ratio of 5% to the thickness of the entire anode lead or cathode lead, the copper layer may be formed at a thickness ratio of 95%, on the contrary, the nickel layer has a thickness of 95% When formed in a ratio, the copper layer may be formed in a thickness ratio of 5%.
  • the nickel layer when the nickel layer is formed at a thickness ratio of less than 5%, it may be difficult to provide a desired level of bonding strength for the electrode uncoated portion, the battery case, and the like.
  • copper is formed at a thickness ratio of less than 5%, there is a problem that it is difficult to expect the effect of reducing the resistance as desired.
  • the nickel layer or the copper layer exceeds the thickness ratio of 95%, the results contrary to the above are obtained, which is also not preferable.
  • the thickness of the anode lead or cathode lead may be 0.05 ⁇ 0.15 mm.
  • the thickness of the first metal layer may be formed to the same size as the thickness of the second metal layer, or the width of the first metal layer may be formed to the same size as the width of the second metal layer, but is not limited thereto. Of course.
  • the present invention also provides a secondary battery having electrical insulation properties and improved safety by attaching an insulating tape to a positive electrode active material coating boundary at a position where the positive electrode active material uncoated portion (uncoated portion) and the negative electrode active material coating portion face each other.
  • the start of the winding of the positive electrode has a positive electrode active material coating on both the top and bottom of the positive electrode current collector, not including a positive electrode non-coating portion, and includes a positive electrode non-coating portion for installing the positive electrode lead only at the positive electrode winding end portion,
  • the interface between the cathode active material coating portion facing the cathode may have a structure including an insulating tape.
  • the winding start portion of the positive electrode has a positive electrode active material coating on both the upper and lower portions of the positive electrode current collector, and does not include the positive electrode non-coating portion, and includes only the positive electrode non-coating portion for installing the positive electrode lead only at the positive electrode winding end portion.
  • a positive electrode active material coating part may be further included on at least one surface of the end portion of the positive electrode non-coating part, and the interface surface of the positive electrode active material coating part which is located at the end of the positive electrode winding end and faces the negative electrode may include an insulating tape.
  • the insulating tape is not particularly limited as long as it is excellent in insulating properties, for example, a material that does not heat shrink at 200 °C is preferred.
  • a material that is somewhat stretched when subjected to heat even if a problem occurs in a separator positioned between the electrodes, the part can be solved.
  • the insulating tape may be made of one or more selected from the group consisting of polyimide tape, acetate tape, glass cloth tape, polyester tape, polyphenylenesulfide (PPS), and polypropylene. Polyethylene terephthalate films are preferred.
  • the thickness of the insulating tape is preferably 10 to 100 ⁇ m.
  • the combination of the first metal layer and the second metal layer can be achieved by various methods.
  • the first metal layer and the second metal layer may be bonded to the electrode non-coated portion in a pre-bonded state, and such a bonding method is preferable in view of manufacturing process.
  • first metal layer and the second metal layer may be bonded together in the process of being bonded to the electrode uncoated portion.
  • the present invention also provides a jelly-roll type electrode assembly in which a positive electrode including a positive electrode active material coating portion on at least one surface of a positive electrode current collector and a negative electrode including a negative electrode active material coating portion on at least one surface of the negative electrode current collector are wound with a separator interposed therebetween ( "Jelly-roll"), and an electrode lead made of an alloy containing an electrolyte solution containing copper and nickel and containing 80% or more of copper (based on element content) in a battery case, by welding, a positive electrode current collector
  • a secondary battery having a structure coupled to a negative electrode current collector is provided.
  • an alloy is a composite metal obtained by adding one or more of these and other elements to a specific metal element
  • the electrode lead of the secondary battery according to the present invention is heterogeneous due to an alloy composition including copper as a main component and nickel as a secondary component.
  • the electrode lead contains a copper content of 80% or more having a very low resistance value, thereby improving the operating performance of the battery by low resistance during charging and discharging.
  • such electrode leads contain a predetermined amount of nickel, thereby providing excellent bonding strength when bonding the positive electrode collector or the negative electrode collector by ultrasonic welding or the like.
  • the electrode lead of the secondary battery according to the present invention has a resistance reduction of 10 to 50% while having almost similar weld bond strength as compared with the conventional electrode lead.
  • the copper content is 80% or more based on the molar amount of the element, and if the copper content is less than this, it may be difficult to exhibit a desired low resistance property.
  • the copper content in the alloy is 80 to 99.9%, the nickel content may be 0.1 to 20%.
  • the inventors confirmed experimentally that, when the nickel content is less than 0.1%, the bond strength during ultrasonic welding is not substantially superior to the bond strength of copper, and when the nickel content is more than 20%, the resistance is rapidly increased.
  • the copper content may be 90-99% and the nickel content may be 1-10%.
  • the alloy may additionally include heteroatoms other than copper and nickel, and the heteroatoms may be at least one selected from the group consisting of tin and silicon.
  • tin has a higher strength and a lower resistance than nickel, and silicon also has a higher strength than nickel, it is particularly preferable for a secondary battery because it has a property of lowering resistance with increasing temperature.
  • the content of the heterogeneous element is preferably 0.1 to 10% based on the total content of the alloy.
  • the alloy has a copper content of 80 to 99.8%, a nickel content of 0.1 to 10%, and a heterogeneous content of 0.1 to 10%.
  • the electrode lead is classified into a positive electrode lead and a negative electrode lead according to the type of current collector to which it is coupled, and the electrode lead according to the present invention may be a positive electrode lead or a negative electrode lead.
  • the electrode lead of the alloy as described above exhibits excellent bonding strength for the positive electrode collector and the negative electrode collector, respectively, during ultrasonic welding.
  • the electrode lead coupled to the positive electrode current collector and the electrode lead coupled to the negative electrode current collector may be preferably the same size.
  • the positive electrode current collector may be generally made to a thickness of 3 to 500 ⁇ m. Such a positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the positive electrode current collector may be formed on a surface of stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel. The surface-treated with carbon, nickel, titanium, silver, etc. can be used.
  • the current collector may form fine irregularities on its surface to increase the adhesion of the positive electrode active material, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the negative electrode current collector may be generally made to a thickness of 3 to 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver and the like on the surface, aluminum-cadmium alloy and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the secondary battery of the present invention has a structure in which a positive electrode and a negative electrode each having an electrode lead connected to a current collector are electrically separated by a separator, and a lithium salt-containing nonaqueous electrolyte is impregnated therein.
  • the positive electrode may include a positive electrode mixture, and the positive electrode mixture may include a positive electrode active material, a conductive material, a binder, a filler, and the like.
  • the conductive material is typically added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the binder is a component that assists in bonding the active material and the conductive agent to the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
  • the filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • the positive electrode may be prepared by applying a slurry prepared by mixing a positive electrode mixture including the above compounds with a solvent such as NMP onto a positive electrode current collector, followed by drying and rolling.
  • the negative electrode is manufactured by applying a negative electrode mixture including a negative electrode active material on a negative electrode current collector and then drying the negative electrode mixture, and the negative electrode mixture may include components as described above, if necessary.
  • the negative electrode active material may be, for example, carbon such as hardly graphitized carbon or graphite carbon; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me ' y O z (Me: Mn, Fe, Pb, Ge; Me' Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen, 0 ⁇ x ⁇ 1; 1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and metal oxides such as Bi 2 O 5
  • the separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally from 0.01 to 10 ⁇ m ⁇ m, thickness is generally 5 ⁇ 300 ⁇ m.
  • a separator for example, olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
  • a solid electrolyte such as a polymer
  • the solid electrolyte may also serve as a separator.
  • the lithium salt-containing non-aqueous electrolyte solution consists of an electrolyte solution and a lithium salt, and a non-aqueous organic solvent, an organic solid electrolyte, an inorganic solid electrolyte, and the like are used as the electrolyte solution.
  • non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma Butyl lactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorone, formamide, dimethylformamide, dioxolon , Acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl propionate can be
  • organic solid electrolyte examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymerizers containing ionic dissociating groups and the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4- LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates, and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
  • the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide have.
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitro Benzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride and the like may be added. .
  • a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-Ethylene) may be further included.
  • carbonate), PRS (propene sultone), FPC (Fluoro-Propylene carbonate) may be further included.
  • the jelly-roll type electrode assembly is coated with an electrode active material or the like on a metal foil used as a current collector, dried and pressed, cut into bands of a desired width and length, and the membrane is separated using a separator using a separator. It is manufactured by winding it spirally. Jelly-rolls are mainly used in cylindrical cells, and in some cases, they may be compressed into plate-shaped and applied to square or pouch cells.
  • an electrode lead made of an alloy according to the present invention is connected to the positive electrode and the negative electrode of the jelly-roll type electrode assembly, and more specifically, is bonded to an uncoated portion of the electrode mixture in which the active material layer is not coated.
  • the method of welding the electrode lead to the current collector may vary, for example, arc welding, ultrasonic welding, resistance welding, and the like.
  • ultrasonic welding is a method of applying the ultrasonic wave while pressing the weld to be welded to use the vibration, and removes foreign substances, etc. present between the welded object pressed by the vibration energy of the high frequency generated by the ultrasonic wave of about 20 KHz. And the gap between the welds is narrowed to the interatomic distance, and welding is performed.
  • Welding of the electrode lead according to the present invention is preferably coupled to the positive electrode current collector or the negative electrode current collector by ultrasonic welding, it is possible to reduce the resistance of the joint portion compared to the above welding, thereby preventing the thermal damage generated. .
  • the present invention also provides an electric power tool including the secondary battery as a power source.
  • the secondary battery used as a power source of the power tool is preferably a structure with a small internal resistance.
  • the secondary battery according to the present invention has a low resistance of the electrode lead unlike the conventional secondary battery, it can be easily used in a power tool.
  • FIG. 1 is a vertical sectional perspective view of a conventional cylindrical battery
  • FIG. 2 is a partial cross-sectional perspective view of FIG. 1;
  • FIG. 3 is a partial horizontal cross-sectional schematic diagram before winding a jelly-roll type electrode assembly according to one embodiment of the present invention
  • FIG. 4 is a perspective view of the positive lead and the negative lead of FIG. 3;
  • FIG. 5 is a perspective view of a positive electrode lead and a negative electrode lead according to another embodiment of the present invention.
  • FIGS. 6 and 7 are partial horizontal cross-sectional schematic diagrams before winding a jelly-roll type electrode assembly according to various embodiments of the present disclosure.
  • FIG. 3 is a partial horizontal cross-sectional schematic diagram before winding a jelly-roll type electrode assembly according to one embodiment of the present invention
  • FIG. 4 is a perspective view of the positive electrode lead and the negative electrode lead of FIG. 3. .
  • the cylindrical battery includes a positive electrode 152 including a positive electrode active material coating portion 155 on both sides of the positive electrode current collector 151, and a negative electrode active material coating portion 156 on both sides of the negative electrode current collector 153.
  • the negative electrode 154 including the jelly-roll type electrode assembly 200 in which the separator 142 is interposed therebetween, and the electrolyte are embedded in a cylindrical can (not shown).
  • the anode lead 114 coupled to the anode plain portion 158 has a lower resistance than the first metal layer 1142 and the first metal layer 1142 used for bonding to the anode plain portion 158.
  • the second metal layer 1144 is joined up and down by rolling, and the negative electrode lead 112 bonded to the negative electrode plain portion 157 is the first metal layer 1122 used for bonding to the negative electrode plain portion 157.
  • the second metal layer 1124 having a lower resistance than the first metal layer 1122 are joined up and down by rolling.
  • the first metal layer 1122 of the negative electrode lead 112 is coupled to the negative electrode plain portion 157 by resistance welding, and the resistance of the second metal layer 1124 is about 50% of the resistance of the first metal layer 1122. Has a size.
  • first metal layer 1142 of the anode lead 114 is coupled to the anode uncoated portion 158 by resistance welding, and the resistance of the second metal layer 1144 is about the resistance of the first metal layer 1142. 50% size.
  • the anode lead 114 and the cathode lead 112 are made of 50% copper and 50% nickel based on the thickness, and the thicknesses of the first metal layers 1142 and 1122 are the second metal layers 1144 and 1124. It is formed in the same size as the thickness of).
  • the widths of the first metal layers 1142 and 1122 are formed to have the same size as the widths of the second metal layers 1144 and 1124, and the first metal layers 1142 and 1122 are nickel layers or aluminum layers.
  • the second metal layers 1144 and 1124 are made of a copper layer or a silver layer.
  • first metal layers 1142 and 1122 and the second metal layers 1144 and 1124 are coupled to the positive electrode non-coating portion 114 and the negative electrode non-coating portion 112 in a pre-combined state.
  • FIG. 4 is an exemplary structure
  • a multilayer structure such as a first metal layer (a)-a second metal layer (b)-a first metal layer (c) is also possible.
  • the components, thickness, width, etc. of the first metal layer (a) and the first metal layer (c) may not be the same.
  • FIG. 5 is a perspective view schematically showing a positive electrode lead and a negative electrode lead according to another embodiment of the present invention.
  • first and second metal layers 1142a and 1122a are coupled to both sides of the anode lead 114a and the cathode lead 112a with respect to the second metal layers 1144a and 1124a, respectively.
  • the thicknesses and widths of the first metal layers 1142a and 1122a are formed to be the same as the thicknesses and widths of the second metal layers 1144a and 1124a.
  • FIG 6 and 7 are partial horizontal cross-sectional schematic diagrams before winding the jelly-roll type electrode assembly according to various embodiments of the present invention.
  • the winding start portion of the positive electrode 252 has positive electrode active material coating portions 220a and 220b on both the upper and lower portions of the positive electrode current collector 258. Therefore, the positive electrode non-coating portion is not included, and the positive electrode non-coating portion 258 'for installing the positive electrode lead 214 is included only at the winding end of the positive electrode 252.
  • insulating tapes 216a and 216b are positioned at the winding end of the positive electrode 252 and attached to the interface between the positive electrode active material coating portion 220a facing the negative electrode 254.
  • the negative electrode 254 includes the negative electrode active material coating parts 240a and 240b on both sides of the negative electrode current collector 256, and the winding end of the negative electrode current collector 256 does not include the negative electrode active material coating part 256.
  • a negative electrode lead 212 for connecting to an external terminal is connected thereto, including ').
  • separators 242a and 242b are designed to extend longer than the ends of the cathodes 254 so that the cathodes 254 are blocked even if the separators 242a and 242b are contracted by heat.
  • the negative electrode active material coating part 240a on the negative electrode current collector 256 which is the winding end part, is disposed on the positive electrode active material coating interface under the positive electrode current collector 258 on the side where the positive electrode lead 214 is disposed with the separator 242a interposed therebetween.
  • an insulating tape 216b is added to the positive electrode active material coating interface to prevent a short circuit between the positive electrode non-coating 258 'and the negative electrode active material coating portion 240a that are not coated with the positive electrode active material.
  • an insulating tape 216a is added to the positive electrode active material coating interface so as not to come into contact with the positive electrode current collector, which is the uncoated portion of the positive electrode active material.
  • the winding start of the positive electrode 252 does not include the positive electrode uncoated portion by having the positive electrode active material coating portions 219c and 219d on both the upper and lower portions of the positive electrode current collector 258. Instead, only the anode winding end portion includes the anode plain portion for installing the anode lead 214.
  • positive electrode active material coating parts 217a and 217b are formed on both sides of the positive electrode non-coating end portion, and second insulating tapes 219a and 219b are attached to upper and lower surfaces of the positive electrode active material coating parts 217a and 217b. .
  • first insulating tapes 216a and 216b are attached to the boundary surfaces of the positive electrode active material coating portions 219c and 219d facing the negative electrode 254 at the end of the positive electrode winding.
  • a cathode lead of an alloy having a copper content of 96% (based on element content), a nickel content of 3%, and a tin content of 1% was prepared, and a cathode lead made of aluminum was prepared.
  • These electrode leads are ultrasonically fused to the uncoated portion of the negative electrode and the positive electrode, wound with a separator interposed between the positive electrode and the negative electrode to form a jelly-roll, and then inserted into a cylindrical can of stainless steel and injected with an electrolyte solution to charge a battery cell.
  • a separator interposed between the positive electrode and the negative electrode to form a jelly-roll
  • a battery cell was manufactured in the same manner as in Example 1, except that an anode lead of an alloy having a copper content of 89%, a nickel content of 10%, and a tin content of 1% was manufactured and used.
  • a battery cell was manufactured in the same manner as in Example 1, except that an anode lead of an alloy having a nickel content of 99% and a tin content of 1% was used.
  • the resistance and strength of the negative electrode leads used in the battery cells of Examples 1 and 2 and Comparative Example 1 were measured. As a result, it was confirmed that the negative electrode leads of Examples 1 and 2 exhibited a resistance reduction effect in the range of approximately 10 to 50% while having almost similar bonding strength as compared with the negative electrode leads of Comparative Example 1.
  • the secondary battery As described above, in the secondary battery according to the present invention, at least one of the positive electrode lead coupled to the non-coated portion of the positive electrode and the negative electrode lead coupled to the non-coated portion of the negative electrode is coupled to the electrode non-coated portion and / or the battery case. Since the first metal layer used for the bonding and the second metal layer having a lower resistance than the first metal layer are configured to be bonded, the secondary battery provides a predetermined bonding force to the electrode supporting portion or the battery case and at the same time uses the secondary battery. The generation of resistance and heat generation at the electrode lead portion can be greatly reduced.
  • the electrode lead is made of an alloy including copper, nickel, and the like, and includes copper having low resistance characteristics and nickel having high bonding strength characteristics, thereby charging and discharging the secondary battery. Not only can the operational characteristics be improved, but it can also provide good manufacturing processability.

Abstract

본 발명은 신규한 구조의 이차전지에 관한 것으로, 더욱 상세하게는 양극 집전체의 적어도 일면에 양극 활물질 코팅부를 포함하는 양극과 음극 집전체의 적어도 일면에 음극 활물질 코팅부를 포함하는 음극이 분리막이 개재된 상태로 권취되어 있는 젤리-롤형 전극조립체("젤리-롤"), 및 전해액이 전지 케이스에 내장되어 있으며, 양극 무지부에 결합된 양극 리드 및 음극 무지부에 결합된 음극 리드 중의 적어도 하나는, 전극 무지부에 대한 결합 및/또는 전지 케이스에 대한 결합에 사용되는 제 1 금속층과, 상기 제 1 금속층보다 상대적으로 저항이 낮은 제 2 금속층의 결합으로 이루어져 있는 이차전지에 관한 것이다.

Description

신규한 구조의 이차전지
본 발명은 신규한 구조의 이차전지에 관한 것으로, 더욱 상세하게는 양극 집전체의 적어도 일면에 양극 활물질 코팅부를 포함하는 양극과 음극 집전체의 적어도 일면에 음극 활물질 코팅부를 포함하는 음극이 분리막이 개재된 상태로 권취되어 있는 젤리-롤형 전극조립체("젤리-롤"), 및 전해액이 전지 케이스에 내장되어 있으며, 양극 무지부에 결합된 양극 리드 및 음극 무지부에 결합된 음극 리드 중의 적어도 하나는, 전극 무지부에 대한 결합 및/또는 전지 케이스에 대한 결합에 사용되는 제 1 금속층과, 상기 제 1 금속층보다 상대적으로 저항이 낮은 제 2 금속층의 결합으로 이루어져 있는 이차전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 방전 전압의 리튬 이차전지에 대해 많은 연구가 행해졌고 또한 상용화되어 널리 사용되고 있다.
이차전지는 전지케이스의 형상에 따라, 전극조립체가 원통형 또는 각형의 금속 캔에 내장되어 있는 원통형 전지 및 각형 전지와, 전극조립체가 알루미늄 라미네이트 시트의 파우치형 케이스에 내장되어 있는 파우치형 전지로 분류된다. 그 중 원통형 전지는 상대적으로 용량이 크고 구조적으로 안정하다는 장점을 가진다.
전지케이스에 내장되는 전극조립체는 양극/분리막/음극의 적층 구조로 이루어진 충방전이 가능한 발전소자로서, 활물질이 도포된 긴 시트형의 양극과 음극 사이에 분리막을 개재하여 권취한 젤리-롤형과, 소정 크기의 다수의 양극과 음극을 분리막이 개재된 상태에서 순차적으로 적층한 스택형으로 분류된다. 그 중 젤리-롤형 전극조립체는 제조가 용이하고 중량당 에너지 밀도가 높은 장점을 가지고 있다.
이와 관련하여, 도 1에는 일반적인 원통형 전지의 수직 단면 사시도가 모식적으로 도시되어 있다.
도 1을 참조하면, 원통형 전지(100)는 젤리-롤형(권취형) 전극조립체(120)를 원통형 캔(130)에 수납하고, 원통형 캔(130) 내에 전해액을 주입한 후에, 원통형 캔(130)의 개방 상단에 전극 단자(예를 들어, 양극 단자; 도시하지 않음)가 형성되어 있는 탑 캡(140)을 결합하여 제작한다.
전극조립체(120)는 양극(121)과 음극(122), 및 이들 사이에 분리막(123)을 개재한 후 둥근 형태로 감은 구조로서, 그것의 권심(젤리-롤의 중심부)에는 원통형의 센터 핀(150)이 삽입되어 있다. 센터 핀(150)은 일반적으로 소정의 강도를 부여하기 위해 금속 소재로 이루어져 있으며, 판재를 둥글게 절곡한 중공형의 원통형 구조로 이루어져 있다. 이러한 센터 핀(150)은 전극조립체를 고정 및 지지하는 작용과 충방전 및 작동시 내부 반응에 의해 발생되는 가스를 방출하는 통로로서 작용한다.
한편, 리튬 이차전지는 안전성이 낮다는 단점을 가지고 있다. 예를 들어, 전지가 대략 4.5 V 이상으로 과충전되는 경우에는 양극 활물질의 분해반응이 일어나고, 음극에서 리튬 금속의 수지상(dendrite) 성장과, 전해액의 분해반응 등이 일어난다. 이러한 과정에서 열이 수반되어 상기와 같은 분해반응과 다수의 부반응들이 급속히 진행되며, 급기야는 전지의 발화 및 폭발이 유발되기도 한다.
따라서, 이러한 문제점을 해소하기 위하여, 일반적인 원통형 전지에는 전지의 비정상적인 작동시 전류를 차단하고 내압을 해소하기 위한 전류차단부재(Current Interruptive Device; CID)와 안전벤트(vent)가 전극조립체(120)와 탑 캡(140) 사이의 공간에 장착되어 있다.
구체적으로, 도 2를 참조하면, 탑 캡(10)은 돌출된 형태로 양극 단자를 형성하고 배기구가 천공되어 있으며, 그것의 하부에 전지 내부의 온도 상승시 전지 저항이 크게 증가하여 전류를 차단하는 PTC 소자(positive temperature coefficient element: 20), 정상적인 상태에서는 하향 돌출된 형상으로 되어 있고 전지 내부의 압력 상승시 형상이 상향 역전되면서 파열되어 가스를 배기하는 안전벤트(30), 및 상단 일측 부위가 안전벤트(30)에 결합되어 있고 하단 일측이 전극조립체(40)의 양극에 연결되어 있는 접속 플레이트(50)가 순차적으로 위치되어 있다.
따라서, 정상적인 작동조건에서 전극조립체(40)의 양극은 양극 리드(42), 접속 플레이트(50), 안전벤트(30) 및 PTC 소자(20)를 경유하여 탑 캡(10)에 연결되어 통전을 이룬다.
한편, 전동 공구용 이차전지는 사용 환경이 다른 전지에 비해 열악한 환경 하에서 구동되어야 하기 때문에 전지 내부의 저항을 감소시켜 발열을 최소화하는 것이 무엇보다 중요하다. 이러한 문제점을 해결하기 위해 종래에는 양극 리드의 크기를 크게 하거나, 음극 리드를 2개 사용하는 등의 방법을 고안해서 적용하고 있는 실정이다.
특히, 기존의 음극 리드의 경우 니켈과 같은 단일 재질을 사용하고 단일 크기를 가지고 있다. 또한, 음극 리드로서 구리와 같이 니켈보다 저항이 작은 물질을 사용해도 되지만, 전극 호일이나 캔과의 용접에 대한 공정성 확보가 어렵기 때문에 적용하기 어려운 문제점이 있다.
따라서, 이러한 문제점들을 근본적으로 해결하면서 사용 중 저항 및 발열을 감소시킬 수 있는 이차전지에 대한 기술의 필요성이 매우 높은 실정이다.
본 발명은 종래기술의 문제점들과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 발명자들은 양극 무지부에 결합된 양극 리드 및 음극 무지부에 결합된 음극 리드 중의 적어도 하나는, 전극 무지부에 대한 결합 및/또는 전지 케이스에 대한 결합에 사용되는 제 1 금속층과, 제 1 금속층보다 상대적으로 저항이 낮은 제 2 금속층의 결합으로 이루어지도록 구성할 경우, 이차전지의 사용 중 저항이 낮은 제 2 금속층에 의해 저항 및 발열을 감소시킬 수 있음을 확인하고 본 발명을 완성하기에 이르렀다.
또한, 이후 설명하는 바와 같은 특정한 소재의 전극 리드를 개발하고, 이러한 전극 리드를 사용하여 이차전지를 제조하는 경우, 낮은 저항 특성을 가지면서도 전극조립체에 대한 용접 등 제조 공정성이 우수함을 확인하고 본 발명을 완성하기에 이르렀다.
따라서, 본 발명에 따른 이차전지는 양극 집전체의 적어도 일면에 양극 활물질 코팅부를 포함하는 양극과 음극 집전체의 적어도 일면에 음극 활물질 코팅부를 포함하는 음극이 분리막이 개재된 상태로 권취되어 있는 젤리-롤형 전극조립체("젤리-롤"), 및 전해액이 전지 케이스에 내장되어 있으며,
양극 무지부에 결합된 양극 리드 및 음극 무지부에 결합된 음극 리드 중의 적어도 하나는, 전극 무지부에 대한 결합 및/또는 전지 케이스에 대한 결합에 사용되는 제 1 금속층과, 상기 제 1 금속층보다 상대적으로 저항이 낮은 제 2 금속층의 결합으로 이루어져 있다.
따라서, 본 발명에 따른 이차전지에서, 양극 무지부에 결합된 양극 리드 및 음극 무지부에 결합된 음극 리드 중의 적어도 하나는, 전극 무지부에 대한 결합 및/또는 전지 케이스에 대한 결합에 사용되는 제 1 금속층과, 제 1 금속층보다 상대적으로 저항이 낮은 제 2 금속층의 결합으로 이루어져 있어서, 상대적으로 저항이 큰 제 1 금속층에 의해 전극 무지부, 전지 케이스에 대한 소정의 결합력을 확보하면서, 저항이 낮은 제 2 금속층에 의해 양극 리드 및/또는 음극 리드의 저항이 감소하여 이차전지의 사용 중 전극 리드에서 발생하는 저항 및 발열을 감소시킬 수 있다.
상기 전지 케이스는 형상에 따라 원통형 캔, 각형 캔, 또는 파우치형 케이스일 수 있으며, 상대적으로 용량이 크고 구조적으로 안정한 원통형 전지를 제조하기 위해서는 원통형 캔으로 이루어지는 것이 바람직하다.
하나의 바람직한 예에서, 상기 제 1 금속층은 전극 무지부 또는 전지 케이스에 용접 방식으로 결합되는 구조일 수 있다. 상기 용접 방식은 바람직하게는 저항 용접일 수 있으며, 제 1 금속층의 상대적으로 높은 저항은 이러한 저항 용접에서 전극 무지부 또는 전지 케이스에 대해 높은 결합력을 제공한다.
상기 제 2 금속층의 저항은 제 1 금속층의 저항에 대해 10 내지 70% 크기를 가지는 것이 바람직하다.
구체적으로, 제 2 금속층의 저항이 제 1 금속층의 저항에 대해 10% 미만이면 본 발명에서 소망하는 효과를 발휘하기 어려울 수 있고, 반대로 70%를 초과하면 금속층 간의 높은 저항 차로 인해 전지의 성능 저하가 초래될 수 있으므로 바람직하지 않다.
예를 들어, 제 1 금속층과 제 2 금속층의 결합으로 이루어진 상기 전극 리드는 전체적으로 2.0 ~ 5.0 mΩ의 저항 값을 가질 수 있으며, 이는 동일한 단면적을 가지는 단일 금속층(예를 들어, 제 1 금속층 소재로 이루어짐)으로 이루어진 전극 리드의 저항이 대략 7.5 mΩ을 나타내는 것과 비교하여 저항이 50% 정도 감소한 수치이다.
상기 제 1 금속층과 제 2 금속층의 결합은 상호간의 결합이 용이하게 달성될 수 있는 결합법이면 특별한 제한은 없으나, 예를 들어 이종 재료 결합법에 의해 달성될 수 있다. 구체적인 예로서, 상기 이종 재료 결합법은 열융착 방법, 압연 방법, 화학적 접착 방법, 레이저 용접, 스팟 용접, 도금 방법, 또는 코팅 방법일 수 있으며, 특히 제조의 공정성 측면에서 압연방법이 바람직하다.
한편, 상기 제 1 금속층과 제 2 금속층의 결합 구조는 다양하게 구성될 수 있다.
하나의 바람직한 예에서, 상기 제 1 금속층과 제 2 금속층은 상하로 결합되어 있는 구조일 수 있다.
또 다른 바람직한 예에서, 상기 제 2 금속층을 중심으로 양 측면에 각각 제 1 금속층이 결합되어 있는 구조일 수 있다.
일반적으로, 양극 리드는 알루미늄 또는 알루미늄 합금으로 형성되고, 음극 리드는 니켈 또는 니켈 합금으로 형성되는 구조가 주로 사용되고 있다. 그러나, 니켈 또는 니켈 합금으로 형성되는 음극 리드는 니켈 자체의 저항이 높아 이차전지의 충방전시 열이 많이 발생하는 문제점이 있다. 또한, 음극판과 음극 리드가 용접되는 부위와 알루미늄인 전지 케이스와 음극 리드가 용접되는 부위는 이종금속이 접합되는 부위이므로, 용접이 용이하지 않을 수 있고, 더욱이 충방전 과정에서 높은 내부 저항에 의해 발열이 집중될 수 있는 바, 이는 고온단락을 유발하여 이차전지의 폭발을 초래하는 문제점이 있다.
이와 관련하여, 하나의 바람직한 예에서 본 발명의 양극 리드 및/또는 음극 리드에서 제 1 금속층은 니켈층 또는 알루미늄층이고, 제 2 금속층은 구리층 또는 은층으로 이루어질 수 있으며, 상대적으로 저항이 낮은 제 2 금속층에 의해 종래의 양극 리드 또는 음극 리드의 구조와 달리 저항이 증가하여 발열이 발생하는 문제점을 근본적으로 해결할 수 있다.
또한, 상기 양극 리드 및/또는 음극 리드는 소망하는 저항의 크기에 따라, 니켈층과 구리층의 조합, 니켈층과 은층의 조합, 알루미늄층과 구리층의 조합, 또는 알루미늄층과 은층의 조합 중 선택적으로 사용될 수 있음은 물론이다.
상기 양극 리드 또는 음극 리드는 바람직하게는 두께 기준으로 5 ~ 95%의 구리와 95 ~ 5%의 니켈로 이루어질 수 있으며, 더욱 바람직하게는, 상기 양극 리드 또는 음극 리드는 두께 기준으로 50%의 구리와 50%의 니켈로 이루어질 수 있다.
예를 들어, 니켈층이 전체 양극 리드 또는 음극 리드의 두께 대비 5%의 두께 비율로 형성될 때, 구리층은 95%의 두께 비율로 형성될 수 있으며, 이와는 반대로, 니켈층이 95%의 두께 비율로 형성될 때, 구리층은 5%의 두께 비율로 형성될 수 있다. 여기서, 니켈층이 5% 미만의 두께 비율로 형성되면, 전극 무지부, 전지 케이스 등에 대해 소망하는 수준의 결합력을 제공하기 어려울 수 있다. 반면에 구리가 5% 미만의 두께 비율로 형성되면, 소망하는 만큼의 저항감소 효과를 기대하기 어려운 문제점이 있다.
니켈층 또는 구리층이 95%의 두께 비율을 초과하는 경우에는 상기와 상반되는 결과가 얻어지므로 역시 바람직하지 않다.
구체적인 예로서, 상기 양극 리드 또는 음극 리드의 두께는 0.05 ~ 0.15 mm로 이루어질 수 있다.
한편, 상기 제 1 금속층의 두께는 제 2 금속층의 두께와 동일한 크기로 형성되거나, 또는 상기 제 1 금속층의 폭은 제 2 금속층의 폭과 동일한 크기로 형성될 수 있지만, 이들 만으로 한정되는 것이 아님은 물론이다.
본 발명은 또한, 양극 활물질 미코팅부(무지부)와 음극 활물질 코팅부가 마주하는 위치의 양극 활물질 코팅 경계부에 절연테이프를 부착함으로써 전기절연성을 확보하고 안전성을 향상시킨 이차전지를 제공한다.
하나의 바람직한 예에서, 상기 양극의 권취 시작부는 양극 집전체 상부와 하부 모두에 양극 활물질 코팅부를 가짐으로써 양극 무지부를 포함하지 않고, 양극 권취 종료부에만 양극 리드의 설치를 위한 양극 무지부를 포함하며,
상기 양극 권취 종료부에 위치하고, 상기 음극과 대향하는 양극 활물질 코팅부의 경계면은 절연테이프를 포함하고 있는 구조로 이루어질 수 있다.
또 다른 예에서, 상기 양극의 권취 시작부는 양극 집전체 상부와 하부 모두에 양극 활물질 코팅부를 가짐으로써 양극 무지부를 포함하지 않고, 양극 권취 종료부에만 양극 리드의 설치를 위한 양극 무지부를 포함하며, 상기 양극 무지부 말단부의 적어도 일면에 양극 활물질 코팅부를 더 포함하고, 상기 양극 권취 종료부에 위치하며, 상기 음극과 대향하는 양극 활물질 코팅부의 경계면은 절연테이프를 포함하고 있는 구조로 이루어질 수 있다.
한편, 상기 절연테이프는 절연 특성이 우수한 것이면 특별한 제한은 없으며, 예를 들어 200℃ 열수축되지 않는 재료가 바람직하다. 또한, 열을 받으면 다소간 신축되는 재료를 사용하면, 전극 간에 위치된 분리막에 문제가 생기더라도 그 부분을 해결할 수 있다.
상기 절연테이프로는 폴리이미드 테이프, 아세테이트 테이프, glass cloth 테이프, 폴리에스테르 테이프, 폴리페닐렌설파이드(Polyphenylenesulfide, PPS), 및 폴리프로필렌(polypropylene)으로 이루어진 그룹으로부터 선택된 1종 이상으로 이루어질 수 있으며, 특히 폴리에틸렌테레프탈레이트 필름이 바람직하다.
또한, 상기 절연테이프의 두께는 10 내지 100 ㎛인 것이 바람직하다.
한편, 상기 제 1 금속층과 제 2 금속층의 결합은 다양한 방법에 의해 달성될 수 있다.
하나의 예로서, 상기 제 1 금속층과 제 2 금속층은 미리 결합된 상태에서 전극 무지부에 결합될 수 있으며, 이러한 결합 방법은 제조의 공정성 측면에서 바람직하다.
또 다른 예로서, 상기 제 1 금속층과 제 2 금속층은 전극 무지부에 결합되는 과정에서 함께 결합될 수 있다.
본 발명은 또한, 양극 집전체의 적어도 일면에 양극 활물질 코팅부를 포함하는 양극과 음극 집전체의 적어도 일면에 음극 활물질 코팅부를 포함하는 음극이 분리막이 개재된 상태로 권취되어 있는 젤리-롤형 전극조립체("젤리-롤"), 및 전해액이 전지 케이스에 내장되어 있으며, 구리와 니켈을 포함하고 있고 구리의 함량이 80% 이상인(원소 함량 기준) 합금으로 이루어진 전극 리드가, 용접에 의해, 양극 집전체 또는 음극 집전체에 결합되어 있는 구조의 이차전지를 제공한다.
일반적으로 합금은 특정한 금속 원소에 이것과 다른 원소를 한 가지 이상 첨가하여 얻은 복합 금속으로, 본 발명에 따른 이차전지의 전극 리드는 주성분으로서 구리와 부성분으로서 니켈을 포함하는 합금 구성에 의해, 이질적인 두 종류 원소들의 차별적인 특성들을 복합적으로 발휘하여, 낮은 저항과 우수한 제조 공정성을 동시에 발현할 수 있다.
전극 리드로서 저항이 작은 구리만 사용했을 경우에는, 목적한 바와 같은 저항을 감소시키는 효과는 발휘할 수 있으나, 앞서 설명한 바와 같이, 용접에 의해 전극조립체의 전극판에 대한 우수한 결합 강도를 제공하기 어렵다.
반면에, 본 발명의 이차전지에서 전극 리드는 저항 값이 매우 작은 구리의 함량을 80% 이상 포함함으로써, 충전 및 방전 시 낮은 저항에 의해 전지의 작동 성능을 향상시킬 수 있다. 또한, 이러한 전극 리드는 니켈을 소정량 포함하고 있어서, 양극 집전체 또는 음극 집전체에 대해 초음파 용접 등에 의해 접합시킬 때 우수한 결합 강도를 제공한다.
이후 설명하는 실험 내용에서 보는 바와 같이, 본 발명에 따른 이차전지의 전극 리드는 종래의 전극 리드와 비교하여 거의 유사한 용접 결합 강도를 가지면서도 10 내지 50%의 저항 감소를 나타냄을 확인할 수 있다.
앞서 정의한 바와 같은, 본 발명의 전극 리드에서 구리 함량은 원소의 몰량을 기준으로 80% 이상인 바, 구리 함량이 이보다 적으면 소망하는 낮은 저항 특성을 발휘하기 어려울 수 있다.
하나의 바람직한 예에서, 상기 합금에서 구리 함량은 80 ~ 99.9%이고, 니켈 함량은 0.1 ~ 20%일 수 있다.
본 발명자들이 실험적으로 확인한 바로는, 니켈 함량이 0.1% 미만이면 초음파 용접시 결합 강도가 구리의 결합 강도와 비교하여 실질적으로 우수하지 못하고, 20% 초과이면, 저항이 급격히 증가함을 확인하였다. 더욱 바람직한 예에서, 구리 함량은 90 ~ 99%이고, 니켈 함량은 1 ~ 10%일 수 있다.
경우에 따라서는, 상기 합금은 구리와 니켈을 제외한 이종원소를 추가적으로 포함할 수 있는 바, 이러한 이종원소는 주석 및 규소로 이루어지는 군에서 선택되는 1종 이상일 수 있다.
주석은 니켈에 비해서 높은 강도, 낮은 저항 특성을 갖고, 규소 또한 니켈에 비해서 높은 강도를 갖고 반도체이므로 온도가 올라갈수록 저항이 더 낮아지는 특성이 있으므로 이차전지에 특히 바람직하다.
상기 이종 원소의 함량은 바람직하게는 합금 전체 함량을 기준으로 0.1 내지 10%이다. 이 경우, 상기 합금은 구리 함량이 80 ~ 99.8%이고, 니켈 함량이 0.1 ~ 10%이며, 이종 원소 함량이 0.1 ~ 10%인 것이 바람직하다.
전극 리드는 그것이 결합되는 집전체의 종류에 따라 양극 리드와 음극 리드로 분류되며, 본 발명에 따른 전극 리드는 양극 리드일 수도 있고 음극 리드일 수도 있다. 본 발명자들이 실험적으로 확인한 바로는 상기와 같은 합금의 전극 리드는 초음파 용접시 양극 집전체와 음극 집전체에 대해 각각 우수한 결합 강도를 발휘한다.
양극 집전체에 결합되어 있는 전극 리드와 음극 집전체에 결합되어 있는 전극 리드는 바람직하게는 동일한 크기일 수 있다.
상기 양극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만들 수 있다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 음극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만들 수 있다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
본 발명의 이차전지는 전극 전극 리드가 집전체에 각각 결합되어 있는 양극 및 음극이 분리막에 의해 전기적으로 분리되어 있고, 이들에 리튬염 함유 비수 전해액이 함침되어 있는 구조로 이루어져 있다.
상기 양극은 양극 합제를 포함하고, 양극 합제에는 양극 활물질, 도전재, 바인더, 충진제 등이 포함될 수 있다.
상기 양극 활물질은 리튬 이차전지인 경우, 예를 들어, 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전제 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합제 등을 들 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합제; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
양극은 상기와 같은 화합물들을 포함하는 양극 합제를 NMP 등의 용매에 혼합하여 만들어진 슬러리를 양극 집전체 상에 도포한 후 건조 및 압연하여 제조될 수 있다.
음극은, 예를 들어, 음극 집전체 상에 음극 활물질을 포함하고 있는 음극 합제를 도포한 후 건조하여 제조되며, 상기 음극 합제에는, 필요에 따라, 앞서 설명한 바와 같은 성분들이 포함될 수 있다.
상기 음극 활물질은, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있다.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
상기 리튬염 함유 비수계 전해액은 전해액과 리튬염으로 이루어져 있으며, 상기 전해액으로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용된다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합제 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene carbonate), PRS(Propene sultone), FPC(Fluoro-Propylene carbonate) 등을 더 포함시킬 수 있다.
한편, 젤리-롤형 전극조립체는 집전체로 사용되는 금속 호일에 전극 활물질 등을 코팅하고 건조 및 프레싱한 후, 소망하는 폭과 길이의 밴드 형태로 재단하고 분리막을 사용하여 음극과 양극을 격막한 후 나선형으로 감아 제조된다. 젤리-롤은 주로 원통형 전지에 사용되며, 경우에 따라서는, 이를 판상형으로 압축하여 각형 또는 파우치형 전지에 적용하기도 한다.
따라서, 본 발명에 따른 합금으로 이루어진 전극 리드는 상기 젤리-롤형 전극조립체의 양극 및 음극에 연결되는 바, 더욱 구체적으로는 활물질 층이 코팅되지 않은 전극 합제의 무지부에 결합된다.
집전체에 전극 리드가 용접되는 방법은 다양할 수 있는 바, 예를 들어 아크 용접, 초음파 용접, 저항용접 등이 있다. 특히, 초음파 용접은 용접하고자 하는 용접물을 가압하면서 초음파를 인가하여 그 진동을 이용하는 방법으로, 20 KHz 정도의 초음파에 의해 발생된 고주파의 진동에너지에 의해 가압된 피용접물 사이에 존재하는 이물질 등이 제거되고 피용접물 사이 틈새가 원자간 거리로 좁혀지면서 용접이 이루어진다.
본 발명에 따른 전극 리드의 용접은 바람직하게는 초음파 용접에 의해 양극 집전체 또는 음극 집전체에 결합되는 바, 상기의 용접에 비해 접합 부위의 저항을 줄이고, 따라서 발생하는 열손상을 방지할 수 있다.
본 발명은 또한, 상기의 이차전지를 전원으로 포함하는 전동용 공구를 제공한다.
특히, 전동용 공구의 경우 진동이 많은 작업에 사용되기 때문에 이러한 전동용 공구의 전원으로 사용되는 이차전지는 내부의 저항이 작은 구조가 바람직하다.
따라서, 본 발명에 따른 이차전지는 종래의 이차전지와 달리 전극 리드의 저항이 낮게 구성되어 있으므로 전동용 공구에 용이하게 사용될 수 있다.
도 1은 종래의 원통형 전지의 수직 단면 사시도이다;
도 2는 도 1의 부분 단면 사시도이다;
도 3은 본 발명의 하나의 실시예에 따른 젤리-롤형 전극조립체를 권취하기 전의 부분 수평 단면 모식도이다;
도 4는 도 3의 양극 리드와 음극 리드의 사시도이다;
도 5는 본 발명의 또 다른 실시예에 따른 양극 리드와 음극 리드의 사시도이다;
도 6 및 도 7은 본 발명의 다양한 실시예에 따른 젤리-롤형 전극조립체를 권취하기 전의 부분 수평 단면 모식도들이다.
이하에서는, 본 발명의 실시예에 따른 도면을 참조하여 설명하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
도 3에는 본 발명의 하나의 실시예에 따른 젤리-롤형 전극조립체를 권취하기 전의 부분 수평 단면 모식도가 도시되어 있고, 도 4에는 도 3의 양극 리드와 음극 리드의 사시도가 모식적으로 도시되어 있다.
이들 도면을 참조하면, 원통형 전지는 양극 집전체(151)의 양면에 양극 활물질 코팅부(155)를 포함하는 양극(152)과, 음극 집전체(153)의 양면에 음극 활물질 코팅부(156)를 포함하는 음극(154)이, 분리막(142)이 개재된 상태로 권취되어 있는 젤리-롤형 전극조립체(200), 및 전해액이 원통형 캔(도시하지 않음)에 내장되어 있다.
또한, 양극 무지부(158)에 결합된 양극 리드(114)는, 양극 무지부(158)에 대한 결합에 사용되는 제 1 금속층(1142)과, 제 1 금속층(1142)보다 상대적으로 저항이 낮은 제 2 금속층(1144)이 압연에 의해 상하로 결합되어 있고, 음극 무지부(157)에 결합된 음극 리드(112)는, 음극 무지부(157)에 대한 결합에 사용되는 제 1 금속층(1122)과, 제 1 금속층(1122)보다 상대적으로 저항이 낮은 제 2 금속층(1124)이 압연에 의해 상하로 결합되어 있다.
음극 리드(112)의 제 1 금속층(1122)은 음극 무지부(157)에 저항 용접 방식으로 결합되어 있고, 제 2 금속층(1124)의 저항은 제 1 금속층(1122)의 저항에 대해 약 50% 크기를 가지고 있다.
또한, 양극 리드(114)의 제 1 금속층(1142)은 양극 무지부(158)에 저항 용접 방식으로 결합되어 있고, 제 2 금속층(1144)의 저항은 제 1 금속층(1142)의 저항에 대해 약 50% 크기를 가지고 있다.
한편, 양극 리드(114)와 음극 리드(112)는 두께 기준으로 50%의 구리와 50%의 니켈로 이루어져 있고, 제 1 금속층들(1142, 1122)의 두께는 제 2 금속층들(1144, 1124)의 두께와 동일한 크기로 형성되어 있다.
또한, 제 1 금속층들(1142, 1122)의 폭은 제 2 금속층들(1144, 1124)의 폭과 동일한 크기로 형성되어 있고, 제 1 금속층들(1142, 1122)은 니켈층 또는 알루미늄층이고, 제 2 금속층들(1144, 1124)은 구리층 또는 은층으로 이루어져 있다.
한편, 제 1 금속층들(1142, 1122)과 제 2 금속층들(1144, 1124)은 미리 결합된 상태에서 양극 무지부(114)와 음극 무지부(112)에 결합되어 있다.
앞서 설명한 바와 같이, 도 4의 구조는 예시적인 구조이므로, 제 1 금속층(a) - 제 2 금속층(b) - 제 1 금속층(c) 등의 다층 구조도 가능함은 물론이다. 또한, 이러한 구조에서 제 1 금속층(a)와 제 1 금속층(c)의 성분, 두께, 폭 등이 동일하지 않을 수도 있음은 물론이다.
도 5에는 본 발명의 또 다른 실시예에 따른 양극 리드와 음극 리드의 사시도가 모식적으로 도시되어 있다.
도 5를 참조하면, 양극 리드(114a)와 음극 리드(112a)는 제 2 금속층들(1144a, 1124a)을 중심으로 양 측면에 각각 제 1 금속층들(1142a, 1122a)이 결합되어 있다.
또한, 제 1 금속층들(1142a, 1122a)의 두께 및 폭은 제 2 금속층들(1144a, 1124a)의 두께 및 폭과 동일한 크기로 형성되어 있다.
도 6 및 도 7에는 본 발명의 다양한 실시예에 따른 젤리-롤형 전극조립체를 권취하기 전의 부분 수평 단면 모식도들이 도시되어 있다.
이들 도면을 참조하면, 도 6의 젤리-롤형 전극조립체(200a)에서, 양극(252)의 권취 시작부는 양극 집전체(258)의 상부와 하부 모두에 양극 활물질 코팅부(220a, 220b)를 가짐으로써 양극 무지부를 포함하지 않고, 양극(252)의 권취 종료부에만 양극 리드(214)의 설치를 위한 양극 무지부(258')를 포함하고 있다.
또한, 절연 테이프(216a, 216b)가 양극(252)의 권취 종료부에 위치하고, 음극(254)과 대향하는 양극 활물질 코팅부(220a)의 경계면에 부착되어 있다.
음극(254)은 음극 집전체(256)의 양면에 음극 활물질 코팅부(240a, 240b)를 포함하고, 음극 집전체(256)의 권취 종료부에는 음극 활물질 코팅부를 포함하지 않는 음극 무지부(256')를 포함하여, 여기에 외부단자와 접속하기 위한 음극 리드(212)가 접속되어 있다.
또한, 분리막(242a, 242b)은 음극(254)의 종료부보다 보다 길게 연장되어 위치하도록 설계하여, 분리막(242a, 242b)이 열에 의해 수축되더라도 음극(254)을 차단시키도록 되어 있다.
권취 종료부인 음극 집전체(256) 상부의 음극 활물질 코팅부(240a)는 분리막(242a)을 사이에 두고, 양극 리드(214)가 설치된 쪽의 양극 집전체(258) 하부의 양극 활물질 코팅 경계면에 접하는 바, 이 때 양극 활물질 코팅 경계면에 절연테이프(216b)를 추가하여 양극 활물질이 코팅되지 않은 양극 무지무(258')와 음극 활물질 코팅부(240a)의 단락을 방지한다.
한편, 권취 종료부인 음극 집전체(256) 하부의 음극 활물질 코팅부(240b)는 분리막(242b)을 사이에 두고, 양극 리드(214)가 설치된 쪽의 양극 집전체(258) 상부의 양극 활물질 코팅 경계면에 접하는 바, 양극 활물질 코팅 경계면에 절연테이프(216a)를 추가하여 양극 활물질이 코팅되지 않은 미코팅부인 양극 집전체와 접촉하지 않도록 한다.
도 7의 젤리-롤 전극조립체(200b)에서, 양극(252)의 권취 시작부는 양극 집전체(258)의 상부와 하부 모두에 양극 활물질 코팅부(219c, 219d)를 가짐으로써 양극 무지부를 포함하지 않고, 양극 권취 종료부에만 양극 리드(214)의 설치를 위한 양극 무지부를 포함하고 있다.
또한, 양극 무지부 말단부의 양면에 양극 활물질 코팅부(217a, 217b)가 형성되어 있고, 양극 활물질 코팅부(217a, 217b)의 상면과 하면에는 제 2 절연테이프(219a, 219b)가 부착되어 있다.
또한, 제 1 절연테이프(216a, 216b)가 양극 권취 종료부에서, 음극(254)과 대향하는 양극 활물질 코팅부(219c, 219d)의 경계면에 각각 부착되어 있다.
이하, 실시예를 통해 본 발명을 더욱 상술하지만, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 이들만으로 한정되는 것은 아니다.
<실시예 1>
구리의 함량이 96%(원소 함량 기준), 니켈의 함량이 3%, 주석의 함량이 1%인 합금의 음극 리드를 제조하였고, 알루미늄으로 이루어진 양극 리드를 준비하였다. 이러한 전극 리드들을 음극과 양극의 무지부에 초음파 융착하고, 양극과 음극 사이에 분리막이 개재된 상태로 권취하여 젤리-롤을 형성한 후, 스테인리스 스틸의 원통 캔에 삽입하고 전해액을 주입하여 전지셀을 제작하였다.
<실시예 2>
구리의 함량이 89%, 니켈의 함량이 10%, 주석의 함량이 1%인 합금의 음극 리드를 제조하여 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전지셀을 제작하였다.
<비교예 1>
니켈의 함량이 99%, 주석의 함량이 1%인 합금의 음극 리드를 제조하여 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전지셀을 제작하였다.
<실험예 1>
우선, 상기 실시예 1 및 2와 비교예 1의 전지셀에 사용된 음극 리드들의 저항 및 강도를 측정하였다. 그 결과, 실시예 1 및 2의 음극 리드들은 비교예 1의 음극 리드들과 비교하여 거의 유사한 결합 강도를 가지면서도 대략 10 ~ 50%의 범위에서 저항 감소 효과를 나타내는 것을 확인하였다.
또한, 상기 실시예 1 및 2와 비교예 1에서 각각 제작된 전지셀들을 대상으로 100회 충방전 사이클 이후의 전지 성능을 테스트 하였다. 그 결과, 약 10% 이상의 성능 향상을 확인할 수 있었다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
이상에서 설명한 바와 같이, 본 발명에 따른 이차전지에서 양극의 무지부에 결합된 양극 리드 및 음극의 무지부에 결합된 음극 리드 중의 적어도 하나는, 전극 무지부에 대한 결합 및/또는 전지 케이스에 대한 결합에 사용되는 제 1 금속층과, 제 1 금속층보다 상대적으로 저항이 낮은 제 2 금속층의 결합으로 이루어지도록 구성되어 있으므로, 전극 무지부 또는 전지 케이스에 대해 소정의 결합력을 제공함과 동시에, 이차전지의 사용 중 전극 리드 부위에서 저항 및 발열이 발생하는 것을 크게 감소시킬 수 있다.
또한, 본 발명에 따른 이차전지에서 전극 리드는 구리, 니켈 등을 포함하는 합금으로 이루어져 있으며, 낮은 저항 특성을 갖는 구리와, 높은 결합 강도 특성을 발휘하는 니켈 등을 포함함으로써, 이차전지의 충방전시 작동 특성을 향상시킬 수 있을 뿐만 아니라 우수한 제조 공정성을 제공할 수 있다.

Claims (26)

  1. 양극 집전체의 적어도 일면에 양극 활물질 코팅부를 포함하는 양극과 음극 집전체의 적어도 일면에 음극 활물질 코팅부를 포함하는 음극이 분리막이 개재된 상태로 권취되어 있는 젤리-롤형 전극조립체("젤리-롤"), 및 전해액이 전지 케이스에 내장되어 있으며,
    양극 무지부에 결합된 양극 리드 및 음극 무지부에 결합된 음극 리드 중의 적어도 하나는, 전극 무지부에 대한 결합 및/또는 전지 케이스에 대한 결합에 사용되는 제 1 금속층과, 상기 제 1 금속층보다 상대적으로 저항이 낮은 제 2 금속층의 결합으로 이루어져 있는 것을 특징으로 하는 이차전지.
  2. 제 1 항에 있어서, 상기 전지 케이스는 원통형 캔인 것을 특징으로 하는 이차전지.
  3. 제 1 항에 있어서, 상기 제 1 금속층은 전극 무지부 또는 전지 케이스에 용접 방식으로 결합되는 것을 특징으로 하는 이차전지.
  4. 제 1 항에 있어서, 상기 제 2 금속층의 저항은 제 1 금속층의 저항에 대해 10 내지 70% 크기인 것을 특징으로 하는 이차전지.
  5. 제 1 항에 있어서, 상기 제 1 금속층과 제 2 금속층의 결합은 이종 재료 결합법에 의해 달성되는 것을 특징으로 하는 이차전지.
  6. 제 5 항에 있어서, 상기 이종 재료 결합법은 열융착 방법, 압연 방법, 화학적 접착 방법, 레이저 용접, 스팟 용접, 도금 방법, 또는 코팅 방법인 것을 특징으로 하는 이차전지.
  7. 제 1 항에 있어서, 상기 제 1 금속층과 제 2 금속층은 상하로 결합되어 있는 것을 특징으로 하는 이차전지.
  8. 제 1 항에 있어서, 상기 제 2 금속층을 중심으로 양 측면에 각각 제 1 금속층이 결합되어 있는 것을 특징으로 하는 이차전지.
  9. 제 1 항에 있어서, 상기 제 1 금속층은 니켈층 또는 알루미늄층이고, 제 2 금속층은 구리층 또는 은층인 것을 특징으로 하는 이차전지.
  10. 제 1 항에 있어서, 상기 양극 리드 또는 음극 리드는 두께 기준으로 5 ~ 95%의 구리와 95 ~ 5%의 니켈로 이루어지는 것을 특징으로 하는 이차전지.
  11. 제 10 항에 있어서, 상기 양극 리드 또는 음극 리드는 두께 기준으로 50%의 구리와 50%의 니켈로 이루어지는 것을 특징으로 하는 이차전지.
  12. 제 1 항에 있어서, 상기 양극 리드 또는 음극 리드의 두께는 0.05 ~ 0.15mm로 이루어지는 것을 특징으로 하는 이차전지.
  13. 제 1 항에 있어서, 상기 제 1 금속층의 두께는 제 2 금속층의 두께와 동일한 크기로 형성되는 것을 특징으로 하는 이차전지.
  14. 제 1 항에 있어서, 상기 제 1 금속층의 폭은 제 2 금속층의 폭과 동일한 크기로 형성되는 것을 특징으로 하는 이차전지.
  15. 제 1 항에 있어서, 상기 양극의 권취 시작부는 양극 집전체 상부와 하부 모두에 양극 활물질 코팅부를 가짐으로써 양극 무지부를 포함하지 않고, 양극 권취 종료부에만 양극 리드의 설치를 위한 양극 무지부를 포함하며,
    상기 양극 권취 종료부에 위치하고, 상기 음극과 대향하는 양극 활물질 코팅부의 경계면에는 절연테이프를 포함하고 있는 것을 특징으로 하는 이차전지.
  16. 제 1 항에 있어서, 상기 양극의 권취 시작부는 양극 집전체 상부와 하부 모두에 양극 활물질 코팅부를 가짐으로써 양극 무지부를 포함하지 않고, 양극 권취 종료부에만 양극 리드의 설치를 위한 양극 무지부를 포함하며,
    상기 양극 무지부 말단부의 적어도 일면에 양극 활물질 코팅부를 더 포함하고, 상기 양극 권취 종료부에 위치하며, 상기 음극과 대향하는 양극 활물질 코팅부의 경계면에는 절연테이프를 포함하고 있는 것을 특징으로 하는 이차전지.
  17. 제 1 항에 있어서, 상기 제 1 금속층과 제 2 금속층은 미리 결합된 상태에서 전극 무지부에 결합되는 것을 특징으로 하는 이차전지.
  18. 제 1 항에 있어서, 상기 제 1 금속층과 제 2 금속층은 전극 무지부에 결합되는 과정에서 함께 결합되는 것을 특징으로 하는 이차전지.
  19. 양극 집전체의 적어도 일면에 양극 활물질 코팅부를 포함하는 양극과 음극 집전체의 적어도 일면에 음극 활물질 코팅부를 포함하는 음극이 분리막이 개재된 상태로 권취되어 있는 젤리-롤형 전극조립체("젤리-롤"), 및 전해액이 전지 케이스에 내장되어 있으며,
    구리와 니켈을 포함하고 있고 구리의 함량이 80% 이상인(원소 함량 기준) 합금으로 이루어진 전극 리드가, 용접에 의해, 양극 집전체 또는 음극 집전체에 결합되어 있는 것을 특징으로 하는 이차전지.
  20. 제 19 항에 있어서, 상기 합금은 구리 함량은 80 ~ 99.9%이고, 니켈 함량은 0.1 ~ 20%인 것을 특징으로 하는 이차전지.
  21. 제 19 항에 있어서, 상기 합금에는 주석 및 규소로 이루어지는 군에서 선택되는 1종 이상의 이종 원소를 추가로 포함하고 있는 것을 특징으로 하는 이차전지.
  22. 제 21 항에 있어서, 상기 이종 원소의 함량은 합금 전체 함량을 기준으로 0.1 내지 10%인 것을 특징으로 하는 이차전지.
  23. 제 21 항에 있어서, 상기 합금은 구리 함량이 80 ~ 99.8%이고, 니켈 함량이 0.1 ~ 10%이며, 이종 원소 함량이 0.1 ~ 10%인 것을 특징으로 하는 이차전지.
  24. 제 19 항에 있어서, 상기 양극 집전체에 결합되어 있는 전극 리드와 음극 집전체에 결합되어 있는 전극 리드는 동일한 크기로 이루어진 것을 특징으로 하는 이차전지.
  25. 제 19 항에 있어서, 상기 전극 리드는 초음파 용접에 의해 양극 집전체 또는 음극 집전체에 결합되어 있는 것을 특징으로 하는 이차전지.
  26. 제 1 항 또는 제 19 항 중 어느 하나에 따른 이차전지를 전원으로 포함하는 전동용 공구.
PCT/KR2013/000358 2012-02-07 2013-01-17 신규한 구조의 이차전지 WO2013118982A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014548694A JP6008981B2 (ja) 2012-02-07 2013-01-17 新規な構造の二次電池
CN201380004178.7A CN103988339A (zh) 2012-02-07 2013-01-17 具有新型结构的二次电池
EP13746261.0A EP2772964B1 (en) 2012-02-07 2013-01-17 Secondary battery having novel structure
US14/080,458 US8895169B2 (en) 2012-02-07 2013-11-14 Secondary battery of novel structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020120012341A KR20130091086A (ko) 2012-02-07 2012-02-07 신규한 구조의 이차전지
KR10-2012-0012341 2012-02-07
KR1020120015088A KR101326082B1 (ko) 2012-02-15 2012-02-15 낮은 저항과 우수한 제조 공정성의 전극 탭을 포함하는 이차전지
KR10-2012-0015088 2012-02-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/080,458 Continuation US8895169B2 (en) 2012-02-07 2013-11-14 Secondary battery of novel structure

Publications (1)

Publication Number Publication Date
WO2013118982A1 true WO2013118982A1 (ko) 2013-08-15

Family

ID=48947714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/000358 WO2013118982A1 (ko) 2012-02-07 2013-01-17 신규한 구조의 이차전지

Country Status (5)

Country Link
US (1) US8895169B2 (ko)
EP (1) EP2772964B1 (ko)
JP (1) JP6008981B2 (ko)
CN (1) CN103988339A (ko)
WO (1) WO2013118982A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3035410A4 (en) * 2013-09-27 2016-06-29 Lg Chemical Ltd SECONDARY BATTERY COMPRISING A LOW-RESISTANCE ELECTRODE TAB

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9627722B1 (en) 2013-09-16 2017-04-18 American Lithium Energy Corporation Positive temperature coefficient film, positive temperature coefficient electrode, positive temperature coefficient separator, and battery comprising the same
WO2016004079A1 (en) 2014-06-30 2016-01-07 Black & Decker Inc. Battery pack for a cordless power tools
KR102257679B1 (ko) 2014-09-17 2021-05-28 삼성에스디아이 주식회사 전극 조립체 및 이를 포함하는 이차 전지
US10020545B2 (en) 2014-11-25 2018-07-10 American Lithium Energy Corporation Rechargeable battery with resistive layer for enhanced safety
US10396341B2 (en) 2014-11-25 2019-08-27 American Lithium Energy Corporation Rechargeable battery with internal current limiter and interrupter
HUE049590T2 (hu) 2014-11-25 2020-09-28 American Lithium Energy Corp Újratölthetõ akkumulátor belsõ áramhatárolóval és árammegszakítóval
US10020487B2 (en) 2014-11-25 2018-07-10 American Lithium Energy Corporation Rechargeable battery with voltage activated current interrupter
US20210351483A1 (en) * 2020-05-05 2021-11-11 James E. Beecham Battery comprising electrode with laser-sintered material and at least one hundred electrode extensions
KR102040819B1 (ko) * 2016-10-07 2019-11-06 주식회사 엘지화학 전극 유닛 및 그러한 전극 유닛의 제조 방법
US10355294B2 (en) * 2017-03-28 2019-07-16 General Electric Company System and method for solid oxide fuel cells with staged fuel supply
EP3619761B1 (en) 2017-05-01 2021-03-03 American Lithium Energy Corporation Negative thermal expansion current interrupter
WO2019023683A1 (en) 2017-07-28 2019-01-31 American Lithium Energy Corporation ANTI-CORROSION COATING FOR BATTERY CURRENT COLLECTOR
KR102221635B1 (ko) * 2018-02-20 2021-02-26 삼성에스디아이 주식회사 전극 조립체 및 이를 포함하는 이차 전지
KR102459970B1 (ko) * 2018-11-27 2022-10-26 주식회사 엘지에너지솔루션 원통형 이차 전지
JP6983147B2 (ja) * 2018-12-26 2021-12-17 本田技研工業株式会社 固体電池用電極および固体電池
JP7140273B2 (ja) * 2019-04-09 2022-09-21 株式会社村田製作所 電池
KR20210101630A (ko) * 2020-02-10 2021-08-19 주식회사 엘지에너지솔루션 전극 및 전극 조립체

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121035A (ja) * 1997-10-08 1999-04-30 Ricoh Co Ltd 固体電解質二次電池の製造方法
JP2006221890A (ja) * 2005-02-09 2006-08-24 Matsushita Electric Ind Co Ltd 電池
JP2007335232A (ja) * 2006-06-15 2007-12-27 Matsushita Electric Ind Co Ltd 二次電池およびその製造方法
JP2009021133A (ja) * 2007-07-12 2009-01-29 Toshiba Corp 非水電解質二次電池
JP2010257811A (ja) * 2009-04-27 2010-11-11 Panasonic Corp 二次電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297300A (ja) * 1998-04-04 1999-10-29 Sumitomo Special Metals Co Ltd 電池用リード材料とリード付き二次電池
JP2001176491A (ja) * 1999-12-14 2001-06-29 Sony Corp 非水電解液二次電池
JP2003100278A (ja) * 2001-09-26 2003-04-04 Toshiba Corp 非水電解質二次電池
US20090081532A1 (en) * 2007-09-21 2009-03-26 David Aaron Kaplin Electrochemical cell with improved internal contact
JP5004488B2 (ja) * 2006-03-31 2012-08-22 三洋電機株式会社 電池
US20100273036A1 (en) * 2006-10-17 2010-10-28 Eveready Battery Company, Inc. Lithium-Iron Disulfide Cell Design with Core Reinforcement
KR100911999B1 (ko) * 2008-01-28 2009-08-14 주식회사 엘지화학 절연특성이 향상된 전지
CN101609904A (zh) * 2008-06-20 2009-12-23 三星Sdi株式会社 二次电池
US20090317707A1 (en) * 2008-06-20 2009-12-24 Seungyeob Cha Lithium secondary battery
US20100178559A1 (en) * 2009-01-14 2010-07-15 Ou Mao Nickel-copper clad tabs for rechargeable battery electrodes and methods of manufacturing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121035A (ja) * 1997-10-08 1999-04-30 Ricoh Co Ltd 固体電解質二次電池の製造方法
JP2006221890A (ja) * 2005-02-09 2006-08-24 Matsushita Electric Ind Co Ltd 電池
JP2007335232A (ja) * 2006-06-15 2007-12-27 Matsushita Electric Ind Co Ltd 二次電池およびその製造方法
JP2009021133A (ja) * 2007-07-12 2009-01-29 Toshiba Corp 非水電解質二次電池
JP2010257811A (ja) * 2009-04-27 2010-11-11 Panasonic Corp 二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2772964A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3035410A4 (en) * 2013-09-27 2016-06-29 Lg Chemical Ltd SECONDARY BATTERY COMPRISING A LOW-RESISTANCE ELECTRODE TAB
JP2016536770A (ja) * 2013-09-27 2016-11-24 エルジー・ケム・リミテッド 低い抵抗の電極タブを含む二次電池
US10347897B2 (en) 2013-09-27 2019-07-09 Lg Chem, Ltd. Secondary battery with electrode tab made of copper-nickel alloy

Also Published As

Publication number Publication date
US8895169B2 (en) 2014-11-25
EP2772964A4 (en) 2015-11-11
EP2772964B1 (en) 2019-01-09
JP6008981B2 (ja) 2016-10-19
CN103988339A (zh) 2014-08-13
JP2015506085A (ja) 2015-02-26
US20140072851A1 (en) 2014-03-13
EP2772964A1 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
WO2013118982A1 (ko) 신규한 구조의 이차전지
WO2016167457A1 (ko) 전극 탭들과 전극 리드의 탭-리드 결합부가 공간부에 위치하는 전극조립체
WO2016126046A1 (ko) 고용량 음극을 포함하는 이차전지 및 그 제조 방법
WO2016048002A1 (ko) 둘 이상의 케이스 부재들을 포함하는 각형 전지셀
WO2017039385A1 (ko) 점착력이 상이한 점착 코팅부들을 포함하는 분리막 및 이를 포함하는 전극조립체
WO2017034210A1 (ko) 상대 전극전위의 측정을 위한 기준 전극을 포함하고 있는 전지셀의 제조 방법 및 이로 제조된 전지셀
WO2009128605A2 (en) Battery having enhanced electrical insulation capability
WO2012074212A2 (ko) 전지셀의 제조방법 및 이를 이용하여 생산되는 전지셀
WO2016056875A2 (ko) 전극조립체 및 이의 제조방법
WO2017105098A1 (ko) 가압과 열 인가 면적이 증대된 전지케이스의 밀봉 장치
WO2016204410A1 (ko) 이차전지 및 그 제조방법
WO2017188605A1 (ko) 규격화된 구조에 기반하여 제조 공정성이 우수하면서도 전극리드의 절연 성능이 향상된 전지셀 및 이를 포함하는 전지팩
WO2015105369A1 (ko) 안전 분리막을 가진 전극조립체 및 이를 포함하는 이차전지
KR100825207B1 (ko) 안전성이 향상된 이차전지
KR101152651B1 (ko) 양면 접착 테이프에 의해 안전성이 향상된 리튬 이차전지
WO2017082530A1 (ko) 돌출 연장부와 탭 연결부를 구비한 전극 리드를 포함하고 있는 전지셀
WO2017099333A1 (ko) 가스 흡착제가 포함되어 있는 전극 리드를 구비한 전지셀
WO2021025358A1 (ko) 내부 단락 유도를 위한 전기화학소자 및 이를 이용한 안전성 평가방법
KR20100051353A (ko) 중첩 전기화학소자
WO2016140454A1 (ko) 접착력이 강화된 분리막을 포함하는 전지셀
WO2020251165A1 (ko) 추가 열처리 공정이 도입된 리튬 이차전지의 제조방법 및 이로부터 제조된 리튬 이차전지
WO2015016568A1 (ko) 안전성이 강화된 리튬 이차전지
KR101156954B1 (ko) 전극리드와 전극 탭의 용접성이 우수한 전극조립체 및 이를포함하고 있는 이차전지
KR20120124613A (ko) 안전성이 향상된 이차전지
KR100868256B1 (ko) 안전성이 향상된 스택형 발전소자의 파우치형 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746261

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013746261

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014548694

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE