JP2010257811A - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
JP2010257811A
JP2010257811A JP2009107475A JP2009107475A JP2010257811A JP 2010257811 A JP2010257811 A JP 2010257811A JP 2009107475 A JP2009107475 A JP 2009107475A JP 2009107475 A JP2009107475 A JP 2009107475A JP 2010257811 A JP2010257811 A JP 2010257811A
Authority
JP
Japan
Prior art keywords
metal layer
lead
secondary battery
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009107475A
Other languages
English (en)
Inventor
Kazusato Fujikawa
万郷 藤川
Tomohiko Yokoyama
智彦 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009107475A priority Critical patent/JP2010257811A/ja
Priority to US12/767,309 priority patent/US20100273033A1/en
Publication of JP2010257811A publication Critical patent/JP2010257811A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】ヒューズ機能を有する信頼性の高いリードを備えた二次電池を提供することにある。
【解決手段】正極板1及び負極板2は、リード6、7を介して正極端子8及び負極端子5に接続されている。正極板1または負極板2の少なくとも一方に接続されたリード6、7は、第1の金属層6a、7aと第2の金属層6b、7bとの積層体で構成されており、第1の金属層6a、7aの抵抗は、第2の金属層6b、7bの抵抗よりも大きく、第2の金属層6b、7bの融点は、第1の金属層6a、7aの融点よりも低くなっている。二次電池に短絡電流が流れたとき、第2の金属層6a、7aへの電流集中によって第2の金属層6b、7bが溶断され、その後、第1の金属層6a、7aに流れる短絡電流の電流密度の増加に伴う発熱量の増加によって第1の金属層6a、7aが溶断されることにより、リード6、7が溶断されて短絡電流が遮断される。
【選択図】図4

Description

本発明は、ヒューズとして機能するリード構造を有する二次電池に関する。
リチウムイオン電池は、軽量で、高エネルギー密度を有することから、ポータブル機器等の電源として広く使用されている。一般に、リチウムイオン電池は、正極板及び負極板がセパレータを介して捲回または積層された電極群を電池ケース内に収容し、電池ケースの開口部を封口部材で封口した構成をなしている。そして、正極板及び負極板は、それぞれリードを介して封口部材からなる正極端子、及び電池ケースからなる負極端子に接続されている。
ところで、電池の外部端子間で外部短絡が発生すると、過大な短絡電流が流れることによって、電池が発熱し、場合によっては過熱に至るおそれがある。
このような短絡電流に起因する電池の過熱を防止する手段として、リードをヒューズとして機能させる方法が、特許文献1、2等に記載されている。すなわち、過大な短絡電流がリードに流れた場合、抵抗加熱によってリードが溶断され、これにより、短絡電流の経路を遮断することによって、電池の過熱が防止される。
なお、ヒューズとしては機能しないが、耐食性や溶接性に優れたリードの構造体については、特許文献3、4等に記載されている。
特開平11−345630号公報 特開平8−185850号公報 特開平11−297300号公報 特開2004−63132号公報
リードがヒューズとして機能するためには、短絡電流による抵抗加熱によって、リードを溶断させるだけの発熱量を発生される必要がある。
図1は、リードの発熱量を求めるためのモデル回路を示した図である。二次電池の電圧をV、二次電池の内部抵抗をR、短絡抵抗をR、リードの抵抗をR、短絡電流をIとしたとき、リードの発熱量Wは、以下の式(1)で求められる。
=I×R
=R×V/(R+R+R (1)
図2は、リードの発熱量Wとリードの抵抗Rとの関係を示したグラフで、式(1)より、リードの発熱量Wは、R=R+Rのとき最大となる。
通常、リチウムイオン電池の内部抵抗Rは数10mΩ程度であるのに対し、リードの抵抗Rは数mΩ程度であるため、リードの発熱量Wとリードの抵抗Rとの関係は、図2に示した領域Aの範囲となる。
従って、リードをヒューズとして機能させるために、短絡電流が流れたときのリードの発熱量を大きくするには、リードの比抵抗を大きくするか、リードの断面積を小さくすることが必要である。
二次電池のリード材料としては、電解液の耐食性や、電極または電池ケースとの溶接性に優れた材料であることが必要となるため、その選択の許容範囲は狭い。それ故に、リードの発熱量を大きくするためには、リードの断面積を小さくすることが重要となる。
通常、リードは、電極板を構成する集電体の一辺に接合されるため、薄板状のものが好ましい。従って、リードの断面積を小さくするためには、リードの厚みを薄くする必要がある。容量が大きく、短絡時に大電流が流れる電池の場合には、リードの厚みをそれほど薄くしなくても、十分な発熱量が発生してリードを溶断させることができる。しかしながら、容量が小さく、短絡電流が小さい電池の場合には、リードを溶断させるためには、リードの厚みを非常に薄くする必要がある。この場合、リードの強度が低下するため、外部から二次電池に衝撃等が加わったとき、リードが切断されて電池機能を失うおそれがある。
本発明は、かかる点に鑑みなされたもので、ヒューズ機能を有する信頼性の高いリードを備えた二次電池を提供することを目的とする。
本発明の一側面における二次電池は、正極板及び負極板が多孔質絶縁膜を介して配置された電極群が電池ケース内に収容されてなる二次電池であって、正極板及び負極板は、それぞれリードを介して正極端子及び負極端子に接続されており、正極板または負極板の少なくとも一方に接続されたリードは、第1の金属層と第2の金属層との積層体で構成されており、第1の金属層の抵抗は、第2の金属層の抵抗よりも大きく、かつ、第2の金属層の融点は、第1の金属層の融点よりも低くなっており、二次電池に短絡電流が流れたとき、第2の金属層への電流集中によって第2の金属層が溶断され、その後、第1の金属層に流れる短絡電流の電流密度の増加に伴う発熱量の増加によって第1の金属層が溶断されることにより、リードが溶断されて短絡電流が遮断される。
本発明の他の側面における二次電池は、上記リードが、第2の金属層を第1の金属層で挟んだ構造の積層体で構成されている。ここで、第2の金属層の両側にある第1の金属層の厚みは同一であることが好ましい。
ある好適な実施形態において、上記リードは、負極板に接続されたリードであって、第1の金属層がニッケルからなり、第2の金属層が銅からなる。
ある好適な実施形態において、上記第2の金属層の比率は、5〜30体積%の範囲、より好適には、5〜20体積%の範囲にある。
ある好適な実施形態において、上記リードは、正極板に接続されたリードであって、第1の金属層がステンレス鋼からなり、第2の金属層がアルミニウムからなる。
ある好適な実施形態において、上記第2の金属層の比率は、5〜50体積%の範囲、より好適には、5〜30体積%の範囲にある。
ある好適な実施形態において、上記リードの断面積は、0.2〜0.5mmの範囲にある。
ある好適な実施形態において、上記リードの断面積をS(mm)、二次電池の容量をC(Ah)としたとき、2.5≦C/S≦15である。
本発明の一側面における二次電池は、短絡時に速やかに溶断し、かつ、強固な構造のリードを備えているため、安全性及び信頼性の高い二次電池を提供することができる。
リードの発熱量を求めるためのモデル回路を示した図である。 リードの発熱量Wとリードの抵抗Rとの関係を示したグラフである。 本発明の一実施形態における二次電池の構成を示した断面図である。 本実施形態における負極リードの構成を示した断面図である。 (a)〜(c)は、二次電池に短絡電流が流れたときのリードが溶断されるメカニズムを説明した図である。 リードを溶断させるのに必要な発熱量Wと積層体の比率との関係を示したグラフである。 タブレス構造の電極群を備えた二次電池の構成を示した断面図である。
以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。さらに、他の実施形態との組み合わせも可能である。
(第1の実施形態)
図3は、本発明の第1の実施形態における二次電池の構成を示した断面図である。
図3に示すように、正極板1及び負極板2がセパレータ(多孔質絶縁膜)3を介して配置された電極群4が電池ケース5内に収容されている。そして、電池ケース5の開口部は、正極端子を兼ねる封口板8で封口されている。
正極板1は、正極集電体1aの両面に正極合剤層1bが形成された構成をなし、負極板2は、負極集電体2aの両面に負極合剤層2bが形成された構成をなしている。正極集電体1aが露出した正極板1の端部に正極リード6の一端が接続され、封口板8の裏面に正極リード6の他端が接続されている。また、負極集電体2aが露出した負極板2の端部に負極リード7の一端が接続され、負極端子を兼ねる電池ケース5の底部に負極リード7の他端が接続されている。すなわち、正極板1及び負極板2は、正極リード6及び負極リード7を介して、正極端子8及び負極端子5に接続されている。
本発明における二次電池は、この正極リード6または/および負極リード7の構造体に特徴を有する。以下、負極リード7を例に説明するが、もちろん、正極リード6にも適用し得る。
図4は、本実施形態における負極リード7の構成を示した断面図である。図4に示すように、負極リード7は、第1の金属層7aと第2の金属層7bとの積層体で構成されている。なお、図4では、第2の金属層7bを第1の金属層7aで挟んだ構造の3層積層体を例示しているが、第1の金属層7aと第2の金属層7bとの2層積層体で構成されていてもよい。
ここで、第1の金属層7aの抵抗は、第2の金属層7bの抵抗よりも大きく、かつ、第2の金属層7bの融点は、第1の金属層7aの融点よりも低くなっている。このような異なる特性を備えた金属層7a、7bの積層体で構成された負極リード7は、二次電池に短絡電流が流れたとき、次に示すようなメカニズムで溶断される。以下、図5(a)〜(c)を参照しながら説明する。
まず、図5(a)に示すような積層体からなるリード7に短絡電流が流れると、抵抗の小さな第2の金属層7bに電流が集中し、抵抗加熱によって第2の金属層7bが加熱される。その結果、図5(b)に示すように、融点の低い第2の金属層7bは容易に溶断される。その後、短絡電流は、溶断された第2の金属層7bには流れず、第1の金属層7aにのみ流れる。その結果、第1の金属層7aに流れる短絡電流の電流密度が増大し、これに伴い、第1の金属層7aの抵抗加熱による発熱量が増加する。これにより、図5(c)に示すように、自己の発熱によって第1の金属層7aが溶断されることによって、リード7が溶断され、短絡電流が遮断される。
すなわち、従来のリードは、自己の抵抗加熱による発熱によって溶断されるのに対し、本発明のリードは、抵抗及び融点が互いに異なる2種類の金属層からなる積層体で構成することによって、1)抵抗の低い一方の金属層に短絡電流を集中させることによって、融点の低い一方の金属層を優先的に溶断させ、その後、2)抵抗の高い他方の金属層に流れる電流密度の増加に伴う発熱量の増加によって、融点の高い他方の第1の金属層を容易に溶断させる、という2ステップの溶断メカニズムを取り入れたことを特徴とする。
抵抗の高い第1の金属層7aは、第1のステップにおいて、抵抗の低い第2の金属層7bに短絡電流を優先的に流すための電流ブロックとして機能する。また、第2の金属層7bは、第2のステップにおいて、溶断を容易にするために厚みを薄くした第1の金属層7aの補強材として機能する。これにより、短絡時にリード7を速やかに溶断することができるため、短絡電流を速やかに遮断して、二次電池の過熱を防止することができる。また、リード7の構成を積層体にすることによって、リード7の強度を向上させることができるため、外部から二次電池に衝撃等が加わっても、リードの切断を防止することができる。その結果、安全性及び信頼性の高い二次電池を実現することができる。
本発明におけるリード7は、第2の金属層7bを第1の金属層7aで挟んだ構造の積層体で構成することが好ましい。これにより、抵抗加熱で加熱された第2の金属層7bから熱が外部に逃げるのを抑制でき、第2の金属層7bの温度を効率よく上昇させることができる。また、より効率的に放熱を抑制するために、第2の金属層7bの両側にある第1の金属層7aの厚みを同一にしておくことが好ましい。
本発明において、第1の金属層7aと第2の金属層7bとの体積比率(積層体の比率)は、特に制限はされず、それぞれの抵抗及び融点の大きさや、短絡電流の大きさ等を考慮して、好適な範囲を決めることができる。
また、本発明において、リード7を溶断させるのに必要な電流Iと、積層体の比率との関係は、定性的には図6に示すような関係となる。
第1の金属層7aが100%の場合は、リード7の抵抗が高いために、短絡電流に対して発熱量が大きく、リード7の温度が上がりやすいものの、融点が高いため、溶断させるにはある程度大きな電流が必要となる。一方、第2の金属層7bが100%の場合には、リード7の抵抗が低いために、短絡電流が大きくても発熱量が大きくならず、溶断しにくい。
これに対して、一定の比率の積層体で構成されたリード7においては、トータルの電流がある程度少なくても、抵抗の低い第2の金属層7bに電流が集中するため、融点の低い第2の金属層7bが容易に溶断でき、その後、リード7全体の断面積が縮小することによって、第1の金属層7aの電流密度が増加するため、融点の高い第1の金属層8aでも、比較的低い電流で溶断させることができる。従って、図6に示すように、積層体の比率を領域Dの範囲に設定することによって、小さな短絡電流でも容易にリード7を溶断させることができる。
また、本発明における「リード」は、図3に示したような電極群4を備えた二次電池だけでなく、図7に示すような、所謂タブレス構造の電極群4を備えた二次電池にも適用できる。図7に示した二次電池において、セパレータ3から突出している正極集電体1aの端部は、正極集電板9の裏面に接続されており、正極集電板9の表面に正極リード6の一端が接続され、封口板8の裏面に正極リード6の他端が接続されている。すなわち、正極板1は、正極リード6を介して、正極端子8に接続されていることになる。従って、正極リード6に本発明の積層体で構成されたリードを適用することによって、安全性及び信頼性の高い二次電池を得ることができる。
また、本発明において、第1の金属層7a及び第2の金属層7bの材料は特に制限されないが、耐食性や溶接性に優れた材料を用いることが好ましい。例えば、材料の組合せを(第1の金属層、第2の金属層)と表示したとき、(ニッケル、銅)、(ニッケル−銅合金、銅)等を用いることができる。
次に、本実施形態におけるリードの具体的な構成を、リチウムイオン二次電池の負極リード7を例に説明する。ここで、負極リード7として、第1の金属層7aをニッケル(Ni)に、第2の金属層7bを銅(Cu)にして、図4に示したようなNi/Cu/Niの3層積層体を用いた。なお、Niの比抵抗は6.9μΩ・cm、融点は1455℃、Cuの比抵抗は1.7μΩ・cm、融点は1084℃である。
表1は、Cuの体積比率を0〜100%の範囲で変えた負極リード7を作製し、この負極リード7を用いてリチウムイオン二次電池(例1〜例10)を作製して、短絡試験を行った結果を示した表である。ここで、例1の負極リード7はNi単層(Cuの体積比率が0%)を意味し、例10の負極リード7はCu単層(Cuの体積比率が100%)を意味する。なお、リチウムイオン二次電池の作製及び短絡試験は、以下の手順で行った。
Figure 2010257811
(a)正極板の作製
正極活物質であるコバルト酸リチウム3kgと、正極結着剤である呉羽化学(株)製の「#1320(商品名)」(PVDFを12重量%含むN−メチル−2−ピロリドン(NMP)溶液)1kgと、導電材であるアセチレンブラック90gと、適量のNMPとを練合機で攪拌し、正極合剤スラリーを調製した。このスラリーを正極集電体1aである厚み15μmのアルミニウム箔の両面に塗布し、乾燥させた。乾燥後の塗膜をローラで圧延し、正極合剤層1bを形成し、圧延後の正極板1の厚みを160μmとした。その後、正極板1を幅56mmに裁断し、正極合剤層1bの未塗工部に、アルミニウムからなる幅3mm、厚さ0.1mmの正極リード6を溶接により接続した。
(b)負極の作製
負極活物質である人造黒鉛3kgと、負極結着剤である日本ゼオン(株)製の「BM−400B(商品名)」(スチレン−ブタジエン共重合体の変性体を40重量%含む水性分散液)75gと、増粘剤であるカルボキシメチルセルロースナトリウム(CMC)を30gと、適量の水とを、練合機で攪拌し、負極合剤スラリーを調製した。このスラリーを負極集電体2aである厚さ10μmの銅箔の両面に塗布し、乾燥させた。乾燥後の塗膜をローラで圧延して、負極合剤層2bを形成し、圧延後の負極板2の厚みを180μmとした。その後、負極板2を幅57mmに裁断し、負極合剤層2bの未塗工部に、Ni/Cu/Ni3層積層体からなる、幅3mm、厚さ0.1mmの負極リード7を溶接により接続した。なお、Cu層の両側にあるNi層は同じ厚みとした。
(c)非水電解質の調製
エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを体積比3:7で含む非水溶媒の混合物に、LiPFを1mol/Lの濃度で溶解させた。得られた溶液100重量部あたり、ビニレンカーボネート(VC)を3重量部添加し、非水電解質を得た。
(d)リチウムイオン二次電池の作製
正極板1と負極板2とを、厚み20μmのポリエチレンからなるセパレータ(多孔質膜)3を介して捲回し、電極群4を構成した。なお、正極リード6は電極群4の内周部に、負極リード7は外周部に来るように配置した。
電極群4を電池ケース5に挿入した後、負極リード7の他端を電池ケース5の内底面に溶接した。次いで、非水電解質5gを電池ケース5内に注入した後、正極リード6の他端を封口板8の下面に溶接した。その後、電池ケース5に封口板8を挿入し、電池ケース5の開口部をかしめ封口して、リチウムイオン二次電池を完成させた。設計容量は2200mAhであった。
(e)短絡試験
まず、各電池について、慣らし充放電を二度行い、更に400mAの電流値で4.1Vに達するまで充電した。その後、充電状態の電池を、45℃環境下で7日間保存した後、20℃環境下で、以下のステップによる充放電を行った。
1)定電流充電:充電電流値1500mA/充電終止電圧4.2V
2)定電圧充電:充電電圧値4.2V/充電終止電流100mA
3)定電流放電:放電電流値2200mA/放電終止電圧3V
その後、25℃環境下において、外部回路に約5mΩの抵抗を介してこの電池の正負極端子間を短絡させた。そして、短絡後90秒後の電池温度を測定した。
表1に示すように、Cu比率(第2の金属層の比率)が5〜30体積%の電池(例3〜例6)では、短絡後の電池温度の上昇はほとんど生じなかった。試験後の電池を分解すると、負極リード7が溶断されているのが確認できた。つまり、短絡後、負極リード7が速やかに溶断されたことにより、短絡電流が速やかに遮断されて電池温度の上昇を防止できたものと考えられる。
一方、Cu比率が5体積%未満の電池(例1、例2)では、短絡後の電池温度は100℃以上に上昇していた。試験後の電池を分解すると、負極リード7は溶断されてなく、その代わりに、セパレータ3が溶解することによるシャットダウン機能が働いていた。つまり、短絡後、セパレータ3のシャットダウン機能が働くまで短絡状態が継続したことにより、電池の発熱が長時間継続した結果、電池温度の過度な上昇が生じたものと考えられる。これは、Cu比率が5体積%未満だと、融点の低いCu層が溶断しても、Ni層の断面積の実効的な減少が少ないため、Ni層に流れる短絡電流の電流密度の増加に伴う発熱量の増加効果が十分に発揮できず、その結果、Ni層が溶断に至らなかったものと考えられる。
また、Cu比率が30体積%を超えた電池(例7〜例10)でも、短絡後の電池温度は100℃以上に上昇していた。試験後の電池を分解すると、負極リード7は溶断されてなく、その代わりに、セパレータ3が溶解することによるシャットダウン機能が働いていた。つまり、短絡後、セパレータ3のシャットダウン機能が働くまで短絡状態が継続したことにより、電池の発熱が長時間継続した結果、電池温度の過度な上昇が生じたものと考えられる。これは、Cu比率が30体積%を超えると、Cu層における電流集中が少なく、Cu層を溶断させることができなかったものと考えられる。
以上の結果から、負極リード7をNi/Cu/Niの3層積層体にした場合、Ni層の比率を5〜30体積%の範囲にすることが好ましい。なお、Cu層の電流集中をより大きくして、より小さな電流で溶断させるために、Ni層の比率を5〜20体積%の範囲にすることがより好ましい。
次に、表1に示したリチウムイオン二次電池において、負極リード7を厚み0.1mmのCu単層に変更し、正極リード6を、第1の金属層6aをステンレス鋼(SUS)、第2の金属層6bをアルミニウム(Al)とするSUS/Al/SUSの3層積層体に変更して、同様の短絡試験を行った。なお、SUSの比抵抗は72μΩ・cm、融点は1400℃、Alの比抵抗は2.8μΩ・cm、融点は660℃である。
表2は、その結果を示した表である。ここで、例11の正極リード6はSUS単層(Alの体積比率が0%)を意味し、例19の正極リード6はAl単層(Alの体積比率が100%)を意味する。
Figure 2010257811
表2に示すように、Al比率(第2の金属層の比率)が5〜50体積%の電池(例13〜例16)では、短絡後の電池温度の上昇はほとんどなかった。試験後の電池を分解すると、正極リード6が溶断されているのが確認できた。つまり、短絡後、正極リード6が速やかに溶断されたことにより、短絡電流が速やかに遮断されて電池温度の上昇を防止できたものと考えられる。
一方、Al比率が5体積%未満の電池(例11、例12)では、短絡後の電池温度は100℃以上に上昇していた。試験後の電池を分解すると、正極リード6は溶断されてなく、その代わりに、セパレータ3が溶解することによるシャットダウン機能が働いていた。つまり、短絡後、セパレータ3のシャットダウン機能が働くまで短絡状態が継続したことにより、電池の発熱が長時間継続した結果、電池温度の過度な上昇が生じたものと考えられる。これは、Al比率が5体積%未満だと、融点の低いAl層が溶断しても、SUS層の断面積の実効的な減少が少ないため、SUS層に流れる短絡電流の電流密度の増加に伴う発熱量の増加効果が十分に発揮できず、その結果、SUS層が溶断に至らなかったものと考えられる。
また、Al比率が50体積%を超えた電池(例17〜例19)でも、短絡後の電池温度は100℃以上に上昇していた。試験後の電池を分解すると、正極リード6は溶断されてなく、その代わりに、セパレータ3が溶解することによるシャットダウン機能が働いていた。つまり、短絡後、セパレータ3のシャットダウン機能が働くまで短絡状態が継続したことにより、電池の発熱が長時間継続した結果、電池温度の過度な上昇が生じたものと考えられる。これは、Al比率が50体積%を超えると、Al層における電流集中が少なく、Al層を溶断させることができなかったものと考えられる。
以上の結果から、正極リード6をSUS/Al/SUSの3層積層体にした場合、Al層の比率を5〜50体積%の範囲にすることが好ましい。なお、Al層の電流集中をより大きくして、より小さな電流で溶断させるために、Al層の比率を5〜30体積%の範囲にすることがより好ましい。
また、本発明において、第1の金属層6a及び第2の金属層6bの材料は特に制限されないが、耐食性や溶接性に優れた材料を用いることが好ましい。例えば、材料の組合せを(第1の金属層、第2の金属層)と表示したとき、(ステンレス鋼、アルミニウム)、(チタン、アルミニウム)、等を用いることができる。
(第2の実施形態)
上述したように、本発明におけるリードの積層体において、第1の金属層6a(7a)と第2の金属層6b(7b)との体積比率は、特に制限されず、それぞれの抵抗及び融点の大きさや、短絡電流の大きさ等を考慮して、好適な範囲を決めることができる。
本実施形態では、リードの強度を適切に保ち、なおかつ電池のエネルギー密度との両立を図る観点から、リードの断面積の好適な範囲について説明する。
ここでは、負極リード7として、第1の金属層7aをニッケル(Ni)に、第2の金属層7bを銅(Cu)にして、体積比率40/20/20のNi/Cu/Niの3層積層体を例に説明する。
負極リード7の幅を変えることによって断面積を変えた負極リード7を作製し、この負極リード7を用いてリチウムイオン二次電池(例21〜例30)を作製して、落下試験及び電極群のケースへの挿入試験を行った。表3は、その結果を示した表である。
Figure 2010257811
なお、リチウムイオン二次電池の作製は、負極リード7の断面積を変えた以外は、例5の電池と同様に行った。落下試験および電極群挿入試験は以下の手順で行った。
(a)落下試験
まず、各電池について、50個ずつ慣らし充放電を二度行い、更に400mAの電流値で4.1Vに達するまで充電した。その後、充電状態の電池を、45℃環境下で7日間保存した後、20℃環境下で、以下のステップによる充放電を行った。
1)定電流充電:充電電流値1500mA/充電終止電圧4.2V
2)定電圧充電:充電電圧値4.2V/充電終止電流100mA
3)定電流放電:放電電流値2200mA/放電終止電圧3V
その後、25℃環境下において、1.6mの高さから各セル50回落下させた。そして、落下後の電池の1kHzにおける交流インピーダンスを測定した。交流インピーダンスが10%以上上昇した電池をリードがダメージを受けた電池とみなし、その発生率を表3に示した。
(b)電極群挿入試験
次に、各電池を電極群の状態で50個ずつ準備し、ケースに挿入した後の正負極リード間の抵抗を測定した。抵抗値が1MΩ以下のものを挿入時に短絡が発生したとみなして、その発生率を表3に示した。
表3に示すように、断面積の小さな電池(例21〜例23)では、落下試験により交流インピーダンスが上昇した。試験後の電池を分解すると、負極リード7が切断もしくはクラックが入っているのが溶断されているのが確認できた。つまり、負極リード7の断面積が小さくなることにより、強度が低下したものと考えられる。一方で、断面積の大きな電池(例29、例30)では電極群の挿入試験で短絡が発生した。これは断面積の大きなリードを用いることによって電極群の径が大きくなり、挿入時にケースと接触し、セパレータがダメージを受けるなどして短絡が発生したものと考えられる。
以上の結果から、リードの強度を適切に保ち、かつ電池のエネルギー密度との両立を図るためには、リードの断面積が、0.2〜0.5mmの範囲にあることが好ましい。
(第3の実施形態)
上述したように、本発明におけるリードの積層体において、第1の金属層6a(7a)と第2の金属層6b(7b)との体積比率は、特に制限されず、それぞれの抵抗及び融点の大きさや、短絡電流の大きさ等を考慮して、好適な範囲を決めることができる。
本実施形態では、電池の出力と外部短絡時の安全性との両立を図る観点から、リードの断面積の好適な範囲について説明する。
正極及び負極の長さを変えることによって電池の容量を変化させ、さらに断面積を変えた負極リード7を作製し、この負極リード7を用いてリチウムイオン二次電池(例31〜例54)を作製して、高率放電試験及び短絡試験を行った。表4は、その結果を示した表である。
Figure 2010257811
なお、リチウムイオン二次電池の作製は、例1の電池と同様に行った。高率放電試験は以下の手順で行った。短絡試験は表1で行ったのと同様の手順で行った。
(a)高率放電試験
まず、各電池について、慣らし充放電を二度行い、更に0.2×C Aの電流値で4.1Vに達するまで充電した。その後、充電状態の電池を、45℃環境下で7日間保存した後、20℃環境下で、以下のステップによる充放電を行った。
1)定電流充電:充電電流値0.7×C A/充電終止電圧4.2V
2)定電圧充電:充電電圧値4.2V/充電終止電流0.05×C A
3)定電流放電:放電電流値0.2×C A/放電終止電圧3V
0.2×C Aの電流値での容量に対する2×C Aの電流値での容量比率を高率放電特性(%)として、表4に示した。また、短絡試験については溶断の発生の有無を表4に示した。
表4に示すように、C/Sが2.5より小さな電池(例37、例43、例49、例50)では、負極リード7の溶断が起こらなかった。つまり、電池の容量が小さく、負極リード7の断面積に対して電池の内部抵抗が大きかったために、短絡電流が小さく溶断が起こらなかったものと考えられる。一方で、C/Sが15より大きな電池(例34〜例36、例42)では高率放電特性が悪かった。これは、電池容量が大きくて放電電流が多い電池に断面積の小さな負極リード7を用いた場合に、負極リード7の抵抗が高いために電池としての抵抗が高くなり、高率放電特性が悪くなったものと考えられる。
以上の結果から、電池の出力と外部短絡時の安全性との両立を図るためには、リードの断面積をS(mm)、二次電池の容量をC(Ah)としたとき、2.5≦C/S≦15であることが好ましい。
以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。例えば、上記の実施形態では、二次電池としてリチウムイオン二次電池を例に説明したが、これに限らず、例えば、ニッケル水素電池、ニッケル・カドミウム電池等にも適用できる。また、円筒形の二次電池に限らず、角形の二次電池にも勿論適用できる。
本発明の二次電池は、短絡が生じたときでも高い安全性を維持することができ、携帯電子機器から電気自動車等の幅広い電源に有用である。
1 正極板
1a 正極集電体
1b 正極合剤層
2 負極板
2a 負極集電体
2b 負極合剤層
3 セパレータ
4 電極群
5 電池ケース(負極端子)
6 正極リード
6a 第1の金属層
6b 第2の金属層
7 負極リード
7a 第1の金属層
7b 第2の金属層
8 封口板(正極端子)
9 正極集電板

Claims (12)

  1. 正極板及び負極板が多孔質絶縁膜を介して配置された電極群が電池ケース内に収容されてなる二次電池であって、
    前記正極板及び負極板は、それぞれリードを介して正極端子及び負極端子に接続されており、
    前記正極板または負極板の少なくとも一方に接続された前記リードは、第1の金属層と第2の金属層との積層体で構成されており、
    前記第1の金属層の抵抗は、前記第2の金属層の抵抗よりも大きく、かつ、前記第2の金属層の融点は、前記第1の金属層の融点よりも低くなっており、
    前記二次電池に短絡電流が流れたとき、前記第2の金属層への電流集中によって該第2の金属層が溶断され、その後、前記第1の金属層に流れる短絡電流の電流密度の増加に伴う発熱量の増加によって前記第1の金属層が溶断されることにより、前記リードが溶断されて前記短絡電流が遮断される、二次電池。
  2. 前記リードは、前記第2の金属層を前記第1の金属層で挟んだ構造の積層体で構成されている、請求項1に記載の二次電池。
  3. 前記第2の金属層の両側にある前記第1の金属層の厚みは同一である、請求項2に記載の二次電池。
  4. 前記リードは、前記負極板に接続されたリードであって、前記第1の金属層がニッケルからなり、前記第2の金属層が銅からなる、請求項1に記載の二次電池。
  5. 前記第2の金属層の比率は、5〜30体積%の範囲にある、請求項4に記載の二次電池。
  6. 前記第2の金属層の比率は、5〜20体積%の範囲にある、請求項4に記載の二次電池。
  7. 前記リードは、前記正極板に接続されたリードであって、前記第1の金属層がステンレス鋼からなり、前記第2の金属層がアルミニウムからなる、請求項1に記載の二次電池。
  8. 前記第2の金属層の比率は、5〜50体積%の範囲にある、請求項7に記載の二次電池。
  9. 前記第2の金属層の比率は、5〜30体積%の範囲にある、請求項7に記載の二次電池。
  10. 前記リードの断面積は、0.2〜0.5mmの範囲にある、請求項1に記載の二次電池。
  11. 前記リードの断面積をS(mm)、前記二次電池の容量をC(Ah)としたとき、2.5≦C/S≦15である、請求項1に記載の二次電池。
  12. 前記二次電池は、リチウムイオン二次電池である、請求項1に記載の二次電池。
JP2009107475A 2009-04-27 2009-04-27 二次電池 Withdrawn JP2010257811A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009107475A JP2010257811A (ja) 2009-04-27 2009-04-27 二次電池
US12/767,309 US20100273033A1 (en) 2009-04-27 2010-04-26 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009107475A JP2010257811A (ja) 2009-04-27 2009-04-27 二次電池

Publications (1)

Publication Number Publication Date
JP2010257811A true JP2010257811A (ja) 2010-11-11

Family

ID=42992430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009107475A Withdrawn JP2010257811A (ja) 2009-04-27 2009-04-27 二次電池

Country Status (2)

Country Link
US (1) US20100273033A1 (ja)
JP (1) JP2010257811A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118982A1 (ko) * 2012-02-07 2013-08-15 주식회사 엘지화학 신규한 구조의 이차전지
KR20150040502A (ko) * 2013-10-07 2015-04-15 주식회사 엘지화학 전극조립체 및 그를 포함하는 전기화학소자
WO2021010185A1 (ja) * 2019-07-12 2021-01-21 Tdk株式会社 正極及びリチウムイオン二次電池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9553463B2 (en) * 2011-10-12 2017-01-24 Mechanical Energy Generating Systems, L.L.C. Systems, methods, and apparatus for a homopolar generator charger with integral rechargeable battery
KR101709560B1 (ko) * 2013-09-27 2017-02-23 주식회사 엘지화학 낮은 저항의 전극 탭을 포함하는 이차전지
JP6147207B2 (ja) * 2014-02-27 2017-06-14 三洋電機株式会社 電池及び電池の製造方法
KR101849757B1 (ko) * 2016-08-26 2018-04-17 주식회사 엘지화학 서로 다른 저항값을 갖는 금속층들의 결합으로 이루어진 전극리드를 포함는 이차전지
KR102130827B1 (ko) * 2017-11-15 2020-07-06 삼성에스디아이 주식회사 배터리 팩

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297300A (ja) * 1998-04-04 1999-10-29 Sumitomo Special Metals Co Ltd 電池用リード材料とリード付き二次電池
JP3497380B2 (ja) * 1998-06-02 2004-02-16 日本碍子株式会社 リチウム二次電池
JP2000215879A (ja) * 1999-01-26 2000-08-04 Hitachi Maxell Ltd ポリマ―電解質電池
KR100322098B1 (ko) * 1999-11-18 2002-02-06 김순택 2차 전지
JP2001176490A (ja) * 1999-12-14 2001-06-29 Sony Corp 非水電解液二次電池
JP2001176491A (ja) * 1999-12-14 2001-06-29 Sony Corp 非水電解液二次電池
JP2003100278A (ja) * 2001-09-26 2003-04-04 Toshiba Corp 非水電解質二次電池
JP3591523B2 (ja) * 2002-04-11 2004-11-24 日産自動車株式会社 組電池
JP4357809B2 (ja) * 2002-07-25 2009-11-04 株式会社東芝 電極リード用部材およびこの電極リード用部材を用いた電池

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118982A1 (ko) * 2012-02-07 2013-08-15 주식회사 엘지화학 신규한 구조의 이차전지
US20140072851A1 (en) * 2012-02-07 2014-03-13 Lg Chem, Ltd. Secondary battery of novel structure
CN103988339A (zh) * 2012-02-07 2014-08-13 株式会社Lg化学 具有新型结构的二次电池
US8895169B2 (en) 2012-02-07 2014-11-25 Lg Chem, Ltd. Secondary battery of novel structure
JP2015506085A (ja) * 2012-02-07 2015-02-26 エルジー・ケム・リミテッド 新規な構造の二次電池
KR20150040502A (ko) * 2013-10-07 2015-04-15 주식회사 엘지화학 전극조립체 및 그를 포함하는 전기화학소자
KR101638112B1 (ko) * 2013-10-07 2016-07-08 주식회사 엘지화학 전극조립체 및 그를 포함하는 전기화학소자
WO2021010185A1 (ja) * 2019-07-12 2021-01-21 Tdk株式会社 正極及びリチウムイオン二次電池

Also Published As

Publication number Publication date
US20100273033A1 (en) 2010-10-28

Similar Documents

Publication Publication Date Title
JP2010257811A (ja) 二次電池
TWI455389B (zh) 改良性的膠卷狀結構,及包含其之二次電池
JP5293938B2 (ja) 電極組立体及びそれを用いた二次電池
JP5427046B2 (ja) 非水電解質電池及びその製造方法
KR100971345B1 (ko) 전극 조립체 및 이를 포함하는 이차 전지
JP4960326B2 (ja) 二次電池
JP2006012812A (ja) 電極組立体及びこれを用いる二次電池
JP2001357854A (ja) 非水系二次電池
JPH11345630A (ja) リチウム二次電池
JP4549992B2 (ja) 非水電解質電池およびその製造方法
US20170187025A1 (en) Secondary battery
JPWO2012153866A1 (ja) 非水系二次電池の積層構造、および非水系二次電池の積層方法
JP2008130360A (ja) 非水電解液二次電池
JP4382557B2 (ja) 非水二次電池
US20230402616A1 (en) Current collector for positive electrode
JP2007257848A (ja) 非水電解質二次電池
WO1999067837A1 (en) Electrode, method of producing electrode, and cell comprising the electrode
JP3863135B2 (ja) 電池
KR20070067783A (ko) 이차전지
JP2016536770A (ja) 低い抵抗の電極タブを含む二次電池
KR20130089375A (ko) 이차 전지 및 이차 전지용 부품
KR101233626B1 (ko) 이차전지
JP2001297748A (ja) 非水電解質二次電池
JP2009259749A (ja) 非水電解液二次電池
JP2002313348A (ja) 二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120210

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130304