WO2019124835A1 - 폴리에틸렌 공중합체 및 이의 제조 방법 - Google Patents

폴리에틸렌 공중합체 및 이의 제조 방법 Download PDF

Info

Publication number
WO2019124835A1
WO2019124835A1 PCT/KR2018/015430 KR2018015430W WO2019124835A1 WO 2019124835 A1 WO2019124835 A1 WO 2019124835A1 KR 2018015430 W KR2018015430 W KR 2018015430W WO 2019124835 A1 WO2019124835 A1 WO 2019124835A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
alkyl
aryl
transition metal
alkenyl
Prior art date
Application number
PCT/KR2018/015430
Other languages
English (en)
French (fr)
Inventor
박종상
이기수
송은경
홍대식
이예진
김중수
신은영
유영석
곽진영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180154616A external-priority patent/KR102285480B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP18891303.2A priority Critical patent/EP3640269A4/en
Priority to RU2020106597A priority patent/RU2773517C2/ru
Priority to CN201880045250.3A priority patent/CN110869399B/zh
Priority to BR112020003608-0A priority patent/BR112020003608B1/pt
Priority to US16/635,239 priority patent/US11225568B2/en
Publication of WO2019124835A1 publication Critical patent/WO2019124835A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • C08F4/6496Catalysts containing a specific non-metal or metal-free compound organic containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65925Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually non-bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/02Cp or analog bridged to a non-Cp X anionic donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/06Cp analog where at least one of the carbon atoms of the non-coordinating part of the condensed ring is replaced by a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/07Heteroatom-substituted Cp, i.e. Cp or analog where at least one of the substituent of the Cp or analog ring is or contains a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/10Heteroatom-substituted bridge, i.e. Cp or analog where the bridge linking the two Cps or analogs is substituted by at least one group that contains a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/18Bulk density
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/18Applications used for pipes

Definitions

  • the present invention relates to a polyethylene copolymer and a process for producing the same.
  • the high pressure resistance characteristic is generally a physical property that can be expressed in a high density region because the higher the degree of crystallization in the polyolefin resin is, the more modulus is increased, and the strength against high pressure is increased.
  • the normal pipe has to have a long-term pressure stability for at least 50 years.
  • the density is high, the restraining force against brittle fracture (Fracture Fracture) mode deteriorates.
  • the molecular weight of the polyolefin resin is low or if the polydispersity index is narrow, the polyolefin resin having a high molecular weight and a very high polydispersity index should be applied to the polyolefin resin because the sagging phenomenon occurs during the processing of the large diameter pipe, It can be solved.
  • the molecular weight of the polyolefin resin is high, a large amount of the extrusion load is generated, and the appearance is poor due to the reduction in the pipe workability.
  • the present invention is to provide a polyethylene copolymer useful for a hollow mold such as a pipe having excellent processability and durability.
  • the present invention also provides a method for producing the polyethylene copolymer 2019/124835 1 »(: 1 ⁇ ⁇ 2018/015430
  • the present invention also provides a molded article comprising the polyethylene copolymer.
  • a poly (ethylene copolymer) containing ethylene repeating units and repeating units derived from an alpha olefin having 3 or more carbon atoms and satisfying the following formula (1) may be provided.
  • the comonomer dispersion index (I)) of the polyethylene copolymer is a value obtained by dividing the polyethylene (i) by the comonomer dispersion index (X-axis is the molecular weight of the polymer chain and 7-axis is the content of the high molecular weight chain) measured by gel permeation chromatography of the copolymer is calculated by the following formula (2)
  • Comonomer dispersion index (0) 1) 0 / (1
  • 3 is the minimum value of the molecular weight in the X-axis in the molecular weight distribution curve graph, and is the maximum value of the molecular weight in the X-axis in the molecular weight distribution curve graph.
  • the present inventors have found that when a polyethylene copolymer satisfying the condition of the above-mentioned formula (1) is used, excellent workability is achieved through a relatively low melt viscosity 2019/124835 1 »(: 1 ⁇ ⁇ 2018/015430
  • the long-term brittle fracture resistance is improved and excellent long-term durability can be realized.
  • the polyethylene copolymer satisfying the conditions of the above formula (1) is obtained by the polyethylene copolymer production method of another embodiment to be described later.
  • the polyethylene copolymer satisfies the following formula (2) And a second transition metal compound containing at least one selected from the group consisting of the following chemical formulas (4) to (7), or a first transition metal compound , And a second mixture containing a second transition metal compound comprising at least one selected from the group consisting of the following chemical formulas (4), (6) and (7) And a carrier on which the transition metal mixture is supported, in the presence of a hybrid supported catalyst.
  • the ethylene-derived repeating unit is a repeating unit formed from polymerization of an ethylene monomer
  • the repeating unit derived from an alpha-olefin means a repeating unit formed from polymerization of an alpha olefin monomer.
  • the alpha olefin monomers are those having 3 or more carbon atoms, or 3 to 20, or 3 to 10 carbon atoms, such as propylene, 1-butene, 1-pentene, 4-methyl- 1-octene, 1-decene, 1-undecene, 1 -dodecene, 1 -tetradecene, 1 -hexadecene, 1 -tocene, norbornene, norbornene, ethylidenenorbornene, Selected from the group consisting of novodene, dicyclopentadiene, 1,4-butadiene, 1,5-pentadiene, 1,6-nuclear diene, styrene, alpha-methylstyrene, divinylbenzene and 3-chloromethylstyrene Or more.
  • the content of the comonomer, alpha-olefin is not particularly limited and may be appropriately selected depending on the use and purpose of the copolymer. More specifically, it may be more than 0 mol% and not more than 99 mol%.
  • the expression (1) may be expressed by the following expression (1-1). 0 2019/124835 1 »(: 1/10 ⁇ 018/015430
  • the third area () between ⁇ X ⁇ 01 period, the molecular weight distribution curve graph with the X axis is able to sense the integrals of from 3 £ X £ 0 1 range for the molecular weight distribution curve graph, the 3 £ X
  • the area of the molecular weight distribution curve graph and the area of the X axis in the " L " section means an integral value in the range of ⁇ X ⁇ 1).
  • (1, 3 £ X £ in the II period, the molecular weight distribution curve area of the graph and the X chuksayi (33) is 3 ⁇ X ⁇ in the molecule amount distribution curve graph and the X chuksayi in the interval (Measured by 1 -) of 2 to 7 carbon atoms per 1000 carbon atoms of the polymer chain having a molecular weight value II of 20% of the area ( 34 ).
  • the 3 ⁇ X ⁇ 11 intervals can mean the integrals in the above molecular weight distribution curve graph and the area of the X chuksayi (33) 3 for eunsanggi molecular weight distribution curve graph ⁇ X ⁇ II range, the 3 ⁇ X £ The area of the molecular weight distribution curve and the area of the X axis in the section 4) means an integral value in the range of 3 ⁇ X ⁇ I).
  • 3 is a positive real number indicating the minimum value of the molecular weight in the X-axis in the molecular weight distribution curve graph
  • 1 3 is the molecular weight distribution curve 0 2019/124835 1> (/ 1 bought 018/015430
  • 11 is a positive real number indicating the maximum value of the molecular weight of the X-axis, and satisfies 3 ⁇ II ⁇ 1 3
  • CDI comonomer variance index
  • polymer chain (s) included in the “polyethylene copolymer” may refer to a plurality of polymer chains formed when the polyethylene copolymer is polymerized and produced.
  • the molecular weight and the like of these polymer chains can be confirmed through a molecular weight distribution curve (indicated by a continuous solid line in FIG. 1) using gel permeation chromatography (GPC).
  • the gel permeation chromatography used in the measurement of the molecular weight distribution curve graph is, for example, a Polymer Laboratories PL gel MIX-B 300 mm long column, a Waters PL-GPC220 instrument, the evaluation temperature is 100 ° C to 200 ° C, 1,2,4-trichlorobenzene was used as a solvent and a sample having a flow rate of 0.1 to 10 mL / min and a concentration of 1 mg / 10 mL to 20 mg / By weight based on the total weight of the composition.
  • the side chain content of 2 to 7 carbon atoms per 1000 carbon atoms contained in each of the plurality of polymer chains contained in the polyethylene copolymer can be confirmed by analyzing the polyethylene copolymer with FT-m.
  • the FT-IR used for the short chain branch (SCB) measurement is, for example, a PerkinElraer Spectrum 100 instrument including a DTGS detector.
  • the evaluation temperature is 100 ° C to 200 ° C and a wavenumber of 2000 cm -1 to 4000 (number of scanning) cm ⁇ 1, scan time once to 20 times, resolution (resolut ion) may be used in 1 to 10 cm- 1 cm 1 condition. 2019/124835 1 »(: 1 ⁇ ⁇ 2018/015430
  • the melt index of the polyethylene copolymer increases or the comonomer dispersion index, 0) , There is a limit in that the workability and long-term durability are reduced.
  • the polyethylene copolymer is 300 or
  • the polyethylene copolymer may have a comonomer dispersion index 01) 1) of 1.2 to 3.0, or 1.2 to 2.6, or 1.23 to 2.56.
  • the polyethylene copolymer ° (measured at:) is 0.85 Or 0.85 to 3 to 1.0 Or 0.90
  • the polyethylene copolymer may have a resistance to stress cracking of 41 3 ⁇ 4 or more) of 1000 or more, or 1000 to 10000.
  • the polyethylene copolymer is high And stress cracking resistance 1 '), it can be confirmed that it has excellent long-term brittle fracture resistance.
  • the sound ethylene copolymers ⁇ retaining index (show 3 ⁇ 41 1) according to 1238.
  • 190 "measured from 0 to 2.16 weight) is 0.01 ⁇ / 10 1 11 to 0.65 for a / 10 11, or 0.02 mu / 10 111 1 11 to 0.60 / 10 11 11, or 0.03 / 10 11 11 to 0.60 Y / 10 11 11 , or 0.036 to 10 11 11 to 0.5 91/10 11.
  • the polyethylene copolymer may also be melted 1) According to 1238, at 190 ° (: to 21.6 Into the measurement) the second I / / 10 for 10 111 to 30 111 111, or nine-arch / 10 [1 ⁇ 11 to 25 for a / 10 1 11, or 9.5 per / 10 11 11 to 24.5 for a / 10 1 11 Can be.
  • the polyethylene copolymer may be a density ⁇ 3 ⁇ 41 1505) is 0.930 per / Examples 3 to 0.945 g / cm 3, or 0.935 / (page 3 to the / 3 for 0.940 for.
  • the average value of the side chain content of 2 to 7 carbon atoms per 1000 carbon atoms contained in each of the plurality of polymer chains contained in the polyethylene copolymer is preferably 2 or more carbon atoms per 1000 carbon atoms contained in each of the plurality of polymer chains contained in the polyethylene copolymer
  • To the total number of side branches of 7 can be calculated by dividing by the number of polymer chains contained in the polyethylene copolymer.
  • the average value of side branch content of 2 to 7 carbon atoms per 1000 carbon atoms contained in each of the plurality of polymer chains contained in the polyethylene copolymer is represented by the logarithmic value (log M) of the molecular weight (M) obtained by gel permeation chromatography x-axis, and an SCB distribution curve (represented by a discontinuous dashed line in FIG. 1) in which the side chain content of 2 to 7 carbon atoms per 1,000 carbon atoms relative to the logarithmic value obtained by FT-m is represented by the y-axis Thereafter, it can be obtained according to the average value calculation method described above.
  • the polyethylene copolymer has 2 to 7 carbon atoms per 1000 carbon atoms of each polymer chain
  • the average value of the contents is 7 / 1000C to 15/1000C, or 7 / 1,000C to 14/1000C, or 7 / 1.000C to 13/1000C, or 7 / 1,000C C to 13 / 1,000C, or 7 / 1,000C to 11 / 1,000C.
  • the polyethylene copolymer may have at least one of the physical properties described above and may have all of the physical properties described above to exhibit excellent mechanical strength. In this case, the effect of improving the mechanical strength and workability can be more remarkable, with excellent long-term durability. 2019/124835 1 »(: 1 ⁇ ⁇ 2018/015430
  • the polyethylene copolymer may be at least one selected from the group consisting of a first transition metal compound including at least one member selected from the group consisting of the following chemical formulas 2 and 3 and a second transition comprising at least one member selected from the group consisting of the following chemical formulas 4 to 7: A first mixture containing a metal compound or a first transition metal compound containing the following formula 1 and a second mixture comprising a second transition metal compound containing at least one selected from the group consisting of the following chemical formulas 4, A transition metal mixture including; And a step of polymerizing the ethylene monomer and the alpha olefin monomer in the presence of the hybrid supported catalyst including the carrier on which the transition metal mixture is supported.
  • At least one of the groups is - ((3 ⁇ 4) "- (3 ⁇ 4 ) (wherein 3 ⁇ 4 is a straight-chain or branched-chain alkyl group having a carbon number of 6 or less and an integer of 2 to 10)
  • Each independently of the other is hydrogen, 0-20 alkyl, 0 2-20 alkenyl, C3-20 cycloalkyl, 0 6-20 aryl, 0 7-20 alkylaryl, or 0 7-20 arylalkyl
  • Two or more adjacent groups are connected with each other to form a substituted or unsubstituted aliphatic or aromatic ring, 2019/124835 1 »(: 1 ⁇ ⁇ 2018/015430
  • halogen 0-20 alkyl, 0 2 -10 alkenyl, cycloalkyl, 0 7-40 alkylaryl, 0 7-40 arylalkyl, 0 6 -20 aryl , 0 1-20 alkylidene, amino, 0 2-20 alkylalkoxy, or 0 7-40 arylalkoxy ;
  • 4 and 5 are the same or different and are each independently selected from the group consisting of halogen, 0-20 alkyl, 0 2-10 alkenyl, 0 3-20 cycloalkyl, 0 7-40 alkylaryl, 0 7-40 arylalkyl, 0 6-20 aryl, 0 1-20 alkylidene, amino, 0 2-20 alkylalkoxy, or 0 7-40 arylalkoxy;
  • 1 3 ⁇ 4 to 13 ⁇ 4 4 popularly least one is - (03 ⁇ 4) 1 _03 ⁇ 4 (At this time, 3 ⁇ 4 is a straight-chain or branched-chain alkyl group of 1 to 6, 01 is an integer of 2 to 10), and the other is the same as standing
  • Independently of one another are hydrogen, 0-20 alkyl, 0 2-20 alkenyl, 0 3-20 cycloalkyl, 0 6-20 aryl, 0 7-20 alkylaryl, or 0 7-20 arylalkyl Or two or more adjacent groups are connected to each other to form a substituted or unsubstituted aliphatic or aromatic ring,
  • 3 ⁇ 4 5 The same or different and each is independently hydrogen, alkyl 1 to 20 0, 0 3-20 cycloalkyl, 0 1-10 alkoxy, C2-20 alkoxyalkyl, Ce-20 aryl, 6-10 0 2019/124835 1 »(: 1 ⁇ ⁇ 2018/015430
  • 31 and 3 ⁇ 4 2 are the same or different and are each independently of one another, halogen, alkyl, 0 1-20, 0 2-10 alkenyl, 03 -20 cycloalkyl, 0 7-40 alkylaryl, 0 7-40 aryl alkyl, Ce-20 aryl, 01-20 alkylidene, amino, 0 2-20 alkyl, alkoxy, or 0 7-40 aryl-alkoxy;
  • 3 ⁇ 4 and 3 ⁇ 4 are the same or different and each independently, halogen, alkyl, 0 1-20, 0 2-9 alkenyl, 0 3-20 cycloalkyl, 0 7-40 alkylaryl, - arylalkyl, 0 6-20 Aryl, 0 1-20 alkylidene, amino, 0 2-20 alkylalkoxy, or 0 7-40 arylalkoxy;
  • 3 ⁇ 4 3 ⁇ 4 0 to 9 are the same or different hydrogen, each independently of one another, 0 1-20 alkyl, 0 3-20 cycloalkyl, 0-10 alkoxy, alkoxyalkyl 0 2-20 0 6-20 aryl, 0 6 -10 aryloxy, 0 2-20 alkenyl, 0 7-40 alkylaryl, arylalkyl 0 7-40 0 8-40 arylalkenyl, or 0 2-10 alkynyl, with the proviso that And 3 ⁇ 4 9 at least one of which _ ( ⁇ 2 -0 (At this time, 3 ⁇ 4 euntan a straight chain or branched alkyl group having 1 to 6, I) is a positive number of 2 to 10),
  • Show 1 is hydrogen, halogen, 0 1-20 alkyl group, 0 2-20 alkenyl group, 0-6-20 aryl group, 0 7-20 alkylaryl group, 0 7-20 arylalkyl group, 0 1-20 alkoxy group, 0 2-20 alkoxyalkyl group, 0 3-20 hete Rossi chloride group, or (: 5 to 20 heteroaryl group;
  • 3 ⁇ 4 is -0 within ⁇ ) - or -? ⁇ Er) 0) -, wherein one or different eunseo seedlings and labor, and each independently hydrogen, halogen, 0-20 alkyl group, 0 2-20 alkenyl group, or A 0-6-20 aryl group;
  • X 1 is hydrogen, halogen, 0 1-20 alkyl group, 0 2-20 alkenyl group, 0 6-20 aryl group, 0 7-20 alkylaryl group, or 0 7-20 arylalkyl group;
  • R are the same or different and are independently selected from the group consisting of halogen, 0 1-20 alkyl, 0 2 -10 alkenyl, 03-20 cycloalkyl, 0 7 -40 alkylaryl, 0 7 -40 arylalkyl, 0 6 -20 aryl, 0 1-20 alkylidene, amino, 0 2-20 alkylalkoxy, or 0 7-40 arylalkoxy ;
  • 3 ⁇ 4 is -0-, - bar - or - ⁇ ) -, wherein I and mu 'eunseo the working day or different and each is independently hydrogen, halogen, an alkyl group 1 to 20 0, 0 2-20 alkenyl group, or 0 6-20 aryl group ;
  • 3 ⁇ 4 is carbon, silicon or germanium
  • 3 ⁇ 41 5 is a transition metal of Group 4;
  • 3 ⁇ 4 is represented by the following formula 5 3 ;
  • 3 ⁇ 4 3 ⁇ 4 0 to 4 are the same or different and are each independently hydrogen, to halogen, and 0 1-20 alkyl group, an alkenyl group 0 2-20 0 1-20 alkylsilyl group, 0 1-20 silyl group, each other - 20 an alkoxysilyl group, an alkoxy group 01-20 0 6-20 aryl group, 0 7-20 alkylaryl group, or 0 7-20 O and reel group, the 3 ⁇ 4 Two or more adjacent atoms in the triple bond may be connected to each other to form a substituted or unsubstituted aliphatic or aromatic ring.
  • Show 3 is selected from the group consisting of hydrogen, halogen, 0 1-20 alkyl group, 0 2-20 alkenyl group, 0 6-20 aryl group, ⁇ 7-20 alkylaryl group, 0 7-20 arylalkyl group, 0 1-20 alkoxy group, 0 2-20 alkoxyalkyl groups, 0 3-20 Hetero 2019/124835 1 »(: 1 ⁇ ⁇ 2018/015430
  • 3 ⁇ 4 is-0 -, - bar - or - ⁇ 000 ') -, wherein I mitmyo' eunseo the working day or different and each is independently hydrogen, halogen, an alkyl group 1 to 20 0, 0 2-20 An alkenyl group, or a Ce-20 aryl group;
  • 3 ⁇ 4 is hydrogen, halogen, 0 1-20 alkyl group, 0 2-20 alkenyl group, 0 6-20 aryl group, 0 7-20 alkylaryl group, or 0 7-20 arylalkyl group;
  • RTI ID 0.0 > 2 < / RTI & gt ; are the same or different and independently selected from halogen, C
  • alkyl 0 2 -10 alkenyl, 03-20 cycloalkyl, 07-40 alkylaryl, 07-40 arylalkyl, 0 1-20 alkylidene, amino, 0 2-20 alkylalkoxy, or 0 7-40 arylalkoxy;
  • 3 ⁇ 4 3 ⁇ 4 0 to 8, 0 to about 3 ⁇ 4 3 ⁇ 4 8 eunseo the same or different to, and each independently hydrogen, halogen, an alkyl group 1 to 20 0, 0 2-20 alkenyl group, 0 1-20 alkylsilyl group, and 0 - 20 thread reel group, 0 - 20, an alkoxysilyl group, 01- 20, an alkoxy group, an aryl group, 0 6-20, 0 7-20 alkylaryl group, or 0 7-20 aryl group, the 3 ⁇ 4 3 ⁇ 4 0 to 8, 3 ⁇ 4 ⁇ Two or more adjacent groups may be connected to form a substituted or unsubstituted aliphatic or aromatic ring,
  • 3 ⁇ 4 3 ⁇ 4 3 and 4 are the same or different and each independently, a halogen, 0 1-20 alkyl, 0 2-10 alkenyl, 0 3-20 cycloalkyl, 0 7-40 alkylaryl, arylalkyl each other 0 7-40 ,
  • One of them, 71 to 74, is - (( 2 ) ! -04, wherein 3 ⁇ 4 is a linear or branched alkyl group of- 6 ( 1 is an integer from 2 to 10) and the remainder are the same or different and are independently selected from the group consisting of hydrogen, 0-20 alkenyl, 0 3-20 cycloalkyl, 0 6-20 aryl, 0 7-20 alkylaryl, or 0 7-20 arylalkyl, or two or more adjacent groups may be connected to each other to form a substituted or unsubstituted Form a ringed aliphatic or aromatic ring,
  • They 76 are the same or different and each is independently hydrogen, alkyl 1 to 20 0 to each other, (: 3-20 cycloalkyl, 0-10 alkoxy, alkoxyalkyl 0 2-20 0 6-20 aryl, 0 6 - 10 aryloxy, 0 2-20 alkenyl, 0 7-40 alkylaryl, 0 7-40 arylalkyl, 0 8-40 arylalkenyl, or 0 2-10 alkynyl; ⁇ ⁇ 0 2019/124835
  • 3 ⁇ 4 3 ⁇ 4 and 1 2 are the same or different and each independently, a halogen, 0 1-20 alkyl, 0 2-10 alkenyl, 0 3-20 cycloalkyl, 0 7-40 alkylaryl, arylalkyl each other 0 7-40 !, 05-20 aryl, 0-20 alkylidene, amino, 0 2-20 alkyl, alkoxy, or 0 7-40 aryl-alkoxy;
  • 3 ⁇ 4 and 3 ⁇ 4 are the same or different and are each independently of one another, hydrogen, halogen, 0 1-20 alkyl, (: 2-20 alkenyl, 0 3-20 cycloalkyl, 6-20 aryl 0, 0 7-20 alkyl Aryl, or 0 7-20 arylalkyl.
  • the 0 1-20 alkyl includes linear or branched alkyl, and specifically methyl, ethyl, propyl, isopropyl, 11- butyl, lobutyl, pentyl, novolac, heptyl, , But is not limited thereto.
  • alkenyl includes straight or branched alkenyl, specifically, allyl, ethenyl, propenyl, butenyl, pentenyl, etc., but is not limited thereto.
  • the 0 3-20 cycloalkyl includes cycloalkyl of a monocyclic or condensed ring, and specifically includes cyclopropyl, cyclobutyl, cyclopentyl, cyclonyl, norbornyl, and the like. no.
  • aryl includes aryl of a monocyclic or condensed ring, and specifically includes phenyl, biphenyl, naphthyl, phenanthrenyl, fluorenyl, and the like, but is not limited thereto.
  • the 0 5-20 heteroaryl includes a heteroaryl of a monocyclic or fused ring and may be a heteroaryl such as a carbazolyl, Tetrahydropyranyl, tetrahydropyranyl, tetrahydrofuranyl, and the like, but are not limited thereto.
  • the 0! -20 alkoxy include methoxy, ethoxy, phenyloxy, and the like, but haeksil cycloalkyl-oxy, and thus are not limited thereto.
  • Group 4 transition metal examples include, but are not limited to, titanium, zirconium, and hafnium.
  • two substituents adjacent to each other are connected to each other to form an aliphatic or aromatic ring, meaning that the atoms (s) of two substituents and the atoms (atoms) to which the two substituents are bonded are linked to form a ring 2019/124835 1 »(: 1 ⁇ ⁇ 2018/015430
  • the substituents described above may be optionally substituted with one or more substituents selected from the group consisting of a hydroxyl group, halogen; Hydrocarbyl group; Hydrocarbyloxy group; A hydrocarbyl group or hydrocarbyloxy group comprising at least one heteroatom of the group 14 to 16 heteroatoms; _Si3 ⁇ 4; A hydrocarbyl (oxy) silyl group; Force popularity; Phosphide group; Sulfonate groups; And a sulfone group.
  • the first transition metal compound containing at least one selected from the group consisting of the above-mentioned formulas (1) to (3) And the second transition metal compound containing at least one member selected from the group consisting of the above-mentioned formulas (4) to (7) can contribute to the production of a low molecular weight copolymer having a high content of short chain branch We can contribute to making cohesion.
  • the first transition metal compound represented by Formula 1 contributes mainly to the formation of a low molecular weight copolymer having a low short chain branch (SCB) content, and specific examples thereof include compounds represented by the following structural formulas, The invention is not limited thereto.
  • a low molecular weight polyolefin having a low degree of copolymerization or a controlled comonomer distribution can be produced by introducing a butoxy nucleus group and exhibiting a low conversion rate when producing a polyolefin using a comonomer.
  • the first metallocene compound represented by the formula (1) which has excellent activity and can further improve the copolymerization of 1-octene, I-butene or 1 -hexene, can be a compound represented by the following structural formula.
  • the first transition metal compound represented by the general formula (2) has a structure in which two indenes (the ratio ( 1,61 1 ⁇ 2 ) groups are bridged by the addition of a bridge To about 4 3 ⁇ 4 least one of substituents _ ((2) "03 ⁇ 4, and each group may be unsubstituted indene 3 ⁇ 4 3 ⁇ 4 5 and 6 roach.
  • the first transition metal compound of formula (2) has a structure in which two indenes (the ratio ( 1,61 1 ⁇ 2 ) groups are bridged by the addition of a bridge To about 4 3 ⁇ 4 least one of substituents _ ((2) "03 ⁇ 4, and each group may be unsubstituted indene 3 ⁇ 4 3 ⁇ 4 5 and 6 roach.
  • a tether 61 of a substituent of the derivative - (in this case, a straight-chain or branched-chain alkyl group within 3 ⁇ 4 and 01 is an integer of 2 to 10) ; 1 1 ⁇ 21 ⁇ ) group, at least one, more specifically, by introducing two or more, a ball when the polyolefin prepared using a monomer represented by a lower conversion rate of the co-monomer compared to the other 0: 1) containing catalyst which does not contain the substituent copolymer also or It is possible to produce polyolefins having a low molecular weight with controlled comonomer distribution.
  • any one or more of 3 ⁇ 4 4 of the formula (II) - ( ⁇ 2) "- 03 ⁇ 4 is (a linear or branched alkyl group containing 6, mieun 2-10 Which is an integer of < / RTI >
  • 3 ⁇ 4 is (a linear or branched alkyl group containing 6, mieun 2-10 Which is an integer of < / RTI >
  • - (CH 2) m -0 R b may be specifically tert-butoxybutyl or tert-butoxyhexyl.
  • each indene _ (CH 2) m (C3 ⁇ 4 ) m-0 R b group may be a tert- butoxy-butyl group or tert- butoxy haeksil.
  • the transition metal compound having such a structure is supported on the carrier, the - (CH 2) m-O R b group can form a covalent bond through close interaction with the silanol group on the silica surface used as the support, This is possible.
  • the functional groups are 1-octene, 1-butene, or may affect the copolymerizable alpha-olefin comonomer such as 1-nuclear Sen, - (C3 ⁇ 4) m -0R standing b m is 10 or less, more specifically the In the case of having a short alkyl chain of 6 or less, more specifically 4 or less, the comonomer incorporation to the alpha-olefin comonomer is lowered while maintaining the total polymerization activity, and the copolymerization degree is controlled without deteriorating the other properties Which is advantageous for the production of a polyethylene copolymer.
  • the first transition metal compound represented by Formula 2 may be, for example, a compound represented by one of the following structural formulas, but is not limited thereto.
  • the first transition metal compound represented by the general formula (3) is an irreducible structure of indene (ratios 11 ⁇ 2 and cyclopentadiene 03 ⁇ 4), so that the electronic / stereoscopic environment around the transition metal can be easily controlled.
  • the characteristics such as the chemical structure, the molecular weight distribution, and the mechanical properties of the polyethylenic copolymer to be synthesized can be easily controlled.
  • the substituent of at least any one of the indene group and the cyclopentadiene group (I) is a straight chain or branched alkyl group having from 1 to 6 carbon atoms, and I is an integer of from 2 to 10), other than the above substituent-free polyethylene copolymer in the production of a polyethylene copolymer using a comonomer 0 13 system exhibits a low conversion rate for the comonomers as compared to the catalyst can be also prepared in the low molecular weight polyolefin or a co-monomer distribution is adjusted sum air.
  • the - ((3 ⁇ 4) "- (group in the substituent is bonded to the silanol group on the surface of the silica used as the support to form a covalent bond Can be formed and stable support polymerization is possible.
  • the Group 4 transition metal is specifically Ti, Zr or the like, and more specifically may be Ti or Zr.
  • R 20 to R 9 are specifically the same or different and each independently represents hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms carbon atoms, alkylaryl group of 7 to 20, and said is selected from the group consisting of an arylalkyl group having 7 to 20, it provided that, 3 ⁇ 4 3 ⁇ 4 0 to 9 are popularly least one - (CH 2) p -0R c ( wherein, R c is a linear or branched alkyl group having 1 to 6 carbon atoms, and p is an integer from 2 to 1).
  • the - (repressor ) P -0R C functionality can affect the copolymerization of alpha olefin comonomers such as 1-butene or 1-nuclease 1 hexene, where p is less than or equal to 4
  • alpha olefin comonomers such as 1-butene or 1-nuclease 1 hexene, where p is less than or equal to 4
  • the polyolefin having a low degree of copolymerization with respect to the alpha-olefin comonomer and having a controlled degree of copolymerization without deteriorating other physical properties can be produced.
  • the R 20 and 3 ⁇ 4I Chinese Language feel one or more values for ventilation for Formula 3, or a cyclopentadiene (Cp) 3 ⁇ 4 6 to 3 ⁇ 4 9 one or more substituents of the - (C3 ⁇ 4) p-0 R c (wherein , R c is a linear or branched alkyl group having 1 to 6 carbon atoms and p is an integer from 2 to 10, and more specifically, any one of R 20 and R 21 is - (C 3) p-O R c wherein R c is a straight or branched chain alkyl group having 1 or 6 carbon atoms and p is an integer from 2 to 10).
  • the groups 3 ⁇ 4 and 3 ⁇ 4 may be the same or different and each independently a halogen or an alkyl group having 1 to 20 carbon atoms.
  • first transition metal compound represented by Formula 3 include compounds represented by the following structural formulas, but the present invention is not limited thereto. 2019/124835 1 »(: 1/10 public 018/015430
  • the transition metal compound represented by Formula 4 is a ligand having an aromatic ring compound containing thiophene and a Group 14 or 15 Group atom include
  • the supported catalyst carrying the transition metal compound having such a specific structure is applied to the polymerization reaction of the polyethylene copolymer to exhibit high activity and can provide a high molecular weight polyethylene copolymer.
  • the ligand in the structure of the transition metal compound represented by the general formula (4) may affect, for example, the olefin polymerization activity and the copolymerization property of the olefin.
  • a ligand of detail the same or different to Rso to R 35 eunseo in Formula 4a, and each independently is hydrogen or an alkyl group having 1 to 10, R 30 to 3 ⁇ 4 5 are the same or different from each other, more specific Ideally
  • a catalyst exhibiting excellent comonomer activity and high comonomer conversion in the polyethylene copolymerization process can be provided.
  • the C 2 ligand may also affect the polymerization activity of the olefin. Particularly, 2019/124835 1 »(1 ⁇ 1 ⁇ 2018/015430
  • the above ligands and ligands can be crosslinked by naphtha to exhibit excellent support stability and polymerization activity.
  • the group represented by the formula (4) is a straight-chain or branched-chain alkylene group of 04 to 08, but is not limited thereto.
  • the alkylene group may be substituted or unsubstituted with an alkyl group having a number of from 01 to 020, an alkenyl group having a number of from C2 to 020, or an aryl group having from 6 to 020.
  • the formula (4) is preferably silicon, but is not limited thereto.
  • R 1 represents a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, an 11 -butyl group, a horabutyl group, a methoxymethyl group, a buthtobutoxymethyl group, -Methoxyethyl group, tetrahydropyranyl group, or tetrahydrofuranyl group, but it is not limited thereto.
  • () (7) (3 ⁇ 4 ) may affect the storage stability of the metal complex.
  • transition metal compounds wherein each of 3 ⁇ 4 and 3 ⁇ 4 is independently halogen may be used.
  • the transition metal compound represented by Chemical Formula 5 may be a ring compound containing cyclopentadiene as a different ligand and a cyclic compound including a Group 14 or Group 15 atom Base compounds, and different ( 3 ⁇ 4) (3 ⁇ 4 0) between the different ligands.
  • the supported catalyst carrying the transition metal compound having such a specific structure is applied to the polymerization reaction of the polyethylene copolymer to exhibit high activity and can provide a high molecular weight polyethylene copolymer.
  • the ligand in the structure of the transition metal compound represented by the general formula (5) may affect, for example, the olefin polymerization activity and the copolymerization property of the olefin.
  • a ligand of 3 ⁇ 4 the formula are the same as 3 ⁇ 4 0 to 3 ⁇ 4 3 eunseo at 53 or different, and each independently is hydrogen or an alkyl group having 1 to 10 carbon atoms, the same or different to 3 ⁇ 4 0 to 3 ⁇ 4 3 eunseo, more
  • a catalyst exhibiting excellent catalytic activity and high comonomer conversion rate in the polyethylene copolymerization process can be provided.
  • the? 4 ligand may also affect the polymerization activity of the olefin.
  • the? 4 ligand may also affect the polymerization activity of the olefin.
  • the straight-chain or branched-chain alkylene group of 04 to 08 is more preferable, but is not limited thereto.
  • the alkylene group may be substituted or unsubstituted with an alkyl group having from 0 to 20 carbon atoms, an alkenyl group having from 2 to 20 carbon atoms, or an aryl group having from 6 to 20 carbon atoms.
  • the group of formula (5) is preferably silicon, but is not limited thereto.
  • R 1 represents a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, an 11- butyl group, a 1 65 -butyl group, a methoxymethyl group, 2019/124835 1 »(: 1 ⁇ ⁇ 2018/015430
  • Methoxyethyl group 1-methyl-1-methoxyethyl group, tetrahydropyranyl group, or tetrahydrofuranyl group, but is not limited thereto.
  • ( 3 ⁇ 4) 0 ( 1) may affect the storage stability of the metal complex.
  • a transition metal compound independently selected from halogens can be used.
  • the transition metal compound represented by Formula 5 can be synthesized by using known reactions, and a more detailed synthesis method can be referred to the Examples.
  • the formula (6) is a straight or branched alkylene group of 04 to 08 One more preferred, and thus are not limited thereto.
  • the alkylene group may be substituted or unsubstituted with a C1 to C20 alkyl group, a C2 to C20 alkenyl group, or a C6 to C20 aryl group.
  • a 3 in the above formula (6) may be a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a tert- butyl group, a methoxymethyl group, a tert-butoxymethyl group, - 1-methoxyethyl group, tetrahydrothioguanyl group, or tetrahydrofuranyl group, but is not limited thereto.
  • Y 3 in Formula 6 is preferably silicon, but is not limited thereto.
  • the second transition metal compound of Chemical Formula (6) forms a structure in which an indeno indole derivative and / or a fluorene derivative is bridged by a bridge, and a non-covalent electron pair So that it is supported on the surface having Lewis acid properties of the carrier and exhibits high polymerization activity even when it is supported.
  • the activity is high due to the electron enrichment of the indenoindole and / or the fluorene group, and not only the hydrogen reactivity is low due to the appropriate steric hindrance and the electron effect of the ligand, but also the activity is maintained even in the presence of hydrogen.
  • the compound represented by Formula 6a may be a compound represented by one of the following formulas, but the present invention is not limited thereto.
  • the compound represented by the above formula may be a compound represented by one of the following formulas, but the present invention is not limited thereto.
  • specific examples of the second transition metal compound represented by Formula 6 include compounds represented by one of the following structural formulas, but the present invention is not limited thereto.
  • the second transition metal compound of the formula (6) according to the present invention exhibits low hydrogen reactivity, Polymerization of ultrahigh molecular weight polyethylene copolymer with high activity is possible. Therefore, even when it is used in combination with a catalyst having other properties, a polyethylene copolymer that satisfies the characteristics of high molecular weight can be produced without deteriorating the activity, and a polyethylene copolymer having a broad molecular weight distribution including a polyethylene copolymer of a polymer Can be easily manufactured.
  • a second transition metal compound of the formula (6) is inde old stone derivatives and / or fluorene derivatives for preparing a compound as a bridge connection to a ligand compound to the next, metal migration to put the metal precursor compound 1 ⁇ 0 ⁇ 0 31 1! ). ≪ / RTI > The method for producing the second transition metal compound will be described in the following Examples.
  • the second transition metal compound of the general formula (7) has two indenes (ratio ( 16116 )
  • each of the indene groups may be substituted with an anion group 75 and an anion group 76.
  • the second transition metal compound of formula (7) is indene (ratio ( 16116 ) or
  • 3 ⁇ 4 is a straight-chain or branched-chain alkyl group of -6 , and (1 is an integer of 2 to 10).
  • - the inhibition is specifically a lactobutoxybutyl group (161 * 1; -13111: 0 1 ⁇ 1) or 1 61; - butoxy nucleoside group; - Can be.
  • the transition metal compound having such a structure is bonded to the carrier When supported, the - (CH 2) q - O group can form a covalent bond through close interaction with the silanol group on the surface of the silica used as the support, and stable loading is possible.
  • the functional groups may also affect the copolymerization of alpha olefin comonomers such as 1-octene, 1-butene, or 1-nucleosene, where q is less than or equal to 10 in - (CH 2) q -
  • alpha olefin comonomers such as 1-octene, 1-butene, or 1-nucleosene
  • q is less than or equal to 10 in - (CH 2) q -
  • CH 2 alpha olefin comonomers
  • the second transition metal compound represented by the formula (7) may be, for example, a compound represented by one of the following structural formulas, but is not limited thereto.
  • the hybrid supported catalyst used in the present invention includes at least one selected from the group consisting of a first transition metal compound containing at least one selected from the group consisting of the above-mentioned chemical formulas 2 and 3 and at least one selected from the following chemical formulas (4) to 2019/124835 1 »(: 1 ⁇ ⁇ 2018/015430
  • the transition metal mixture comprises a first transition metal compound containing at least one selected from the group consisting of the compounds represented by Chemical Formulas 2 and 3 and a second transition metal compound comprising at least one selected from the following Chemical Formulas 4 to 7,
  • a first transition metal compound containing the metal compound, a first transition metal compound containing the compound represented by the formula 1, and a second transition metal compound containing at least one selected from the group consisting of the following chemical formulas (4), (6) It may contain one of two mixtures.
  • the second transition metal compound contained in the first mixture may be one of the compounds represented by Chemical Formula 4, (6), (5), (6), (5), (5) and (5) (3), (3), (4), (5), and (7), the formula (4), the formula (6), and the formula ,
  • the above-mentioned chemical formula 5, chemical formula 6 and chemical formula 7, or the above-mentioned chemical formula 4, chemical formula 5, chemical formula 6 and chemical formula 7 three kinds of second transition metal compounds can be used.
  • the first transition metal compound contained in the second mixture one species of the formula 1 may be used.
  • the second transition metal compound contained in the second mixture may be one selected from the group consisting of one kind of the compound of the formula 4, one kind of the formula 6, one kind of the formula 7, two kinds of the formulas 4 and 6,
  • the first transition metal compound may be one of the compounds represented by the general formula (1), and the second transition metal compound may include one selected from the general formula (4).
  • the first transition metal compound may be one of the above-mentioned formula (2), the second transition metal 2019/124835 1 »(: 1 ⁇ ⁇ 2018/015430
  • the first transition metal compound may be one of the compounds of Formula 3 and the transition metal second transition metal compound may be one of the compounds of Formula 5.
  • the first transition metal compound may be one of the first transition metal compound and the second transition metal compound may be one of the first transition metal compound and the second transition metal compound.
  • the first transition metal compound may be contained in an amount of 1 part by weight to 80 parts by weight, or 5 parts by weight to 50 parts by weight, based on 100 parts by weight of the second transition metal compound.
  • the first transition metal compound may be contained in an amount of 1 part by weight to 80 parts by weight, or 5 parts by weight to 50 parts by weight, based on 100 parts by weight of the second transition metal compound.
  • the second transition metal compound includes two kinds of compounds represented by the general formulas (6) and (7), 10 to 80 parts by weight, or 40 to 60 parts by weight of the compound of the general formula (7) Can be included.
  • a carrier containing a hydroxy group on its surface may be used as the carrier, and preferably a carrier having a hydroxy group and a siloxane group, Sieve can be used.
  • the dried silica in a high-temperature, silica-alumina, and silica-and the like can be used Marg Echinacea, all of which are typically ⁇ 2 0, 3 ⁇ 4 ⁇ 3, 3 ⁇ 4 et 4, and 3 ⁇ 41 ⁇ control 03) the oxide of the second and so on, Carbonate, sulfate, and nitrate components.
  • the drying temperature of the carrier is preferably 200 X: to 800, more preferably 300: 300, most preferably 300: 400.
  • the drying temperature of the carrier is less than 200 ° C.
  • the moisture of the surface reacts with the cocatalyst due to too much moisture.
  • the temperature exceeds 800 ° C. the pores on the surface of the carrier are combined to reduce the surface area, The hydroxyl groups are lost and only the siloxane group is left and the reaction site with the cocatalyst is reduced.
  • the carrier The amount of hydroxyl groups on the surface can be controlled by the preparation method and conditions of the carrier or by drying conditions such as temperature, time, vacuum or spray drying. If the amount of the hydroxyl group is less than 0.1 mmol / g, the reaction site with the co-catalyst is small. If the amount is more than 10 mmol / g, it may be due to moisture other than the hydroxyl group present on the surface of the carrier particle It is not preferable.
  • the mixed supported catalyst is made of polyethylene copolymer, and to be more specific, it can lead to the production of (Long Chain Branch) LCB in ethylene / 1 _ haeksen or ethylene / 1-butene copolymer.
  • an organometallic compound containing a Group 13 metal may be used as a catalyst for polymerization of an olefin under a general metallocene catalyst It is not particularly limited as long as it can be used.
  • the co-catalyst compound may include at least one of an aluminum-containing primary catalyst of the following general formula (8) and a boron-containing secondary catalyst of the following general formula (9).
  • R 77 is independently a halogen, halogen-substituted or unsubstituted hydrocarbyl group having 1 to 20 carbon atoms, k is an integer of 2 or more,
  • T + is a polyvalent ion of +1 valence
  • B is a boron of +3 oxidation state
  • G is each independently selected from the group consisting of hydride, dialkylamido, halide, alkoxide, aryloxide, hydrocarbyl, Halocarbyl and halo-substituted hydrocarbyl, wherein G has 20 or fewer carbons, but G is halide in only one or less positions.
  • the polydispersity index of the finally produced polyolefin becomes more uniform, and the polymerization activity can be improved.
  • the first cocatalyst of formula (8) may be an alkylaluminoxane-based compound having repeating units bonded in a linear, circular or network form, 2019/124835 1 »(: 1 ⁇ ⁇ 2018/015430
  • volume examples include methyl aluminoxane (0), ethyl aluminoxane, isobutyl aluminoxane, and butyl aluminoxane.
  • the second cocatalyst of the above formula (9) may be a tri-substituted ammonium salt, or a dialkylammonium salt or a borate compound in the form of a trisubstituted phosphonium salt.
  • the second cocatalyst include trimethylammonium tetraphenylborate, methyl dioctadecylammonium tetraphenylborate, triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate, tri (no-butyl) ammonium tetraphenylborate, (2,4,6-trimethylanilinium) tetraphenylborate, trimethylsilyltetramethylammonium tetraphenylborate, tetrabutylammonium tetraphenylborate, tetrabutylammonium tetraphenylborate, tetrabutylammonium tetraphenylborate, a tetrakis (penta flow oro-phenyl) borate, methyl-di-tridecyl tetra key switch (penta
  • Such hybrid supported catalysts can be produced, for example, by carrying a promoter on a carrier and sequentially carrying the first and second transition metal compounds on the catalyst-carrying carrier.
  • the order of carrying the transition metal compounds is not particularly limited, but the first transition metal compound having a small molecular structure and the second transition metal compound can be supported in this order.
  • the co-catalyst may be added to the carrier dried at a high temperature, and the carrier may be stirred at a temperature of about 20 V to 120 ⁇ to prepare a co-catalyst carrier.
  • a transition metal compound is added to the catalyst supporting carrier obtained in the step of supporting the catalyst on the carrier, Followed by stirring at a temperature to prepare a supported catalyst.
  • a transition metal compound may be added to the catalyst supporting carrier, followed by stirring, followed by further adding a co-catalyst.
  • the content of the carrier, cocatalyst, co-catalyst supporting carrier and transition metal compound used in the hybrid supported catalyst according to one embodiment of the present invention can be appropriately controlled depending on the physical properties or effects of the desired supported catalyst.
  • the weight ratio of the transition metal mixture comprising the low-valent 11 and the second transition metal compound to the carrier is 1:10 to 1: 1,000, more specifically 1:10 To 1: 500.
  • the carrier and the transition metal mixture are included in the above-mentioned crown ratio, the optimum shape can be shown.
  • the weight ratio of the cocatalyst to the carrier may be from 1: 1 to 1: 100, more specifically from 1: 1 to 1:50.
  • hydrocarbon solvents such as pentane, nucleic acid, heptane and the like, or aromatic solvents such as benzene, toluene and the like may be used.
  • the production method of the supported catalyst is not limited to the description described in the present specification, and the production method may further adopt a step adopted conventionally in the technical field of the present invention, (S) may typically be altered by alterable step (s).
  • the polyethylene copolymer according to the present invention can be prepared by polymerizing an ethylene monomer and an alpha olefin monomer in the presence of the above-mentioned hybrid supported catalyst.
  • polymerization processes known as polymerization of olefin monomers such as a continuous solution polymerization process, a bulk polymerization process, a suspension polymerization process, a slurry polymerization process, or an emulsion polymerization process can be employed for the polymerization of the monomers.
  • the polymerization temperature was 25 To 500 X:, preferably 25 V to 200, more preferably 50 To 150 < / RTI >
  • the polymerization pressure may be in the range of 1 to 100 31 , preferably 1 to 50 31 , more preferably 5 to 30%.
  • the first and second transition metal compounds in the present invention are excellent in hydrogen reactivity, a polyethylene copolymer having a desired level of molecular weight and a melt index can be effectively produced by controlling the amount of hydrogen gas used in the polymerization process. Specifically, 0.005 wt.% To 0.040 wt.%, Or 0.008 wt.% To 0.035 wt.%, Or 0.005 wt.% To 0.020 wt.% Of hydrogen gas relative to the ethylene monomer is added in the step of polymerizing the ethylene monomer and the alpha olefin monomer. .
  • transition metal of the formula (1) is used as the first transition metal compound and the transition metal of the formula (4) is used as the second transition metal compound
  • the step of polymerizing the ethylenic monomer and the alpha olefin monomer 0.005 wt.% To 0.013 wt.% Of hydrogen gas can be introduced. 2019/124835 1 »(: 1 ⁇ ⁇ 2018/015430
  • transition metal of the formula (2) is used as the first transition metal compound and the transition metal of the formula (5) is used as the second transition metal compound, in the step of polymerizing the ethylene monomer and the alpha olefin monomer, 0.033 0.0 >% < / RTI > by weight hydrogen gas may be introduced.
  • the above-mentioned supported metallocene catalyst may be an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms, for example, pentane, nucleic acid, heptane, nonane, decane, isomers thereof and aromatic hydrocarbon solvents such as toluene and benzene, , A hydrocarbon solvent substituted with a chlorine atom such as chlorobenzene, or the like.
  • the solvent used here is preferably used by removing a small amount of water or air acting as a catalyst poison by treating with a small amount of alkylaluminum, and it is also possible to use a further cocatalyst.
  • FIG. 2 is a view showing a method of measuring the comonomer dispersion index (0) 1) of the polyethylene copolymer of Example 1.
  • a solution B prepared by injecting l- (6- (tert-butoxy)) -N- (tert -butyl) -1-chloro-1-methylsilanamine (ligand B) and toluene into a 250 mL schlenk flask -78.
  • the solution A prepared before the cooled solution B was slowly injected.
  • the mixture of solutions A and B was stirred at room temperature overnight.
  • Hashikin samples were used to obtain 11 internal spectra.
  • 6-t-butoxyhc acid (6-t-buthoxyh cane) was confirmed by 1 H-NMR. It was found that the Grignanrd reaction proceeded well from the 6- t -butoxy nucleic acid. Thus, 6-t-buthoxyhexyl magnes ium chloride (6-t-butoxyhexyl magnesium chloride) was synthesized.
  • the reactor temperature was slowly raised to room temperature and stirred for 12 hours After 12 hours of the reaction, the THF was removed and 4 L of nucleic acid was added to the reaction mixture, and the reaction was allowed to proceed to room temperature.
  • the reaction mixture was cooled to 0 ° C and then 2 equivalents of t- A filter solution was obtained by removing the salt through the filtrate.
  • the filtrate solution was added to the reactor again, and the nucleic acid was removed from the solution to obtain a yellow solution.
  • a yellow solution of the obtained yellow solid was obtained via 1H-NMR using methyl (6-t-butoxyhexyl) (tetramethyl CpH) Silane (Methyl (6-t_
  • the mixed supported catalysts 7 to 10 were prepared by adding hexane 34 kg / hr, ethylene 10 kg / hr, hydrogen 1.06 g / hr, 1-butene 600 to 720 ml / hr and Teal 35 g / hr to a 200 L two- 10 g / hr was added to the hexane solution.
  • the reactor temperature was maintained at 80 ° C by using a cooling jacket and an outer cooler.
  • the reactor level was maintained at 75%, and the pressure difference was used as the downstream reactor Respectively.
  • Catalyst support (MA0 / Si4) was prepared in the same manner as in (1) of Example 1 above.
  • a polyethylene copolymer was produced in the same manner as in (3) of Example 1, except that the hybrid supported catalyst prepared in (2) of Example 2 was used and 3.50 g / hr of hydrogen was used .
  • Example 3
  • Catalyst support (MA0 / Si4) was prepared in the same manner as in (1) of Example 1 above.
  • a polyethylene copolymer was prepared in the same manner as in (3) of Example 1, except that the hybrid supported catalyst prepared in (2) of Example 4 was used and 1.50 g / hr of hydrogen was used .
  • Example 5
  • Catalyst support (MA0 / Si4) was prepared in the same manner as in (1) of Example 1 above.
  • the reaction solution was allowed to stand for 10 minutes and decantation was performed. 100 ml of nucleic acid was added to the reactor and the resultant mixture was used as 200 ml of Schlenk flask and the nucleic acid solution was decanted at ion. Thereafter, the catalyst was dried under reduced pressure for 3 hours at room temperature (23 ⁇ 5 ° C) to obtain a hybrid supported catalyst.
  • a polyethylene copolymer was produced in the same manner as in (3) of Example 1, except that the hybrid supported catalyst prepared in Example 5 (2) was used and 0.8 g / hr of hydrogen was used. Respectively.
  • Hexane 34 kg / hr and ethylene 10 kg / hr in a 200 L two-stage continuous high-pressure reactor 7 to 10 g / hr of the hybrid supported catalyst prepared above was added to the hexane solution while introducing 1.50 g / hr of hydrogen, 600 to 720 ml / hr of 1-Butene and 35 g / hr of Teal.
  • the reactor temperature was maintained at 80 ° C by using a cooling jacket and an outer cooler.
  • the reactor level was maintained at 75% and the pressure And then transferred to the downstream reactor.
  • Surry was firstly removed from the nucleic acid via a centrifuge and dried by hot N 2 purging in a dryer to obtain a polyethylene copolymer of about 9 kg / hr.
  • Catalyst support (MA0 / Si4) was prepared in the same manner as in (1) of Example 1 above.
  • a polyethylene copolymer was prepared in the same manner as in (3) of Example 1, except that the hybrid supported catalyst prepared in (2) of Reference Example 1 was used and 1.50 g / hr of hydrogen was used .
  • Catalyst support (() / 0 2) was prepared in the same manner as in (1) of Example 1 above.
  • the catalyst was dried under reduced pressure for 3 hours at room temperature (23 ⁇ 5 ° 0) to obtain a hybrid supported catalyst.
  • a polyethylene copolymer was prepared in the same manner as in (3) of Example 1 except that the hybrid supported catalyst prepared in (2) of Reference Example 2 was used and hydrogen of 1.40 ⁇ / was used.
  • Reference Example 3
  • a polyethylene copolymer was prepared in the same manner as in (3) of Example 1, except that 3.2 g / hr of hydrogen was used.
  • Density (unit: g / cm 3 ): Measured according to ASTM D1505 standard.
  • the number of carbon atoms in each of 1000 carbon atoms of each of the plurality of polymer chains contained in the polyethylene copolymer is 2 to 7
  • the mean value of side branch content was calculated.
  • the average value is calculated by dividing the sum of side branch content of 2 to 7 carbon atoms per 1000 carbon atoms contained in each of the plurality of polymer chains contained in the polyethylene copolymer into the number of high molecular chains contained in the polyethylene copolymer Respectively.
  • measurement apparatus and measurement conditions of gel permeation chromatography are as follows.
  • the evaluation temperature was 160 ° C, 1,2,4 - trichlorobenzene was used as a solvent, the flow rate was 1 mL / min, the sample was prepared at a concentration of 10 mg / 10 mL, and then supplied in an amount of 200 ⁇ L , And the values of Mw, Mn and PDI can be obtained by using a calibration curve formed by using a polystyrene standard.
  • the molecular weight of the polystyrene standards is 2,000 / 10,000 / 30,000 / 70,000 /
  • the FT-IR measuring instrument and measurement conditions are as follows.
  • CDI Comonomer Diis Index Index
  • a molecular weight distribution curve represented by a continuous solid line in Fig. 2 having the x-axis and the polymer chain content (dwt 8 ilog M) with respect to the molecular weight value as a y- (SCBCShort Chain Branch) content (c) of the polymer chain and the SCBCShort chain branch content of the polymer chain having the molecular weight value n satisfying the following formula (3) were measured using an FT-IR apparatus connected to the GPC apparatus. And FT-IR are the same as described above in "(3) SCBCShort Chain Branch: average value of the content of branch / unit of 2 to 7 carbon atoms per 1,000 carbon atoms / 1,000C").
  • B is the maximum value of the molecular weight in the x-axis in the molecular weight distribution curve by GPC
  • f (x) is the maximum value of the molecular weight in the molecular weight distribution curve by GPC.
  • (Log M) of the molecular weight (log M) of the polyethylene copolymer was measured by gel permeation chromatography (GPC), specifically the x-axis, and the polymer chain content dwt < / RTI > 8log M) as a y-axis.
  • the short chain branch (SCB) content (c) of the polymer chain having the molecular weight m satisfying the above-mentioned formula (2) is divided by the SCB content (short chain branch) of the polymer chain having the molecular weight satisfying the above formula c / d) was calculated as Comonomer Diis Index (CDI).
  • CDI Comonomer Diis Index
  • the polyethylene copolymers obtained in Examples 1 to 5 had an SCG index of 5 to 9.6, CE > I of 1.23 to 2.56,
  • the melt index (measured at 190 ° C at 2.16 kg load according to ASTM D1238) was 0.036 g / 10 m in to 0.591 g / 10 min, a melt index (measured according to ASTM D1238 at 21.6 kg load at 190 ° C) of 9.574 g / 10 min to 24.458 g / 10 min, an average value of SCB content of 7.2 / 10.1 / 1,000C can be satisfied.
  • the polyethylene copolymer obtained in Examples 1 to 5 had an SCG index value of 4.45, 3.9, 4.8, 2.5, and 3.9 times, respectively, as compared with the square root of the carbon number of the alpha-olefin used as the comonomer. Which is 5 times or less the square root of the carbon number.
  • the SCG index value was 5.14 times, 7.6 times, and 6.57 times, respectively, as compared with the square root of the carbon number of the alpha olefin used as the comonomer, Times more than that of the control group.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 우수한 가공성과 장기 내구성을 가져 파이프 등의 중공 성형에 유용한 폴리에틸렌 공중합체에 관한 것이다.

Description

【발명의 명칭】
폴리에틸렌공중합체 및 이의 제조방법
【기술분야】
관련출원 (들)과의 상호인용
본출원은 2017년 12월 20일자 한국특허 출원 제 10-2017-0176416호 및 2018년 12월 4일자한국특허 출원 제 10-2018-0154616호에 기초한우선 권의 이익을주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본명세서의 일부로서 포함된다.
본발명은폴리에틸렌공중합체 및 이의 제조방법에 관한것이다. 【발명의 배경이 되는기술】
대구경 고압파이프관에 쓰이는폴리올레핀수지에는일반적으로높 은 내압특성 및 우수한가공성이 요구된다. 높은 내압특성은 일반적으로 고밀도 영역에서 발현될 수 있는 물성으로서, 이는 폴리올레핀 수지 내의 결정화도가높을수록강도 (Modulus)가증가하여 고압에 견디는 힘이 증가하 기 때문이다.
그러나, 통상파이프는최소 50년동안의 장기 내압안정성이 보장되 어야 하지만, 밀도가높으면 취성 파괴 (Br i tt le Fracture) 모드에 대한 저 항력이 떨어져서, 장기 내압특성이 저하되는단점이 있다. 또한, 폴리올레 핀 수지의 분자량이 낮거나 다분산지수가 좁으면 대구경 파이프 가공시에 Sagging현상이 발생하여 가공이 어렵기 때문에, 분자량이 높고다분산지수 가매우 넓은폴리올레핀 수지를적용하여야 이러한문제를해결할수 있다. 그러나, 폴리올레핀수지의 분자량이 높으면 압출부하가많이 발생하 고, 파이프가공성 감소에 따라외관이 불량한한계가있다.
이에, 장기 안정성과가공성 간의 균형이 이루어진보다우수한제품 의 제조가끊임없이 요구되고 있다.
【발명의 내용】
【해결하고자하는과제】
본발명은우수한가공성과창기 내구성을가져 파이프등의 중공성 형에 유용한폴리에틸렌공중합체를제공하기 위한것이다.
본 발명은 또한 상기 폴리에틸렌 공중합체의 제조 방법을 제공하기 2019/124835 1»(:1^1{2018/015430
위한것이다.
본발명은또한상기 폴리에틸렌공중합체를포함하는성형품을제공 하기 위한것이다.
【과제의 해결수단】
발명의 일구현예에 따르면, 에틸렌유래 반복단위 및 탄소수 3이상 의 알파올레핀 유래 반복단위를포함하고, 하기 수학식 1을만족하는폴리에 틸렌공중합체가제공될수있다.
[수학식 1]
Figure imgf000004_0001
의해 측정된 상기 폴리에틸렌 공중합체의 용융지수(I))를 상기 폴리에틸렌 공중합체의 공단량체 분산지수(ᅬ로 나눈 값(I)八!)이며, 상기 공단량체 분산 지수(幻)1)는 상기 폴리에틸렌 공중합체에 대하여, 겔 투과 크로마토그래피 로측정한분자량분포곡선 그래프(X축이 고분자쇄의 분자량, 7축이 고분 자쇄의 함량)에 대하여, 하기 수학식 2로계산되며,
[수학식 2]
공단량체분산지수(0)1) = 0 /(1
상기 수학식 2에서, (:는 3 < X <„!구간에서 상기 분자량분포곡선 그래프와 X축 사이의 면적( )이 3 < X < 구간에서 상기 분자량 분포 곡선 그래프와 X축사이의 면적 ^2)의 80%인 분자량값 인 고분자 쇄의 탄 소 1000개당의 탄소수 2내지 7개의 곁가지(就 함량 07-11?에 의해 측정) 이고,
(1는 3 < X < II구간에서 상기 분자량분포곡선그래프와 X축사이 의 면적(33)이 3 < X < 구간에서 상기 분자량분포곡선 그래프와 X축 사이의 면적(34)의 20%인분자량값 II인 고분자쇄의 탄소 1000개당의 탄소 수 2내지 7개의 곁가지(%비 함량 07- 에 의해 측정)이고,
상기 3는상기 분자량분포 곡선 그래프에서 X축인 분자량의 최소값 이고, 는상기 분자량분포곡선그래프에서 X축인분자량의 최대값이다. 본 발명자들은, 상기 수학식 1의 조건을 만족하는폴리에틸렌 공중합 체를사용할경우, 상대적으로낮은용융점도를통해 우수한가공성을구현 2019/124835 1»(:1^1{2018/015430
함과 동시에, 공단량체의 분자량 분포를 조절하여 장기 취성파괴 저항성이 향상되어 우수한장기 내구성을구현할수 있음을실험을통해 확인하고발 명을완성하였다.
특히, 상기 수학식 1의 조건을 만족하는 폴리에틸렌 공중합체는후술 하는 다른 구현예의 폴리에틸렌 공중합체 제조방법에 의해 얻어짐에 따른 것으로보이며, 구체적으로, 하기 화학식 2 및 화학식 3으로 이루어진 군에서 선택된 1종 이상을 포함한 제 1 전이 금속 화합물, 및 하기 화학식 4 내지 화학식 7로 이루어진 군에서 선택된 1종 이상을포함한제 2 전이 금속 화 합물을포함한제 1혼합물, 또는하기 화학식 1을포함한제 1전이 금속화 합물, 및 하기 화학식 4, 화학식 6, 및 화학식 7로 이루어진 군에서 선택된 1 종 이상을포함한제 2 전이 금속 화합물을포함한 제 2혼합물을포함한 전 이금속혼합물; 및 상기 전이금속 혼합물이 담지된 담체;를 포함하는혼성 담지 촉매 존재 하에, 에틸렌 단량체 및 알파올레핀 단량체를중합함으로써 구현될수 있다.
상기 에틸렌 유래 반복단위는 에틸렌 단량체의 중합으로부터 형성된 반복단위이며, 상기 알파올레핀 유래 반복단위는 알파올레핀 단량체의 중합 으로부터 형성된 반복단위를의미한다. 상기 알파올레핀 단량체는탄소수 3 이상, 또는 3내지 20, 또는 3내지 10이며, 예를들어, 프로필렌, 1 -부텐, 1 -펜텐, 4 -메틸- 1 -펜텐, 1 -핵센, 1 -헵텐, 1 -옥텐, 1 -데센, 1 -운데센, 1 -도 데센, 1 -테트라데센, 1 -핵사데센, 1 -아이토센, 노보넨, 노보나디엔, 에틸리 덴노보덴 , 페닐노보덴, 비닐노보덴 , 디사이클로펜타디엔 , 1,4 -부타디엔, 1,5 -펜타디엔, 1,6 -핵사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠 및 3 - 클로로메틸스티텐으로 이루어진 군으로부터 선택되는 1종 이상을포함할수 있다.
상기 에틸렌/알파-올레핀 공중합체에서, 상기 공단량체인 알파-올레 핀의 함량은특별히 제한되는 것은아니며, 공중합체의 용도, 목적 등에 따 라적절하게 선택할수 있다. 보다구체적으로는 0몰%초과 99몰%이하일 수있다.
상기 수학식 1은보다구체적으로, 하기 수학식 1-1로표현될 수도 있 다. 0 2019/124835 1»(:1/10公018/015430
[수학식 1-1]
Figure imgf000006_0001
(상기 알파올레핀 탄소수)1 /2 X 4.6
상기 수학식 2에서, (:는크 < X < 111구간에서 상기 분자량분포곡선 그래프와 X축 사이의 면적( )이 3 < X < 구간에서 상기 분자량 분포 곡선 그래프와 X축사이의 면적 ^2)의 80%인 분자량값 01인 고분자 쇄의 탄 소 1000깨당의 탄소수 2내지 7개의 곁가지(洗 함량 0汗-¾에 의해 측정) 일 수 있다. 상기 3 < X < 01구간에서 상기 분자량분포 곡선 그래프와 X 축 사이의 면적( )은 상기 분자량 분포 곡선 그래프에 대해 3 £ X £ 01 범위에서의 적분값을 의미할 수 있으며, 상기 3 £ X £ 구간에서 상기 분자량분포곡선 그래프와 X축사이의 면적 2)은 & < X < 1)범위에서의 적분값을의미한다.
이때, 상기 크는상기 분자량 분포 곡선 그래프에서 X축인 분자량의 최소값을 의미하는 양의 실수이고, I)는상기 분자량분포 곡선 그래프에서 X축인 분자량의 최대값을의미하는 양의 실수이며, 이은 3 < 111 < I)을만족 하는 양의 실수이며, = 0.8 X 드2을 만족할 수 있다. 보다 구체적으로, 하기 수학식 3을만족할수 있다.
[수학식 3]
Figure imgf000006_0002
또한, 상기 수학식 2에서, (1는 3 £ X £ II구간에서 상기 분자량분 포곡선 그래프와 X축사이의 면적(33)이 3 < X < 구간에서 상기 분자 량분포 곡선 그래프와 X축사이의 면적(34)의 20%인 분자량값 II인 고분자 쇄의 탄소 1000개당의 탄소수 2내지 7개의 곁가지(엤 함량(1 - 에 의 해 측정)일 수 있다. 상기 3 < X < 11구간에서 상기 분자량분포곡선 그 래프와 X축사이의 면적(33)은상기 분자량분포 곡선 그래프에 대해 3 < X < II범위에서의 적분값을의미할수 있으며, 상기 3 < X £ 구간에서 상기 분자량분포 곡선 그래프와 X축사이의 면적 4)은 3 < X < I) 범위 에서의 적분값을의미한다.
이때, 상기 3는 상기 분자량 분포 곡선 그래프에서 X축인 분자량의 최소값을 의미하는 양의 실수이고, 13는 상기 분자량 분포 곡선 그래프에서 0 2019/124835 1>( /1 샀018/015430
X축인 분자량의 최대값을의미하는 양의 실수이며, 113 < II < 13을만족
Figure imgf000007_0001
< I을만족하는 양의 실수이며, 보다구체적으로, 하기 수학식 4를만족할 수있다.
[수학식 4]
Figure imgf000007_0002
상기 수학식 2, 수학식 3, 수학식 3에 의한 공단량체 분산지수 (CDI)를 계산하는구체적인 일례를하기 도 2에 나타내었다.
상기 " 폴리에틸렌 공중합체'’에 포함된 "고분자 쇄 (들)’’라 함은, 상기 폴리에틸렌 공중합체를 중합 및 제조하였을 때, 형성되는 다수의 고분자사슬들을 지칭할수 있다. 이러한 고분자사슬들의 분자량 등은 겔 투과크로마토그래피 (GPC)를이용한분자량분포곡선 (하기 도 1의 연속적인 실선으로표시)을통하여 확인될수있다. 상기 분자량 분포 곡선 그래프 측정에 사용되는 겔 투과 크로마토그래피는 예를 들어, Polymer Laborator ies PLgel MIX-B 300mm 길이 칼럼, Waters PL-GPC220 기기를 이용하여, 평가 온도는 100 °C 내지 200 °C이며, 1,2,4 -트리클로로벤젠을 용매로서 사용하였으며, 유속은 0.1 raL/min내지 10 mL/min의 속도이고, 1 mg/10mL내지 20mg/ lOraL의 농도의 시료를 100 u L내지 300 y L의 양으로공급하는조건으로사용할수 있다. 한편, 상기 폴리에틸렌 공중합체에 함유된 복수의 고분자 쇄 각각이 갖는탄소 1000개당의 탄소수 2내지 7개의 곁가지 함량은 FT-m로폴리에 틸렌공중합체를분석함으로서 확인할수있다.
상기 SCB( Short Chain Branch) 측정에 사용되는 FT-IR은 예를들어, DTGS검출기가포함된 PerkinElraer Spectrum 100기기를 이용하여, 평가온 도는 100 °C 내지 200 °C이며, 파수 (wavenumber ) 2000 cm-1내지 4000 cm一1, 스캔 횟수 (number of scanning) 1회 내지 20회, 해상도 (resolut ion) 1 cm—1 내지 10 cm 1조건으로사용할수있다. 2019/124835 1»(:1^1{2018/015430
상기 일 구현예의 폴리에틸렌 공중합체의 엤
Figure imgf000008_0001
(상기 알파올 레핀 탄소수)1 /2 X 5값을초과하여 상기 수학식 1을만족하지 못할경우, 상 기 폴리에틸렌 공중합체의 용융지수가 증가하거나, 공단량체 분산지수인 0)1가감소함에 따라, 가공성 내지 장기 내구성이 감소하는한계가있다. 구체적으로, 상기 폴리에틸렌공중합체는 300
Figure imgf000008_0002
또는
5내지 11, 또는 5내지 10, 또는 5내지 9.6일 수 있고, 상기 폴리에틸렌 공중합체는 공단량체 분산지수 01)1)가 1.2 내지 3.0, 또는 1.2 내지 2.6, 또는 1.23내지 2.56일수 있다.
이에 따라, 상기 폴리에틸렌 공중합체는
Figure imgf000008_0003
°(:에서 측 정)가 0.85
Figure imgf000008_0005
이상, 또는 0.85뺘3 내지 1.0
Figure imgf000008_0006
또는 0.90
Figure imgf000008_0004
내지
0.97 일 수 있다. 또한, 상기 폴리에틸렌 공중합체는 내응력 균열성 에 41 ¾에서 측정)이 1000 이상, 또는 1000加 내지 10000 일 수 있다.
이처럼, 상기 폴리에틸렌 공중합체가 높은
Figure imgf000008_0007
및 내응력 균열성 1')을 가짐에 따라, 뛰어난 장기 취성파괴 저항성을 가짐을 확인 할수있다.
상기 들리에틸렌공중합체는 §옹지수(쇼 ¾1 1)1238에 따라 190 "0에서 2.16 하중으로 측정)가 0.01 §/101 11 내지 0.65 용/10 11, 또는 0.02 묘/10111111 내지 0.60 당/101 11 , 또는 0.03 당/1011^11 내지 0.60요/1011^11, 또는 0.036용/1011^11내지 0.591당/101 11일 수 있다. 또한, 상기 폴리에틸렌 공중 합체는 용융지수 況¾1 1)1238에 따라 190 °(:에서 21.6
Figure imgf000008_0008
중으로 측정)가 2 요/101 11 내지 30 용/10111111 , 또는 9 궁/10[1^11 내지 25 용/101 11 , 또는 9.5 당/1011 11내지 24.5용/101 11일수 있다.
상기 폴리에틸렌 공중합체는 밀도 況¾1 1505)가 0.930 당/예3 내지 0.945 g/cm3 ,또는 0.935용/(페3내지 0.940용/에3일 수 있다.
상기 폴리에틸렌 공중합체에 함유된 복수의 고분자 쇄 각각이 갖는 탄소 1000개당의 탄소수 2내지 7개의 곁가지 함량의 평균값 江- 에 의해 측정)이 7 개/ 1,00ᄄ 내지 15 개/ 1,000(:, 또는 7 개/ 1,00明 내지 14 개 /1,0000, 또는 7개/ 1,00(光내지 13 개/ 1 ,000(:, 또는 7 개/ 1,0000내지 13 개/ 1,000(:, 또는 7개/ 1,00ᄄ내지 11개/ 1,000(:로나타나는특징이 있다. 상기 폴리에틸렌 공중합체에 함유된 복수의 고분자 쇄 각각이 갖는 탄소 1000개당의 탄소수 2내지 7개의 곁가지 함량의 평균값은, 상기 폴리 에틸렌공중합체에 함유된 복수의 고분자쇄 각각이 갖는탄소 1000개당의 탄소수 2내지 7개의 곁가지 함량의 합계를상기 폴리에틸렌공중합체에 함 유된고분자쇄의 개수로나누어 계산할수있다.
또는, 상기 폴리에틸렌 공중합체에 함유된 복수의 고분자쇄 각각이 갖는 탄소 1000 개당의 탄소수 2 내지 7개의 곁가지 함량의 평균값은, 겔 투과 크로마토그래피에 의해 얻어진 분자량 (M)의 로그값 ( log M)을 x축으로 하고, FT-m에 의해 얻어진 상기 로그값에 대한 탄소 1,000 개당의 탄소수 2내지 7개의 곁가지 함량을 y축으로 하는 SCB분포 곡선 (하기 도 1의 불연 속적인 점선으로 표시)을 도출한 이후, 상술한 평균값 계산방법에 따라 구 할수있다.
즉, 상기 폴리에틸렌 공중합체는 겔 투과 크로마토그래피 (GPC: Gel Permeat ion Chromatography)를 이용하여 즉정된 다양한분자량을갖는모든 고분자 쇄에 대하여, 각각의 고분자 쇄마다 갖는 탄소 1000 개당의 탄소수 2 내지 7개의 곁가지 함량의 평균을 구한 값이 7 개/ 1,000C 내지 15 개 /1,000C, 또는 7 개/ 1,000C내지 14 개/ 1,000C, 또는 7 개/ 1.000C내지 13 개/ 1,000C, 또는 7 개/ 1,000C 내지 13 개/ 1,000C, 또는 7 개/ 1,000C 내지 11개/ 1,000C로높게 나타날수있다.
그리고, 상기 폴리에틸렌 공중합체가복수의 고분자 쇄 각각이 갖는 탄소 1000개당의 탄소수 2내지 7개의 곁가지 (SCB) 함량의 평균값 (FT-m에 의해 측정)이 7 개/ 1000C 이상으로 높아짐에 따라, 저분자량보다 상대적으 로 물성을 담당하는 고분자량 부분에 짧은 사슬 가지 (Short Chain Branching, SCB)와 같은 연결분자 (Ti e Mol ecule)들을 집중함으로써 기존에 비해보다우수한물성을구현할수 있다.
상기 폴리에틸렌 공중합체는상술한물성 중 적어도 어느하나의 물 성을가질 수 있으며, 우수한기계적 강도를나타내기 위해 상술할물성 모 두를 가질 수 있다. 이 경우, 우수한 장기 내구성과 함께, 기계적 강도와 가공성의 개선효과가더욱현저할수있다. 2019/124835 1»(:1^1{2018/015430
상기와같은폴리에틸렌공중합체는하기 화학식 2및 화학식 3으로이 루어진 군에서 선택된 1종 이상을포함한 제 1 전이 금속 화합물, 및 하기 화학식 4내지 화학식 7로 이루어진 군에서 선택된 1종 이상을포함한 제 2 전이 금속 화합물을 포함한 제 1 혼합물 또는 하기 화학식 1을 포함한 제 1 전이 금속 화합물, 및 하기 화학식 4, 화학식 6, 및 화학식 7로 이루어진 군 에서 선택된 1종 이상을포함한제 2전이 금속화합물을포함한제 2혼합물 을포함한전이금속혼합물; 및 상기 전이금속혼합물이 담지된 담체;를포 함하는 혼성 담지 촉매 존재 하에, 에틸렌 단량체 및 알파올레핀 단량체를 중합하는단계를포함하는제조방법에 의해 제조될수있다.
[화학식 1]
Figure imgf000010_0001
상기 화학식 1에서,
은 4족전이금속이고;
내지 ¾중 적어도하나는 -((:¾)„-(¾> (이때, ¾는 -6의 직쇄 또 는분지쇄 알킬기이고, 은 2 내지 10의 정수이다)이고, 나머지는서로 동 일하거나 상이하고 각각 독립적으로, 수소, 01-20 알킬, 02-20 알케닐, C3-20 사이클로알킬, 06-20 아릴, 07-20 알킬아릴, 또는 07-20 아릴알킬이거나, 또는 서로 인접하는 2개 이상이 서로 연결되어 치환또는 비치환된 지방족 또는 방향족고리를형성하고, 2019/124835 1»(:1^1{2018/015430
¾및 ¾는서로동일하거나상이하고각각독립적으로, 할로겐, 01-20 알킬, 02-10알케닐, 사이클로알킬, 07-40알킬아릴, 07-40아릴알킬, 06-20 아릴, 01-20알킬리덴, 아미노, 02-20알킬알콕시, 또는 07-40아릴알콕시이고;
[화학식 2]
Figure imgf000011_0001
상기 화학식 2에서,
는 4족전이 금속이고;
¾및 4는서로동일하거나상이하고각각독립적으로, 할로겐, 01-20 알킬, 02-10알케닐, 03-20사이클로알킬, 07-40알킬아릴, 07-40아릴알킬, 06-20 아릴, 01-20알킬리덴, 아미노, 02-20알킬알콕시, 또는 07-40아릴알콕시이고;
¾1내지 1¾4중적어도어느하나는 - (0¾) 1_0¾ (이때 , ¾는。1-6의 직 쇄 또는분지쇄 알킬기이고, 01은 2 내지 10의 정수이다)이고, 나머지는 서 로 동일하거나 상이하고 각각 독립적으로, 수소, 01-20 알킬, 02-20 알케닐, 03-20 사이클로알킬, 06-20 아릴, 07-20 알킬아릴, 또는 07-20 아릴알킬이거나, 또는 서로 인접하는 2개 이상이 서로 연결되어 치환또는 비치환된 지방족 또는방향족고리를형성하고,
¾5
Figure imgf000011_0002
동일하거나상이하고, 각각독립적으로수소, 01-20 알킬 , 03-20 사이클로알킬, 01-10 알콕시, C2-20 알콕시알킬 , Ce-20 아릴, 06-10 2019/124835 1»(:1^1{2018/015430
아릴옥시 02-20알케닐, 07-40알킬아릴, 07-40아릴알킬, 08-40아릴알케닐, 또 는 02-10알키닐이고;
)(31및 ¾2는서로동일하거나상이하고각각독립적으로, 할로겐, 01- 20 알킬, 02-10 알케닐, 03-20 사이클로알킬, 07-40 알킬아릴, 07-40 아릴알킬, Ce-20아릴, 01-20 알킬리덴, 아미노, 02-20 알킬알콕시, 또는 07-40아릴알콕시 이고;
[화학식 3]
Figure imgf000012_0001
상기 화학식 3에서,
은 4족전이금속이고;
¾및 ¾는서로동일하거나상이하고각각독립적으로, 할로겐, 01-20 알킬, 02-10알케닐, 03-20사이클로알킬, 07-40알킬아릴, - 아릴알킬, 06-20 아릴, 01-20알킬리덴, 아미노, 02-20알킬알콕시, 또는 07-40아릴알콕시이고;
¾0내지 ¾9는서로동일하거나상이하고, 각각독립적으로수소, 01- 20알킬, 03-20사이클로알킬, 0 -10알콕시, 02-20알콕시알킬, 06-20아릴, 06-10 아릴옥시, 02-20알케닐, 07-40알킬아릴, 07-40아릴알킬, 08-40아릴알케닐, 또 는 02-10 알키닐이고, 단,
Figure imgf000012_0002
¾9중 적어도 하나는 _(抑 2 -0 (이때 , ¾은탄소수 1내지 6의 직쇄 또는분지쇄 알킬기이고, I)은 2내지 10의 정 수이다)이고,
[화학식 4] 2019/124835 1»(:1^1{2018/015430
Figure imgf000013_0001
상기 화학식 4에서,
1는수소, 할로겐, 01-20 알킬기, 02-20 알케닐기, 06-20 아릴기, 07-20 알킬아릴기 , 07-20아릴알킬기 , 01-20알콕시기 , 02-20알콕시알킬기, 03-20헤테 로시클로알킬기, 또는(:5-20헤테로아릴기이고;
¾는 -0 내作)-또는 -^어)0?') -이고, 여기서 묘및 은서 로동일하거나상이하고, 각각독립적으로수소, 할로겐, 0 -20알킬기, 02-20 알케닐기, 또는 06-20아릴기이고;
은 01-10직쇄 또는분지쇄 알킬렌기이고;
는탄소, 실리콘또는게르마늄이고;
1는 수소, 할로겐, 01-20 알킬기, 02-20 알케닐기, 06-20 아릴기, 07-20 알킬아릴기, 또는 07-20아릴알킬기이고;
山은 4족전이금속이며 ;
¾및 ¾는서로동일하거나상이하고각각독립적으로, 할로겐, 01-20 알킬, 02-10알케닐, 03-20사이클로알킬, 07-40알킬아릴, 07-40아릴알킬, 06-20 아릴, 01-20알킬리덴, 아미노, 02-20알킬알콕시, 또는 07-40아릴알콕시이고;
는하기 화학식 43로표시되고;
[화학식 4&]
2019/124835 1»(:1^1{2018/015430
Figure imgf000014_0001
¾0내지 ¾6는서로동일하거나상이하고, 각각독립적으로수소, 할 로겐, 01-20알킬기, 02-20알케닐기, 01-20알킬실릴기, 01-20실릴알킬기, -20 알콕시실릴기, 01-20알콕시기, 3-20아릴기, 07-20알킬아릴기, 또는 07-20아 릴알킬기이며,
Figure imgf000014_0002
¾5중서로 인접하는 2개 이상이 서로 연결되 어 치환또는비치환된지방족또는방향족고리를형성할수 있고,
[화학식 5]
Figure imgf000014_0003
상기 화학식 5에서,
는 수소, 할로겐, 01-20 알킬기, ¾-20 알케닐기, 06-20 아릴기, 07-20 알킬아릴기, 07-20아릴알킬기, 01-20알콕시기, 02-20알콕시알킬기, 03-20헤테 로시클로알킬기, 또는 05-20헤테로아릴기이고;
¾는 -0 -,
Figure imgf000014_0004
-바 -또는 - 八 )-이고, 여기서 요및묘’은서 로동일하거나상이하고, 각각독립적으로수소, 할로겐, 01-20알킬기, 02-20 알케닐기, 또는 06-20아릴기이고;
은 01-10직쇄 또는분지쇄 알킬렌기이고 ;
¾는탄소, 실리콘또는게르마늄이고;
2는수소, 할로겐, 0:-20 알킬기, 02-20 알케닐기, 06-20 아릴기, 07-20 2019/124835 1»(:1/10公018/015430
알킬아릴기, 또는 07-20아릴알킬기이고;
¾15은 4족전이금속이며 ;
Figure imgf000015_0001
동일하거나상이하고각각독립적으로, 할로겐, 01- 20 알킬, 02-10 알케닐, (:3-2ᄋ 사이클로알킬 , 07-40 알킬아릴 , 07-40 아릴알킬, 06-20아릴, 01-20 알킬리덴, 아미노, 02-20알킬알콕시, 또는 07-40아릴알콕시 이고;
¾는하기 화학식 53로표시되고;
[화학식 5
Figure imgf000015_0002
¾0내지 ¾4는서로동일하거나상이하고, 각각독립적으로수소, 할 로겐, 01-20알킬기, 02-20알케닐기, 01-20알킬실릴기, 01-20실릴알킬기, -20 알콕시실릴기, 01-20알콕시기, 06-20아릴기, 07-20 알킬아릴기, 또는 07-20아 릴알킬기이며, 상기
Figure imgf000015_0003
¾3중서로 인접하는 2개 이상이 서로 연결되 어 치환또는비치환된지방족또는방향족고리를형성할수 있다.
[화학식 6]
Figure imgf000015_0004
상기 화학식 6에서,
3는 수소, 할로겐, 01-20 알킬기, 02-20 알케닐기, 06-20 아릴기, ^7-20 알킬아릴기 , 07-20아릴알킬기, 01-20알콕시기, 02-20알콕시알킬기, 03-20헤테 2019/124835 1»(:1^1{2018/015430
로시클로알킬기, 또는 05-20헤테로아릴기이고;
¾는 -0-, -, -바 -또는 -^ 000?’)-이고, 여기서 I?및묘’은서 로동일하거나상이하고, 각각독립적으로수소, 할로겐, 01-20알킬기, 02-20 알케닐기, 또는 Ce-20아릴기이고;
은 01-10직쇄 또는분지쇄 알킬렌기이고;
九는탄소, 실리콘또는게르마늄이고;
¾는 수소, 할로겐, 01-20 알킬기, 02-20 알케닐기, 06-20 아릴기, 07-20 알킬아릴기, 또는 07-20아릴알킬기이고;
은 4족전이금속이며 ;
¾1및 ¾2는서로동일하거나상이하고각각독립적으로, 할로겐, C
20 알킬, 02-10 알케닐, 03-20 사이클로알킬, 07-40 알킬아릴, 07-40 아릴알킬,
Figure imgf000016_0001
01-20 알킬리덴, 아미노, 02-20 알킬알콕시, 또는 07-40아릴알콕시 이고;
05및 는서로동일하거나상이하고, 각각 독립적으로 하기 화학식 6&내지 화학식 加중하나로표시되고;
[화학식 6
Figure imgf000016_0002
[화학식 63] 2019/124835 1»(:1/10公018/015430
Figure imgf000017_0001
¾0내지 ¾8 , ¾0내지 ¾8은서로동일하거나상이하고, 각각독립적 으로수소, 할로겐, 01-20 알킬기, 02-20 알케닐기, 01-20 알킬실릴기, 0:-20실 릴알킬기, 0!-20 알콕시실릴기, 01-20 알콕시기, 06-20 아릴기, 07-20 알킬아릴 기, 또는 07-20아릴알킬기이며, 상기 ¾0내지 ¾8 , ¾◦내지
Figure imgf000017_0002
인 접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를형성할수 있고,
[화학식 7]
2019/124835 1>(그1'/1 ?2018/015430
Figure imgf000018_0001
상기 화학식 7에서,
는 4족전아금속이고;
¾3및 ¾4는서로동일하거나상이하고각각독립적으로, 할로겐, 01- 20 알킬, 02-10 알케닐, 03-20 사이클로알킬, 07-40 알킬아릴, 07-40 아릴알킬,
06-20아릴, 01-20 알킬리덴, 아미노, 02-20알킬알콕시, 또는 07-40 아릴알콕시 이고;
71내지묘74중적어도어느하나는 -(( 2!-0¾(이때, ¾는( -6의 직 쇄 또는 분지쇄 알킬기이고, (1은 2 내지 10의 정수이다)이고, 나머지는 서 로 동일하거나 상이하고 각각 독립적으로, 수소, ^-20 알킬, 02-20 알케닐, 03-20사이클로알킬, 06-20 아릴, 07-20 알킬아릴, 또는 07-20 아릴알킬이거나, 또는서로 인접하는 2개 이상이 서로 연결되어 치환또는 비치환된 지방족 또는방향족고리를형성하고,
76는서로동일하거나상이하고, 각각독립적으로수소, 01-20 알킬, (:3-20 사이클로알킬, 0!-10 알콕시, 02-20 알콕시알킬, 06-20 아릴, 06-10 아릴옥시, 02-20알케닐, 07-40알킬아릴, 07-40아릴알킬, 08-40아릴알케닐, 또 는 02-10알키닐이고; \¥0 2019/124835
¾1및 ¾2는서로동일하거나상이하고각각독립적으로, 할로겐, 01- 20 알킬, 02-10 알케닐, 03-20 사이클로알킬, 07-40 알킬아릴, 07-40 아릴알킬, 05-20아릴 , 0!-20 알킬리덴, 아미노, 02-20알킬알콕시, 또는 07-40아릴알콕시 이고;
¾ 및 ¾는서로 동일하거나상이하고 각각 독립적으로, 수소, 할로 겐, 01-20알킬, (:2-20알케닐, 03-20사이클로알킬, 06-20아릴, 07-20알킬아릴, 또는 07-20아릴알킬이다.
상기 01-20알킬로는, 직쇄 또는분지쇄의 알킬을포함하고 , 구체적으 로 메틸, 에틸, 프로필, 이소프로필, 11-부틸, 라 부틸, 펜틸, 핵실, 헵틸, 옥틸등을들수 있으나, 이에만한정되는것은아니다.
상기 02-20알케닐로는 , 직쇄 또는분지쇄의 알케닐을포함하고, 구체 적으로 알릴, 에테닐, 프로페닐, 부테닐, 펜테닐 등을들 수 있으나, 이에 만한정되는것은아니다.
상기 03-20사이클로알킬로는, 단환또는축합환의 사이클로알킬을포 함하고, 구체적으로는 사이클로프로필, 사이클로부틸, 사이클로펜틸 , 사이 클로핵실, 노보닐등을들수 있으나, 이에만한정되는것은아니다.
상기 06-20아릴로는, 단환또는축합환의 아릴을포함하고, 구체적으 로 페닐, 비페닐, 나프틸, 페난트레닐, 플루오레닐 등을들 수 있으나, 이 에만한정되는것은아니다.
상기 05-20헤테로아릴로는 , 단환또는축합환의 헤테로아릴을포함하 고, 카바졸릴, 피리딜, 퀴놀린, 이소퀴놀린, 티오페닐, 퓨라닐, 이미다졸, 옥사졸릴 , 티아졸릴 , 트리아진, 테트라하이드로피라닐 , 테트라하이드로퓨라 닐등을들수 있으나, 이에만한정되는것은아니다.
상기 0!-20 알콕시로는, 메톡시, 에톡시, 페닐옥시, 시클로핵실옥시 등을들수있으나, 이에만한정되는것은아니다.
상기 4족전이금속으로는티타늄, 지르코늄, 하프늄등을들수 있으 나, 이에만한정되는것은아니다.
본명세서에서 서로인접하는 2개의 치환기가서로연결되어 지방족 또는방향족고리를형성한다는 것은 2개의 치환기의 원자(들) 및 상기 2개 의 치환기가 결합된 원자가(원자들이) 서로 연결되어 고리를 이루는 것을 2019/124835 1»(:1^1{2018/015430
의미한다.
상술한치환기들은목적하는효과와동일 내지 유사한효과를발휘하 는범위 내에서 임의적으로하이드록시기; 할로겐; 하이드로카빌기; 하이드 로카빌옥시기; 14족 내지 16족의 헤테로 원자들 중 하나 이상의 헤테로 원 자를포함하는하이드로카빌기 또는하이드로카빌옥시기 ; _Si¾; 하이드로카 빌 (옥시)실릴기; 포스파인기; 포스파이드기; 술포네이트기; 및 술폰기로 이 루어진군에서 선택된 1이상의 치환기로치환될수 있다. 본발명의 일구현예에 따른폴리에틸렌공중합체의 제조에 사용가능 한혼성 담지 촉매에 있어서, 상기 화학식 1 내지 화학식 3으로 이루어진 군 에서 선택된 1종 이상을포함한제 1전이 금속화합물은주로낮은 SCB함 량을가지는저분자량의 공중합체를 만드는데 기여할수 있고, 상기 화학식 4 내지 화학식 7로 이루어진 군에서 선택된 1종 이상을 포함한 제 2 전이 금속화합물은주로높은 SCB( short chain branch) 함량을가지는고분자량 의 공중합체를만드는데 기여할수다. 상기 화학식 1로 표시되는 제 1 전이금속 화합물은 주로 낮은 SCB (short chain branch) 함량을가지는저분자량의 공중합체를만드는데 기여 하는 것으로, 구체적인 예로 하기 구조식들로 표시되는 화합물을 들 수 있 으나, 본발명이 이에 제한되는것은아니다.
Figure imgf000020_0001
또, 상기 화학식 1에 있어서 상기 사이클로펜타디에닐기의 치환기로 2019/124835 1»(:1^1{2018/015430
서 1?1내지 ¾중어느하나, 그리고 1¾내지 1¾중중 어느하나에 -((¾2) 0¾(이때, ¾는 -6의 직쇄 또는분지쇄 알킬기이고, II은 2내지 10의 정수 이다), 보다 구체적으로는 부톡시핵실기를 도입함으로써, 공단량체를 이 용한 폴리올레핀 제조시 낮은 전환율을 나타내어 공중합도 또는 공단량체 분포가조절된저분자량의 폴리올레핀을제조할수있다. 보다구체적으로, 우수한활성을 가지며, 특히 1 -옥텐, I-부텐 또는 1 -핵센의 공중합성을더욱향상시킬수 있는화학식 1로표시되는제 1메탈 로센화합물은하기 구조식으로표시되는화합물 일수 있다.
Figure imgf000021_0001
한편, 화학식 2의 제 1 전이금속 화합물은, 2개의 인덴(比(161½)기가 ¾12¾¾ 브릿지(加 당 에 의해 가교된 형태이며, 상기 인덴기의 치환기
Figure imgf000021_0002
내지 ¾4중 어느 하나 이상의 치환기는 _(( 2)„ 0¾이고, 각각의 인덴기는 ¾5및 ¾6로치환될수있다. 이와같이, 화학식 2의 제 1전이금속화합물은
Figure imgf000021_0003
유도체의 치환기에 -(況 시乳 (이때, ¾는 내의 직쇄 또는분지쇄 알킬기 이고, 01은 2 내지 10의 정수이다)의 테더 61;1½1·)기를 적어도 하나, 보다 구체적으로는 2 이상을 도입함으로써, 공단량체를 이용한 폴리올레핀 제조 시 상기 치환기를포함하지 않는다른 01)계 촉매에 비하여 공단량체에 대한 낮은 전환율을나타내어 공중합도또는공단량체 분포가조절된 중저분자량 의 폴리올레핀을제조할수 있다. 구체적으로, 상기 화학식 2의 ¾4중 어느 하나 이상은 - (抑 2)„-0¾(이때, ¾는( 6의 직쇄 또는분지쇄 알킬기이고, 미은 2내지 10 의 정수이다)인 특징을지닌다. 상기 화학식 2에서 , -(CH2)m-0Rb는구체적으 로 tert-부톡시부틸기 (tert-butoxybutyl ) 또는 tert_부톡시핵실기 (tert_ butoxyhexyl ) 일 수 있다. 보다구체적으로는 2개의 인덴기가각각 _(CH2)m- 0Rb기를포함할수 있으며, 상기 -(C¾)m-0Rb기는 tert-부톡시부틸기 또는 tert-부톡시핵실기일 수 있다. 이와같은구조의 전이금속화합물이 담체에 담지되었을 때, -(CH2)m-0Rb 기가 담지체로 사용되는 실리카 표면의 실라놀 기와밀접한상호작용을통해 공유결합을 형성할수 있어 안정적인 담지 중 합이 가능하다. 또한, 상기 작용기는 1-옥텐, 1-부텐, 또는 1-핵센과 같은 알파올레핀 공단량체의 공중합성에 영향을미칠 수 있는데, -(C¾)m-0Rb에 서 m이 10 이하, 보다구체적으로는 6 이하, 보다더 구체적으로는 4 이하 의 짧은알킬 체인을갖는경우, 전체 중합활성은유지하면서 알파올레핀 공단량체에 대한공중합성 (comonomer incorporat ion)이 낮아져 다른물성의 저하없이 공중합도가조절된폴리에틸렌공중합체의 제조에 유리하다. 상기 화학식 2로표시되는 제 1 전이금속 화합물로는 예를들어 하기 구조식들 중 하나로 표시되는 화합물일 수 있으나, 이에만 한정되는 것은 아니다.
2019/124835 1»(:1/10公018/015430
Figure imgf000023_0001
또한, 상기 화학식 3으로 표시되는 제 1 전이금속 화합물은 인덴 (比(伯)기와사이클로펜타디엔 0¾)가 비가교된 구조로서, 전이금속 주위의 전자적/입체적 환경을용이하게 제어할수 있다. 그 결과, 합성되는폴리에 틸렌 공중합체의 화학적 구조, 분자량 분포, 및 기계적 물성 등의 특성을 용이하게 조절할수 있다. 또상기 인덴기와사이클로펜타디엔기 중 적어도 어느하나의 치환기에
Figure imgf000023_0002
(이때, ¾은탄소수 1내지 6의 직쇄 또는 분지쇄 알킬기이고, I)은 2 내지 10의 정수이다)의 치환기를 도입함으로써, 공단량체를 이용한폴리에틸렌 공중합체 제조시 상기 치환기를포함하지 않 는다른 013계 촉매에 비하여 공단량체에 대한낮은 전환율을나타내어 공중 합도 또는 공단량체 분포가조절된 저분자량의 폴리올레핀을 제조할수 있 다. 또, 상기와같은구조의 제 1전이 금속화합물은담체에 담지되었을 때, 치환기 중 -((¾)„-(¾기가 담지체로사용되는 실리카표면의 실라놀기와 밀 접한상호작용을통해 공유결합을형성할수 있어 안정적인 담지 중합이 가 능하다. 상기 화학식 3에 있어서, 은 4족 전이금속으로서 구체적으로 Ti , Zr또는 일수있으며, 보다구체적으로는 Ti 또는 Zr일수 있다.
또, 상기 화학식 3에 있어서, R20내지 ¾9는구체적으로서로 동일 하거나상이하고, 각각독립적으로수소, 탄소수 1내지 20의 알킬기, 탄소 수 2내지 20의 알케닐기, 탄소수 6내지 20의 아릴기, 탄소수 7내지 20의 알킬아릴기, 및 탄소수 7 내지 20의 아릴알킬기로 이루어진 군에서 선택되 며, 단, ¾0내지 ¾9중적어도하나는 -(CH2)p-0Rc (이때, Rc은탄소수 1내 지 6의 직쇄 또는분지쇄 알킬기이고, p은 2내지 1◦의 정수이다)일 수 있 다. 또, 상기 -(抑 2)P-0RC 작용기는 1-부텐 (1-butene), 또는 1-핵센 l hexene)과같은 알파올레핀 공단량체의 공중합성에 영향을미칠 수 있는데, p가 4 이하의 짧은 알킬 체인을 갖는 경우, 전체 중합 활성은 유지하면서 알파올레핀 공단량체에 대한공중합성 (comonomer incorporat ion)이 낮아져 다른 물성의 저하 없이 공중합도가 조절된 폴리올레핀을 제조할 수 있다. 이에 따라상기 화학식 3에 있어서 상기 R20및 ¾I중어느하나이상의 치 환기, 또는상기 사이클로펜타디엔 (Cp)의 ¾6내지 ¾9중 어느하나 이상의 치환기가 -(C¾)p-0Rc (이때, Rc은탄소수 1내지 6의 직쇄 또는분지쇄 알킬 기이고, p은 2 내지 10의 정수이다)일 수 있고, 보다 더 구체적으로는 R20 및 R21중 어느 하나이상의 치환기가 -(C¾)p-0Rc (이때, Rc은 탄소수 1 내 지 6의 직쇄 또는 분지쇄 알킬기이고, p은 2내지 10의 정수이다)일 수 있 다.
또, 상기 화학식 3에 있어서 , ¾ 및 ¾는서로동일하거나상이하고 각각독립적으로, 할로겐, 또는탄소수 1내지 20의 알킬기일수있다.
상기 화학식 3으로표시되는제 1전이 금속화합물의 구체적인 예로, 하기 구조식들로 표시되는 화합물을 들 수 있으나, 본 발명이 이에 제한되 는것은아니다. 2019/124835 1»(:1/10公018/015430
Figure imgf000025_0001
한편, 상기 화학식 4로표시되는제 2전이 금속화합물에 있어서 , 상 기 화학식 4로 표시되는 전이 금속 화합물은 서로 다른 리간드로 싸이오펜 (thiophene)을포함하는방향족고리 화합물과 14족또는 15족원자를포함
Figure imgf000025_0002
어 있고, 서로 다른 리간드 사이에 M4(X7) (X8)가 존재하는 구조를 가진다. 이러한특정 구조를가지는전이 금속화합물이 담지된 담지 촉매는폴리에 틸렌 공중합체의 중합 반응에 적용되어 높은 활성을 나타내고, 고분자량의 폴리에틸렌공중합체를제공할수있다.
구체적으로, 상기 화학식 4로표시되는 전이 금속화합물의 구조 내 에서 의 리간드는, 예를들면, 올레핀 중합활성과올레핀의 공중합특성 에 영향을 미칠 수 있다. 구체적으로 의 리간드로, 화학식 4a에서의 Rso 내지 R35은서로동일하거나상이하며, 각각독립적으로수소또는 탄소수 1 내지 10의 알킬기이고, R30내지 ¾5는서로동일하거나상이하며, 보다구체 적으로는탄소수 1내지 10의 알킬기 중어느하나인 리간드를포함하는 경 우, 폴리에틸렌 공중합 공정에서 우수한 촉매 활성과 함께 높은 공단량체 전환율을나타내는촉매를제공할수 있다.
또, 상기 화학식 4로 표시되는 전이 금속 화합물의 구조 내에서 C2 리간드 역시 올레핀의 중합활성에 영향을 미칠 수 있다. 특히, 화학식 4의 2019/124835 1»(그1^1{2018/015430
¾가내¾6 -이며, 상기 ¾6은탄소수 1내지 10의 알킬기인 경우올레핀중합 공정에서 매우높은활성을나타내는촉매를제공할수있다.
상기 의 리간드 및 의 리간드는 나厂에 의하여 가교되어 우수한 담지 안정성 및 중합활성을나타낼수 있다. 상기 화학식 4의 은 04내지 08의 직쇄 또는분지쇄 알킬렌기인 것이 더욱바람직하나, 이에만한정되는 것은아니다. 또한, 상기 알킬텐기는 01내지 020의 알킬기, C2내지 020의 알케닐기, 또는 06내지 020의 아릴기로치환또는비치환될수 있다.
또한, 상기 화학식 4의 는실리콘인 것이 바람직하나, 이에만한정 되는것은아니다.
또한, 상기 화학식 4의 는수소, 메틸기, 에틸기, 프로필기, 이소 프로필기, 11-부틸기, 호라 부틸기, 메톡시메틸기, 호 卜부톡시메틸기, 1 -에 톡시에틸기 , 1 -메틸- 1 -메톡시에틸기, 테트라하이드로피라닐기, 또는 테트라 하이드로퓨라닐기인 것이 바람직하나, 이에만한정되는것은아니다.
한편 , 가교된 의 리간드와 ¾의 리간드사이에는 (¾)(¾)가존재 하는데, ()(7) (¾)는금속 착물의 보관 안정성에 영향을 미칠 수 있다. 이 러한 효과를 더욱 효과적으로 담보하기 위하여 ¾및 ¾가 각각독립적으로 할로겐중어느하나인 전이 금속화합물을사용할수있다.
상기 화학식 4로표시되는 제 2전이 금속 화합물의 구체적인 예로, 하기 구조식들로 표시되는 화합물을 들 수 있으나, 본 발명이 이에 제한되 는것은아니다.
Figure imgf000026_0001
상기 화학식 4로표시되는전이 금속화합물은공지의 반응들을응용 2019/124835 1»(:1^1{2018/015430
하여 합성될수 있으며, 보다상세한합성 방법은실시예를참고할수 있다. 한편, 상기 화학식 5로표시되는제 2전이 금속화합물에 있어서, 상 기 화학식 5로 표시되는 전이 금속 화합물은서로 다른 리간드로 시클로펜 타다이엔을 포함하는 고리 화합물과 14족 또는 15족 원자를 포함하는 베이 스화합물을포함하며 , 서로다른
Figure imgf000027_0001
의하여 가교되어 있고, 서로 다른 리간드사이에 ¾15(¾)(¾0)가존재하는구조를가진다. 이러한특 정 구조를가지는전이 금속화합물이 담지된 담지 촉매는폴리에틸렌공중 합체의 중합 반응에 적용되어 높은 활성을 나타내고, 고분자량의 폴리에틸 렌공중합체를제공할수있다.
구체적으로, 상기 화학식 5로 표시되는 전이 금속 화합물의 구조내 에서 ¾의 리간드는, 예를들면, 올레핀 중합활성과올레핀의 공중합특성 에 영향을 미칠 수 있다. 구체적으로 ¾의 리간드로, 화학식 53에서의 ¾0 내지 ¾3은서로동일하거나상이하며 , 각각독립적으로수소또는탄소수 1 내지 10의 알킬기이고, ¾0내지 ¾3은서로동일하거나상이하며 , 보다구체 적으로는탄소수 1내지 10의 알킬기 중어느하나인 리간드를포함하는경 우, 폴리에틸렌 공중합 공정에서 우수한 촉매 활성과 함께 높은 공단량체 전환율을나타내는촉매를제공할수있다.
또, 상기 화학식 5로 표시되는 전이 금속 화합물의 구조 내에서 04 리간드 역시 올레핀의 중합활성에 영향을 미칠 수 있다. 특히, 화학식 5의
Figure imgf000027_0002
공정에서 매우높은활성을나타내는촉매를제공할수있다.
상기 ¾의 리간드 및
Figure imgf000027_0003
의하여 가교되어 우수한 담지 안정성 및 중합활성을나타낼수 있다. 상기 화학식 5의 은 04내지 08의 직쇄 또는분지쇄 알킬렌기인 것이 더욱바람직하나, 이에만한정되는 것은아니다. 또한, 상기 알킬렌기는 01내지 020의 알킬기, 02내지 020의 알케닐기, 또는 06내지 020의 아릴기로치환또는비치환될수 있다.
또한, 상기 화학식 5의 ¾는실리콘인 것이 바람직하나, 이에만한정 되는것은아니다.
또한, 상기 화학식 5의 는수소, 메틸기, 에틸기, 프로필기, 이소 프로필기, 11-부틸기, 165 _부틸기, 메톡시메틸기, 라!;-부톡시메틸기, 1 -에 2019/124835 1»(:1^1{2018/015430
톡시에틸기, 1 -메틸- 1 -메톡시에틸기 , 테트라하이드로피라닐기, 또는 테트라 하이드로퓨라닐기인 것이 바람직하나, 이에만한정되는것은아니다.
한편, 가교된 ¾의 리간드와 의 리간드사이에는
Figure imgf000028_0001
하는데, ¾15(¾)0(1 )는금속 착물의 보관 안정성에 영향을 미칠 수 있다. 이 러한효과를더욱효과적으로담보하기 위하여 ¾및
Figure imgf000028_0002
독립적으로 할로겐중어느하나인 전이 금속화합물을사용할수 있다.
상기 화학식 5로표시되는 제 2전이 금속화합물의 구체적인 예로, 하기 구조식으로표시되는 화합물을 들 수 있으나, 본 발명이 이께 제한되 는것은아니다.
Figure imgf000028_0004
상기 화학식 5로표시되는 전이 금속화합물은 공지의 반응들을응 용하여 합성될수 있으며, 보다상세한합성 방법은실시예를참고할수 있 다· '
한편, 상기 화학식 6에서, 상기 화학식 63 , 및해의
Figure imgf000028_0003
¾8 , ¾0 내지 ¾8은각각독립적으로수소, 메틸기, 에틸기, 프로필기, 이소프로필기, 11-부틸기, 호 !:-부틸기, 펜틸기, 핵실기, 헵틸기, 옥틸기, 페닐기, 할로겐 기, 트리메틸실릴기, 트리에틸실릴기, 트리프로필실릴기, 트리부틸실릴기, 트리이소프로필실릴기, 트리메틸실릴메틸기, 메톡시기, 또는 에톡시기인 것 이 더욱바람직하나, 이에만한정되는것은아니다.
상기 화학식 6의 은 04내지 08의 직쇄 또는분지쇄 알킬렌기인 것 이 더욱바람직하나, 이에만한정되는 것은아니다. 또한, 상기 알킬렌기는 C1 내지 C20의 알킬기, C2내지 C20의 알케닐기, 또는 C6내지 C20의 아릴 기로치환또는비치환될수있다.
또한 상기 화학식 6의 A3는 수소, 메틸기, 에틸기, 프로필기, 이소 프로필기, n-부틸기, tert-부틸기, 메톡시메틸기, tert_부톡시메틸기, 1-에 톡시에틸기, 1-메틸- 1-메톡시에틸기, 테트라하이드로괴라닐기, 또는 테트라 하이드로퓨라닐기인 것이 바람직하나, 이에만한정되는것은아니다.
또한, 상기 화학식 6의 Y3는실리콘인 것이 바람직하나, 이에만한정 되는것은아니다.
상기 화학식 6의 제 2 전이 금속 화합물은 인데노 인돌 ( indeno indole) 유도체 및/또는 플루오렌 ( f luorene) 유도체가 브릿지에 의해 가교 된 구조를 형성하며, 리간드 구조에 루이스 염기로 작용할수 있는 비공유 전자쌍을 가짐으로써 담체의 루이스산특성을 지니는 표면에 담지되어 담 지 시에도높은 중합 활성을 나타낸다. 또한 전자적으로 풍부한 인데노 인 돌기 및/또는플루오렌기를포함함에 따라 활성이 높고, 적절한 입체 장애 와 리간드의 전자적인 효과로 인해 수소 반응성이 낮을 뿐 아니라 수소가 존재하는상황에서도높은활성이 유지된다. 또한인데노 인돌유도체의 질 소 원자가 자라나는 고분자사슬의 beta-hydrogen을 수소결합에 의해 안정 화시켜 beta-hydrogen el iminat ion을 억제하여 초고분자량의 폴리에틸렌 공 중합체를중합할수 있다.
본발명의 일실시예에 따르면 , 상기 화학식 6a로표시되는화합물의 구체적인 예로는하기 구조식들중하나로표시되는화합물을들수 있으나, 본발명이 이에만한정되는것은아니다.
2019/124835 1»(:1/10公018/015430
Figure imgf000030_0001
5 본발명의 일실시예에 따르면, 상기 화학식 에로표시되는화합물의 구체적인 예로는 하기 구조식 들 중 하나로 표시되는 화합물을 들수 있으 나, 본발명이 이에만한정되는것은아니다.
Figure imgf000031_0001
 2019/124835 1»(:1/10公018/015430
Figure imgf000032_0001
본발명의 일실시예에 따르면, 상기 화학식 6으로표시되는제 2전 이금속 화합물의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합 물을들수있으나, 이에만한정되는것은아니다.
Figure imgf000032_0002
2019/124835 1»(:1^1{2018/015430
Figure imgf000033_0001
의 폴리에틸렌 공중합체를 중합할수 있다. 특히, 담체에 담지하여 사용할 경우에도높은중합활성을나타내어, 초고분자량의 폴리에틸렌 공중합체를 10 제조할수 있다. 2019/124835 1»(:1^1{2018/015430
또한, 고분자량과동시에 넓은분자량분포를 갖는폴리에틸렌 공중 합체를 제조하기 위해 수소를포함하여 중합반응을진행하는경우에도, 본 발명에 따른화학식 6의 제 2 전이금속 화합물은낮은수소 반응성을 나타 내어 여전히 높은활성으로초고분자량의 폴리에틸렌 공중합체의 중합이 가 능하다. 따라서, 다른 특성을 갖는 촉매와혼성으로사용하는 경우에도 활 성의 저하없이 고분자량의 특성을 만족시키는 폴리에틸렌 공중합체를 제조 할수 있어, 고분자의 폴리에틸렌 공중합체를포함하면서 넓은분자량분포 를갖는폴리에틸렌공중합체를용이하게 제조할수 있다.
상기 화학식 6의 제 2전이금속화합물은인데노인돌유도체 및/또는 플루오렌유도체를브릿지 화합물로 연결하여 리간드화합물로 제조한다음, 금속 전구체 화합물을 투입하여 메탈레이션 01^31 1^0!!)을 수행함으로써 수득될수 있다. 상기 제 2전이금속화합물의 제조방법은후술하는실시예 에 구체화하여 설명한다.
한편, 화학식 7의 제 2 전이금속화합물은, 2개의 인덴(比(16116)기가
Figure imgf000034_0001
또는분지쇄 알킬기이고, 다은 2내지 10의 정수이다)이고, 각각의 인덴기는 묘75및묘76로치환될수있다.
이와 같이, 화학식 7의 제 2 전이금속 화합물은 인덴(比(16116) 또는
Figure imgf000034_0002
(¾)5-0¾(이때, ¾는 -6의 직쇄 또는분지쇄 알킬기이고, (1은 2내지 10 의 정수이다)인 특징을지닌다. 상기 화학식 7에서, -(抑ᄅ 는구체적으 로 라卜부톡시부틸기(161*1;-13111:0 1^ 1) 또는 161·!;-부톡시핵실기 !;-
Figure imgf000034_0003
일수 있다. 보다구체적으로는 2개의 인덴기가각각 -((:出^- 0¾기를포함할수 있으며, 상기 _(抑 ᄆ 기는 16 -부톡시부틸기 또는 ᄐ근 -부톡시핵실기일 수 있다. 이와같은구조의 전이금속화합물이 담체에 담지되었을 때, -(CH2)q-0¾ 기가 담지체로사용되는 실리카 표면의 실라놀 기와밀접한상호작용을통해 공유결합을형성할수 있어 안정적인 담지 중 합이 가능하다. 또한, 상기 작용기는 1-옥텐, 1-부텐, 또는 1-핵센과 같은 알파올레핀 공단량체의 공중합성에 영향을미칠 수 있는데, -(CH2)q-0¾에 서 q가 10 이하, 보다구체적으로는 6 이하, 보다 더 구체적으로는 4 이하 의 짧은 알킬 체인을 갖는경우, 전체 중합활성은유지하면서 알파올레핀 공단량체에 대한공중합성 (comonomer incorporat ion)이 낮아져 다른물성의 저하없이 공중합도가조절된폴리에틸렌공중합체의 제조에 유리하다. 상기 화학식 7로 표시되는 제 2 전이금속 화합물로는 예를들어 하기 구조식들 중 하나로 표시되는 화합물일 수 있으나, 이에만 한정되는 것은 아니다.
Figure imgf000035_0001
본 발명에서 사용되는혼성 담지 촉매는상기 화학식 2 및 화학식 3으 로 이루어진 군에서 선택된 1종 이상을포함한 제 1 전이 금속 화합물, 및 하기 화학식 4내지 화학식 7로 이루어진 군에서 선택된 1종 이상을포함한 2019/124835 1»(:1^1{2018/015430
제 2 전이 금속 화합물을 포함한 제 1 혼합물 또는 상기 화학식 1을 포함한 제 1 전이 금속화합물, 및 하기 화학식 4, 화학식 6, 및 화학식 7로 이루어 진 군에서 선택된 1종 이상을포함한제 2전이 금속화합물을포함한제 2 혼합물을 포함한 전이금속 혼합물을 조촉매 화합물과 함께 담체에 담지한 것일 수 있다. 상기 전이금속혼합물은상기 화학식 2 및 화학식 3으로 이루 어진군에서 선택된 1종이상을포함한제 1전이 금속화합물, 및 하기 화 학식 4내지 화학식 7로 이루어진 군에서 선택된 1종 이상을포함한제 2전 이 금속 화합물을포함한 제 1혼합물또는상기 화학식 1을포함한 제 1 전 이 금속화합물, 및 하기 화학식 4, 화학식 6, 및 화학식 7로 이루어진 군에 서 선택된 1종 이상을 포함한 제 2 전이 금속 화합물을 포함한 제 2혼합물 중어느하나를포함할수 있다.
즉, 상기 제 1혼합물에 포함된 제 1전이금속화합물로는상기 화학식 2 1종, 화학식 3 1종, 또는상기 화학식 2및 화학식 3 2종을사용할수 있다. 또한, 상기 제 1혼합물에 포함된 제 2전이금속 화합물로는 상기 화학식 4 1 종, 화학식 5 1종. 화학식 6 1종, 화학식 7 1종, 상기 화학식 4및 화학식 5 2종, 상기 화학식 4및 화학식 6 2종, 상기 화학식 4및 화학식 7 2종, 상기 화학식 5 및 화학식 6 2종, 상기 화학식 5및 화학식 7 2종, 상기 화학식 6및 화학식 7 2 종, 상기 화학식 4 , 화학식 5 및 화학식 6 3종, 상기 화학식 4 , 화학식 5 및 화 학식 7 3종, 상기 화학식 4, 화학식 6및 화학식 7 3종, 상기 화학식 5 , 화학식 6 및 화학식 7 3종, 또는 상기 화학식 4, 화학식 5 , 화학식 6 및 화학식 7 3종의 제 2전이금속화합물을사용할수 있다.
한편, 상기 제 2혼합물에 포함된 제 1전이금속화합물로는상기 화학 식 1 1종을사용할수 있다. 또한, 상기 제 2혼합물에 포함된 제 2전이금속 화합물로는상기 화학식 4 1종, 화학식 6 1종, 화학식 7 1종, 상기 화학식 4및 화학식 6 2종, 상기 화학식 4및 화학식 7 2종, 상기 화학식 6및 화학식 7 2종, 상기 화학식 4, 화학식 6 및 화학식 7 3종의 제 2전이금속 화합물을사용할 수 있다.
바람직하게는상기 제 1전이 금속화합물로는상기 화학식 1 1종, 상 기 제 2전이 금속화합물로는상기 화학식 4 1종을사용할수 있다. 또한, 상기 제 1 전이 금속 화합물로는 상기 화학식 2 1종, 상기 제 2 전이 금속 2019/124835 1»(:1^1{2018/015430
화합물로는상기 화학식 5 1종을사용할수 있다. 또한, 상기 제 1 전이 금 속화합물로는상기 화학식 3 1종, 상가제 2전이 금속화합물로는상기 화 학식 5 1종을사용할수 있다. 또한, 상기 제 1 전이 금속 화합물로는상기 화학식 1 1종, 상기 제 2 전이 금속 화합물로는상기 화학식 6 및 화학식 7 2 종을사용할수있다.
상기 전이금속혼합물에서, 상기 제 2전이 금속화합물 100중량부 를 기준으로, 제 1 전이 금속 화합물은 1 중량부 내지 80 중량부, 또는 5 중량부내지 50중량부로포함될 수 있다. 상기 혼합비로포함됨으로써, 우 수한가공성 및 장기 내구성을갖는폴리에틸렌 공중합체의 제조에 보다용 이할수있다.
상기 제 2 전이 금속 화합물이 화학식 6 및 화학식 7 2종을 포함하는 경우, 상기 화학식 6의 화합물 100 중량부를 기준으로, 화학식 7의 화합물 10중량부내지 80중량부, 또는 40중량부내지 60중량부로포함될수 있 다.
본발명에 따른혼성 담지 촉매에 있어서 , 상기 담체로는표면에 하 아드록시기를 함유하는 담체를 사용할 수 있으며, 바람직하게는 건조되어 표면에 수분이 제거된, 반응성이 큰 하이드록시기와 실록산기를 가지고 있 는담체를사용할수있다.
예컨대, 고온에서 건조된 실리카, 실리카-알루미나, 및 실리카-마그 네시아 등이 사용될 수 있고, 이들은 통상적으로 此20, ¾¥3 , ¾엤4, 및 ¾1§어032등의 산화물, 탄산염, 황산염, 및 질산염 성분을함유할수있다. 상기 담체의 건조온도는 200 X: 내지 800 가바람직하고, 300公 내 지 600 가더욱 바람직하며, 300 X: 내지 400 가가장바람직하다. 상기 담체의 건조온도가 200 °(:미만인 경우 수분이 너무 많아서 표면의 수분과 조촉매가반응하게 되고, 800°(:를초과하는 경우에는담체 표면의 기공들이 합쳐지면서 표면적이 줄어들며 , 또한표면에 하이드록시기가많이 없어지고 실록산기만 남게 되어 조촉매와의 반응자리가 감소하기 때문에 바람직하지 않다.
상기 담체 표면의 하이드록시기 양은 0.1 11111101 /용 내지 10 11111101 /요이 바람직하며, 0.5 1^01八 내지 5 _01/용일 때 더욱 바람직하다. 상기 담체 표면에 있는하이드록시기의 양은담체의 제조방법 및 조건 또는건조조건, 예컨대 온도, 시간, 진공 또는 스프레이 건조 등에 의해 조절할 수 있다. 상기 하이드록시기의 양이 0.1 mmol/g 미만이면 조촉매와의 반응자리가 적 고, 10 mmol/g을초과하면 담체 입자표면에 존재하는하이드록시기 이외에 수분에서 기인한것일가능성이 있기 때문에 바람직하지 않다.
상기 혼성 담지 촉매는제조되는폴리에틸렌공중합체, 구체적으로는 에틸렌/ 1_핵센 또는 에틸렌/ 1-부텐 공중합체에서 LCB(Long Chain Branch)의 생성을유도할수있다.
또, 본발명에 따른혼성 담지 촉매에 있어서, 상기 전이금속화합물 을 활성화하기 위하여 담체에 함께 담지되는 조촉매로는 13족 금속을 포함 하는유기 금속화합물로서, 일반적인 메탈로센촉매 하에 올레핀을중합할 때사용될수 있는것이라면특별히 한정되는것은아니다.
구체적으로, 상기 조촉매 화합물은 하기 화학식 8의 알루미늄 함유 제 1조촉매 , 및 하기 화학식 9의 보레이트계 제 2조촉매 중하나이상을포 함할수있다.
[화학식 8]
- [A10¾7)-0-]
화학식 8에서, R77은 각각독립적으로 할로겐, 할로겐 치환또는 비 치환된탄소수 1내지 20의 하이드로카빌기이고, k는 2이상의 정수이고, [화학식 9]
T+[BG4r
화학식 8에서, T+은 +1가의 다원자이온이고, B는 +3산화상태의 붕 소이고, G는각각독립적으로하이드라이드, 디알킬아미도, 할라이드, 알콕 사이드, 아릴옥사이드, 하이드로카빌, 할로카빌 및 할로-치환된 하이드로카 빌로 이루어진 군에서 선택되고, 상기 G는 20개 이하의 탄소를 가지나, 단 하나이하의 위치에서 G는할라이드이다.
이러한제 1및 제 2조촉매의 사용에 의해, 최종제조된폴리올레핀의 다분산지수가보다균일하게 되면서, 중합활성이 향상될수있다.
상기 화학식 8의 제 1조촉매는선형, 원형 또는망상형으로반복단위 가결합된 알킬알루미녹산계 화합물로될 수 있고, 이러한제 1조촉매의 구 2019/124835 1»(:1^1{2018/015430
체적인 예로는, 메틸알루미녹산(■0), 에틸알루미녹산, 이소부틸알루미녹산 또는부틸알루미녹산등을들수있다.
또한, 상기 화학식 9의 제 2조촉매는삼치환된 암모늄염, 또는 디알 킬 암모늄염, 삼치환된 포스포늄염 형태의 보레이트계 화합물로될 수 있다. 이러한제 2조촉매의 구체적인 예로는, 트리메탈암모늄 테트라페닐보레이트, 메틸디옥타데실암모늄 테트라페닐보레이트, 트리에틸암모늄 테트라페닐보레 이트, 트리프로필암모늄 테트라페닐보레이트, 트리(노-부틸)암모늄 테트라페 닐보레이트, 메틸테트라데사이클로옥타데실암모늄 테트라페닐보레이트, -디메틸아닐늄 테트라페닐보레이트, -디에틸아닐늄 테트라페닐보레이 트, -디메틸(2,4, 6 -트리메틸아닐늄)테트라페닐보레이트, 트리메틸암모늄 테트라키스(펜타플로오로페닐)보레이트 , 메틸디테트라데실암모늄 테트라키 스(펜타페닐)보레이트 , 메틸디옥타데실암모늄 테트라키스(펜타플루오로페닐) 보레이트, 트리에틸암모늄, 테트라키스(펜타플루오로페닐)보레이트, 트리프 로필암모늄테트라키스(펜타프루오로페닐)보레이트, 트리(II -부틸)암모늄 테 트라키스(펜타플루오로페닐)보레이트, 트리(2급-부틸)암모늄테트라키스(펜 타플루오로페닐)보레이트,
Figure imgf000039_0001
메틸아닐늄 테트라키스(펜타플루오로페닐) 보레이트, -디에틸아닐늄테트라키스(펜타플루오로페닐)보레이트, -디 메틸( 2, 4 , 6 -트리메틸아닐늄)테트라키스(펜타플루오로페닐)보레이트, 트리메 틸암모늄테트라키스( 2 , 3, 4, 6 -테트라플루오로페닐)보레이트 , 트리에틸암모늄 테트라키스(2,3,4, 6 -테트라플루오로페닐)보레이트 , 트리프로필암모늄 테트 라키스(2,3,4,6 -테트라플루오로페닐)보레이트, 트리(노 -부틸)암모늄 테트라 키스(2, 3,4, 6 -,테트라플루오로페닐)보레이트, 디메틸( 부틸)암모늄 테트라 키스(2,3, 4, 6 -테트라플루오로페닐)보레이트,
Figure imgf000039_0002
메틸아닐늄 테트라키스 (2,3,4,6 -테트라플루오로페닐)보레이트, -디에틸아닐늄 테트라키스 (2, 3,4,6 -테트라플루오로페닐)보레이트 또는
Figure imgf000039_0003
메틸-(2,4,6 -트리메틸아 닐늄)테트라키스-(2, 3, 4, 6 -테트라플루오로페닐)보레이트 등의 삼치환된 암 모늄염 형태의 보레이트계 화합물; 디옥타데실암모늄 테트라키스(펜타플루 오로페닐)보레이트, 디테트라데실암모늄 테트라키스(펜타플루오로페닐)보레 이트 또는 디사이클로핵실암모늄 테트라키스(펜타플루오로페닐)보레이트 등 의 디알킬암모늄염 형태의 보레이트계 화합물; 또는트리페닐포스포늄 테트 2019/124835 1»(:1^1{2018/015430
라키스(펜타플루오로페닐)보레이트 , 메틸디옥타데실포스포늄 테트라키스(펜 타플루오로페닐)보레이트 또는 트리(2, 6 -, 디메틸페닐)포스포늄 테트라키스 (펜타플루오로페닐)보레이트 등의 삼치환된 포스포늄염 형태의 보레이트계 화합물등을들수있다.
이러한 혼성 담지 촉매는, 예를 들면, 담체에 조촉매를 담지시키는 단계 및 조촉매 담지 담체에 제 1 및 제 2의 전이금속화합물들을순차로 담 지시키는 단계로 제조될 수 있다. 이때 상기 전이금속 화합물들의 담지 순 서는 특별히 한정되지는 않으나, 분자 구조가 작은 제 1 전이금속 화합물, 그리고제 2전이금속화합물의 순서대로담지할수 있다.
또, 담체에 조촉매를담지시키는 단계에서는, 고온에서 건조된 담체 에 조촉매를 첨가하고, 이를 약 20 V 내지 120 ᄃ의 온도에서 교반하여 조 촉매 담지 담체를제조할수있다.
그리고, 조촉매 담지 담체에 촉매 전구체를 담지시키는 단계에서는 상기 담체에 조촉매를 담지시키는 단계에서 얻어진 조촉매 담지 담체에 전 이 금속 화합물을 첨가하고, 다시 이를 약 20 X: 내지 120 °(:의 온도에서 교반하여 담지 촉매를제조할수 있다.
상기 조촉매 담지 담체에 촉매 전구체를담지시키는단계에서는조촉 매 담지 담체에 전이 금속 화합물을 첨가하여 교반한후, 조촉매를 추가로 첨가하여 담지 촉매를제조할수 있다.
발명의 일구현에에 따른상기 혼성 담지 촉매에 있어서 사용되는담 체, 조촉매, 조촉매 담지 담체 및 전이 금속 화합물의 함량은목적하는 담 지 촉매의 물성 또는효과에 따라적절하게조절될수있다.
또, 발명 일구현예에 따른상기 혼성 담지 촉매에 있어서, 상기 저 11 및 제 2 전이금속 화합물을 포함하는 전이금속 혼합물 대 담체의 중량비는 1: 10내지 1: 1,000, 보다구체적으로는 1: 10내지 1:500일 수 있다. 상기한 범위의 중랑비로 담체 및 전이금속 혼합물을 포함할 때, 최적의 형상을 나 타낼수있다.
또, 상기 혼성 담지 촉매가조촉매를더 포함할경우, 조촉매 대 담 체의 중량비는 1: 1 내지 1: 100, 보다구체적으로는 1: 1 내지 1:50일 수 있 다. 상기 중량비로조촉매 및 담체를포함할 때, 활성 및 고분자미세구조 2019/124835 1»(:1^1{2018/015430
를최적화할수있다.
상기 혼성 담지 촉매 제조시에 반응용매로는펜탄, 핵산, 헵탄등과 같은 탄화수소 용매, 또는 벤젠, 톨루엔 등과 같은 방향족 용매가사용될 수있다.
상기 담지 촉매의 구체적인 제조 방법은 후술하는 실시예를 참고할 수 있다. 그러나, 담지 촉매의 제조 방법이 본 명세서에 기술한내용에 한 정되는 것은 아니며, 상기 제조 방법은 본 발명이 속한 기술분야에서 통상 적으로채용하는단계를추가로채용할수 있고, 상기 제조방법의 단계(들) 는통상적으로변경 가능한단계(들)에 의하여 변경될수있다 .
한편, 본발명에 따른폴리에틸렌공중합체는상술한혼성 담지 촉매 의 존재 하에서, 에틸렌 단량체 및 알파올레핀 단량체를중합시킴으로써 제 조될수 있다.
상기 단량체의 중합반응을위하여, 연속식 용액 중합공정, 벌크중 합공정, 현탁중합공정, 슬러리 중합공정 또는유화중합공정 등올레 핀단량체의 중합반응으로알려진다양한중합공정을채용할수 있다.
그리고, 상기 중합온도는 25
Figure imgf000041_0001
내지 500 X :, 바람직하게는 25 V 내지 200 , 보다바람직하게는 50
Figure imgf000041_0002
내지 150 I:일 수 있다. 또한, 중합 압력은 1 내지 100 31·, 바람직하게는 1 내지 50 31·, 보다바람직 하게는 5 내지 30 % 일수 있다.
본 발명에서의 제 1 및 제 2 전이금속화합물은수소 반응성이 우수하 기 때문에 중합공정시 수소 기체 사용량의 조절에 의해 원하는수준의 분 자량과용융지수를 갖는폴리에틸렌 공중합체를효과적으로 제조할수 있다. 구체적으로상기 에틸렌단량체 및 알파올레핀 단량체를중합하는단 계에서, 에틸렌 단량체 대비 0.005중량%내지 0.040중량%, 또는 0.008중 량% 내지 0.035 중량%, 또는 0.005 중량% 내지 0.020 중량%의 수소기체가 투입될수있다.
보다구체적으로, 상기 제 1 전이금속 화합물로 화학식 1의 전이금속, 상기 제 2전이금속화합물로화학식 4의 전이금속을사용하는경우, 상기 에 틸렌 단량체 및 알파올레핀 단량체를중합하는단계에서, 에틸렌 단량체 대 비 0.005중량%내지 0.013중량%의 수소기체가투입될수있다. 2019/124835 1»(:1^1{2018/015430
또한, 상기 제 1전이금속화합물로화학식 2의 전이금속, 상기 제 2전 이금속화합물로화학식 5의 전이금속을사용하는경우, 상기 에틸렌 단량체 및 알파올레핀 단량체를 중합하는 단계에서, 에틸렌 단량체 대비 0.033 중 량%내지 0.040중량%의 수소기체가투입될수있다.
또, 상술한담지 메탈로센촉매는탄소수 5내지 12의 지방족탄화수 소용매, 예를들면 펜탄, 핵산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 톨루엔, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 희석하여 주입할 수 있다. 여기에 사용되는용매는소량의 알킬 알루미늄처리함으로써 촉매 독으로작용하는소량의 물또는공기 등을제거하여 사용하는 것이 바람직 하며, 조촉매를더 사용하여 실시하는것도가능하다.
이에 따라본발명의 다른일구현예에 따르면상기한폴리에틸렌공
Figure imgf000042_0001
이프또는대구경 파이프등의 파이프를제공한다.
【발명의 효과】
본발명에 따르면, 우수한가공성과장기 내구성을가져 파이프등의 중공성형에 유용한폴리에틸렌공중합체를제공할수 있다.
【도면의 간단한설명】
도 1은 실시예 1의 폴리에틸렌 공중합체의 분자량 분포 곡선(실선)
Figure imgf000042_0002
도 2는실시예 1의 폴리에틸렌공중합체의 공단량체 분산지수(0)1)를 측정하는방법을나타낸도면이다.
【발명을실시하기 위한구체적인내용】
발명을하기의 실시예에서 보다상세하게 설명한다. 단, 하기의 실시 예는본발명을 예시하는것일 뿐, 본발명의 내용이 하기의 실시예에 의하 여 한정되는것은아니다.
[제조예]
[제 1전이금속화합물의 제조예 : 제조예 1내지 3]
제조예 1
Figure imgf000043_0001
6 -클로로핵사놀 (6-chlorohexanol )을사용하여 문헌 (Tetrahedron Lett . 2951 (1988))에 제시된 방법으로 卜8야기-0-(대2)6-(:1을 제조하고, 여기에 NaCp를 반응시켜 t-Buty卜 0-(C¾)6-C5H5를 얻었다 (수율 60%, b.p. 80 / 0.1 mraHg) . 또한, -78°C에서 t-Buty卜 0-(CH2)6-C5H5를 THF에 녹이고, 노르말부틸 리륨 (n-BuLi)을천천히 가한후, 실온으로승온시킨 후, 8시간 반응시켰다. 그 용액을 다시 -78°C에서 ZrCl4(THF)2(1.70g, 4.50_ol)/THF(30M)의 서스 펜젼 (suspension) 용액에 기 합성된 리튬염 (lithium salt) 용액을 천천히 가하고실온에서 6시간동안더 반응시켰다. 모든휘발성 물질을진공건조하고, 얻어진오일성 액체 물질에 핵산 (hexane)용매를 가하여 걸러내었다. 걸러낸 용액을 진공 건조한후, 핵산 을 가해 저온 (-20 °C)에서 침전물을 유도하였다. 얻어진 침전물을 저온에서 걸러내어 흰색 고체 형태의 [tBu-0-(CH2)6-C5H4]2ZrCl2화합물을 얻었다 (수율 92%) .
¾ NMR (300 MHz, CDC13): 6.28 (t, J = 2.6 Hz, 2H) , 6.19 (t, J = 2.6 Hz, 2H), 3.31 (t, 6.6 Hz, 2H) , 2.62 (t, J = 8 Hz), 1.7 - 1.3 (m, 8H), 1.17 (s, 9H)
13C NMR (CDCls): 135.09, 116.66, 112.28, 72.42, 61.52, 30.66, 30.61, 30.14, 29.18, 27.58, 26.00 제조예 2
Figure imgf000044_0001
(1) 리간드화합물의 제조
건조된 250 mL Schlenk f lask에 10.8 g (100 mmol )의 chlorohexanol 을 넣은 후 10 요의 molecul ar sieve와 100 의 MTBE( methyl tert-butyl ether)를 첨가하고, 20 g의 황산을 30분에 걸쳐 천천히 가하였다. 반응혼 합물은 시간이 지날수록 천천히 분홍색으로 변했으며, 16시간 이후 얼음으 로차갑게 식힌포화 sodium bi carbonate용액에 부었다. 이 혼합물에 에테 르 100mL씩 사용하여 4회 추출해내고, 모인유기층은 MgS04로건조하고여과 를 거친 다음 진공 감압하에서 용매를 제거하여 노란색의 액체 형태의 1- (tert but oxy ) -6-ch 1 or ohexane 10 g (60%수율)을얻었다.
1 H NMR (500MHz, CDC13) : 3.53 (2H, t) , 3.33 (2H, t) , 1.79 (2H, m) , 1.54 (2H, m) , 1.45 (2H, m) , 1.38 (2H, m) , 1.21 (9H, s)
건조된 250 mL Schlenk f l ask에 4.5 g (25 mmol)의 상기에서 합성한 l-(tert butoxy)-6-chlorohexane을 넣고 40 mL의 THF에 녹였다. 여기에 20 mL의 sodium indenide THF용액을천천히 가한후하룻동안교반시켰다. 이 반응혼합물에 50 mL의 물을가해 퀀칭 (quenching)시키고, ether로추줄 (50 mL x 3)한다음모인 유기증을 br hie으로중분히 씻어주었다. 용여로남은 수분을건조하고 여과한다음, 진공 감압하에 용매를 제거함으로써 어두운 갈색의 점성이 있는 형태의 생성물인 3-(6_tert-butoxy hexyl )-lH_indene을 정량수율로수득하였다.
Mw= 272.21 g/raol ¾ NMR (500MHz, CDC13) : 7.47 (1H, d), 7.38 (1H, d), 7.31 (1H, t), 7.21 (1H, 0, 6.21 (1H, s), 3.36 (2H, m), 2.57 (2H, m), 1.73 (2H, m), 1.57 (2H, m), 1.44 (抑, m), 1.21 (9H, s)
(2) 전이금속 화합물의 제조
-78 °C에서 상기 3-(6-tert_butoxy hexyl)-lH_indene를 THF에 녹이고, 노르말 부틸리튬 (n-BuLi)을 천천히 가한 후, 실온으로 승온시킨 후, 8시간 반응시켰다. 그 용액을 다시 -78 °C에서 ZrCl4(THF)2(1.70g, 4.50_ol)/THF(30m· 의 서스펜젼 (suspension) 용액에 기 합성된 리륨염 ( lithium salt) 용액을 천천히 가하고 실온에서 6시간 .동안 더 반응시켰다. 모든 휘발성 물질을 진공 건조하고, 얻어진 오일성 액체 물질에 핵산
(hexane) 용매를 가하여 걸러내었다. 걸러낸 용액을 진공 건조한 후, 핵산 을 가해 저온 (-20)에서 침전물을 유도하였다. 얻어진 침전물을 저온에서 걸 러내어 흰색 고체 형태의 [3-(6-tert-butoxy hexy 1 ) - 1H- i ndene ] 2Zr C 12 화합 물을 얻었다. (수율 78%)
中 NMR (300 MHz, CDC13): 7.47 (2H, d), 7.38 (2H, d) , 7.21 (2H, t), 6.95 (2H, m), 6.10 (1H, s), 5.87(1H, s), 5.48(1H, s), 5.36(1H, s)
3.36 (4H, m), 2.95 (2H, m) , 2.76(2H, m), 1.47 (8H, m) , 1.30 (4H, m) ,
1.05 (18H, s)
Figure imgf000045_0001
(1) 리간드 화합물의 제조
건조된 250 3^161± £183뇨에 10.8 당 (100 _。1)의 (±101011631101 을 넣은 투 10 당의 molecul ar s i eve와 100 의 MTBE( methyl tert -butyl ether)를 첨가하고, 20 g의 황산을 30분에 걸쳐 천천히 가하였다. 반응 혼 합물은 시간이 지날수록 천천히 분홍색으로 변했으며, 16시간 이후 얼음으 로차갑게 식힌포화 sodium bi carbonate용액에 부었다. 이 혼합물에 에테 르 100mL씩 사용하여 4회 추출해내고, 모인유기층은 MgS04로건조하고여과 를 거친 다음진공 감압하에서 용매를 제거하여 노란색의 액체 형태의 1- (tert butoxy)-6-chlorohexane 10 g (60%수율)을얻었다.
1 H NMR (500MHz, CDC13) : 3.53 (2H, t) , 3.33 (2H, t) , 1.79 (2H, m) , 1.54 (2H, m) , 1.45 (2H, m) , 1.38 (2H, m) , 1.21 (抑, s)
건조된 250 mL Schlenk f lask에 4.5 g (25 mmol )의 상기에서 합성합
1-( tert butoxy)-6_chlorohexane을 넣고 40 mL의 THF에 녹였다. 여기에 20 mL의 sodium indenide THF용액을천천히 가한후하룻동안교반시켰다. 이 반응혼합물에 50 mL의 물을가해 퀀칭 (quenching)시키고, ether로추출 (50 mL x 3)한다음모인 유기층을 br ine으로충분히 씻어주었다. MgS04로남은 수분을 건조하고 여과한다음, 진공 감압하에 용매를 제거함으로써 어두운 갈색의 점성이 있는 형태의 생성물인 3-(6-tert-butoxy hexyl )-lH_indene을 정량수율로수득하였다.
Mw= 272.21 g/raol
¾ NMR (500MHz, CDC13) : 7.47 (1H, d) , 7.38 (1H, d) , 7.31 (1H, t) , 7.21 (1H, t) , 6.21 (1H, s) , 3.36 (2H, m) , 2.57 (2H, m) , 1.73 (2H, m) ,
1.57 (2H, m) , 1.44 (6H, m) , 1.21 (9H, s)
(2) 전이금속화합물의 제조
건조된 250 mL Schl enk f lask에 상기에서 제조한 3-(6-tert_butoxy hexyl )-lH_indene 5.44 g(20 mmol )을 넣고 60 mL의 에테르 (ether)에 녹였다. 여기에 13 mL의 n-BuL i 2.0M hexane solut ion을 가하고 하룻동안 교반시킨 다음, n-butyl cyclopentadiene ZrCb의 톨루엔 (toluene) 용액 (농도 0.378 mmol/g)을 -78에서 천천히 가하였다. 이 반응혼합물은상온까지 올리면 맑 은 갈색 용액에서 노란색 고체가 떠다니는 흰색의 서스펜션 형태로 변하였 다. 12시간이 지난후 반응혼합물에 100 mL의 핵산을 넣어 추가로 침전을 생성시켰다. 이후 아르곤 하에서 여과하여 노란색의 여과액을 얻고, 이를 건조하여 원하는 화합물인 3-(6-(1 1:-1)111:07)1½ 1)-111-11(1611-1-:71)(3- 131比 1。5,1(:( 6 3-2,4-(11611-1-:71) 21111111(1 (:] 110 ( 가 생성되었음을 확인하였다.
¾1쨔= 554.75당/11101
¾■(500· 00013) ·· 7.62 (에, m) , 7.24 (2比 m) , 6.65 (1H, ,
6.39 (1比 , 6.02 (내, £), 5.83 (1比 , 5.75 (대, £), 3.29 (2H, , 2.99 (내, , 2.89 (내, 01), 2.53 (내, , 1.68 (태, , 1.39-1.64 (1아1, 111), 1.14 (9比 드), 0.93 (태, [제 2전이금속화합물의 제조예 :제조예 4내지 7]
제조예 4
Figure imgf000047_0001
(1) 리간드 A의 제조
1-벤조싸이오펜 4.0g(30_ol)을 THF에 용해시켜 1-벤조싸이오펜용액 을준비하였다. 그리고, n-BuLi 용액 14mL(36mmol, 2.5M in hexane)와 CuCN 1.3g(15mmol)을상기 1-벤조싸이오펜용액에 첨가하였다.
이어서, -80°C에서 tigloyl chloride 3.6g(30mmol )을상기 용액에 천 천히 첨가하고, 얻어진용액을상온에서 약 10시간정도교반하였다.
이후, 상기 용액에 10% HC1을 부어 반응을 종료 (quenching)시키고, 다이클로로메탄으로 유기층을 분리하여 베이지색 고체인 (2E)-1-(1-벤조싸 이엔- 2 -일)- 2 -메틸- 2 -부텐- 1-온을얻었다. 2019/124835 1»(:1^1{2018/015430
Figure imgf000048_0001
¾■ (00013): 7.85-7.82 細, 2 , 7.75 細, 내), 7.44-7.34 (: 에), 6.68 (미, 내), 1.99 (111, 해), 1.92 (미, 3
클로로벤젠 5此에 상기에서 제조한(2幻-1-(1 -벤조싸이엔- 2 -일)- 2 -메 틸- 2 -부텐- 1 -온 5.¾(22_01)을용해시킨 용액을 격렬하게 교반하면서 상기 용액에 황산 3½1를 서서히 첨가하였다. 그리고, 상기 용액을 상온에서 약 1시간동안교반하였다. 이후, 상기 용액에 얼음물을붓고, 에테르용매로 유기층을 분리하여 노랑색 고체인 1, 2 -다이메틸- 1, 2 -다이하이드로 -:¾-벤조 比]사이 얻었다.
Figure imgf000048_0002
¾ ■ (00013): 7.95-7.91 ( 태), 7.51-7.45 (01, 태), 3.20 (01, 내), 2.63 ( 내), 1.59 ((!, 해), 1.39 (山 해)
1¾ 201 및 메탄올 1이의 혼합용매에 1,2 -다이메틸- 1,2 -다이하이 드로-해-벤조[비사이클로펜타[(!]싸이오펜- 3 -온 2. ¾(9.21^101)을 용해시킨 용액에
Figure imgf000048_0003
첨가하였다. 그리고, 상기 용액을상온 에서 약 2 시간동안교반하였다. 이후, 상기 용액에 狀1을 첨가하여 如를 1로조절하고, 에테르용매로유기층을분리하여 알코올중간체를얻었다. 톨루엔에 상기 알코올중간체를용해시켜 용액을제조하였다. 그리고, 상기 용액에 1> -톨루엔설폰산 19011 ( 1.01^1101)을 첨가하고, 약 10 분간 환류 하였다. 얻어진 반응 혼합물을 컬럼 크로마토그래피로 분리하여 오렌지-브 라운 색상을 띄며, 액상인 1,2 -다이메틸- 311-벤조[비사이클로펜타[(!]싸이오 펜(리간드쇼) 1.8(9.0^1101 , 98% 근1(1)을얻었다. 2019/124835 1»(:1/10公018/015430
Figure imgf000049_0001
2H NMR (CDCls): 7.81 (d, 1H) , 7.70 (d, 1H), 7.33 (t , 1H) , 7.19 (t , 1H) , 6.46 (s, 1H) , 3.35 (q, 1H) , 2.14 (s , 3H) , 1.14 (d, 3H) (2) 리간드묘의 제조
250mL schlenk f lask에 t_부틸아민 13mL(120mmol)와 에테르 용매 20mL를 넣고, 상기 f lask와 다른 250mL schlenk f lask에 (6-tert-부톡시핵 실)다이클로로 (메틸)실란 16g(60_ol )과 에테르용매 40mL를 넣어 t_부틸아 민 용액 및 (6-tert-부톡시핵실)다이클로로 (메틸)실란 용액을 각각 준비하 였다. 그리고, 상기 t-부틸아민 용액을 -78°C로 냉각한 다음, 냉각된 용액 에 (6-tert-부톡시핵실)다이클로로 (메틸)실란 용액을 천천히 주입하고, 이 를상온에서 약 2시간동안 교반하였다. 생성된 whi te suspens ion을 여과 하여 아이보리 (ivory) 색상을 띄며, 액상인 l-(6-(tert-부톡시)핵실)- N- (tert-부틸)- 1-클로로- 1-메틸실란아민 (리간드 을얻었다.
Figure imgf000049_0002
¾ ■ (0)(:13) : 3.29 ( 如), 1.52-1.29 細, 1에), 1.20 ( 예) , 1. 16 ( 抑), 0.40 ( 예)
(3) 리간드쇼및 8의 가교
Figure imgf000049_0003
오펜 (리간드시 1.7용(8.6_01 )을 넣고, ^ 30此를 첨가하여 리간드쇼용액 을 제조하였다. 상기 리간드 쇼 용액을 -781:로 냉각한 후, 11-¾니 용액 3.6mL(9.1mmol, 2.5M in hexane)를 상기 리간드 A 용액에 첨가하고, 이를 상온에서 하룻밤 동안 교반하여 purple-brown의 용액을 얻었다. 상기 purple-brown 용액의 용매를 톨루엔으로 치환하고, 이 용액에 CuCN 39mg(0.43mmol)을 THF 2mL에 분산시킨 용액을 주입하여 용액 A를 제조하였 다.
한편, 250mL schlenk flask에 l-(6-(tert_부톡시)핵실)-N_(tert_부 틸)-1-클로로-1-메틸실란아민(리간드 B) 및 톨루엔을주입하여 준비한용액 B를 -78로 냉각하였다. 상기 냉각된 용액 B에 앞서 제조한용액 A를천천히 주입하였다. 그리고 용액 A및 B의 혼합물을 상온에서 하룻밤동안 교반하 였다. 그리고, 생성된 고체를 여과하여 제거함으로써 brown색상을띄며 점 성이 있는 액상의 l-(6-(tert_부톡시)핵실)-N-(tert-부틸)-1_(1,2 -다이메틸 -3H-벤조[b]사이클로펜타[d]싸이오펜-3 -일)-1-메틸실란아민(리간드 A 및 B 의 가교생성물) 4.2g(> 99% yield)을얻었다.
Figure imgf000050_0001
해시킨샘플을이용하여 11내·스펙트럼을얻었다.
¾■ 祀-的 및 00013): 7.81 (山 내), 7.67 ((1, 내), 7.82- 7.08 細, 대), 3.59 “, 태), 3.15 , 則) , 2.23-1.73 ( 1예), 2.15 ( 抑), 1.91 ( 9 , 1.68 (£, 3
(4) 전이 금속화합물의 제조
250! 3^16^ £1크3뇨에 ]-(6-( 61,1:-부톡시)핵실)-^( !:-부틸)-1- (1,2 -다이메틸- 3묘_벤조[비사이클로펜타[(!]싸이오펜- 3 -일)- 1 -메틸실란아민 (리간드 쇼 및 8의 가교 생성물) 4.2¾(8.6[ 01)을 넣고, 상기 크드뇨에 톨루 엔 14mL와 n-핵산 1.7mL를 주입하여 가교 생성물을 용해시켰다. 이 용액을 -78°C로냉각한후, n-BuLi 용액 7.3mL(18mmol, 2.5M in hexane)를상기 냉 각된용액에 주입하였다. 그리고, 상기 용액을상온에서 약 12시간동안교 반하였다. 이어서, 상기 용액에 트라이메틸아민 5.3mL(38mmol )을투입하고, 이 용액을약 40°C에서 약 3시간동안교반하여 용액 C를준비하였다.
한편, 별도로 준비된 250mL schlenk f l ask에 TiCl4(THF)2
2.3g(8.6_ol )과 톨루엔 10mL를 첨가하여 TiCl4(THF)2를 톨루엔에 분산시킨 용액 D를제조하였다. 상기 용액 D에 앞서 준비한용액 C를 -78°C에서 천천 히 주입하고, 용액 C및 D의 혼합물을상온에서 약 12 시간동안교반하였 다. 그 후, 상기 용액을 감압하여 용매를 제거하고, 얻어진 용질은톨루엔 에 용해시켰다. 그리고, 톨루엔에 용해되지 않은고체는 여과하여 제거하고 여과된 용액에서 용매를 제거하여 갈색 고체 형태의 전이 금속 화합물 4.2g(83% yi eld)를얻었다.
¾ NMR (CDCls): 8.01 (d, 1H) , 7.73 (d, 1H) , 7.45-7.40 (m, 2H) , 3.33 (t , 2H) , 2.71 (s , 3H) , 2.33 (d, 3H) , 1.38 (s , 9H), 1.18 (s , 9H),
1.80-0.79 (ra, 10H), 0.79 (d, 3H) 제조예 5
Figure imgf000051_0001
상온에서 50 £의 용 )룰 10 I반응기에 가한후, ^ 300 을가하 였다. 12 0.5 8정도를 가한후, 반응기 온도를 50로 유지하였다. 반응기 온도가 안정화된 후 250 용의 6-1:-부톡시핵실 클로라이드 (6_1;-1)111;11¥ 11671 chlor ide)를피딩펌프 ( feeding pump)를 이용하여 5 mL/min의 속도로 반응기 에 가하였다. 6-t-부톡시핵실 클로라이드를 가함에 따라 반응기 온도가 4 내지 5정도상승하는 것을관찰하였다. 계속적으로 6-t-부톡시핵실 클로라 이드을 가하면서 12시간 교반하였다. 반응 12시간 후 검은색의 반응용액을 얻었다. 생성된 검은색의 용액 2 mL 취한 뒤 물을 가하여 유기층을 얻어 1H-NMR을 통해 6-t-부톡시핵산 (6-t_buthoxyh»cane)을 확인하였다. 상기 6 - t-부톡시핵산으로부터 그리냐드 (Gr inganrd) 반응이 잘 진행되었음을 알 수 있었다. 그리하여 6-t_부톡시핵실 마그네슘 클로라이드 (6-t-buthoxyhexyl magnes ium chlor ide)를합성하였다.
MeSiCls 500 g과 1 L의 대를반응기에 가한후반응기 온도를 -2CTC 까지 냉각하였다. 합성한 6-t-부톡시핵실 마그네슘 클로라이드 중 560용을 피딩펌프를 이용하여 5 mL/min의 속도로 반응기에 가하였다. 그리냐드시약 (Gr ignard reagent)의 피딩 (feeding)이 끝난후 반응기 온도를 천천히 상온 으로올리면서 12시간교반하였다. 반응 12시간후흰색의 MgCl2염이 생성 되는것을확인하였다. 핵산 4 L을가하여 랩도리 ( l abdor i )을통해 염을제 거하여 필터용액을 얻었다. 얻은필터용액을반응기에 가한후 70°C에서 핵 산을 제거하여 엷은 노란색의 액체를 얻었다. 얻은 액체를 1H-NMR을 통해 원하는 메틸 (6-t_부톡시 핵실)디클로로실란 {Methyl (6-t_buthoxy hexyl )di chlorosi l ane}화합물임을확인하였다.
¾-■ (CDCls): 3.3 (t , 2H) , 1.5 (m, 3H) , 1.3 (m, 5H) , 1.2 (s , 9H) , 1.1 (m, 2H) , 0.7 (s, 3H) 테트라메틸시클로펜타디엔 (tetramethyl cyclopentadi ene) 1.2 mol (150 g)와 2.4 의 THF를 반응기에 가한후 반응기 온도를 -20°C로 냉각하 였다. n-BuLi 480 mL피딩펌프를 이용하여 5 mL/min의 속도로 반응기에 가 하였다. n-BuLi을가한후반응기 온도를천천히 상온으로올리면서 12시간 교반하였다. 반응 12시간 후, 당량의 메틸 (6-t-부톡시 핵실)디클로로실란 (Methyl (6-t-buthoxy hexyl )di chlorosi l ane) (326 g, 350 mL)을 빠르게 반 응기에 가하였다. 반응기 온도를 천천히 상온으로 올리면서 12시간 교반한 후다시 반응기 온도를 0°C로 냉각시킨 후 2당량의 t-BuN¾을가하였다.반 응기 온도를천천히 상온으로올리면서 12시간교반하였다.반응 12시간후 THF을 제거하고 4 L의 핵산을 가하여 랩도리를 통해 염을 제거한 필터용액 을 얻었다. 필터용액을 다시 반응기에 가한후, 핵산을제에서 제거하여 노란색의 용액을 얻었다.얻을노란색의 용액을 1H-NMR을통해 메틸 (6-t-부 톡시핵실 ) (테트라메틸 CpH)t_부틸아미노실란 (Methyl(6-t_
buthoxyhexyl ) (tetramethylCpH)t-Butylaminosi lane) 화합물임을 확인하였다. n-BuLi과 리간드 디메틸 (테트라메틸 CpH)t_부틸아민실란 (Dimethyl (tetramethylCpH)t-Butylaminosi lane)로부터 THF용액에서 합성한
-78°C의 리간드의 디리륨염에 TiCl3(THF)3(10 mmol)을 빠르게 가하였다. 반 응용액을천천히 _78°(:에서 상온으로올리면서 12시간교반하였다.12시간 교반후,상온에서 당량의 PbCl2(10 mmol)를 반응용액에 가한후 12시간교 반하였다. 12시간 교반 후, 푸른색을 띠는 짙은 검은색의 용액을 얻었다. 생성된 반응용액에서 를제거한후 핵산을가하여 생성물을 필터하였다. 얻을 필터용액에서 핵산을 제거한 후, 1H-NMR로부터 원하는 ([methyl(6-t_ buthoxyhexyl )si lyl ( ri 5-tetramethylCp) (卜8야 131 (10)]1(:12)인 (tBu-0-
(CH2)6)(CH3)Si(C5(C¾)4)(tBu-N)TiCl2임을확인하였다.
¾-NMR (CDCls): 3.3 (s, 4H), 2.2 (s, 6H), 2.1 (s, 6H) , 1.8 0.8 (m), 1.4 (s, 9H), 1.2(s, 9H), 0.7 (s, 3H) 제조예 6
Figure imgf000054_0001
(1) 리간드화합물의 제조
건조된 1L shlenk flask에 102.54g (376.69 mmol)의 3-tether Indene 을 넣고아르곤하에서 450ml의 THF를주입하였다. 이 용액을 -3CTC까지 냉 각한후 173.3ml (119.56 g, d=0.690g/ml )의 2.5 M nBuLi hexane solution 을 적가하였다. 반응혼합물은 천천히 상온으로올린 후다음날까지 교반하 였다. 이 Lithiated 3-thether Indene solution을 -78°C까지 냉각한 뒤, dimethyldichlorosi 1 icone 24.3g(188.3_ol)을 준비하여 이 schlenk flask 에 적가하였다. 주입이 끝난 혼합물은 상온으로 천천히 올린 후 하루동안 교반하고, flask내에 200ml의 물을 넣어 quenching하고 유기층을 분리하 여 MgS¾로 건조하였다. 그 결과, 115g(191.4 mmol, 101.6%)의 노란색 오일 을얻었다.
■ 기준 순도(wt%)=10W. Mw=600.99. ¾ NMR(500 MHz, CDC13): - 0.53, -0.35, -0.09(抑, t), 1.18(18H, m), 1.4K8H, m) , 1.54(4H, m) , 1.68(4H, m), 2.58(4H, m) , 3.32(4H, ra) , 6.04(1H, s), 6.26(1H, s),
7.16C2H, m), 7.28(3H, m) , 7.41(3H, m) .
(2) 전이금속화합물의 제조
오븐에 건조한 2L schlenk flask에 상기에서 합성한 리간드 화합물 191.35 mmol을 넣고 MTBE 4 당량(67.5g, d=0.7404g/ml )과 Toluene 696g(d=0.87g/ml) 용액을 용매에 녹인 다음, 2.1 당량의 nBuLi solution(160.7ml)을 가해 다음날까지 lithiation을 시켰다. 글러브 박스 내에서 72.187g(191.35 _ol)의 ZrCl4(THF)2를 취해 2L schlenk flask에 담 고 톨루엔을 넣은 suspension을 준비하였다. 위 두 개의 flask모두 -78°C 까지 냉각시킨 후 ligand anion을 천천히 Zr suspension에 가하였다. 주입 이 끝난후, 반응혼합물은천천히 상온까지 올렸다. 이를하루동안교반한 후, 슬러리를 아르곤 하에서 필터하고 여과한 후 필터된 고체와 여과액을 모두 진공 가압 하에서 증발시켰다. 115g(191.35mmol)의 리간드로부터 150.0g(198_ol, >99%)의 촉매 전구체가 Filtrate에서 얻어져 톨루엔 용액 상태로보관하였다(1.9446g/_ol).
Figure imgf000055_0001
0.87(6H, m), 1.14(18H, m) , 1.11-1.59(16H, m) , 2.61, 2.8K4H, m) ,
3.30(4H, m), 5.54(1H, s), 5.74(1H, s), 6.88(1H, m), 7.02(1H, m) , 7.28(1H, m), 7.39(1H, d) , 7.47(1H, t), 7.60-7.71(1H, m) . 제조예 7
Figure imgf000055_0002
(1) 리간드화합물의 제조
250 mL flask에 5-methyl-5, 10-dihydroindeno[l,2-b] indole 2.63 g (12 mmol)을 넣고 THF 50 mL에 녹인 후 2.5M n-BuLi hexane solution 6 mL 를 dr yice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. 또다른 250 mL flask에 (6-(tert-butoxy)hexyl )dichloro(methyl )si lane 1.62 g(6 mmol)을 hexane 100 에 녹여 준비한 투 dry ice/acetone bath 하에서5_ methyl-5, 10-dihydroindeno[l,2_b] indole의 1 ithiated solution에 천천히 적가하여 상온에서 밤새 교반하였다. 반응후 ether八vater로추출하여 유기 층의 잔류수분을 MgS04로 제거 후 진공 건조하여 리간드 화합물 3.82 g (6 mmol)을얻었으며 이를 1H-NMR에서 확인하였다.
¾ NMR (500 MHz, CDC13): -0.33 (3H, m), 0.86 ~ 1.53 (10H, m), 1.16 (9H, d), 3.18 (2H, m) , 4.07 (3H, d), 4.12 (3H, d) , 4.17 (1H, d), 4.25 (1H, d), 6.95 7.92 (1抑, m)
(2) 전이금속화합물의 제조
상기 2-1에서 합성한리간드화합물 3.82 g (6 mmol)을 toluene 100 mL와 MTBE 5 mL에 녹인후 2.5M n-BuLi hexane solution 5.6 mL(14 mmol)를 dryice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. 또 다른 flask에 ZrCl4(THF)22.26 g (6 mmol)을준비하고 toluene 100ml를 넣어 슬 러리로 준비하였다. ZrCl4(THF)2의 toluene slurry를 litiation된 리간드에 dry ice/acetone bath에서 transfer하였다. 상온에서 밤새 교반하였고 violet color로 변화하였다. 반응 용액을 필터하여 LiCl을 제거한후 얻어 진 여액을 진공 건조하여 hexane을 넣고 sonication하였다. 슬러리를 필터 하여 filtered solid인 dark violet 의 전이금속 화합물 3.40 g (yield 71.1raol%)을얻었다.
¾ NMR (500 MHz, CDC13): 1.74 (3H, d) , 0.85 ~ 2.33(10H, m),
1.29(9H, d), 3.87 (3H, s), 3.92 (3H, s), 3.36(2H, m) , 6.48 ~ 8.10 (16H, m)
[실시예]
실시예 1
(1)조촉매 담지 담체의 제조
300 ml 유리 반응기에 톨루엔 100 mL를 넣고, 실리카(Grace Davison 사의 SP2410) 10 g을 넣은후, 반응기의 온도를 약 40 °C로올리면서 교반 하였다. 실리카를충분히 분산시킨 후, 상기 반응기에 메틸알루미녹산 ( ⑴ 용액 (lOwt% in to 1uene ) (A 1bemar 1e사) 60 mL를투입하고, 반응기의 온도를 약 60 °C로올린 후, 약 200 rpm으로 약 12 시간동안교반하였다. 그후, 반응기의 온도를 약 40 °C로낮춘후 교반을 중지하고, 약 10분동안정치 (setting)한후, 반응용액을 decantation하였다. 결과의 반응물에 톨루엔 100 ml를투입하고 약 10분간교반한후교반을중지하고, 10분간정치시킨 후톨루엔을 decantation하였다. 결과로, 조촉매 담지 담체 (MA0/Si¾)를 얻 었다.
(2)담지 촉매의 제조
조촉매 담지 담체 (MA0/Si¾)가 담긴 반응기에 톨루엔 50mL를 투입하 고, 상기 제조예 1에서 제조한 전이 금속 화합물 0.8용과 톨루엔 10 ml를 반응기에 투입하고, 200 rpm으로 60분간교반하였다. 여기에 상기 제조예 4 에서 제조한전이 금속화합물 10.0용과톨루엔 10 ml를반응기에 투입하고 200 rpm으로 12시간교반하였다. 교반을 중지한후 10분간 정치시키고, 반 응 용액을 decantation 하였다. 반응기에 핵산 100 ml를 투입하고 결과의 혼합물을 200 ml schlenk flask로 이용하고 핵산용액을 decantat ion하였다. 이후상온 (23±5 °C)에서 3시간동안감압하건조하여 혼성 담지 촉매를수 득하였다.
(3)폴리에틸렌공중합체의 제조
200L 2단연속식 고압반응기에 Hexane 34kg/hr과 Ethylene 10kg/hr , 수소 1.06g/hr, 1-Butene 600~720ml/hr , Teal 35g/hr를투입하면서 상기에 서 제조한혼성담지촉매 7~10 g/hr를 Hexane용액에 섞어 투입하였다.
8.0 bar의 압력하에서 3단 Agitator와 Ciculation Pump로중합물이 잘섞이도록교반하고, Cooling Jacket과 Outer Cooler를통해 반응기 온도 는 80 °C로 유지하였으며, 반응기 Level은 75%로 유지하며 압력차로후단 반응기로이송하였다.
반응종료된 Surry는원심분리기를통해 핵산을 1차제거하고, Dryer 에서 Hot N2퍼징을통해 건조하여 약 9kg/hr 의 폴리에틸렌 공중합체를수 득하였다. 실시예 2
(1)조촉매 담지 담체의 제조 상기 실시예 1의 (1)에서와 동일한 방법으로 수행하여 조촉매 담지 담체 (MA0/Si¾)를제조하였다.
(2)담지 촉매의 제조
상기 조촉매 담지 담체 (MA0/Si¾)가담긴 반응기에 , 톨루엔 50 mL를 투입하고, 상기 제조예 2에서 제조한 전이 금속화합물 1.5 g과톨루엔 10 ml를 반응기에 투입하고, 200 rpm으로 60분간교반하였다. 여기에 상기 제 조예 5에서 제조한 전이 금속 화합물 6.0용과톨루엔 10 ml를 반응기에 투 입하고 200 rpm으로 12시간교반하였다. 교반을중지한후 10분간정치시키 고, 반응용액을 decantat i on하였다. 반응기에 핵산 100 ml를투입하고 결 과의 혼합물을 200 ml schlenk f l ask로 이용하고 핵산용액을 decantat ion 하였다. 이후 상온 (23±5 °C )에서 3시간 동안 감압하 건조하여 혼성 담지 촉매를수득하였다.
(3)폴리에틸렌공중합체의 제조
상기 실시예 2의 (2)에서 제조한 혼성 담지 촉매를 사용하며, 3.50g/hr의 수소를사용하는 것을제외하고는실시예 1의 (3)에서와동일한 방법으로수행하여 폴리에틸렌공중합체를제조하였다. 실시예 3
(1)조촉매 담지 담체의 제조
상기 실시예 1의 (1)에서와 동일한 방법으로 수행하여 조촉매 담지 담체 (MA0/Si¾)를제조하였다.
(2)담지 촉매의 제조
상기 조촉매 담지 담체 (MA0/Si¾)가담긴 반응기에 , 톨루엔 50 mL를 투입하고, 상기 제조예 2에서 제조한 전이 금속 화합물 1.5용과톨루엔 10 ml를 반응기에 투입하고, 200 rpm으로 60분간교반하였다. 여기에 상기 제 조예 5에서 제조한 전이 금속 화합물 5.0용과톨루엔 10 ml를 반응기에 투 입하고 200 rpm으로 12시간교반하였다. 교반을중지한후 10분간정치시키 고, 반응용액을 decantat ion하였다. 반응기에 핵산 100 ml를투입하고 결 과의 혼합물을 200 ml schlenk f l ask로 이용하고 핵산 용액을 decantat ion 하였다. 이후 상온 (23±5 °C )에서 3시간 동안 감압하 건조하여 혼성 담지 촉매를수득하였다.
(3)폴리에틸렌공중합체의 제조
상기 실시예 3의 (2)에서 제조한 혼성 담지 촉매를 사용하며, 3.452/111의 수소를사용하는것을제외하고는실시예 1의 (3)에서와동일한 방법으로수행하여 폴리에틸렌공중합체를제조하였다. 실시예 4
(1)조촉매 담지 담체의 제조
상기 실시예 1의 (1)에서와 동일한 방법으로 수행하여 조촉매 담지 담체 (MA0/Si02)를제조하였다.
(2)담지 촉매의 제조
상기 조촉매 담지 담체 (MA0/Si¾)가담긴 반응기에 , 톨루엔 50 mL를 투입하고, 상기 제조예 3에서 제조한 전이 금속 화합물 2.1 g과톨루엔 10 ml를 반응기에 투입하고, 200 rpm으로 60분간교반하였다. 여기에 상기 제 조예 5에서 제조한 전이 금속 화합물 6.7용과톨루엔 10 ml를 반응기에 투 입하고 200 rpm으로 12시간교반하였다. 교반을중지한후 10분간정치시키 고, 반응용액을 decantat i on하였다. 반응기에 핵산 100 ml를투입하고결 과의 혼합물을 200 ml schlenk f lask로 이용하고 핵산 용액을 decant at ion 하였다. 이후 상온 (23 ±5 °C )에서 3시간 동안 감압하 건조하여 혼성 담지 촉매를수득하였다.
(3)폴리에틸렌공중합체의 제조
상기 실시예 4의 (2)에서 제조한 혼성 담지 촉매를 사용하며, 1.50g/hr의 수소를사용하는 것을 제외하고는실시예 1의 (3)에서와동일한 방법으로수행하여 폴리에틸렌공중합체를제조하였다. 실시예 5
(1)조촉매 담지 담체의 제조
상기 실시예 1의 (1)에서와 동일한 방법으로 수행하여 조촉매 담지 담체 (MA0/Si¾)를제조하였다.
(2)담지 촉매의 제조 상기 조촉매 담지 담체 (MA0/Si¾)가 담긴 반응기에, 톨루엔 50 mL를 투입하고, 상기 제조예 1에서 제조한 전이 금속 화합물 2.1 g과톨루엔 10 ml를 반응기에 투입하고, 200 rpm으로 60분간교반하였다. 여기에 상기 제 조예 6에서 제조한 전이 금속화합물 1.8용과톨루엔 10 ml를 반응기에 투 입하고 200 rpm으로 12시간교반하였다. 여기에 상기 제조예 7에서 제조한 전이 금속화합물 3.4용과톨루엔 10 ml를 반응기에 투입하고 200 rpm으로 12시간 교반하였다. 교반을 중지한 후 10분간 정치시키고, 반응 용액을 decantat ion 하였다. 반응기에 핵산 100 ml를 투입하고 결과의 혼합물을 200 ml schlenk f l ask로 이용하고 핵산용액을 decant at ion하였다. 이후상 온 (23±5 °C )에서 3시간동안 감압하 건조하여 혼성 담지 촉매를 수득하였 다.
(3)폴리에틸렌공중합체의 제조
상기 실시예 5의 (2)에서 제조한 혼성 담지 촉매를 사용하며, 0.8g/hr의 수소를 사용하는 것을 제외하고는 실시예 1의 (3)에서와 동일한 방법으로수행하여 폴리에틸렌공중합체를제조하였다.
[비교예]
비교예 1
에틸렌- 1 -핵센공중합체!;加이 사 9000제품]를사용하였다. 비교예 2
에틸렌-!-옥텐공중합체[ 사 0X800제품]를사용하였다. 비교예 3
(1)조촉매 담지 담체의 제조
300 ml 유리 반응기에 톨루엔 100 raL·를 넣고, 실리카 (Grace Davi son 사의 SP2410) 10 g을 넣은후, 반응기의 온도를 약 40 °C로올리면서 교반 하였다. 실리카를충분히 분산시킨 후, 상기 반응기에 메틸알루미녹산 (MAO) 용액 (lOwt% in toluene) (Albemar le사) 60 를투입하고, 반응기의 온도를 약 60 로올린 후, 약 200 rpm으로 약 12시간동안교반하였다. 그후, 반응기의 온도를 약 40 °C로 낮춘후 교반을중지하고, 약 10분동안정치 (sett ing)한후, 반응용액을 decantat ion하였다. 결과의 반응물에 톨루엔 100 ml를투입하고 약 10분간교반한후교반을중지하고, 10분간정치시킨 후톨루엔을 decantat ion하였다. 결과로, 조촉매 담지 담체 (M0/Si02)를 얻 었다.
(2) 담지 촉매의 제조
상기 조촉매 담지 담체 (MAO/SiCb)가 담긴 반응기에, 톨루엔 50 mL를 투입하고, 하기 화학식 A의 전이 금속 화합물 2.1 g과톨루엔 10 ml를 반응 기에 투입하고, 200 rpm으로 60분간교반하였다. 여기에 상기 제조예 5에서 제조한 전이 금속 화합물 6.7용과 톨루엔 10 ml를 반응기에 투입하고 200 rpm으로 12시간교반하였다. 교반을중지한후 10분간정치시키고, 반응용 액을 decantat ion하였다. 반응기에 핵산 100 ml를투입하고 결과의 혼합물 을 200 ml schlenk f lask로 이용하고 핵산용액을 decantat ion하였다. 이후 상온 (23± 5 °C )에서 3시간동안 감압하 건조하여 혼성 담지 촉매를 수득하 였다.
[화학식시
Figure imgf000061_0001
(3)폴리에틸렌공중합체의 제조
200L 2단연속식 고압반응기에 Hexane 34kg/hr과 Ethylene 10kg/hr , 수소 1.50g/hr , 1 -Butene 600~720ml/hr , Teal 35g/hr를투입하면서 상기에 서 제조한혼성담지촉매 7~10 g/hr를 Hexane용액에 섞어 투입하였다.
8.0 bar의 압력하에서 3단 Agi tator와 Ci culat ion Pump로중합물이 잘섞이도록교반하고, Cool ing Jacket과 Outer Cooler를통해 반응기 온도 는 80 °C로 유지하였으며, 반응기 Level은 75%로 유지하며 압력차로후단 반응기로이송하였다.
반응종료된 Surry는원심분리기를통해 핵산을 1차제거하고, Dryer 에서 Hot N2퍼징을통해 건조하여 약 9kg/hr 의 폴리에틸렌 공중합체를수 득하였다.
[참고예]
참고예 1
(1)조촉매 담지 담체의 제조
상기 실시예 1의 (1)에서와 동일한 방법으로 수행하여 조촉매 담지 담체 (MA0/Si¾)를제조하였다.
(2)담지 촉매의 제조
조촉매 담지 담체 (MA0/Si¾)가 담긴 반응기에 톨루엔 50mL를 투입하 고, 상기 제조예 1에서 제조한 전이 금속 화합물 0.8용과 톨루엔 10 ml를 반응기에 투입하고, 200 rpm으로 60분간교반하였다. 여기에 상기 제조예 4 에서 제조한 전이 금속 화합물 10당과 톨루엔 10 ml를 반응기에 투입하고 200 rpm으로 12시간교반하였다. 교반을 중지한후 10분간 정치시키고, 반 응 용액을 decantat ion 하였다. 반응기에 핵산 100 ml를 투입하고 결과의 혼합물을 200 ml schl enk f lask로 이용하고 핵산용액을 decant at ion하였다. 이후상온 (23±5 °C )에서 3시간동안감압하건조하여 혼성 담지 촉매를수 득하였다.
(3)폴리에틸렌공중합체의 제조
상기 참고예 1의 (2)에서 제조한 혼성 담지 촉매를 사용하며, 1.50g/hr의 수소를사용하는 것을제외하고는실시예 1의 (3)에서와동일한 방법으로수행하여 폴리에틸렌공중합체를제조하였다.
的 참고예 2
(1)조촉매 담지 담체의 제조
상기 실시예 1의 (1)에서와 동일한 방법으로 수행하여 조촉매 담지 담체 ( ()/ 02)를제조하였다.
(2)담지 촉매의 제조
조촉매 담지 담체 ( 0/ 02)가 담긴 반응기에 톨루엔 50此를 투입하 고, 상기 제조예 1에서 제조한 전이 금속 화합물 0.8용과 톨루엔 10 를 반응기에 투입하고, 200印미으로 60분간교반하였다. 여기에 상기 제조예 4 에서 제조한 전이 금속 화합물 10용과 톨루엔 10 를 반응기에 투입하고 200印미으로 12시간교반하였다. 교반을 중지한후 10분간 정치시키고, 반 응 용액을
Figure imgf000063_0001
하였다. 반응기에 핵산 100 1111를 투입하고 결과의 혼합물을 200 1111 3(土161교 £ 183뇨로 이용하고
Figure imgf000063_0002
이후상온 (23±5 °0에서 3시간동안감압하건조하여 혼성 담지 촉매를수 득하였다.
(3)폴리에틸렌공중합체의 제조
상기 참고예 2의 (2)에서 제조한 혼성 담지 촉매를 사용하며, 1.40§/ 의 수소를사용하는 것을제외하고는실시예 1의 (3)에서와동일한 방법으로수행하여 폴리에틸렌공중합체를제조하였다. 참고예 3
(1)조촉매 담지 담체의 제조
상기 실시예 1의 (1)에서와 동일한 방법으로 수행하여 조촉매 담지 담체 (MA0/Si02)를제조하였다.
(2)담지 촉매의 제조
상기 조촉매 담지 담체 (MA0/Si¾)가담긴 반응기에 , 톨루엔 50 mL를 투입하고, 상기 제조예 2에서 제조한 전이 금속 화합물 1.5당과톨루엔 10 ml를 반응기에 투입하고, 200 rpm으로 60분간교반하였다. 여기에 상기 제 조예 5에서 제조한 전이 금속 화합물 6.0용과톨루엔 10 ml를 반응기에 투 입하고 200 rpm으로 12시간교반하였다. 교반을중지한후 10분간정치시키 고, 반응용액을 decantat i on하였다. 반응기에 핵산 100 ml를투입하고 결 과의 혼합물을 200 ml schlenk f l ask로 이용하고 핵산용액을 decantat ion 하였다. 이후 상온 (23±5 °C )에서 3시간 동안 감압하 건조하여 혼성 담지 촉매를수득하였다.
(3)폴리에틸렌공중합체의 제조
상기 참고예 3의 (2)에서 제조한 혼성 담지 촉매를 사용하며,
3.2g/hr의 수소를 사용하는 것을 제외하고는 실시예 1의 (3)에서와 동일한 방법으로수행하여 폴리에틸렌공중합체를제조하였다.
[시험예]
실시예, 비교예 및 참고예에 따라 얻어진 폴리에틸렌 공중합체에 대 하여 다음과 같은 방법으로물성 평가를 수행하고, 그 결과를 하기 표 1에 나타내었다.
(1) 밀도 (단위 : g/cm3) : ASTM D1505기준에 따라측정하였다.
(2) 용융지수 (M1, 단위 : g/10분) : 수직 중력방향으로 2.16kg 또는 21.6kg힘을가하는조건에서, 190 °C , 10분동안 2.1mm or i f i ce를통과하 여 나오는용융된폴리에틸렌 공중합체의 무게를 ASTM D1238기준에 따라측 정하였다.
(3) SCB( Short Chain Branch; 탄소 1,000 개당의 탄소수 2내지 7개 의 곁가지 (branch))단위 : 개/ 1,000C) 함량의 평균값
겔 투과크로마토그래피 (GPC: Gel Permeat ion Chromatography)를 이 용하여 분자량대) , 구체적으로분자량의 로그값 ( log M)을 x축으로하고, 상 기 분자량값에 대한 고분자쇄 함량 (dwt/dlog M)을 y죽으로 하여 분자량 분 포곡선을얻었다. 하기 도 1에서는연속적인실선으로표시하였다.
이후, GPC장치와연결된 FT-IR장치를 이용하여, 겔투과크로마토그 래피에 의해 얻어진 분자량 (M) , 구체적으로 분자량의 로그값 ( log M)을 x축 으로 하고, FT-m에 의해 얻어진 상기 분자량값에 대한탄소 1,000 개당의 탄소수 2내지 7개의 곁가지 함량을 y축으로하는 SCB분포곡선을 얻었다. 하기 도 1에서는불연속적인 점선으로표시하였다.
그리고, 상기 SCB분포곡선을 이용하여, 폴리에틸렌 공중합체에 함 유된 복수의 고분자쇄 각각이 갖는탄소 1000개당의 탄소수 2내지 7개의 곁가지 함량의 평균값을계산하였다.
상기 평균값은 일반적인 평균값 계산방법에 따라, 상기 폴리에틸렌 공중합체에 함유된 복수의 고분자쇄 각각끼 갖는탄소 1000개당의 탄소수 2내지 7개의 곁가지 함량의 합계를상기 폴리에틸렌공중합체에 함유된 고 분자쇄의 개수로나누어 구하였다.
이때, 겔투과크로마토그래피의 측정기기 및측정 조건은다음과같 다.
<측정 기기> Polymer Laborator ies PLgel MIX-B 300mm 길이 칼럼, Waters PL-GPC220
<측정 조건 ñ
평가 온도는 160 °C이며, 1, 2, 4 -트리클로로벤젠을 용매로서 사용하였으며 유속은 lmL/min 의 속도이고, 샘플은 10mg/10mL 의 농도로 조제한 다음, 200 u L 의 양으로 공급하며, 폴리스티렌 표준을 이용하여 형성된 검정 곡선을 이용하여 Mw, Mn, PDI 의 값을 구할 수 있다. 폴리스티렌 표준품의 분자량은 2,000 / 10,000 / 30,000 / 70,000 /
200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000 의 9 종을 사용하였다. 또한, FT-IR측정 기기 및 측정 조건은다음과같다.
<측정 기기 ñ PerkinElmer Spectrum 100
<측정 조건>
파수 (wavenumber ) : 2700 cm-1내지 3000 cm 1
스캔횟수 (number of scanning) : 16회
해상도 (resolut ion) : 8 cm 1
검출기 (detector) : DTGS
(4) SCG index (단위 : g/10분) : 상기 ASTM 1238(21.6 kg 하중,
190 °C )에 의해 측정된 용융지수 (p)를 하기 CDI(q)로 나눈 값 (iVq)으로 정 의한다.
(5) 공단량체 분산지수 (Comonomer Di str ibut ion Index, CDI ) : 하기 도 2를 참조하여 설명하면 , 겔 투과 크로마토그래피 (GPC: Gel Permeat ion Chromatography)를 이용하여 분자량 ), 구체적으로분자량의 로그값 ( log M) 2019/124835 1»(:1/10公018/015430
을 x축으로 하고, 상기 분자량값에 대한 고분자쇄 함량 (dwt八 ilog M)을 y축 으로 하여 분자량 분포 곡선 (도 2에서 연속적인 실선으로 표시)에 대하여, 하기 수학식 2를 만족하는 분자량값 m인 고분자 쇄의 SCBCShort Chain Branch) 함량 (c)과 하기 수학식 3을 만족하는 분자량값 n인 고분자 쇄의 SCBCShort Chain Branch) 함량 ( 을 GPC장치와 연결된 FT-IR장치를 이용하 여 측정하였다. GPC 및 FT-IR에 관한 내용은 상기 “(3) SCBCShort Chain Branch; 탄소 1,000개당의 탄소수 2내지 7개의 곁가지 (branch)) 단위 : 개 /1,000C)함량의 평균값”에서 상술한내용과같다.
[수학식 2]
Figure imgf000066_0001
상기 수학식 2 및 수학식 3에서, a는상기 GPC에 의한분자량분포곡 선에서 x축인 분자량의 최소값, b는상기 GPC에 의한분자량분포곡선에서 x축인 분자량의 최대값, f(x)는 상기 폴리에틸렌 공중합체를 겔 투과 크로 마토그래피 (GPC: Gel Permeat ion Chromatography)를 이용하여 분자량 (M), 구체적으로분자량의 로그값 ( log M)을 x축으로하고, 상기 분자량값에 대한 고분자쇄 함량 (dwt八 llog M)을 y축으로하여 분자량분포 곡선의 함수식이다. 그리고, 상기 수학식 2를만족하는분자량 m인 고분자쇄의 SCB( Short Chain Branch) 함량 (c)을상기 수학식 3을만족하는분자량 인 고분자쇄의 SCB( Short Chain Branch) 함량 ( 으로 나눈 값 (c/d)을 공단량체 분산지수 (Comonomer Di str ibut ion Index, CDI)로정의하고이를계산하였다.
(6) S.H. Modulus (단위 : MPa) : ISO 18488기준에 따라측정하였다.
(7) 내응력 균열성 (Ful l Notch Creep Test , FNCT, 단위 : 시간 (hr)) : 80 °C , 4MPa, IGEPAL CA-630 10% solut ion조건에서 ISO 16770기 준에 따라측정하였다. 2019/124835 1»(:1/10公018/015430
【표 1]
Figure imgf000067_0001
Figure imgf000068_0001
상기 표 1에 나타난바와같이 , 상기 실시예 1내지 5에서 얻어진 폴 리에틸렌 공중합체는 SCG index가 5내지 9.6, CE>I가 1.23내지 2.56, S.H. Modulus(80 °C에서 측정)가 0.90 MPa내지 0.97 MPa, 내응력 균열성(FNCT, 4MPa에서 측정)이 1963 hr이상, 용융지수(ASTM D1238에 따라 190 °C에서 2.16 kg 하중으로 측정)가 0.036 g/ 10m in 내지 0.591 g/10min, 용융지수 (ASTM D1238에 따라 190 °C에서 21.6 kg 하중으로 측정)가 9.574 g/ 10m in 내지 24.458 g/10min, SCB 함량의 평균값 7.2 개/ 1,000C 내지 10.1 개 /1,000C를만족할수있다.
또한, 상기 실시예 1내지 5에서 얻어진 폴리에틸렌 공중합체는 SCG index값이 코모노머로사용된 알파올레핀의 탄소수의 제곱근 값에 비해 각 각 4.45배, 3.9배, 4.8배, 2.5배, 3.9배로나타나, 탄소수의 제곱근값의 5 배이하를만족하는것으로확인되었다.
반면, 상기 비교예 1내지 3에서 얻어진 폴리에틸렌 공중합체는 SCG index값이 코모노머로사용된 알파올레핀의 탄소수의 제곱근값에 비해 각 각 5.14배, 7.기배, 6.57배로나타나탄소수의 제곱근값의 5배를초과하는 것으로확인되었다.
또한, 비교예 1내지 3에서 얻어진폴리에틸렌공중합체는 SCG index 가실시예보다증가한 12.6내지 21.8, S.H. Modulus(80 °C에서 측정)가실 시예보다낮은 0.76 MPa내지 0.77 MPa, 내응력 균열성(FNCT, 4MPa에서 측 정)이 실시예보다낮은 20 hr 내지 425 hr로나타나, 실시예에 비해 물성이 나빠진 것을확인할수있다.

Claims

2019/124835 1»(:1^1{2018/015430 【청구범위】 【청구항 1】 에틸렌유래 반복단위 및 탄소수 3이상의 알파올레핀유래 반복단위 를포함하고, 하기 수학식 1을만족하는폴리에틸렌공중합체:
[수학식 1]
기 알파올레핀 탄소수)1 /2 X 5
Figure imgf000069_0001
1238(21.6 1¾하중, 190 °0에 의해 측정된 상기 폴리에틸렌 공중합체의 용융지수( 를 상기 폴리에틸렌 공중합체의 공단량 체 분산지수((¾)로나눈값 / )이며,
상기 공단량체 분산지수(0)1)는상기 폴리에틸렌공중합체에 대하여, 겔 투과 크로마토그래피로 측정한 분자량 분포 곡선 그래프(X축이 고분자 쇄의 분자량, 7축이 고분자쇄의 함량)에 대하여, 하기 수학식 2로 계산되며, [수학식 2]
공단량체 분산지수(0)1) = 0 /(1
상기 수학식 2에서, 는 3 < X < ^구간에서 상기 분자량분포곡선 그래프와 X축 사이의 면적( )이 3 < X < 구간에서 상기 분자량 분포 곡선 그래프와 X축사이의 면적( )의 80%인 분자량값 인 고분자 쇄의 탄 소 1000개당의 탄소수 2내지 7개의 곁가지(洗 함량(肝-¾에 의해 측정) 이고,
(1는 3 < X < II구간에서 상기 분자량분포곡선 그래프와 X축사이 의 면적(드3)이 8 £ X £ 구간에서 상기 분자량분포 곡선 그래프와 X죽 사이의 면적(34)의 20%인 분자량값 II인 고분자쇄의 탄소 1000개당의 탄소 수 2내지 7개의 곁가지( 비 함량 07-11?에 의해측정)이고,
상기 3는상기 분자량분포곡선 그래프에서 X축인 분자량의 최소값 이고, 는상기 분자량분포곡선그래프에서 X축인분자량의 최대값이다.
【청구항 2]
저 항에 있어서,
상기 폴리에틸렌 공중합체는 ^11. ¾1(){1111113(80 方에서 측정)가 0.85 2019/124835 1>(그1'/1 ?2018/015430
Wa이상인, 폴리에틸렌공중합체.
【청구항 3]
제 1항에 있어서,
상기 폴리에틸렌 공중합체는 내응력 균열성어炯!',
Figure imgf000070_0001
측정)이
1000 이상인, 폴리에틸렌공중합체.
【청구항 4]
제 1항에 있어서,
상기 폴리에틸렌공중합체는용융지수(쇼況¾1 1)1238에 따라 190 에서
2.16 하중으로 측정)가 0.01 101^^1 내지 0.65 묘/101 11인 폴리에틸렌 공중합체 .
【청구항 5】
제 1항에 있어서,
상기 폴리에틸렌공중합체는용융지수(쇼況 1)1238에 따라 190 I:에서 21.
6 중으로측정)가 2용/101 11내지 30 §/1011인 폴리에틸렌 공중합 체. 【청구항 6]
제 1항에 있어서,
상기 폴리에틸렌공중합체는공단량체 분산지수 0X)1)가 1.2내지 3.0 인폴리에틸렌공중합체.
【청구항 7】
제 1항에 있어서,
상기 폴리에틸렌공중합체는 300
Figure imgf000070_0002
이하인폴리에틸렌공중 합체 .
【청구항 8] 2019/124835 1»(:1^1{2018/015430
제 1항에 있어서,
상기 폴리에틸렌 공중합체는 밀도 況 1505)가 0.930 당/ 3 내지 0.945용/(패3인 폴리에틸렌공중합체.
【청구항 9]
제 1항에 있어서,
상기 폴리에틸렌 공중합체에 함유된 복수의 고분자 쇄 각각이 갖는 탄소 1000개당의 탄소수 2내지 7개의 곁가지 함량의 평균값 7-11^1 의해 측정)이 7개/ 100 이상 15 7]]/10000이하인, 폴리에틸렌공중합체.
【청구항 10】
하기 화학식 2및 화학식 3으로이루어진 군에서 선택된 1종 이상을포 함한 제 1 전이 금속 화합물, 및 하기 화학식 4 내지 화학식 7로 이루어진 군에서 선택된 1종 이상을포함한 제 2 전이 금속 화합물을 포함한 제 1혼 합물또는하기 화학식 1을포함한제 1 전이 금속화합물, 및 하기 화학식 4, 화학식 6, 및 화학식 7로 이루어진 군에서 선택된 1종 이상을 포함한 제 2 전이 금속 화합물을 포함한 제 2혼합물을 포함한 전이금속 혼합물; 및 상기 전이금속혼합물이 담지된 담체;를포함하는혼성 담지 촉매 존재 하에, 에 틸렌 단량체 및 알파올레핀 단량체를 중합하는 단계를 포함하는, 제 1항의 폴리에틸렌공중합체의 제조방법:
[화학식 1]
Figure imgf000071_0001
상기 화학식 1에서,
¾은 4족전이금속이고; () 2019/124835 1»(:1^1{2018/015430
¾내지 ¾중 적어도하나는 -((:¾)„-()¾ (이때, ¾는 대의 직쇄 또 는분지쇄 알킬기이고, II은 2 내지 10의 정수이다)아고, 나머지는서로 동 일하거나 상이하고 각각 독립적으로, 수소, 01-20 알킬, 02-20 알케닐, 03-20 사이클로알킬, 06-20 아릴, 07-20 알킬아릴, 또는 07-20 아릴알킬이거나, 또는 서로 인접하는 2개 이상이 서로 연결되어 치환또는 비치환된 지방족 또는 방향족고리를형성하고,
XI및 ¾는서로동일하거나상이하고각각독립적으로, 할로겐, 01-20 알킬, 02-10알케닐, 03-2ᄋ사이클로알킬, 07-40알킬아릴, 07-40아릴알킬, 06-20 아릴, 0!-20알킬리덴, 아미노, 02-20알킬알콕시, 또는 07-40아릴알콕시이고;
[화학식 2]
Figure imgf000072_0001
상기 화학식 2에서,
¾12는 4족전이 금속이고;
¾및 ¾는서로동일하거나상이하고각각독립적으로, 할로겐, 01-20 알킬, 02-10알케닐, 03-20사이클로알킬, 07-40알킬아릴, 07-40아릴알킬, 06-20 아릴, 01-20알킬리덴, 아미노, 02-20알킬알콕시, 또는 07-40아릴알콕시이고;
¾1내지요14중적어도어느하나는
Figure imgf000072_0002
(이때, ¾는 -6의 직 쇄 또는 분지쇄 알킬기이고, 111은 2내지 10의 정수이다)이고, 나머지는 서 로 동일하거나 상이하고 각각 독립적으로, 수소, 01-20 알킬, 02-20 알케닐, 03-20사이클로알킬, 03-20 아릴, 07-20 알킬아릴, 또는 07-20 아릴알킬이거나, 또는서로 인접하는 2개 이상이 서로 연결되어 치환또는 비치환된 지방족 또는방향족고리를형성하고,
¾5및 ¾6는서로동일하거나상이하고, 각각독립적으로수소, 01-20 알킬, 03-20사이클로알킬, 01-10 알콕시, 02-20 알콕시알킬, 06-20 아릴, 06-10 2019/124835 1»(:1/10公018/015430
아릴옥시, 02-20알케닐, 07-40알킬아릴, 07-40아릴알킬, 08-40아릴알케닐, 또 는 02-10알키닐이고;
¾:및 ¾2는서로동일하거나상이하고각각독립적으로, 할로겐, 01- 20 알킬, 。 。 알케닐, 03-20 사이클로알킬, 07-40 알킬아릴, 07-40 아릴알킬, 아릴, 01-20 알킬리덴, 아미노, 02-20알킬알콕시, 또는 07-40아릴알콕시 이고;
[화학식 3]
Figure imgf000073_0001
상기 화학식 3에서,
¾은 4족전이금속이고;
¾및 ¾는서로동일하거나상이하고각각독립적으로, 할로겐, 01-20 알킬, 02-10알케닐, 03-20사이클로알킬, 07-40알킬아릴, 07-40아릴알킬, 06-20 아릴, 01-20알킬리덴, 아미노, 02-20알킬알콕시, 또는 07-40아릴알콕시이고;
¾0내지 ¾9는서로동일하거나상이하고, 각각독립적으로수소, 01- 20알킬, 03-20사이클로알킬, 01-10알콕시 , 02-20알콕시알킬, -20아릴, 。6-10 아릴옥시, 02-20알케닐, 07-40알킬아릴, 07-40아릴알킬, 08-40아릴알케닐, 또 는 02-10 알키닐이고, 단,
Figure imgf000073_0002
29중 적어도 하나는
Figure imgf000073_0003
(이때,
¾은탄소수 1내지 6의 직쇄 또는분지쇄 알킬기이고, I)은 2내지 10의 정 수이다)이고,
[화학식 4]
Figure imgf000073_0004
2019/124835 1»(:1^1{2018/015430
상기 화학식 4에서,
1는 수소, 할로겐, 01-20 알킬기, 02-20 알케닐기, 06-20 아릴기, 。7-20 알킬아릴기 , 07-20아릴알킬기, 01-20알콕시기, 02-20알콕시알킬기 , 03-20헤테 로시클로알킬기, 또는 05-20헤테로아릴기이고;
_0 -, - - , - 1^00 -또는 -^ 00(묘’)-이고, 여기서 요및묘’은서 로동일하거나상이하고, 각각독립적으로수소, 할로겐, 01-20알킬기, 02-20 알케닐기, 또는 06-20아릴기이고;
은 01-10직쇄 또는분지쇄 알킬렌기이고;
는탄소, 실리콘또는게르마늄이고;
1는 수소, 할로겐, 01-20 알킬기, 02-20 알케닐기, 06-20 아릴기, 。7-20 알킬아릴기, 또는 07-20아릴알킬기이고;
山은 4족전이금속이며 ;
¾및 ¾는서로동일하거나상이하고각각독립적으로, 할로겐, 01-20 알킬, ¾-10알케닐, 03-20사이클로알킬, 07-40알킬아릴, 07-40아릴알킬, 06-20 아릴, 01-20알킬리덴, 아미노, 02-20알킬알콕시, 또는 07-40아릴알콕시이고;
는하기 화학식 43로표시되고;
[화학식 4
Figure imgf000074_0001
상이하고, 각각독립적으로수소, 할 로겐, 01-20알킬기, 02-20알케닐기, 01-20알킬실릴기, 01-20실릴알킬기, -20 알콕시실릴기, 01-20알콕시기, 06-20아릴기, 07-20 알킬아릴기, 또는 07-20아 릴알킬기이며, 상기 ¾0내지 ¾5중서로 인접하는 2개 이상이 서로 연결되 어 치환또는비치환된지방족또는방향족고리를형성할수 있고,
[화학식 5] 2019/124835 1»(:1/10公018/015430
Figure imgf000075_0001
상기 화학식 5에서,
2는 수소, 할로겐, 01-20 알킬기, 02-20 알케닐기, 06-20 아릴기, 07-20 알킬아릴기 , 07-20아릴알킬기, -2ᄋ알콕시기, 02-20알콕시알킬기, 03-20헤테 로시클로알킬기 , 또는 05-20헤테로아릴기이고;
¾는 -0 -, -, -바10 -또는 -^ 000?’)-이고, 여기서 모및묘’은서 로동일하거나상이하고, 각각독립적으로수소, 할로겐, 01-20알킬기, 02-20 알케닐기, 또는 06-20아릴기이고;
2은 01-10직쇄 또는분지쇄 알킬렌기이고;
¾는탄소, 실리콘또는게르마늄이고;
2는수소, 할로겐, 01-20 알킬기, 02-20 알케닐기, 06-20 아릴기, 。7-20 알킬아릴기, 또는 07-20아릴알킬기이고;
5은 4족전이금속이며 ;
Figure imgf000075_0002
동일하거나상이하고각각독립적으로, 할로겐, 01- 20 알킬, 02-10 알케닐, 03-20 사이클로알킬, 07-40 알킬아릴, 07-40 아릴알킬,
06-20아릴, 01-20 알킬리덴, 아미노, 02-20알킬알콕시, 또는 07-40 아릴알콕시 이고;
표시되고;
Figure imgf000075_0003
¾0내지 ¾4는서로동일하거나상이하고, 각각독립적으로수소, 할 로겐, 01-20알킬기, 02-20알케닐기, 01-20알킬실릴기, 01-20실릴알킬기, 20 알콕시실릴기, 01-20알콕시기, 06-20아릴기, 07-20알킬아릴기, 또는 07-20아 릴알킬기이며, 상기
Figure imgf000075_0004
43중서로 인접하는 2개 이상이 서로 연결되 어 치환또는비치환된지방족또는방향족고리를형성할수 있다. 2019/124835 1그1/10公018/015430
[화학식 6]
Figure imgf000076_0001
상기 화학식 6에서,
3는 수소, 할로겐, 01-20 알킬기, 02-20 알케닐기, 06-20 아릴기, 07-20 알킬아릴기, 07-20아릴알킬기, 01-20알콕시기, 02-20알콕시알킬기, 03-20헤테 로시클로알킬기, 또는 05-20헤테로아릴기이고;
¾는 -0-, -,
Figure imgf000076_0002
이고, 여기서 I?및 은서 로동일하거나상이하고, 각각독립적으로수소, 할로겐, 01-20알킬기, 02-20 알케닐기, 또는 06-20아릴기이고;
13은 01-10직쇄 또는분지쇄 알킬렌기이고;
는탄소, 실리콘또는게르마늄이고;
¾는 수소, 할로겐, 01-20 알킬기, 02-20 알케닐기, 06-20 아릴기, 07-20 알킬아릴기, 또는 -에아릴알킬기이고;
¾은 4족전이금속이며 ;
¾1및 ¾2는서로동일하거나상이하고각각독립적으로, 할로겐, 01-
20 알킬, ¾ -! 0 알케닐, 03-20 사이클로알킬, 07-40 알킬아릴, 07-40 아릴알킬, Ce-20아릴, 0!-20 알킬리덴, 아미노, 02-20알킬알콕시 , 또는 07-40아릴알콕시 이고;
05및 는서로동일하거나상이하고, 각각독립적으로 하기 화학식 6a내지 화학식 加중하나로표시되고;
[화학식 6
Figure imgf000076_0003
[화학식 6비 2019/124835 1»(:1/10公018/015430
Figure imgf000077_0001
동일하거나상이하고, 각각독립적 으로수소, 할로겐, 01-20알킬기, 02-20 알케닐기, 01-20 알킬실릴기, 01-20실 릴알킬기, 01-20 알콕시실릴기, 01-20 알콕시기, 06-20 아릴기, 07-20 알킬아릴 기, 또는 07-20아릴알킬기이며, 상기
Figure imgf000077_0002
¾8중서로 인 접하는 2개 이상이 서로 연결되어 치환또는 비치환된 지방족 또는 방향족 고리를형성할수있고,
[화학식 7]
Figure imgf000077_0003
상기 화학식 7에서,
는 4족전이 금속이고;
)(13및 ¾4는서로동일하거나상이하고각각독립적으로, 할로겐, - 20 알킬, 02-10 알케닐, 03-20 사이클로알킬, 07-40 알킬아릴, 07-40 아릴알킬, 06-20아릴, 01-20 알킬리덴, 아미노, 02-20알킬알콕시, 또는 07-40아릴알콕시 이고;
¾4중적어도어느하나는 -(抑 2 -0¾(이때 , ¾는( 6의 직 쇄 또는분지쇄 알킬기이고, (1은 2 내지 10의 정수이다)이고, 나머지는서 2019/124835 1»(:1^1{2018/015430
로 동일하거나 상이하고 각각 독립적으로, 수소, 01-20 알킬, 02-20 알케닐, 03-20사이클로알킬, (:6-20 아릴, 07-20 알킬아릴, 또는 07-20 아릴알킬이거나, 또는서로 인접하는 2개 이상이 서로 연결되어 치환또는 비치환된 지방족 또는방향족고리를형성하고,
Figure imgf000078_0001
동일하거나상이하고, 각각독립적으로수소, 01-20 알킬, 03-20사이클로알킬, 0!-10 알콕시 , 02-20 알콕시알킬 , 06-20 아릴 , 06-10 아릴옥시 , 02-20알케닐, 07-40알킬아릴, 07-40아릴알킬, 08-40아릴알케닐, 또 는 02-10알키닐이고 ;
)(31및 ¾2는서로동일하거나상이하고각각독립적으로, 할로겐, 01- 20 알킬, 02-10 알케닐, 03-20 사이클로알킬, 07-40 알킬아릴, 07-40 아릴알킬,
06-20아릴 , 01-20 알킬리덴 , 아미노, 02-20 알킬알콕시 , 또는 07-40아릴알콕시 이고;
¾ 및 ¾는서로 동일하거나상이하고 각각 독립적으로, 수소, 할로 겐, 01-20알킬, 02-20알케닐, ¾-2ᄋ사이클로알킬, 06-20아릴, 07-20알킬아릴, 또는 07-20아릴알킬이다.
【청구항 11】
제 10항에 있어서,
상기 전이금속혼합물에서, 제 2 전이 금속화합물 100중량부를 기 준으로, 제 1 전이 금속화합물은 1중량부 내지 80중량부로포함되는폴 리에틸렌공중합체의 제조방법.
【청구항 12】
제 10항에 있어서,
상기 에틸렌 단량체 및 알파올레핀 단량체를중합하는단계에서, 에 틸렌 단량체 대비 0.005 중량%내지 0.040중량%의 수소를 투입하는, 들리 에틸렌공중합체의 제조방법.
【청구항 13】
제 10항에 있어서, 2019/124835 1»(:1^1{2018/015430
상기 담체는실리카, 알루미나, 마그네시아또는이들의 혼합물인폴 리에틸렌공중합체의 제조방법.
【청구항 14】
제 10항에 있어서,
상기 알파올레핀 단량체는프로필텐, 1 -부텐, 1 -펜텐, 4 -메틸- 1 -펜텐, 1 -핵센, 1 -헵텐, 1 -옥텐, 1 -데센, 1 -운데센, 1 -도데센, 1 -테트라데센, 1 -핵 사데센, 1 -아이토센, 노보넨, 노보나디엔, 에틸리덴노보덴, 페닐노보덴, 비 닐노보덴, 디사이클로펜타디엔, 1,4 -부타디엔, 1,5 -펜타디엔, 1,6 -핵사디엔, 스티렌, 알파-메틸스티텐, 디비닐벤젠 및 3 -클로로메틸스티텐으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 폴리에틸렌 공중합체의 제조 방 법.
【청구항 15】
제 1항의 폴리에틸렌공중합체를포함하는, 파이프.
PCT/KR2018/015430 2017-12-20 2018-12-06 폴리에틸렌 공중합체 및 이의 제조 방법 WO2019124835A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18891303.2A EP3640269A4 (en) 2017-12-20 2018-12-06 POLYETHYLENE COPOLYMER AND MANUFACTURING PROCESS FOR IT
RU2020106597A RU2773517C2 (ru) 2017-12-20 2018-12-06 Полиэтиленовый сополимер и способ его получения
CN201880045250.3A CN110869399B (zh) 2017-12-20 2018-12-06 聚乙烯共聚物及其制备方法
BR112020003608-0A BR112020003608B1 (pt) 2017-12-20 2018-12-06 Copolímero de polietileno e método para preparação do mesmo
US16/635,239 US11225568B2 (en) 2017-12-20 2018-12-06 Polyethylene copolymer and method for preparing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170176416 2017-12-20
KR10-2017-0176416 2017-12-20
KR10-2018-0154616 2018-12-04
KR1020180154616A KR102285480B1 (ko) 2017-12-20 2018-12-04 폴리에틸렌 공중합체 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2019124835A1 true WO2019124835A1 (ko) 2019-06-27

Family

ID=66994863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015430 WO2019124835A1 (ko) 2017-12-20 2018-12-06 폴리에틸렌 공중합체 및 이의 제조 방법

Country Status (3)

Country Link
US (1) US11225568B2 (ko)
CN (1) CN110869399B (ko)
WO (1) WO2019124835A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4063451A4 (en) * 2020-08-19 2023-11-22 Lg Chem, Ltd. PELLET-TYPE POLYETHYLENE RESIN COMPOSITION, AND PREPARATION METHOD THEREFOR

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102526767B1 (ko) * 2019-09-30 2023-04-27 주식회사 엘지화학 장기 물성 및 가공성이 우수한 에틸렌/1-헥센 공중합체
US20230287160A1 (en) * 2020-09-29 2023-09-14 Lg Chem, Ltd. Polyethylene and method for preparing the same
WO2022071735A1 (ko) * 2020-09-29 2022-04-07 주식회사 엘지화학 폴리에틸렌 조성물 및 그의 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101212637B1 (ko) * 2011-06-09 2012-12-14 에스케이종합화학 주식회사 신규한 사이클로펜타[b]플루오레닐 전이금속 화합물, 이를 포함하는 전이금속 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법
KR20150139462A (ko) * 2014-06-03 2015-12-11 주식회사 엘지화학 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
KR20160057291A (ko) * 2014-11-13 2016-05-23 주식회사 엘지화학 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR20170008987A (ko) * 2015-07-15 2017-01-25 한화케미칼 주식회사 메탈로센 화합물 및 이의 제조방법
KR20170099691A (ko) * 2016-02-24 2017-09-01 주식회사 엘지화학 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법
KR20170106110A (ko) * 2016-03-11 2017-09-20 주식회사 엘지화학 혼성 담지 메탈로센 촉매의 제조방법, 상기 제조방법으로 제조된 혼성 담지 메탈로센 촉매, 및 이를 이용하는 폴리올레핀의 제조방법

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7041617B2 (en) 2004-01-09 2006-05-09 Chevron Phillips Chemical Company, L.P. Catalyst compositions and polyolefins for extrusion coating applications
US6525148B1 (en) 2000-08-18 2003-02-25 Phillips Petroleum Company Polymerization catalyst systems and processes therefor and therewith
WO2008136621A1 (en) 2007-05-02 2008-11-13 Lg Chem, Ltd. Polyolefin and preparation method thereof
KR101152413B1 (ko) 2008-09-12 2012-06-05 에스케이이노베이션 주식회사 에틸렌 공중합체 및 이의 제조방법
WO2011109563A2 (en) * 2010-03-02 2011-09-09 Dow Global Technologies Llc Ethylene-based polymer compositions
US20110003940A1 (en) * 2009-07-01 2011-01-06 Dow Global Technologies Inc. Ethylene-based polymer compositions for use as a blend component in shrinkage film applications
US8173232B2 (en) * 2009-07-01 2012-05-08 Dow Global Technologies Llc Stretch hood films
US8629214B2 (en) * 2009-07-01 2014-01-14 Dow Global Technologies Llc. Ethylene-based polymer compositions for use as a blend component in shrinkage film applications
US8716418B2 (en) 2009-12-21 2014-05-06 Mitsui Chemicals, Inc. Process for producing syndiotactic α-olefin polymer
RU2013119686A (ru) * 2010-09-29 2014-11-10 ДАУ ГЛОУБАЛ ТЕКНОЛОДЖИЗ ЭлЭлСи Этилен/альфа-олефиновый интерполимер, подходящий для применения в области усадочных пленок, и изготовленные из него изделия
CA2783494C (en) * 2012-07-23 2019-07-30 Nova Chemicals Corporation Adjusting polymer composition
SG11201502783RA (en) * 2012-10-09 2015-05-28 Dow Global Technologies Llc Sealant composition
JP6423149B2 (ja) 2012-12-11 2018-11-14 旭化成株式会社 配管材料
SG11201505069VA (en) * 2012-12-27 2015-07-30 Dow Global Technologies Llc A polymerization process for producing ethylene based polymers
KR101592436B1 (ko) 2014-06-16 2016-02-05 주식회사 엘지화학 내환경 응력 균열성이 우수한 폴리올레핀
KR101831418B1 (ko) 2015-04-13 2018-02-22 주식회사 엘지화학 가공성 및 표면 특성이 우수한 에틸렌/알파-올레핀 공중합체
KR101891638B1 (ko) 2015-04-15 2018-08-24 주식회사 엘지화학 가공성이 우수한 에틸렌/알파-올레핀 공중합체 공중합체
EP3274381B1 (en) * 2015-04-20 2019-05-15 ExxonMobil Chemical Patents Inc. Catalyst composition comprising fluorided support and processes for use thereof
CN107531837B (zh) 2015-04-23 2021-10-15 尤尼威蒂恩技术有限责任公司 具有特定共聚单体分布的聚乙烯共聚物
KR101795748B1 (ko) 2015-06-15 2017-12-01 주식회사 엘지화학 폴리올레핀의 제조 방법
KR101740149B1 (ko) 2015-11-11 2017-06-08 한화토탈 주식회사 가공성이 우수한 에틸렌 공중합체
US20210221985A1 (en) 2016-04-26 2021-07-22 Total Research & Technology Feluy Polyolefin Compositions
EP3464457B1 (en) 2016-05-31 2021-09-01 Borealis AG Polymer composition and a process for production of the polymer composition
KR102459861B1 (ko) * 2017-12-21 2022-10-27 주식회사 엘지화학 가공성이 우수한 에틸렌/1-부텐 공중합체
WO2019125065A1 (ko) 2017-12-21 2019-06-27 주식회사 엘지화학 가공성이 우수한 에틸렌/1-부텐 공중합체

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101212637B1 (ko) * 2011-06-09 2012-12-14 에스케이종합화학 주식회사 신규한 사이클로펜타[b]플루오레닐 전이금속 화합물, 이를 포함하는 전이금속 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법
KR20150139462A (ko) * 2014-06-03 2015-12-11 주식회사 엘지화학 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
KR20160057291A (ko) * 2014-11-13 2016-05-23 주식회사 엘지화학 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR20170008987A (ko) * 2015-07-15 2017-01-25 한화케미칼 주식회사 메탈로센 화합물 및 이의 제조방법
KR20170099691A (ko) * 2016-02-24 2017-09-01 주식회사 엘지화학 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법
KR20170106110A (ko) * 2016-03-11 2017-09-20 주식회사 엘지화학 혼성 담지 메탈로센 촉매의 제조방법, 상기 제조방법으로 제조된 혼성 담지 메탈로센 촉매, 및 이를 이용하는 폴리올레핀의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3640269A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4063451A4 (en) * 2020-08-19 2023-11-22 Lg Chem, Ltd. PELLET-TYPE POLYETHYLENE RESIN COMPOSITION, AND PREPARATION METHOD THEREFOR

Also Published As

Publication number Publication date
US11225568B2 (en) 2022-01-18
RU2020106597A3 (ko) 2022-01-20
US20210032449A1 (en) 2021-02-04
CN110869399A (zh) 2020-03-06
RU2020106597A (ru) 2022-01-20
CN110869399B (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
KR102285480B1 (ko) 폴리에틸렌 공중합체 및 이의 제조 방법
KR101726820B1 (ko) 가공성 및 환경 응력 균열 저항성이 우수한 에틸렌/1-헥센 또는 에틸렌/1-부텐 공중합체
JP6488002B2 (ja) 加工性に優れたオレフィン系重合体
KR101592436B1 (ko) 내환경 응력 균열성이 우수한 폴리올레핀
WO2019124835A1 (ko) 폴리에틸렌 공중합체 및 이의 제조 방법
EP3312201B1 (en) Supported hybrid catalyst and method for preparing olefin polymer using the same
EP3225638B1 (en) Ethylene/ -olefin copolymer having excellent processability and surface characteristics
KR102073253B1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법
WO2016167547A1 (ko) 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체
WO2017146375A1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법
WO2016167568A1 (ko) 가공성이 우수한 에틸렌 /알파-올레핀 공중합체
JP7134553B2 (ja) 長期物性および加工性に優れたエチレン/1-ヘキセン共重合体
KR101606825B1 (ko) 혼성 담지 메탈로센 촉매의 제조방법
WO2019125065A1 (ko) 가공성이 우수한 에틸렌/1-부텐 공중합체
KR20180040998A (ko) 가공성이 우수한 에틸렌/알파-올레핀 공중합체
KR20190075853A (ko) 가공성이 우수한 에틸렌/1-부텐 공중합체
US20200123357A1 (en) Olefin Polymer And Method For Preparing Same
KR20180068715A (ko) 가공성 및 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체
WO2016060445A1 (ko) 가공성 및 환경 응력 균열 저항성이 우수한 에틸렌 /1-헥센 또는 에틸렌 /1-부텐 공중합체
WO2015194813A1 (ko) 내환경 응력 균열성이 우수한 폴리올레핀
KR102580844B1 (ko) 에틸렌-알파올레핀의 제조 방법 및 사출 성형품의 제조 방법
RU2773517C2 (ru) Полиэтиленовый сополимер и способ его получения
KR20180055558A (ko) 기계적 물성 및 가공성이 우수한 에틸렌/알파-올레핀 공중합체
KR20180040999A (ko) 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체
WO2018117403A1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891303

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018891303

Country of ref document: EP

Effective date: 20200114

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020003608

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112020003608

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200220