US8629214B2 - Ethylene-based polymer compositions for use as a blend component in shrinkage film applications - Google Patents

Ethylene-based polymer compositions for use as a blend component in shrinkage film applications Download PDF

Info

Publication number
US8629214B2
US8629214B2 US13/453,541 US201213453541A US8629214B2 US 8629214 B2 US8629214 B2 US 8629214B2 US 201213453541 A US201213453541 A US 201213453541A US 8629214 B2 US8629214 B2 US 8629214B2
Authority
US
United States
Prior art keywords
composition
less
ethylene
reactor
inventive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US13/453,541
Other versions
US20120277380A1 (en
Inventor
Teresa P. Karjala
Rongjuan Cong
Colleen M. Tice
Sarah M. Hayne
Mehmet Demirors
Lori L. Kardos
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Global Technologies LLC
Original Assignee
Dow Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US22237109P priority Critical
Priority to US12/814,902 priority patent/US20110003940A1/en
Application filed by Dow Global Technologies LLC filed Critical Dow Global Technologies LLC
Priority to US13/453,541 priority patent/US8629214B2/en
Publication of US20120277380A1 publication Critical patent/US20120277380A1/en
Assigned to DOW GLOBAL TECHNOLOGIES LLC reassignment DOW GLOBAL TECHNOLOGIES LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DEMIRORS, MEHMET, CONG, RONGJUAN, KARDOS, LORI L., HAYNE, SARAH M., KARJALA, TERESA P, TICE, COLLEEN M.
Publication of US8629214B2 publication Critical patent/US8629214B2/en
Application granted granted Critical
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/06Metallocene or single site catalysts

Abstract

An ethylene-based polymer composition has been discovered and is characterized by a Comonomer Distribution Constant greater than about 45. The new ethylene-based polymer compositions and blends thereof with one or more polymers, such as LDPE, are useful for making many articles, especially including films.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation-in-part application of the U.S. application Ser. No. 12/814,902 filed on Jun. 14, 2010, now abandoned entitled “ETHYLENE-BASED POLYMER COMPOSITIONS FOR USE AS A BLEND COMPONENT IN SHRINKAGE FILM APPLICATIONS,” the teachings of which are incorporated by reference herein, as if reproduced in full hereinbelow, which claims priority from the U.S. Provisional Application No. 61/222,371, filed on Jul. 1, 2009, entitled “ETHYLENE-BASED POLYMER COMPOSITIONS,” the teachings of which are incorporated by reference herein, as if reproduced in full hereinbelow.

BACKGROUND OF THE INVENTION

There have been many varieties of polyethylene polymers polymerized over the years, including those made using high pressure free radical chemistry (LDPE), more traditional linear low density polyethylene (LLDPE) typically made using Ziegler-Natta catalysts or metallocene or constrained geometry catalysts. Some linear polyethylenes, but also some substantially linear polyethylenes, contain a slight amount of long chain branching. While these polymers have varying positives and negatives—depending on application or end-use—more control over the polymer structure is still desired.

We have now found that post-metallocene catalysts can efficiently polymerize ethylene into polymers and polymer compositions having controlled comonomer distribution profiles, while also controlling unsaturation levels in the polymer.

BRIEF SUMMARY OF THE INVENTION

The instant invention provides an ethylene-based polymer composition, and the method for producing the same, films made therefrom. In one embodiment, the invention is an ethylene-based polymer composition characterized by a Comonomer Distribution Constant (CDC) greater than about 45, more preferably greater than 50, most preferably greater than 95, and as high as 400, for example, as high as 350, or in the alternative, as high as 300, or in the alternative, as high as 250, or in the alternative, as high as 200, wherein the composition has less than 120 total unsaturation unit/1,000,000 C, for example, less than 110 total unsaturation unit/1,000,000, or in the alternative, less than 100 total unsaturation unit/1,000,000 C, or in the alternative, less than 80 total unsaturation unit/1,000,000 C, or in the alternative, less than 70 total unsaturation unit/1,000,000 C. Preferably, the composition has less than 15 trisubstituted unsaturation units/1,000,000 C, for example, less than 12 trisubstituted unsaturation units/1,000,000 C, or in the alternative, less than 10 trisubstituted unsaturation units/1,000,000 C, or in the alternative, less than 8 trisubstituted unsaturation units/1,000,000 C, or in the alternative, less than 5 trisubstituted unsaturation units/1,000,000 C. Preferably, the ethylene-based polymer compositions comprise up to about 3 long chain branches/1000 carbons, more preferably from about 0.01 to about 3 long chain branches/1000 carbons. The ethylene-based polymer composition can have a Zero Shear viscosity ratio (ZSVR) of at least 2 and/or less than 50. The inventive ethylene-based polymer compositions have a ZSVR in the range of at least 2, for example, at least 2.5, or in the alternative, at least 4, and/or less than 50, for example less than 30.

The ethylene-based polymer compositions can be further characterized by comprising less than 20 vinylidene unsaturation unit/1,000,000 C, for example, less than 18 vinylidene unsaturation unit/1,000,000 C, or in the alternative, less than 15 vinylidene unsaturation unit/1,000,000 C, or in the alternative, less than 12 vinylidene unsaturation unit/1,000,000 C, or in the alternative, less than 10 vinylidene unsaturation unit/1,000,000 C. The inventive ethylene-based polymer compositions can have a bimodal molecular weight distribution (MWD) or a multi-modal MWD. The inventive ethylene-based polymer compositions can also have a monomodal MWD. The inventive ethylene-based polymer compositions can have a comonomer distribution profile comprising a mono or bimodal distribution from 35° C. to 120° C., excluding the purge. The comonomer distribution profile is obtained by crystallization elution fractionation (CEF). The inventive ethylene-based polymer compositions can comprise a single DSC melting peak. The inventive ethylene-based polymer compositions can also comprise bimodal, or multiple melting peaks. The ethylene-based polymer compositions can comprise a weight average molecular weight (Mw) from 17,000 to 220,000 g/mol, for example, from 60,000 to 220,000 g/mol, from 70,000 to 140,000 g/mol. The compositions can also have a bimodal molecular weight distribution.

Preferably, the inventive ethylene-based polymer composition further comprises a melt index of less than or equal to 0.90 g/10 min and/or a density of less than 0.945 Wee and/or greater than 0.92 g/cc, preferably greater than 0.92 g/cc and/or less than 0.94 g/cc.

The cumulative weight fraction can be less than 0.10 for the fractions with a temperature up to 50° C., and preferably the cumulative weight fraction is not less than 0.03 for the fractions with a temperature up to 85° C.

The inventive ethylene-based polymer compositions can be further characterized as comprising:

    • (a) one Component A being 20-65 wt % of the composition with a MI less than 0.3 and has a higher density than Component B with a density difference between Component B and A of greater than 0.005 Wee
    • (b) Component B having a MI greater than that of Component A
    • (c) With the overall polymer having a MI of less than or equal to 0.9 and a density of less than 0.945 Wee and greater than 0.92 g/cc.

The inventive ethylene-based polymer compositions can be further characterized by comprising less than 20 vinylidene unsaturation unit/1,000,000 C and/or by comprising less than 20 trisubstituted unsaturation unit/1,000,000 C.

The present invention further provides a thermoplastic composition comprising the above-described inventive ethylene-based polymer composition and optionally one or more polymers.

The present invention further provides a film comprising (1) at least one layer comprising a thermoplastic composition comprising (a) the inventive ethylene-based polymer composition and (b) optionally one or more polymers; and (2) optionally one or more layers.

The present invention further provides a multilayer structure comprising a film comprising (1) at least one layer comprising a thermoplastic composition comprising (a) the inventive ethylene-based polymer composition and (b) optionally one or more polymers; and (2) optionally one or more layers.

The present invention further provides a storage device comprising a film, for example a shrink film, comprising (1) at least one layer comprising a thermoplastic composition comprising (a) the inventive ethylene-based polymer composition and (b) optionally one or more polymers; and (2) optionally one or more layers.

Fabricated articles comprising the novel polymer compositions are also contemplated, especially in the form of at least one film layer. Other embodiments include thermoplastic formulations comprising the novel inventive ethylene-based polymer composition and at least one natural or synthetic polymer.

Fabricated articles comprising the inventive ethylene-based polymer compositions are also contemplated, especially at least one film layer, as are thermoplastic formulations comprising the compositions and at least one natural or synthetic polymer, especially wherein the synthetic polymer is LDPE and the % LDPE is greater than 30% in which in which a blown film comprising the formulation has a MD shrink tension is greater than 15 cN, puncture is greater than 60 ft-lb/in3, and/or haze is less than 20%.

The inventive ethylene-based polymer compositions can be at least partially cross-linked (at least 5 wt % gel).

The inventive ethylene-based polymer compositions can be characterized as having a ratio of viscosity at 190° C. at 0.1 rad/s to a viscosity at 190° C. at 100 rads of greater than 8.5 as determined by dynamic mechanical spectroscopy and/or characterized as having a phase angle of less than 65 degrees and greater than 0 degrees at a complex modulus of 10,000 Pa as determined by dynamic mechanical spectroscopy at 190° C. The inventive ethylene-based polymer compositions can also be characterized as having a Mw/Mn of less than 10 and preferably less than 4, but greater than 2.

In another embodiment, the present invention is a process comprising:

(A) polymerizing ethylene and optionally one or more α-olefins in the presence of a first catalyst to form a semi-crystalline ethylene-based polymer in a first reactor or a first part of a multi-part reactor; and

(B) reacting freshly supplied ethylene and optionally one or more α-olefins in the presence of a second catalyst comprising an organometallic catalyst thereby forming an ethylene-based polymer composition in at least one other reactor or a later part of a multi-part reactor, wherein the catalyst of (A) and (B) can be the same or different and each is a metal complex of a polyvalent aryloxyether corresponding to the formula:

Figure US08629214-20140114-C00001

where M3 is Ti, Hf or Zr, preferably Zr;

Ar4 independently each occurrence is a substituted C9-20 aryl group, wherein the substituents, independently each occurrence, are selected from the group consisting of alkyl; cycloalkyl; and aryl groups; and halo-, trihydrocarbylsilyl- and halohydrocarbyl-substituted derivatives thereof, with the proviso that at least one substituent lacks co-planarity with the aryl group to which it is attached;

T4 independently each occurrence is a C2-20 alkylene, cycloalkylene or cycloalkenylene group, or an inertly substituted derivative thereof;

R21 independently each occurrence is hydrogen, halo, hydrocarbyl, trihydrocarbylsilyl, trihydrocarbylsilylhydrocarbyl, alkoxy or di(hydrocarbyl)amino group of up to 50 atoms not counting hydrogen;

R3 independently each occurrence is hydrogen, halo, hydrocarbyl, trihydrocarbylsilyl, trihydrocarbylsilylhydrocarbyl, alkoxy or amino of up to 50 atoms not counting hydrogen, or two R3 groups on the same arylene ring together or an R3 and an R21 group on the same or different arylene ring together form a divalent ligand group attached to the arylene group in two positions or join two different arylene rings together; and

RD, independently each occurrence is halo or a hydrocarbyl or trihydrocarbylsilyl group of up to 20 atoms not counting hydrogen, or 2 RD groups together are a hydrocarbylene, hydrocarbadiyl, diene, or poly(hydrocarbyl)silylene group, especially where the reaction of step (B) occurs by graft polymerization.

In yet another embodiment, the present invention is a method of characterizing an ethylene based polymer for comonomer composition distribution (CDC), wherein CDC is calculated from comonomer distribution profile by CEF, and CDC is defined as Comonomer Distribution Index divided by Comonomer Distribution Shape Factor multiplying by 100 as shown in Equation 1, and wherein Comonomer distribution index stands for the total weight fraction of polymer chains with the comonomer content ranging from 0.5 of median comonomer content (Cmedian) and 1.5 of Cmedian from 35.0 to 119.0° C., and wherein Comonomer Distribution Shape Factor is defined as a ratio of the half width of comonomer distribution profile divided by the standard deviation of comonomer distribution profile from the peak temperature (Tp), and wherein the method comprises the following steps

In yet another embodiment, the present invention is a method of characterizing an ethylene based polymer for comonomer composition distribution (CDC), wherein CDC is calculated from comonomer distribution profile by CEF, and CDC is defined as Comonomer Distribution Index divided by Comonomer Distribution Shape Factor multiplying by 100 as shown in Equation 1, and wherein Comonomer distribution index stands for the total weight fraction of polymer chains with the comonomer content ranging from 0.5 of median comonomer content (Cmedian) and 1.5 of Cmedian from 35.0 to 119.0° C., and wherein Comonomer Distribution Shape Factor is defined as a ratio of the half width of comonomer distribution profile divided by the standard deviation of comonomer distribution profile from the peak temperature (Tp), and wherein the method comprises the following steps:

(A) Obtain a weight fraction at each temperature (T) (wT(T)) from 35.0° C. to 119.0° C. with a temperature step increase of 0.200° C. from CEF according to Equation 2;

(B) Calculate the median temperature (Tmedian) at cumulative weight fraction of 0.500, according to Equation 3;

(C) Calculate the corresponding median comonomer content in mole % (Cmedian) at the median temperature (Tmedian) by using comonomer content calibration curve according to Equation 4;

(D) Construct a comonomer content calibration curve by using a series of reference materials with known amount of comonomer content, i.e., eleven reference materials with narrow comonomer distribution (mono-modal comonomer distribution in CEF from 35.0 to 119.0° C.) with weight average Mw of 35,000 to 115,000 (measured via conventional GPC) at a comonomer content ranging from 0.0 mole % to 7.0 mole % are analyzed with CEF at the same experimental conditions specified in CEF experimental sections;

(E) Calculate comonomer content calibration by using the peak temperature (Tp) of each reference material and its comonomer content; The calibration is calculated from each reference material as shown in Formula 4, wherein: R2 is the correlation constant;

(F) Calculate Comonomer Distribution Index from the total weight fraction with a comonomer content ranging from 0.5*Cmedian to 1.5*Cmedian, and if Tmedian is higher than 98.0° C., Comonomer Distribution Index is defined as 0.95;

(G) Obtain Maximum peak height from CEF comonomer distribution profile by searching each data point for the highest peak from 35.0° C. to 119.0° C. (if the two peaks are identical, then the lower temperature peak is selected); half width is defined as the temperature difference between the front temperature and the rear temperature at the half of the maximum peak height, the front temperature at the half of the maximum peak is searched forward from 35.0° C., while the rear temperature at the half of the maximum peak is searched backward from 119.0° C., in the case of a well defined bimodal distribution where the difference in the peak temperatures is equal to or greater than the 1.1 times of the sum of half width of each peak, the half width of the inventive ethylene-based polymer composition is calculated as the arithmetic average of the half width of each peak;

(H) Calculate the standard deviation of temperature (Stdev) according Equation 5.

In an alternative embodiment, the instant invention provides an ethylene-based polymer composition, method of producing the same, articles/films/multilayer structures/storage devices made therefrom, and method of making the same, in accordance with any of the preceding embodiments, except that ethylene-based polymer composition has a density in the range of 0.900 to 0.965 g/cm3; for example, 0.905 to 0.940 g/cm3.

In an alternative embodiment, the instant invention provides an ethylene-based polymer composition, method of producing the same, articles/films/multilayer structures/storage devices made therefrom, and method of making the same, in accordance with any of the preceding embodiments, except that ethylene-based polymer composition has melt index (I2) of 0.1 to 1000 g/10 minutes; for example, 0.1 to 5.

In an alternative embodiment, the instant invention provides an ethylene-based polymer composition, method of producing the same, articles/films/multilayer structures/storage devices made therefrom, and method of making the same, in accordance with any of the preceding embodiments, except that ethylene-based polymer composition has I10/I2 of less than 20, for example, in the range of from 6 to 20.

In an alternative embodiment, the instant invention provides articles/films/multilayer structures/storage devices made therefrom, and method of making the same, in accordance with any of the preceding embodiments, except that the film has a thickness in the range of from 0.5 to 5 mil.

In an alternative embodiment, the instant invention provides articles/films/multilayer structures/storage devices made therefrom, and method of making the same, in accordance with any of the preceding embodiments, except that film has a MD shrink tension of greater than 15 cN, puncture strength of greater than 75 ft-lb/in3, and/or a haze of less than 20%.

BRIEF DESCRIPTION OF THE DRAWINGS

For the purpose of illustrating the invention, there is shown in the drawings a form that is exemplary; it being understood, however, that this invention is not limited to the precise arrangements and illustrations shown.

FIG. 1 is a graph illustrating integration limits for unsaturation of an Inventive Example, the dash line means the position can be slightly different depends on the sample/catalyst; and

FIG. 2 illustrates the modified pulse sequences for unsaturation with Bruker AVANCE 400 MHz spectrometer; and

FIG. 3 illustrates chemical structure representations of unsaturations; and

FIG. 4 is a graph illustrating Comonomer distribution profile for Example 1; and

FIG. 5 Dynamical mechanical spectroscopy complex viscosity data versus frequency for Examples and Comparative Examples; and

FIG. 6 is a graph illustrating Dynamical mechanical spectroscopy tan delta data versus frequency for Examples and Comparative Examples; and

FIG. 7 is a graph illustrating Dynamical mechanical spectroscopy data plot of phase angle vs. complex modulus (Van-Gurp Palmen plot) for Examples and Comparative Examples; and

FIG. 8 is a graph illustrating Melt strength data at 190° C. of 0.5 MI type samples: Examples 1, 2, 3, and 7 and Comparative Example 2; and

FIG. 9 is a graph illustrating Melt strength data at 190° C. of 0.85 MI type samples: Examples 4, 5, 6, and 8 and Comparative Example 1; and

FIG. 10 is a graph illustrating Conventional GPC plot for Examples 1-5; and

FIG. 11 is a graph illustrating Conventional GPC plot for Examples 6-8 and Comparative Examples 1-2; and

FIG. 12 illustrates the CEF plot for Examples 1-4 and Comparative Example 1; and

FIG. 13 illustrates the CEF plot for Examples 5-8 and Comparative Example 2.

FIG. 14 illustrates the MW Ratio plot for Examples 1-4 and Comparative Examples 1-2; and

FIG. 15 illustrates the MW Ratio plot for Examples 5-8 and Comparative Examples 1-2.

DETAILED DESCRIPTION OF THE INVENTION

The instant invention provides an ethylene-based polymer composition, and the method for producing the same, films made therefrom. In one embodiment, the invention is an ethylene-based polymer composition characterized by a Comonomer Distribution Constant (CDC) greater than about 45, more preferably greater than 50, most preferably greater than 95, and as high as 400, for example, as high as 350, or in the alternative, as high as 300, or in the alternative, as high as 250, or in the alternative, as high as 200, wherein the composition has less than 120 total unsaturation unit/1,000,000 C, for example, less than 110 total unsaturation unit/1,000,000, or in the alternative, less than 100 total unsaturation unit/1,000,000 C, or in the alternative, less than 80 total unsaturation unit/1,000,000 C, or in the alternative, less than 70 total unsaturation unit/1,000,000 C. Preferably, the composition has less than 15 trisubstituted unsaturation units/1,000,000 C, for example, less than 12 trisubstituted unsaturation units/1,000,000 C, or in the alternative, less than 10 trisubstituted unsaturation units/1,000,000 C, or in the alternative, less than 8 trisubstituted unsaturation units/1,000,000 C, or in the alternative, less than 5 trisubstituted unsaturation units/1,000,000 C. Preferably, the ethylene-based polymer compositions comprise up to about 3 long chain branches/1000 carbons, more preferably from about 0.01 to about 3 long chain branches/1000 carbons. The ethylene-based polymer composition can have a Zero Shear viscosity ratio (ZSVR) of at least 2 and/or less than 50. The inventive ethylene-based polymer compositions have a ZSVR in the range of at least 2, for example, at least 2.5, or in the alternative, for example, at least 4, and/or less than 50, for example less than 30.

The ethylene-based polymer compositions can be further characterized by comprising less than 20 vinylidene unsaturation unit/1,000,000 C, for example, less than 18 vinylidene unsaturation unit/1,000,000 C, or in the alternative, less than 15 vinylidene unsaturation unit/1,000,000 C, or in the alternative, less than 12 vinylidene unsaturation unit/1,000,000 C, or in the alternative, less than 10 vinylidene unsaturation unit/1,000,000 C. The inventive ethylene-based polymer compositions can have a bimodal molecular weight distribution (MWD) or a multi-modal MWD. The inventive ethylene-based polymer compositions can also have a monomodal MWD. The inventive ethylene-based polymer compositions can have a comonomer distribution profile comprising a mono or bimodal distribution from 35° C. to 120° C., excluding the purge. The comonomer distribution profile is obtained by crystallization elution fractionation (CEF). The inventive ethylene-based polymer compositions can comprise a single DSC melting peak. The inventive ethylene-based polymer compositions can also comprise bimodal, or multiple melting peaks. The ethylene-based polymer compositions can comprise a weight average molecular weight (Mw) from 17,000 to 220,000 g/mol, for example, from 60,000 to 220,000 g/mol, from 70,000 to 140,000 g/mol. The compositions can also have a bimodal molecular weight distribution.

Preferably, the inventive ethylene-based polymer composition further comprises a melt index of less than or equal to 0.90 g/10 min and/or a density of less than 0.945 g/cc and/or greater than 0.92 g/cc, preferably greater than 0.92 g/cc and less than 0.94 g/cc.

The cumulative weight fraction can be less than 0.10 for the fractions with a temperature up to 50° C. and preferably the cumulative weight fraction is not less than 0.03 for the fractions with a temperature up to 85° C.

The inventive ethylene-based polymer compositions can be further characterized as comprising:

    • (a) one Component A being 20-65 wt % of the composition with a MI less than 0.3 and has a higher density than Component B with a density difference between Component B and A of greater than 0.005 g/cc;
    • (b) Component B having a MI greater than that of Component A
    • (c) With the overall polymer having a MI of less than or equal to 0.9 and a density of less than 0.945 g/cc and greater than 0.92 g/cc.

The inventive ethylene-based polymer compositions can be further characterized by comprising less than 20 vinylidene unsaturation unit/1,000,000 C and/or by comprising less than 20 trisubstituted unsaturation unit/1,000,000 C.

The present invention further provides a thermoplastic composition comprising the above-described inventive ethylene-based polymer composition and optionally one or more polymers.

The present invention further provides a film comprising (1) at least one layer comprising a thermoplastic composition comprising (a) the inventive ethylene-based polymer composition and (b) optionally one or more polymers; and (2) optionally one or more layers.

The present invention further provides a multilayer structure comprising a film comprising (1) at least one layer comprising a thermoplastic composition comprising (a) the inventive ethylene-based polymer composition and (b) optionally one or more polymers; and (2) optionally one or more layers.

The present invention further provides a storage device comprising a film, for example a shrink film, comprising (1) at least one layer comprising a thermoplastic composition comprising (a) the inventive ethylene-based polymer composition and (b) optionally one or more polymers; and (2) optionally one or more layers.

Fabricated articles comprising the novel polymer compositions are also contemplated, especially in the form of at least one film layer. Other embodiments include thermoplastic formulations comprising the novel polymer composition and at least one natural or synthetic polymer.

Fabricated articles comprising the inventive ethylene-based polymer compositions are also contemplated, especially at least one film layer, as are thermoplastic formulations comprising the compositions and at least one natural or synthetic polymer, especially wherein the synthetic polymer is LDPE and the % LDPE is greater than 30% in which in which a blown film comprising the formulation has a MD shrink tension is greater than 15 cN, puncture is greater than 60 ft-lb/in3, and/or haze is less than 20%.

The inventive ethylene-based polymer compositions can be at least partially cross-linked (at least 5 wt % gel).

The inventive ethylene-based polymer compositions can be characterized as having a ratio of viscosity at 190° C. at 0.1 rad/s to a viscosity at 190° C. at 100 rad/s of greater than 8.5 as determined by dynamic mechanical spectroscopy and/or characterized as having a phase angle of less than 65 degrees and greater than 0 degrees at a complex modulus of 10,000 Pa as determined by dynamic mechanical spectroscopy at 190° C. The inventive ethylene-based polymer compositions can also be characterized as having a Mw/Mn less than 10 and preferably less than 4, but greater than 2.

In another embodiment, the present invention is a process comprising:

(A) polymerizing ethylene and optionally one or more α-olefins in the presence of a first catalyst to form a semi-crystalline ethylene-based polymer in a first reactor or a first part of a multi-part reactor; and

(B) reacting freshly supplied ethylene and optionally one or more α-olefins in the presence of a second catalyst comprising an organometallic catalyst thereby forming an ethylene-based polymer composition in at least one other reactor or a later part of a multi-part reactor, wherein the catalyst of (A) and (B) can be the same or different and each is a metal complex of a polyvalent aryloxyether corresponding to the formula:

Figure US08629214-20140114-C00002

where M3 is Ti, Hf or Zr, preferably Zr;

Ar4 independently each occurrence is a substituted C9-20 aryl group, wherein the substituents, independently each occurrence, are selected from the group consisting of alkyl; cycloalkyl; and aryl groups; and halo-, trihydrocarbylsilyl- and halohydrocarbyl-substituted derivatives thereof, with the proviso that at least one substituent lacks co-planarity with the aryl group to which it is attached;

T4 independently each occurrence is a C2-20 alkylene, cycloalkylene or cycloalkenylene group, or an inertly substituted derivative thereof;

R21 independently each occurrence is hydrogen, halo, hydrocarbyl, trihydrocarbylsilyl, trihydrocarbylsilylhydrocarbyl, alkoxy or di(hydrocarbyl)amino group of up to 50 atoms not counting hydrogen;

R3 independently each occurrence is hydrogen, halo, hydrocarbyl, trihydrocarbylsilyl, trihydrocarbylsilylhydrocarbyl, alkoxy or amino of up to 50 atoms not counting hydrogen, or two R3 groups on the same arylene ring together or an R3 and an R21 group on the same or different arylene ring together form a divalent ligand group attached to the arylene group in two positions or join two different arylene rings together; and

RD, independently each occurrence is halo or a hydrocarbyl or trihydrocarbylsilyl group of up to 20 atoms not counting hydrogen, or 2 RD groups together are a hydrocarbylene, hydrocarbadiyl, diene, or poly(hydrocarbyl)silylene group, especially where the reaction of step (B) occurs by graft polymerization.

In yet another embodiment, the present invention is a method of characterizing an ethylene based polymer for comonomer composition distribution (CDC), wherein CDC is calculated from comonomer distribution profile by CEF, and CDC is defined as Comonomer Distribution Index divided by Comonomer Distribution Shape Factor multiplying by 100 as shown in Equation 1, and wherein Comonomer distribution index stands for the total weight fraction of polymer chains with the comonomer content ranging from 0.5 of median comonomer content (Cmedian) and 1.5 of Cmedian from 35.0 to 119.0° C., and wherein Comonomer Distribution Shape Factor is defined as a ratio of the half width of comonomer distribution profile divided by the standard deviation of comonomer distribution profile from the peak temperature (Tp), and wherein the method comprises the following steps:

(A) Obtain a weight fraction at each temperature (T) (wT(T)) from 35.0° C. to 119.0° C. with a temperature step increase of 0.200° C. from CEF according to Equation 2;

(B) Calculate the median temperature (Tmedian) at cumulative weight fraction of than, 0.500, according to Equation 3;

(C) Calculate the corresponding median comonomer content in mole % (Cmedian) at the median temperature (Tmedian)) by using comonomer content calibration curve according to Equation 4;

(D) Construct a comonomer content calibration curve by using a series of reference materials with known amount of comonomer content, i.e., eleven reference materials with narrow comonomer distribution (mono-modal comonomer distribution in CEF from 35.0 to 119.0° C.) with weight average Mw of 35,000 to 115,000 (measured via conventional GPC) at a comonomer content ranging from 0.0 mole % to 7.0 mole % are analyzed with CEF at the same experimental conditions specified in CEF experimental sections;

(E) Calculate comonomer content calibration by using the peak temperature (Tp) of each reference material and its comonomer content; The calibration is calculated from each reference material as shown in Formula, wherein: R2 is the correlation constant;

(F) Calculate Comonomer Distribution Index from the total weight fraction with a comonomer content ranging from 0.5*Cmedian to 1.5*Cmedian, and if Tmedian is higher than 98.0° C., Comonomer Distribution Index is defined as 0.95;

(G) Obtain Maximum peak height from CEF comonomer distribution profile by searching each data point for the highest peak from 35.0° C. to 119.0° C. (if the two peaks are identical, then the lower temperature peak is selected); half width is defined as the temperature difference between the front temperature and the rear temperature at the half of the maximum peak height, the front temperature at the half of the maximum peak is searched forward from 35.0° C., while the rear temperature at the half of the maximum peak is searched backward from 119.0° C., in the case of a well defined bimodal distribution where the difference in the peak temperatures is equal to or greater than the 1.1 times of the sum of half width of each peak, the half width of the inventive ethylene-based polymer composition is calculated as the arithmetic average of the half width of each peak;

(H) Calculate the standard deviation of temperature (Stdev) according Equation 5.

In an alternative embodiment, the instant invention provides an ethylene-based polymer composition, method of producing the same, articles/films/multilayer structures/storage devices made therefrom, and method of making the same, in accordance with any of the preceding embodiments, except that ethylene-based polymer composition has a density in the range of 0.900 to 0.965 g/cm3; for example, 0.905 to 0.940 g/cm3.

In an alternative embodiment, the instant invention provides an ethylene-based polymer composition, method of producing the same, articles/films/multilayer structures/storage devices made therefrom, and method of making the same, in accordance with any of the preceding embodiments, except that ethylene-based polymer composition has melt index (I2) in the range of from 0.1 to 1000 g/10 minutes; for example, 0.1 to 5.

In an alternative embodiment, the instant invention provides an ethylene-based polymer composition, method of producing the same, articles/films/multilayer structures/storage devices made therefrom, and method of making the same, in accordance with any of the preceding embodiments, except that ethylene-based polymer composition has I10/I2 of less than 20, for example, in the range of from 6 to 20.

In an alternative embodiment, the instant invention provides articles/films/multilayer structures/storage devices made therefrom, and method of making the same, in accordance with any of the preceding embodiments, except that film has a thickness in the range of from 0.5 to 5 mil.

In some processes, processing aids, such as plasticizers, can also be included in the inventive ethylene-based polymer product. These aids include, but are not limited to, the phthalates, such as dioctyl phthalate and diisobutyl phthalate, natural oils such as lanolin, and paraffin, naphthenic and aromatic oils obtained from petroleum refining, and liquid resins from rosin or petroleum feedstocks. Exemplary classes of oils useful as processing aids include white mineral oil such as KAYDOL oil (Chemtura Corp.; Middlebury, Conn.) and SHELLFLEX 371 naphthenic oil (Shell Lubricants; Houston, Tex.). Another suitable oil is TUFFLO oil (Lyondell Lubricants; Houston, Tex.).

In some processes, inventive ethylene-based polymer compositions are treated with one or more stabilizers, for example, antioxidants, such as IRGANOX 1010 and IRGAFOS 168 (Ciba Specialty Chemicals; Glattbrugg, Switzerland). In general, polymers are treated with one or more stabilizers before an extrusion or other melt processes. In other embodiment processes, other polymeric additives include, but are not limited to, ultraviolet light absorbers, antistatic agents, pigments, dyes, nucleating agents, fillers, slip agents, fire retardants, plasticizers, processing aids, lubricants, stabilizers, smoke inhibitors, viscosity control agents and anti-blocking agents. The inventive ethylene-based polymer compositions may, for example, comprise less than 10 percent by the combined weight of one or more additives, based on the weight of the inventive ethylene-based polymer compositions. A particular benefit of the claimed polymers is the absence of catalyst kill agents, other than water, thus eliminating the need for calcium stearate.

The inventive ethylene-based polymer composition produced may further be compounded. In some embodiments, one or more antioxidants may further be compounded into the inventive ethylene-based polymer compositions and the compounded polymer pelletized. The compounded inventive ethylene-based polymer compositions may contain any amount of one or more antioxidants. For example, the compounded inventive ethylene-based polymer compositions may comprise from about 200 to about 600 parts of one or more phenolic antioxidants per one million parts of the inventive ethylene-based polymer compositions. In addition, the compounded inventive ethylene-based polymer compositions may comprise from about 800 to about 1200 parts of a phosphite-based antioxidant per one million parts of inventive ethylene-based polymer compositions. The compounded inventive ethylene-based polymer compositions may further comprise from about 300 to about 1250 parts of calcium stearate per one million parts of inventive ethylene-based polymer compositions.

Uses

The inventive ethylene-based polymer compositions may be employed in a variety of conventional thermoplastic fabrication processes to produce useful articles, including objects comprising at least one film layer, such as a monolayer film, or at least one layer in a multilayer film prepared by cast, blown, calendered, or extrusion coating processes; molded articles, such as blow molded, injection molded, or rotomolded articles; extrusions; fibers; and woven or non-woven fabrics. Thermoplastic compositions comprising the inventive ethylene-based polymer compositions include blends with other natural or synthetic materials, polymers, additives, reinforcing agents, ignition resistant additives, antioxidants, stabilizers, colorants, extenders, crosslinkers, blowing agents, and plasticizers.

The inventive ethylene-based polymer compositions may be used in producing fibers for other applications. Fibers that may be prepared from the inventive ethylene-based polymer compositions or blends thereof include staple fibers, tow, multicomponent, sheath/core, twisted, and monofilament. Suitable fiber forming processes include spunbonded and melt blown techniques, as disclosed in U.S. Pat. Nos. 4,340,563 (Appel, et al.), 4,663,220 (Wisneski, et al.), 4,668,566 (Nohr, et al.), and 4,322,027 (Reba), gel spun fibers as disclosed in U.S. Pat. No. 4,413,110 (Kavesh, et al.), woven and nonwoven fabrics, as disclosed in U.S. Pat. No. 3,485,706 (May), or structures made from such fibers, including blends with other fibers, such as polyester, nylon or cotton, thermoformed articles, extruded shapes, including profile extrusions and co-extrusions, calendared articles, and drawn, twisted, or crimped yarns or fibers.

Additives and adjuvants may be added to the inventive ethylene-based polymer compositions post-formation. Suitable additives include fillers, such as organic or inorganic particles, including clays, talc, titanium dioxide, zeolites, powdered metals, organic or inorganic fibers, including carbon fibers, silicon nitride fibers, steel wire or mesh, and nylon or polyester cording, nano-sized particles, clays, and so forth; tackifiers, oil extenders, including paraffinic or napthelenic oils; and other natural and synthetic polymers, including other polymers that are or can be made according to the embodiment methods.

Blends and mixtures of the inventive ethylene-based polymer compositions with other polyolefins may be performed. Suitable polymers for blending with the inventive ethylene-based polymer compositions include thermoplastic and non-thermoplastic polymers including natural and synthetic polymers. Exemplary polymers for blending include polypropylene, (both impact modifying polypropylene, isotactic polypropylene, atactic polypropylene, and random ethylene/propylene copolymers), various types of polyethylene, including high pressure, free-radical low density polyethylene (LDPE), Ziegler-Natta linear low density polyethylene (LLDPE), metallocene PE, including multiple reactor PE (“in reactor” blends of Ziegler-Natta PE and metallocene PE, such as products disclosed in U.S. Pat. Nos. 6,545,088 (Kolthammer, et al.); 6,538,070 (Cardwell, et al.); 6,566,446 (Parikh, et al.); 5,844,045 (Kolthammer, et al.); 5,869,575 (Kolthammer, et al.); and 6,448,341 (Kolthammer, et al.)), ethylene-vinyl acetate (EVA), ethylene/vinyl alcohol copolymers, polystyrene, impact modified polystyrene, Acrylonitrile-Butadiene-Styrene (ABS), styrene/butadiene block copolymers and hydrogenated derivatives thereof (Styrene-Butadiene-Styrene (SBS) and Styrene-Ethylene-Butadiene-Styrene (SEBS), and thermoplastic polyurethanes. Homogeneous polymers such as olefin plastomers and elastomers, ethylene and propylene-based copolymers (for example, polymers available under the trade designation VERSIFY™ Plastomers & Elastomers (The Dow Chemical Company), SURPASS (Nova Chemicals), and VISTAMAXX™ (ExxonMobil Chemical Co.)) can also be useful as components in blends comprising the inventive ethylene-based polymer.

The inventive ethylene-based polymer compositions maybe employed as sealant resins. Surprisingly, certain short chain branching distribution (SCBD), as shown by Comonomer Distribution Constant (CDC), in combination with certain molecular weight distribution (MWD), and a certain level of long chain branching (LCB) has shown to improve hot tack and heat seal performance, including increased hot-tack & heat-seal strength, lower heat seal and hot tack initiation temperatures, and a broadening of the hot tack window. The inventive ethylene-based polymer compositions may be employed as a pipe and tubing resin through an optimization of the SCBD and MWD, with low unsaturation levels for improved ESCR (environmental stress crack resistance) and higher PENT (Pennsylvania Edge-Notch Tensile Test). The inventive ethylene-based polymer compositions may be employed in applications where ultraviolet (UV) stability, and weatherability are desired through an optimization of the SCBD and MWD, in combination with low unsaturation levels, and low levels of low molecular weight, high comonomer incorporated oligomers. The inventive ethylene-based polymer compositions may be employed in applications where low levels of plate-out, blooming, die build-up, smoke formation, extractables, taste, and odor are desired through an optimization of the SCBD and MWD with low levels of low molecular weight, high comonomer incorporated oligomers. The inventive ethylene-based polymer compositions may be employed in stretch film applications. Surprisingly, certain SCBD, in combination with certain MWD, and a certain level of long chain branching (LCB) shows improved stretchability and dynamic puncture resistance.

DEFINITIONS

The term “composition,” as used, includes a mixture of materials which comprise the composition, as well as reaction products and decomposition products formed from the materials of the composition.

The terms “blend” or “polymer blend,” as used herein, refers to an intimate physical mixture (that is, without reaction) of two or more polymers. A blend may or may not be miscible (not phase separated at molecular level). A blend may or may not be phase separated. A blend may or may not contain one or more domain configurations, as determined from transmission electron spectroscopy, light scattering, x-ray scattering, and other methods known in the art. The blend may be affected by physically mixing the two or more polymers on the macro level (for example, melt blending resins or compounding) or the micro level (for example, simultaneous forming within the same reactor).

The term “linear” as used herein refers to polymers where the polymer backbone of the polymer lacks measurable or demonstrable long chain branches, for example, the polymer can be substituted with an average of less than 0.01 long branch per 1000 carbons.

The term “polymer” as used herein refers to a polymeric compound prepared by polymerizing monomers, whether of the same or a different type. The generic term polymer thus embraces the term “homopolymer,” usually employed to refer to polymers prepared from only one type of monomer, and the term “interpolymer” as defined below. The terms “ethylene/α-olefin polymer” is indicative of interpolymers as described.

The term “interpolymer” as used herein, refers to polymers prepared by the polymerization of at least two different types of monomers. The generic term interpolymer includes copolymers, usually employed to refer to polymers prepared from two different monomers, and polymers prepared from more than two different types of monomers.

The term “ethylene-based polymer” refers to a polymer that contains more than 50 mole percent polymerized ethylene monomer (based on the total amount of polymerizable monomers) and, optionally, may contain at least one comonomer.

The term “ethylene/α-olefin interpolymer” refers to an interpolymer that contains more than 50 mole percent polymerized ethylene monomer (based on the total amount of polymerizable monomers) and at least one α-olefin.

Equation 1 means: CDC = Comonomer Distrubution Index Comonomer Distribution Shape Factor = Comonomer Distribution Index Half Width / Stdev * 100 Equation 2 means: 35 1190 w T ( T ) T = 1 Equation 3 means: 35 T median w T ( T ) T = 0.5 Equation 4 means: ln ( 1 - comonomercontent ) = - 207.26 273.12 + T + 0.5533 R 2 = 0.997 Equation 5 means: Stdev = 350 1190 ( T - T p ) 2 * w T ( T ) Equation 6 means: % Crystallinity = ( ( H f ) / ( 292 J / g ) ) × 100 Equation 7 means: Resolution = Peak temperature of NIST 1475 a - Peak Temperature of Hexacontane Half - height Width of NIST 1475 a + Half - height Width of Hexacontane Equation 8 means: ZSVR = η 0 B η 0 L = η 0 B 2.29 × 10 - 15 M w - gpc 3.65 Equation 12 means: M polystyrene = A ( M polystyrene ) E Equation 13 means: M w ( cc ) = i RI i * M , i i RI i Equation 14 means: Plate Count = 5.54 * [ RV pk max / ( RV Rear 50 % pk ht - RV Front 50 % pk ht ) ] 2 Equation 15 means: ( Initial Length ) - ( Final Length ) Initial Length × 100
Resin Production

All raw materials (ethylene, 1-octene) and the process solvent (a narrow boiling range high-purity isoparaffinic solvent commercially available under the tradename Isopar E from Exxon Mobil Corporation) are purified with molecular sieves before introduction into the reaction environment. Hydrogen is supplied in pressurized cylinders as a high purity grade and is not further purified. The reactor monomer feed (ethylene) stream is pressurized via mechanical compressor to above reaction pressure of approximately from 700 to 750 psig. The solvent and comonomer (1-octene) feed is pressurized via mechanical positive displacement pump to above reaction pressure of approximately from 700 to 750 psig. The individual catalyst components are manually batch diluted to specified component concentrations with purified solvent (Isopar E) and pressurized to a pressure that is above the reaction pressure, approximately from 700 to 750 psig. All reaction feed flows are measured with mass flow meters and independently controlled with computer automated valve control systems.

The continuous solution polymerization reactor system according to the present invention consist of two liquid full, non-adiabatic, isothermal, circulating, and independently controlled loops operating in a series configuration. Each reactor has independent control of all fresh solvent, monomer, comonomer, hydrogen, and catalyst component feeds. The combined solvent, monomer, comonomer and hydrogen feed to each reactor is independently temperature controlled to anywhere between 5° C. to 50° C. and typically between 15-40° C. by passing the feed stream through a series of heat exchangers. The fresh comonomer feed to the polymerization reactors can be manually aligned to add comonomer to one of three choices: the first reactor, the second reactor, or the common solvent and then split between both reactors proportionate to the solvent feed split. The total fresh feed to each polymerization reactor is injected into the reactor at two locations per reactor roughly with equal reactor volumes between each injection location. The fresh feed is controlled typically with each injector receiving half of the total fresh feed mass flow. The catalyst components are injected into the polymerization reactor through specially designed injection stingers and are each separately injected into the same relative location in the reactor with no contact time prior to the reactor. The primary catalyst component feed is computer controlled to maintain the reactor monomer concentration at a specified target. The two cocatalyst components are fed based on calculated specified molar ratios to the primary catalyst component. Immediately following each fresh injection location (either feed or catalyst), the feed streams are mixed with the circulating polymerization reactor contents with Kenics static mixing elements. The contents of each reactor are continuously circulated through heat exchangers responsible for removing much of the heat of reaction and with the temperature of the coolant side responsible for maintaining isothermal reaction environment at the specified temperature. Circulation around each reactor loop is provided by a screw pump. The effluent from the first polymerization reactor (containing solvent, monomer, comonomer, hydrogen, catalyst components, and molten polymer) exits the first reactor loop and passes through a control valve (responsible for maintaining the pressure of the first reactor at a specified target) and is injected into the second polymerization reactor of similar design. As the stream exits the reactor it is contacted with water to stop the reaction. In addition, various additives such as anti-oxidants, can be added at this point. The stream then goes through another set of Kenics static mixing elements to evenly disperse the catalyst kill and additives.

Following additive addition, the effluent (containing solvent, monomer, comonomer, hydrogen, catalyst components, and molten polymer) passes through a heat exchanger to raise the stream temperature in preparation for separation of the polymer from the other lower boiling reaction components. The stream then enters a two stage separation and devolatization system where the polymer is removed from the solvent, hydrogen, and unreacted monomer and comonomer. The recycled stream is purified before entering the reactor again. The separated and devolatized polymer melt is pumped through a die specially designed for underwater pelletization, cut into uniform solid pellets, dried, and transferred into a hopper. The polymer properties are then validated

The non-polymer portions removed in the devolatilization step pass through various pieces of equipment which separate most of the ethylene which is removed from the system to a vent destruction unit (it is, however, recycled in manufacturing units). Most of the solvent is recycled back to the reactor after passing through purification beds. This solvent can still have unreacted co-monomer in it that is fortified with fresh co-monomer prior to re-entry to the reactor. This fortification of the co-monomer is an essential part of the product density control method. This recycle solvent can still have some hydrogen which is then fortified with fresh hydrogen to achieve the polymer molecular weight target. A very small amount of solvent leaves the system as a co-product due to solvent carrier in the catalyst streams and a small amount of solvent that is part of commercial grade co-monomers. Tables 1-3 summarize the conditions for polymerization for examples of this invention

Production of Comparative Example 2

All (co)monomer feeds (ethylene, 1-octene) and the process solvent (a narrow boiling range high-purity isoparaffinic solvent trademarked Isopar E and commercially available from Exxon Mobil Corporation) are purified with molecular sieves before introduction into the reaction environment. High purity hydrogen is supplied by a shared pipeline; it is mechanically pressurized to above reaction pressure at 500 psig prior to delivery to the reactors; and it is not further purified on site other than to remove any potential residual moisture. The reactor monomer feed (ethylene) streams are pressurized via mechanical compressor to above reaction pressure at 500 psig. The solvent feeds are mechanically pressurized to above reaction pressure at 500 psig. The comonomer (1-octene) feed is also mechanically pressurized to above reaction pressure at 500 psig and is injected directly into the feed stream for the first reactor. Three catalyst components are injected into the first reactor (CAT-B, RIBS-2, and MMAO-3A). The RIBS-2 catalyst component is diluted to a predefined concentration at the supplier. The CAT-B and MMAO-3A catalyst components are further batch-wise diluted on site to the desired plant concentration with purified solvent (Isopar E) prior to injection into the reactor. Two catalyst components are injected into the second reactor (Ziegler-Natta premix, and triethylaluminum (TEA)). All catalyst components are independently mechanically pressurized to above reaction pressure at 500 psig. All reactor catalyst feed flows are measured with mass flow meters and independently controlled with positive displacement metering pumps.

The continuous solution polymerization reactors consist of two liquid full, non-adiabatic, isothermal, circulating, and independently controlled loops operating in a series configuration. Each reactor has independent control of all fresh solvent, monomer, comonomer, hydrogen, and catalyst component feeds. The combined solvent, monomer, comonomer and hydrogen feed to each reactor is independently temperature controlled to anywhere between 10° C. to 50° C. and typically 15° C. by passing the feed stream through a series of heat exchangers. The fresh comonomer feed to the polymerization reactors can be aligned to add comonomer to one of three choices: the first reactor, the second reactor, or the common solvent where it is then split between both reactors proportionate to the shared solvent feed split. In this example the comonomer is fed to the first reactor. The total fresh feed to each polymerization reactor is injected into the reactor at two locations per reactor roughly with equal reactor volumes between each injection location. The fresh feed to the first reactor is controlled typically with each injector receiving half of the total fresh feed mass flow. The fresh feed to the second reactor in series is controlled typically to maintain half of the total ethylene mass flow near each injector, and since the non-reacted ethylene from the first reactor enters the second reactor adjacent to the fresh feed this injector usually has less than half of the total fresh feed mass flow to the second reactor. The catalyst components for the first reactor are injected into the polymerization reactor through specially designed injection stingers and are each separately injected into the same relative location in the first reactor with no contact time prior to the reactor. The catalyst components for the second reactor (Ziegler-Nana and TEA) are injected into the second polymerization reactor through specially designed injection stingers and are each injected into the same relative location in the second reactor.

The primary catalyst component feed for each reactor (CAT-B for the first reactor and a Ziegler-Natta premix for the second reactor) is computer controlled to maintain the individual reactor monomer concentration at a specified target. The cocatalyst components (RIBS-2 and MMAO-3A for the first reactor and TEA for the second reactor) are fed based on calculated specified molar ratios to the primary catalyst component. Immediately following each fresh injection location (either feed or catalyst), the feed streams are mixed with the circulating polymerization reactor contents with Kenics static mixing elements. The contents of each reactor are continuously circulated through heat exchangers responsible for removing much of the heat of reaction and with the temperature of the coolant side responsible for maintaining an isothermal reaction environment at the specified reactor temperature. Circulation around each reactor loop is provided by a screw pump. The effluent from the first polymerization reactor (containing solvent, monomer, comonomer, hydrogen, catalyst components, and dissolved polymer) exits the first reactor loop and passes through a control valve (responsible for controlling the pressure of the first reactor at a specified target) and is injected into the second polymerization reactor of similar design. After the stream exits the second reactor it is contacted with water to stop the reaction (this water is delivered as water of hydration contained with calcium stearate). In addition, various additives such as anti-oxidants (typically Irganox 1010), are also added at this point. The stream then goes through another set of Kenics static mixing elements to evenly disperse the water catalyst kill and any additives.

Following additive addition, the effluent (containing solvent, monomer, comonomer, hydrogen, catalyst components, and dissolved polymer) passes through a heat exchanger to raise the stream temperature in preparation for separation of the polymer from the other lower boiling reaction components. The stream then enters a two stage separation and devolatization system where the polymer is removed from the solvent, hydrogen, and non-reacted monomer and comonomer. The recycled stream is purified before entering the reactor again. The separated and devolatized polymer melt is then combined with a small side stream of additional additives contained within a polymer melt injected into the process by a single screw extruder. These additives (typically Irganox 1076 and Irgafos 168) are mixed with the main process polymer melt by another series of Kenics static mixing element. The fully additive loaded polymer stream then enters a die specially designed for underwater pelletization, is cut into uniform solid pellets, dried, and transferred into a hopper. During transfer to the hopper, a dry blend of fluoroelastomer processing aid is added to the polymer pellet stream.

The non-polymer portions removed in the devolatilization step pass through various pieces of equipment which separate most of the monomer which is removed from the system, cooled, mechanically compressed, and sent via pipeline back to a light hydrocarbons processing plant for reuse. Most of the solvent and comonomer are recycled back to the reactor after passing through purification beds. This solvent can still have non-reacted co-monomer in it that is fortified with fresh co-monomer prior to re-entry to the reactor as previously discussed. This fortification of the co-monomer is an essential part of the product density control method. This recycle solvent can contain some dissolved hydrogen which is then fortified with fresh hydrogen to achieve the polymer molecular weight target. A very small amount of solvent temporarily leaves the system where it is purified and reused or purged from the system as a co-product.

Tables 5-7 summarize the conditions for polymerization for Comparative Example 2 of this invention.

Inventive Ethylene-Based Polymer Compositions (Inventive Examples 1-8)

Inventive ethylene-based polymer compositions, i.e. Inventive Example 1-8, are prepared according to the above procedure. The inventive examples are in the general I2 melt index range of from 0.3-0.9 with densities in the range of 0.918 to 0.936 g/cm3. The process conditions are reported in Table 1-3. Inventive Examples 1-8 were tested for various properties according to the test methods described below, and these properties are reported in Tables 8-20.

Comparative Ethylene-Based Compositions (Comparative Examples 1-2)

Comparative Example 1 is an ethylene/1-octene polyethylene produced by a Ziegler-Natta catalyst with a I2 of approximately 0.5 g/10 minutes and a density of 0.9275 g/cm3.

Comparative Example 2 is an ethylene/1-octene polyethylene produced by a Ziegler-Natta catalyst with an I2 of approximately 0.8 g/10 minutes and a density of 0.9248 g/cm3. Comparative Example 2 was produced according to the procedure described hereinabove for production of Comparative Example 2, under conditions reported in Tables 5-7.

Characterization properties of the Inventive Examples 1-8 and Comparative Example 1 and 2 are reported in Table 8-20.

DSC data are reported in Table 9. The melting points, percent crystallinities, and cooling temperatures for the Comparative Examples are within the range of these properties shown for the Inventive examples.

DMS viscosity, tan delta, and complex modulus versus phase angle data are given in Tables 10-13, respectively, and plotted in FIGS. 5-7, respectively. The viscosity data of Table 10 and FIG. 5 as well as the viscosity at 0.1 rad/s over that at 100 rad/s in Table 10 show that many of the Inventive Examples show high shear thinning behavior of viscosity decreasing rapidly with increasing frequency as compared to the Comparative Examples. From Table 11 and FIG. 6, many of the Inventive Examples have low tan delta values or high elasticity as compared to the Comparative Examples. Table 13 and FIG. 7 shows a form of the DMS data which is not influenced as greatly by the overall melt index (MI or I2) or molecular weight. The more elastic materials are lower on this plot (i.e., lower phase angle for a given complex modulus); the Inventive Examples are generally lower on this plot or more elastic than the Comparative Examples.

Melt strength data is shown in Table 15 and plotted in FIGS. 8-9. The melt strengths are influenced by the melt index with the melt index in general being higher for lower melt index materials. Inventive Examples 1 and 2 have high melt strength values, relatively, as compared to the Comparative Examples.

GPC data for the Inventive examples and Comparative Examples are shown in Table 15 and FIGS. 10-11. In general, the Inventive Examples have narrow Mw/Mn of less than 3.7, excluding Inventive example 8 of a broad Mw/Mn of 8.9.

Zero shear viscosity (ZSV) data for the Inventive Examples and Comparative Examples are shown in Table 16. In general, the Inventive Examples have high ZSV ratios as compared to the Comparative Examples

Unsaturation data for the Inventive examples and Comparative Examples are shown in Table 17. The Inventive Examples have very low total unsaturation values as compared to the Comparative Examples. All other unsaturation values (vinylene, trisubstituted, vinyl, and vinylidene) are also lower for the Inventive examples as compared to the Comparative Examples.

The MW Ratio is measured by cross fractionation (TREF followed by GPC) for the Inventive Examples and Comparative Examples. The MW Ratio is shown in Tables 19 and 20 and FIGS. 14-15. The Inventive Examples have MW Ratio values increasing from a low value (close to 0.10) with temperature, and reaching a maximum value of 1.00 at the highest temperature with these values monotonically increasing. The Comparative Examples having MW Ratio values larger than 1.00 for some temperatures and some MW Ratios at higher temperatures being lower than MW Ratio values at lower temperatures. In addition, the Inventive Examples have MW Ratios for the temperatures ≦50° C. of less than 0.10, while the Comparative Examples have MW Ratios larger than 0.10 for some temperatures ≦50° C. The Inventive Examples have a cumulative weight fraction less than 0.10 for the temperature fractions up to 50° C.

Short chain branching distribution data are shown in Table 18 and FIGS. 12-13. The Inventive Examples have higher CDC and Comonomer Distribution Index than the Comparative Examples. The Inventive Examples have a monomodal or bimodal distribution excluding the soluble fraction at temperature ˜30° C.

Inventive Films 1-8

Inventive ethylene-based polymer compositions, Inventive Example 1-8 are blown into Inventive Monolayer Films 1-8 on a mono layer blown film line. Inventive Films 1-8 are produced at a 2 mil thickness. The blown film line consists of a single 2.5 inch Davis Standard barrier H screw DSBII. The length/diameter (L/D) ratio for the screw is 30:1. The blown film line has a 6 inch die diameter with a dual lip air ring cooling system and a screen pack configuration of 20:40:60:80:20 mesh The film fabrication conditions are reported in Table 21.

The Inventive Films 1-8 are tested for their various properties according to the test methods described below, and these properties are reported in Table 28.

Comparative Films 1 and 2

Comparative ethylene-based polymer compositions, Comparative Example 1 and 2 into Comparative Films 1 and 2 on a mono layer blown film line. Comparative Films 1 and 2 are produced at a 2 mil thickness. The blown film line consists of a single 2.5 inch Davis Standard barrier II screw DSBII. The length/diameter (L/D) ratio for the screw is 30:1. The blown film line has a 6 inch die diameter with a dual lip air ring cooling system and a screen pack configuration of 20:40:60:80:20 mesh

The film fabrication conditions are reported in Table 21. The Inventive Films 1-8 are tested for their various properties according to the test methods described below, and these properties are reported in Table 28.

Inventive Blend 1-8 and Comparative Blend 1-2

Inventive Blends 3-8 are a blend of 65 wt % Inventive Examples 3-8 respectively with 35 wt % high pressure low density polyethylene, Dow LDPE 132I, a 0.2 melt index, 0.919 g/cc density LDPE and run under fabrication Condition set 1 as shown in Table 21.

Inventive Blends 1-2 are a blend of 65 wt % Inventive Examples 1-2 respectively with 35 wt % high pressure low density polyethylene, Dow LDPE 132I, a 0.2 melt index, 0.919 g/cc density LDPE and run under fabrication Condition set 2 as shown in Table 21.

Comparative Blends 1 and 2 are a blend of 65 wt % Comparative Examples 1 and 2 respectively with 35 wt % Dow LDPE 132I resin and run under fabrication Conditions set 1 as shown in Table 21.

Comparative Blends 3 and 4 are a blend of 65 wt % Comparative Examples 1 and 2 respectively with 35 wt %, Dow LDPE 132I resin and run under fabrication Conditions set 2 as shown in Table 21.

The Inventive Blends 3-8 and Comparative Blends 1 and 2 are tested for their various properties according to the test methods described below, and these properties are reported in Table 22-23.

The Inventive Films 1-2 and Comparative Blends 3 and 4 are tested for their various properties according to the test methods described below, and these properties are reported in Table 24-25.

Inventive blends 3-8 show good MD and CD shrink tension and free shrink, which is advantageous for use in shrink film, good optics (haze, gloss, clarity), and generally good film properties (puncture, dart, and tear) when compared to Comparative blends 1 and 2.

Inventive Blends 1-2 show good MD and CD shrink tension and free shrink, which is advantageous for use in shrink film, good optics (haze, gloss, clarity), and generally good film properties (puncture, dart, and tear) when compared to Comparative Blends 3 and 4.
Inventive Blend 9-16 and Comparative Blend 5-6

Inventive Blends 9-16 are a blend of 20 wt % Inventive Examples 1-8 respectively with 80 wt % high pressure low density polyethylene, Dow LDPE 132I, a 0.2 melt index, 0.919 g/cc density LDPE. Comparative Blends 5-6 are a blend of 20 wt % Comparative Examples 1-2 respectively with 80 wt % high pressure low density polyethylene, Dow LDPE 132I.

Inventive blends 9-16 and Comparative Blends 5 and 6 were run under conditions set 3 as shown in Table 21.

The film properties of the Inventive Blends 9-16 and Comparative blends 5 and 6 are shown in Tables 27-28.

The Inventive blends 9-16 show good MD and CD shrink tension and free shrink, which is advantageous for use in shrink film, good optics (haze, gloss, clarity), and generally good film properties (puncture, dart, and tear). The Inventive blends 9-16 show higher shrink tension coupled with higher puncture and good haze, while maintaining a high secant modulus as compared to the Comparative blends 5-6.

TABLE 1 Process reactor feeds used to make Examples. 1. REACTOR FEEDS IE.. 1 IE. 2 IE. 3 IE. 4 IE. 5 IE. 6 IE. 7 IE. 8 Primary Reactor Feed Temperature (° C.) 40.0 40.0 40.0 20.0 20.0 20.0 40.0 40.0 Primary Reactor Total Solvent Flow (lb/hr) 788 710 924 1007 1058 997 869 924 Primary Reactor Fresh Ethylene Flow (lb/hr) 151 117 133 165 184 183 125 161 Primary Reactor Total Ethylene Flow (lb/hr) 158 123 143 174 193 192 134 169 Comonomer Type 1-octene 1-octene 1-octene 1-octene 1-octene 1-octene 1-octene 1-octene Primary Reactor Fresh Comonomer Flow (lb/hr) 0.0 0.0 0.0 0.0 0.0 0.0 3.2 0.0 Primary Reactor Total Comonomer Flow (lb/hr) 14.6 11.9 8.6 32.9 26.1 25.0 7.0 20.7 Primary Reactor Feed Solvent/Ethylene Ratio 5.22 6.07 6.94 6.10 5.74 5.45 6.95 5.73 Primary Reactor Fresh Hydrogen Flow (sccm) 4474 2740 2175 5024 7265 7438 1736 187 Primary Reactor Hydrogen mole % 0.43 0.34 0.23 0.47 0.60 0.63 0.20 0.02 Secondary Reactor Feed Temperature (° C.) 40.2 39.8 40.0 20.3 20.3 19.2 40.2 39.7 Secondary Reactor Total Solvent Flow (lb/hr) 439.6 340.8 327.8 361.8 389.9 418.6 280.7 339.2 Secondary Reactor Fresh Ethylene Flow (lb/hr) 142.0 127.9 118.1 136.1 147.1 157.0 101.1 123.0 Secondary Reactor Total Ethylene Flow (lb/hr) 145.8 131.0 121.4 139.0 150.3 160.6 103.9 125.6 Secondary Reactor Fresh Comonomer Flow 14.3 11.6 6.2 30.8 27.1 20.5 0.0 26.5 (lb/hr) Secondary Reactor Total Comonomer Flow 22.2 17.1 9.2 41.6 36.0 30.3 1.2 33.5 (lb/hr) Secondary Reactor Feed Solvent/Ethylene Ratio 3.10 2.66 2.78 2.66 2.65 2.67 2.78 2.76 Secondary Reactor Fresh Hydrogen Flow (sccm) 2223 2799 4836 593 1223 1008 4136 12466 Secondary Reactor Hydrogen Mole % 0.234 0.327 0.609 0.067 0.128 0.099 0.610 1.497 Fresh Comonomer injection location Secondary Secondary Secondary Secondary Secondary Secondary Primary Secondary Reactor Reactor Reactor Reactor Reactor Reactor Reactor Reactor Ethylene Split (wt %) 52.0 48.5 54.0 55.6 56.3 54.4 56.3 57.3 IE = Inventive Example

TABLE 2 Process reaction conditions used to make Examples. 2. REACTION IE. 1 IE. 2 IE. 3 IE. 4 IE. 5 IE. 6 IE. 7 IE. 8 Primary Reactor Control Temperature (° C.) 160 160 180 165 140 155 180 155 Primary Reactor Pressure (Psig) 725 725 725 725 725 725 725 725 Primary Reactor Ethylene Conversion (wt %) 74.8 79.4 70.5 72.8 71.3 70.7 90.2 70.0 Primary Reactor FTnIR Outlet [C2] (g/L) 25.1 18.3 23.3 24.0 27.1 28.4 8.0 28.2 Primary Reactor 10log Viscosity (log(cP) 3.21 3.33 2.65 2.76 3.32 2.99 2.67 3.23 Primary Reactor Polymer Concentration (wt %) 12.8 12.2 9.6 11.3 11.5 11.8 12.4 11.2 Primary Reactor Exchanger's Heat Transfer 9.0 9.7 10.3 9.2 7.6 8.5 9.5 7.5 Coefficient (BTU/(hr ft2° F.)) Primary Reactor Polymer Residence Time (hr) 0.35 0.40 0.31 0.28 0.27 0.28 0.34 0.31 Secondary Reactor Control Temperature (° C.) 190 190 190 190 190 190 190 190 Secondary Reactor Pressure (Psig) 738 741 728 729 731 730 729 729 Secondary Reactor Ethylene Conversion (wt %) 89.7 89.6 88.1 90.2 91.1 88.3 85.2 91.3 Secondary Reactor FTnIR Outlet [C2] (g/L) 7.6 7.7 7.7 6.7 6.3 8.8 7.6 6.1 Secondary Reactor 10log Viscosity (log(cP)) 2.99 3.10 2.55 2.75 2.89 2.85 2.40 2.60 Secondary Reactor Polymer Concentration (wt %) 21.1 20.6 17.4 21.0 21.3 21.3 16.6 21.1 Secondary Reactor Exchanger's Heat Transfer 41.1 39.1 40.2 35.9 35.5 34.3 44.1 38.0 Coefficient (BTU/(hr ft2° F.)) Secondary Reactor Polymer Residence Time (hr) 0.13 0.15 0.13 0.12 0.11 0.11 0.14 0.13 Overall Ethylene conversion by vent (wt %) 93.7 93.6 92.7 94.2 94.6 92.8 92.7 94.8 IE = Inventive Example

TABLE 3 Catalyst conditions used to make Examples. 3. CATALYST IE. 1 IE. 2 IE. 3 IE. 4 IE. 5 IE. 6 IE. 7 IE. 8 Primary Reactor: Catalyst Type CAT-A CAT-A CAT-A CAT-A CAT-A CAT-A CAT-A CAT-B Catalyst Flow (lb/hr) 1.90 1.32 0.74 1.11 0.66 0.81 1.60 1.04 Catalyst Concentration (ppm) 17 17 35 18 18 18 35 50 Catalyst Efficiency (Mlbs poly/lb 3.8 4.5 3.9 6.8 12.4 9.8 2.2 2.4 Zr) Catalyst Metal Molecular Weight 90.86 90.86 90.86 90.86 90.86 90.86 90.86 47.38 (g/mol) Co-Catalyst-1 Molar Ratio 1.9 1.6 1.4 1.9 2.1 1.7 1.5 1.2 Co-Catalyst-1 Type RIBS-2 RIBS-2 RIBS-2 RIBS-2 RIBS-2 RIBS-2 RIBS-2 RIBS-2 Co-Catalyst-1 Flow (lb/hr) 0.70 0.45 1.10 0.80 0.43 0.43 1.04 0.46 Co-Catalyst-1 Concentration (ppm) 1153 1153 498 596 596 596 1094 3478 Co-Catalyst-2 Molar Ratio 8.9 9.0 7.0 6.8 6.7 6.9 6.9 5.0 Co-Catalyst-2 Type MMAO-3A MMAO-3A MMAO-3A MMAO-3A MMAO-3A MMAO-3A MMAO-3A MMAO-3A Co-Catalyst-2 Flow (lb/hr) 0.51 0.36 0.54 0.40 0.24 0.29 0.58 0.99 Co-Catalyst-2 Concentration (ppm) 166 166 100 100 100 100 199 148 Secondary Reactor: Catalyst Type CAT-A CAT-A CAT-A CAT-A CAT-A CAT-A CAT-A CAT-A Catalyst Flow (lb/hr) 1.5 1.5 1.6 2.1 2.6 1.9 1.3 2.7 Catalyst Concentration (ppm) 74 74 72 60 60 60 76 74 Catalyst Efficiency (Mlbs poly/lb 1.8 1.5 1.3 1.7 1.5 2.1 1.0 1.0 Zr) Co-Catalyst-1 Molar Ratio 1.5 1.5 1.3 1.5 1.5 1.5 1.2 1.2 Co-Catalyst-1 Type RIBS-2 RIBS-2 RIBS-2 RIBS-2 RIBS-2 RIBS-2 RIBS-2 RIBS-2 Co-Catalyst-1 Flow (lb/hr) 2.0 1.9 4.0 1.4 1.7 1.3 1.5 0.9 Co-Catalyst-1 Concentration (ppm) 1153 1153 498 1799 1799 1799 1094 3478 Co-Catalyst-2 Molar Ratio 7.0 7.0 7.0 7.0 7.0 7.0 6.9 7.0 Co-Catalyst-2 Type MMAO-3A MMAO-3A MMAO-3A MMAO-3A MMAO-3A MMAO-3A MMAO-3A MMAO-3A Co-Catalyst-2 Flow (lb/hr) 1.4 1.4 2.5 2.6 3.2 2.4 1.1 2.8 Co-Catalyst-2 Concentration (ppm) 166 166 100 100 100 100 199 148

TABLE 4 Catalysts and catalyst components detailed nomenclature. Description CAS Name CAT-A Zirconium, [2,2″′-[1,3-propanediylbis(oxy- κO)]bis[3″,5,5″-tris(1,1-dimethylethyl)-5′- methyl[1,1′:3′,1″-terphenyl]-2′-olato- κO]]dimethyl-, (OC-6-33)- CAT-B [N-(1,1-dimethylethyl)-1,1-dimethyl-1- [(1,2,3,3a,8a-η)-1,5,6,7-tetrahydro-2- methyl-s-indacen-1-yl]silanaminato(2-)- κN][(1,2,3,4-η)-1,3-pentadiene]- RIBS-2 Amines, bis(hydrogenated tallow alkyl)methyl, tetrakis(pentafluorophenyl)borate(1-) MMAO-3A Aluminoxanes, iso-Bu Me, branched, cyclic and linear; modified methyl aluminoxane

TABLE 5 Process reactor feeds used to make Comparative Example 2. 1. REACTOR FEEDS Primary Reactor Feed Temperature (° C.) 11.9 Primary Reactor Total Solvent Flow (k lb/hr) 105.4 Primary Reactor Fresh Ethylene Flow (k lb/hr) 18.0 Primary Reactor Total Ethylene Flow (k lb/hr) 18.9 Comonomer Type 1-octene Primary Reactor Fresh Comonomer Flow (k lb/hr) 3.1 Primary Reactor Total Comonomer Flow (k lb/hr) 6.3 Primary Reactor Feed Solvent/Ethylene Ratio 5.7 Primary Reactor Fresh Hydrogen Flow (lb/hr) 0.68 Primary Reactor Hydrogen mole % 0.05 Secondary Reactor Feed Temperature (° C.) 11.6 Secondary Reactor Total Solvent Flow (k lb/hr) 54.9 Secondary Reactor Fresh Ethylene Flow (k lb/hr) 21.5 Secondary Reactor Total Ethylene Flow (k lb/hr) 22.0 Secondary Reactor Fresh Comonomer Flow (k lb/hr) 0.0 Secondary Reactor Total Comonomer Flow (k lb/hr) 1.7 Secondary Reactor Feed Solvent/Ethylene Ratio 2.6 Secondary Reactor Fresh Hydrogen Flow (lb/hr) 4.3 Secondary Reactor Hydrogen Mole % 0.28 Fresh Comonomer injection location Primary Reactor Ethylene Split (wt %) 46.2

TABLE 6 Process reactor conditions used to make Comparative Example 2. 2. REACTION Primary Reactor Control Temperature (° C.) 135 Primary Reactor Pressure (Psig) 500 Primary Reactor Ethylene Conversion (wt %) 78.0 Primary Reactor FTnIR Outlet [C2] (g/L) 20.3 Primary Reactor 10log Viscosity (log(cP)) 3.08 Primary Reactor Polymer Concentration (wt %) 13.6 Primary Reactor Exchanger's Heat Transfer 42.6 Coefficient (BTU/(hr ft2 ° F.)) Primary Reactor Polymer Residence Time (min) 14.8 Secondary Reactor Control Temperature (° C.) 195 Secondary Reactor Pressure (Psig) 500 Secondary Reactor Ethylene Conversion (wt %) 88.7 Secondary Reactor FTnIR Outlet [C2] (g/L) 8.5 Secondary Reactor 10log Viscosity (log(cP)) 2.95 Secondary Reactor Polymer Concentration (wt %) 20.0 Secondary Reactor Exchanger's Heat Transfer 20.4 Coefficient (BTU/(hr ft2 ° F.)) Secondary Reactor Polymer Residence Time (min) 9.0 Overall Ethylene conversion by vent (wt %) 92.8 Total production rate (k lb/hr) 41.0

TABLE 7 Catalyst conditions used to make Comparative Example 2. 3. CATALYST Primary Reactor Catalyst Type CAT-B Primary Reactor Catalyst Flow (lb/hr) 19.0 Primary Reactor Catalyst Concentration (wt %) 0.30 Primary Reactor Catalyst Efficiency (Mlbs poly/lb Ti) 2.6 Primary Reactor Catalyst Metal Molecular Weight (g/mol) 47.9 Primary Reactor Co-Catalyst-1 Molar Ratio 1.2 Primary Reactor Co-Catalyst-1 Type RIBS-2 Primary Reactor Co-Catalyst-1 Flow (lb/hr) 11.0 Primary Reactor Co-Catalyst-1 Concentration (wt %) 1.80 Primary Reactor Co-Catalyst-2 Molar Ratio 1.0 Primary Reactor Co-Catalyst-2 Type MMAO-3A Primary Reactor Co-Catalyst-2 Flow (lb/hr) 3.70 Primary Reactor Co-Catalyst-2 Concentration (wt % Al) 0.10 Secondary Reactor Catalyst Type Ziegler-Natta Secondary Reactor Catalyst Flow (lb/hr) 69.8 Secondary Reactor Catalyst Concentration (ppm Ti) 800 Secondary Reactor Catalyst Efficiency (Mlbs poly/lb Ti) 0.42 Secondary Reactor Co-Catalyst-1 Molar Ratio 5.0 Secondary Reactor Co-Catalyst-1 Type TEA Secondary Reactor Co-Catalyst-1 Flow (lb/hr) 6.6 Secondary Reactor Co-Catalyst-1 Concentration (wt % Al) 2.37

TABLE 8 Melt Index I2 Melt Index I10 at 190° C. at 190° C. Density Sample (g/10 min) (g/10 min) I10/I2 (g/cm3) IE. 1 0.49 4.6 9.4 0.9276 IE. 2 0.32 3.4 10.8 0.9279 IE. 3 0.54 6.0 11.0 0.9341 IE. 4 0.75 6.4 8.4 0.9180 IE. 5 0.89 7.5 8.4 0.9247 IE. 6 0.91 7.1 7.8 0.9248 IE. 7 0.52 6.2 11.9 0.9357 IE. 8 0.87 12.4 14.3 0.9262 CE. 1 0.52 3.8 7.4 0.9275 CE. 2 0.80 6.6 8.3 0.9248 IE = Inventive Example CE = Comparative Example

TABLE 9 Heat of Fusion % Tc Sample Tm (° C.) (J/g) Cryst. (° C.) IE. 1 121.2 159.8 54.7 109.2 IE. 2 120.7 161.4 55.3 109.2 IE. 3 124.7 180.5 61.8 112.4 IE. 4 116.5 143.9 49.3 103.8 IE. 5 119.8 157.1 53.8 106.4 IE. 6 120.2 152.0 52.1 106.2 IE. 7 125.6 178.9 61.3 113.1 IE. 8 117.4 163.5 56.0 105.4 CE. 1 121.8 156.0 53.4 109.5 CE. 2 123.3 169.2 57.9 109.3

TABLE 10 DMS viscosity data of Examples and Comparative Examples Frequency Viscosity in Pa-s (rad/s) IE. 1 IE. 2 IE. 3 IE. 4 IE. 5 IE. 6 IE. 7 IE. 8 CE. 1 CE. 2 0.10 21,683 32,760 21,386 12,784 10,115 10,031 25,175 15,698 15,230 13,218 0.16 19,417 28,361 18,839 11,896 9,527 9,477 22,071 13,738 14,688 12,176 0.25 17,238 24,423 16,438 10,934 8,913 8,858 19,079 11,899 14,058 11,146 0.40 15,195 21,002 14,216 9,937 8,274 8,196 16,285 10,236 13,318 10,127 0.63 13,354 17,977 12,224 8,957 7,645 7,532 13,780 8,764 12,502 9,167 1.00 11,663 15,364 10,491 8,026 7,024 6,877 11,558 7,485 11,603 8,279 1.58 10,153 13,083 8,983 7,157 6,412 6,246 9,648 6,371 10,642 7,439 2.51 8,783 11,126 7,677 6,343 5,794 5,633 8,013 5,399 9,628 6,678 3.98 7,571 9,466 6,537 5,617 5,193 5,063 6,670 4,551 8,573 5,927 6.31 6,523 7,951 5,542 4,919 4,570 4,491 5,585 3,804 7,505 5,219 10.00 5,537 6,573 4,660 4,275 3,958 3,943 4,650 3,146 6,458 4,538 15.85 4,620 5,423 3,882 3,672 3,361 3,414 3,866 2,568 5,462 3,890 25.12 3,843 4,412 3,194 3,090 2,780 2,891 3,180 2,066 4,522 3,258 39.81 3,147 3,544 2,597 2,581 2,270 2,426 2,622 1,635 3,670 2,702 63.10 2,543 2,805 2,086 2,117 1,817 1,998 2,139 1,273 2,919 2,197 100.00 2,019 2,195 1,654 1,708 1,424 1,611 1,719 976 2,278 1,755 Viscosity 10.7 14.9 12.9 7.5 7.1 6.2 14.6 16.1 6.7 7.5 0.1/100

TABLE 11 DMS tan delta data of Examples and Comparative Examples. Tan Delta Freq IE. 1 IE. 2 IE. 3 IE. 4 IE. 5 IE. 6 IE. 7 IE. 8 CE. 1 CE. 2 0.10 2.76 2.02 2.35 4.27 5.14 5.38 2.27 2.17 7.44 3.94 0.16 2.50 1.90 2.15 3.67 4.52 4.58 2.01 2.01 6.13 3.50 0.25 2.32 1.81 1.99 3.23 4.05 3.99 1.83 1.88 5.31 3.20 0.40 2.18 1.75 1.88 2.91 3.67 3.57 1.68 1.78 4.53 2.96 0.63 2.07 1.70 1.80 2.68 3.35 3.24 1.58 1.71 3.88 2.79 1.00 1.98 1.65 1.74 2.49 3.05 2.98 1.50 1.64 3.34 2.63 1.58 1.89 1.60 1.68 2.34 2.75 2.74 1.45 1.57 2.87 2.47 2.51 1.81 1.54 1.63 2.20 2.46 2.53 1.42 1.50 2.47 2.30 3.98 1.71 1.47 1.56 2.05 2.18 2.31 1.39 1.42 2.15 2.12 6.31 1.60 1.39 1.48 1.91 1.92 2.10 1.37 1.32 1.86 1.93 10.00 1.50 1.30 1.40 1.76 1.69 1.90 1.35 1.22 1.63 1.75 15.85 1.39 1.21 1.30 1.61 1.48 1.71 1.31 1.12 1.42 1.57 25.12 1.28 1.12 1.21 1.46 1.31 1.53 1.26 1.02 1.24 1.41 39.81 1.17 1.04 1.12 1.32 1.16 1.37 1.20 0.93 1.09 1.25 63.10 1.08 0.96 1.03 1.18 1.04 1.22 1.13 0.84 0.96 1.12 100.00 0.98 0.88 0.94 1.06 0.93 1.09 1.05 0.76 0.85 1.00

TABLE 12 Complex modulus and phase angle data of Examples 1-5. IE. 1 IE. 2 IE. 3 IE. 4 IE. 5 Phase Phase Phase Phase Phase G* (Pa) Angle G* (Pa) Angle G* (Pa) Angle G* (Pa) Angle G* (Pa) Angle 2.17E+03 70.10 3.28E+03 63.61 2.14E+03 66.95 1.28E+03 76.82 1.01E+03 78.99 3.08E+03 68.23 4.49E+03 62.20 2.99E+03 65.01 1.89E+03 74.75 1.51E+03 77.52 4.33E+03 66.70 6.13E+03 61.12 4.13E+03 63.34 2.75E+03 72.82 2.24E+03 76.12 6.05E+03 65.36 8.36E+03 60.26 5.66E+03 62.01 3.96E+03 71.04 3.29E+03 74.76 8.43E+03 64.26 1.13E+04 59.58 7.71E+03 60.98 5.65E+03 69.53 4.82E+03 73.37 1.17E+04 63.21 1.54E+04 58.84 1.05E+04 60.10 8.03E+03 68.16 7.02E+03 71.82 1.61E+04 62.17 2.07E+04 58.05 1.42E+04 59.30 1.13E+04 66.85 1.02E+04 69.99 2.21E+04 61.02 2.79E+04 57.05 1.93E+04 58.42 1.59E+04 65.52 1.46E+04 67.85 3.01E+04 59.67 3.77E+04 55.76 2.60E+04 57.34 2.24E+04 64.04 2.07E+04 65.32 4.12E+04 58.07 5.02E+04 54.21 3.50E+04 56.01 3.10E+04 62.34 2.88E+04 62.47 5.54E+04 56.24 6.57E+04 52.41 4.66E+04 54.38 4.28E+04 60.36 3.96E+04 59.34 7.32E+04 54.18 8.60E+04 50.41 6.15E+04 52.50 5.82E+04 58.09 5.33E+04 56.02 9.65E+04 51.95 1.11E+05 48.28 8.02E+04 50.39 7.76E+04 55.54 6.98E+04 52.64 1.25E+05 49.59 1.41E+05 46.08 1.03E+05 48.12 1.03E+05 52.75 9.04E+04 49.29 1.60E+05 47.12 1.77E+05 43.82 1.32E+05 45.75 1.34E+05 49.76 1.15E+05 46.07 2.02E+05 44.52 2.20E+05 41.47 1.65E+05 43.32 1.71E+05 46.58 1.42E+05 43.00

TABLE 13 Complex modulus and phase angle data of Examples 6-8 and Comparative Examples 1-2. IE. 6 IE. 7 IE. 8 CE. 1 CE. 2 Phase Phase Phase Phase Phase G* (Pa) Angle G* (Pa) Angle G* (Pa) Angle G* (Pa) Angle G* (Pa) Angle 1.00E+03 79.47 2.52E+03 66.21 1.57E+03 65.31 1.52E+03 82.35 1.32E+03 75.78 1.50E+03 77.68 3.50E+03 63.58 2.18E+03 63.52 2.33E+03 80.74