KR20170099691A - 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법 - Google Patents

혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법 Download PDF

Info

Publication number
KR20170099691A
KR20170099691A KR1020160022079A KR20160022079A KR20170099691A KR 20170099691 A KR20170099691 A KR 20170099691A KR 1020160022079 A KR1020160022079 A KR 1020160022079A KR 20160022079 A KR20160022079 A KR 20160022079A KR 20170099691 A KR20170099691 A KR 20170099691A
Authority
KR
South Korea
Prior art keywords
group
formula
catalyst
metallocene catalyst
same
Prior art date
Application number
KR1020160022079A
Other languages
English (en)
Other versions
KR102002983B1 (ko
Inventor
송은경
권혁주
최이영
홍복기
조경진
김중수
김선미
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020160022079A priority Critical patent/KR102002983B1/ko
Priority to EP17756713.8A priority patent/EP3348585B1/en
Priority to PCT/KR2017/000413 priority patent/WO2017146375A1/ko
Priority to JP2018517348A priority patent/JP6711906B2/ja
Priority to US15/765,690 priority patent/US11091568B2/en
Priority to CN201780003916.4A priority patent/CN108350110B/zh
Publication of KR20170099691A publication Critical patent/KR20170099691A/ko
Application granted granted Critical
Publication of KR102002983B1 publication Critical patent/KR102002983B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65925Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually non-bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/08Butenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/12Monomers containing a branched unsaturated aliphatic radical or a ring substituted by an alkyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/16Halogens
    • C08F12/18Chlorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/06Cp analog where at least one of the carbon atoms of the non-coordinating part of the condensed ring is replaced by a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/07Heteroatom-substituted Cp, i.e. Cp or analog where at least one of the substituent of the Cp or analog ring is or contains a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/10Heteroatom-substituted bridge, i.e. Cp or analog where the bridge linking the two Cps or analogs is substituted by at least one group that contains a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법에 관한 것이다. 상기 혼성 담지 메탈로센 촉매를 이용하면 올레핀 단량체 중합시 왁스의 발생량을 현저하게 감소시킬 수 있을 뿐만 아니라, 제조되는 폴리올레핀의 내응력 균열성도 향상시킬 수 있다.

Description

혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법{SUPPORTED HYBRID METALLOCENE CATALYST, AND METHOD FOR PREPARING POLYOLEFIN USING THE SAME}
본 발명은 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법에 관한 것이다.
공업적으로 올레핀으로부터 폴리올레핀을 제조하는 방법으로는 용액 중합 공정, 슬러리 중합 공정 및 기상 중합 공정 등이 알려져 있다. 그 중 용액 중합 공정은 액상에 고분자가 용융되어 있는 상태에서 중합이 이루어지는 것이고, 슬러리 중합 공정은 액체상의 중합 매질에 생성된 고분자가 고체 상태로 분산되어 있는 것이며, 기상 중합 공정은 기체상의 중합 매질에 생성된 고분자가 유동화 상태로 분산되어 있는 것이다.
이 가운데, 불균일계 촉매를 이용한 슬러리 중합에서 발생하는 공정상의 가장 큰 문제는 왁스의 대량 생성인데, 공정에서 발생하는 공정의 불안정성에 기여할 뿐만 아니라, 제품 특성에 악영향을 끼치게 된다. 특히, 장기물성이 요구되는 파이프의 내압특성 저하, 식품 용기 및 포장 재질의 TVOC 문제 등이 그 예라 할 수 있다.
따라서, 슬러리 중합을 통한 폴리올레핀의 제조 시, 공정상 발생하는 왁스를 저감시킬 수 있으며, 제조되는 폴리올레핀의 내응력 균열성(Full Notch Creep Test, FNCT) 또한 향상시킬 수 있는 메탈로센 촉매를 제조하여 원하는 물성의 폴리올레핀을 제조하는 방법에 대한 요구가 계속되고 있다.
상기 종래기술의 문제를 해결하기 위해, 본 발명은 슬러리 중합시 발생하는 왁스를 저감시킬 수 있으며, 제조되는 폴리올레핀의 내응력 균열성을 향상시킬 수 있는 혼성 담지 메탈로센 촉매와 이를 이용한 폴리올레핀의 제조 방법을 제공하고자 한다.
본 발명은, 하기 화학식 1로 표시되는 제 1 메탈로센 화합물 1종 이상; 하기 화학식 3으로 표시되는 제 2 메탈로센 화합물 1종 이상; 하기 화학식 4로 표시되는 제 3 메탈로센 화합물 1종 이상; 조촉매 화합물; 및 담체를 포함하는 혼성 담지 메탈로센 촉매를 제공한다.
또한, 본 발명은 상기 혼성 담지 메탈로센 촉매의 존재 하에, 올레핀 단량체를 중합 반응시키는 단계를 포함하는 폴리올레핀의 제조 방법을 제공한다.
이하 발명의 구체적인 구현예에 따른 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법에 관하여 보다 상세하게 설명하기로 한다.
발명의 일 구현예에 따르면, 하기 화학식 1로 표시되는 제 1 메탈로센 화합물 1종 이상; 하기 화학식 3으로 표시되는 제 2 메탈로센 화합물 1종 이상; 하기 화학식 4로 표시되는 제 3 메탈로센 화합물 1종 이상; 조촉매 화합물; 및 담체를 포함하는 혼성 담지 메탈로센 촉매가이 제공될 수 있다:
[화학식 1]
Figure pat00001
상기 화학식 1에서,
A는 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, C7 내지 C20의 아릴알킬기, C1 내지 C20의 알콕시기, C2 내지 C20의 알콕시알킬기, C3 내지 C20의 헤테로시클로알킬기, 또는 C5 내지 C20의 헤테로아릴기이고;
D는 -O-, -S-, -N(R)- 또는 -Si(R)(R')- 이고, 여기서 R 및 R'은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, 또는 C6 내지 C20의 아릴기이고;
L은 C1 내지 C10의 직쇄 또는 분지쇄 알킬렌기이고;
B는 탄소, 실리콘 또는 게르마늄이고;
Q는 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이고;
M은 4족 전이금속이며;
X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네이트기이고;
C1 C2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식 2a, 화학식 2b 또는 하기 화학식 2c 중 하나로 표시되고, 단, C1 C2가 모두 화학식 2c인 경우는 제외하며;
[화학식 2a]
Figure pat00002
[화학식 2b]
Figure pat00003
[화학식 2c]
Figure pat00004
상기 화학식 2a, 2b 및 2c에서, R1 내지 R17 및 R1' 내지 R9'는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 실릴알킬기, C1 내지 C20의 알콕시실릴기, C1 내지 C20의 알콕시기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이며, 상기 R10 내지 R17 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있고;
[화학식 3]
(Cp1Ra)n(Cp2Rb)M1Z1 3-n
상기 화학식 3에서,
M1은 4족 전이금속이고;
Cp1 및 Cp2는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디엔닐, 인데닐, 4,5,6,7-테트라하이드로-1-인데닐, 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
Ra 및 Rb는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고;
Z1은 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시, 또는 C7 내지 C40의 아릴알콕시이고;
n은 1 또는 0 이고;
[화학식 4]
Figure pat00005
상기 화학식 4에서,
M2는 4족 전이 금속이고;
B는 탄소, 실리콘 또는 게르마늄이고;
Q1 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬기, 또는 탄소수 1 내지 20의 알콕시로 치환된 탄소수 1 내지 20의 알킬기이고;
X3 및 X4는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네이트기이고;
C3 및 C4는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식 4a, 또는 하기 화학식 4b 중 하나로 표시되고,
[화학식 4a]
Figure pat00006
[화학식 4b]
Figure pat00007
상기 화학식 4a 및 4b에서, R18 내지 R27 는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬기, N 또는 O의 헤테로 원자를 포함하는 C3 내지 C20의 시클로알킬기, C6 내지 C20의 아릴기, 또는 탄소수 1 내지 20의 알콕시로 치환된 탄소수 1 내지 20의 알킬기이며,
상기 Q1, Q2, 및 R18 내지 R27 중 적어도 하나 이상은 탄소수 1 내지 20의 알콕시로 치환된 탄소수 1 내지 20의 알킬기이다.
본 발명에 따른 혼성 담지 메탈로센 촉매에 있어서, 상기 화학식 1, 3, 및 4 의 치환기들을 보다 구체적으로 설명하면 하기와 같다.
상기 C1 내지 C20의 알킬기로는 직쇄 또는 분지쇄의 알킬기를 포함하고, 구체적으로 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 펜틸기, 헥실기, 헵틸기, 옥틸기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C2 내지 C20의 알케닐기로는 직쇄 또는 분지쇄의 알케닐기를 포함하고, 구체적으로 알릴기, 에테닐기, 프로페닐기, 부테닐기, 펜테닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C6 내지 C20의 아릴기로는 단환 또는 축합환의 아릴기를 포함하고, 구체적으로 페닐기, 비페닐기, 나프틸기, 페난트레닐기, 플루오레닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C5 내지 C20의 헤테로아릴기로는 단환 또는 축합환의 헤테로아릴기를 포함하고, 카바졸릴기, 피리딜기, 퀴놀린기, 이소퀴놀린기, 티오페닐기, 퓨라닐기, 이미다졸기, 옥사졸릴기, 티아졸릴기, 트리아진기, 테트라하이드로피라닐기, 테트라하이드로퓨라닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C1 내지 C20의 알콕시기로는 메톡시기, 에톡시기, 페닐옥시기, 시클로헥실옥시기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 4족 전이금속으로는 티타늄, 지르코늄, 하프늄 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
본 발명에 따른 혼성 담지 메탈로센 촉매에 있어서, 상기 화학식 2a, 2b 및 2c의 R1 내지 R17 및 R1' 내지 R9'는 각각 독립적으로 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 펜틸기, 헥실기, 헵틸기, 옥틸기, 페닐기, 할로겐기, 트리메틸실릴기, 트리에틸실릴기, 트리프로필실릴기, 트리부틸실릴기, 트리이소프로필실릴기, 트리메틸실릴메틸기, 메톡시기, 또는 에톡시기인 것이 더욱 바람직하나, 이에만 한정되는 것은 아니다.
상기 화학식 1의 L은 C4 내지 C8의 직쇄 또는 분지쇄 알킬렌기인 것이 더욱 바람직하나, 이에만 한정되는 것은 아니다. 또한, 상기 알킬렌기는 C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, 또는 C6 내지 C20의 아릴기로 치환 또는 비치환될 수 있다.
또한, 상기 화학식 1의 A는 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 메톡시메틸기, tert-부톡시메틸기, 1-에톡시에틸기, 1-메틸-1-메톡시에틸기, 테트라하이드로피라닐기, 또는 테트라하이드로퓨라닐기인 것이 바람직하나, 이에만 한정되는 것은 아니다.
또한, 상기 화학식 1의 B는 실리콘인 것이 바람직하나, 이에만 한정되는 것은 아니다.
상기 화학식 1의 제 1 메탈로센 화합물은 인데노 인돌(indeno indole) 유도체 및/또는 플루오렌(fluorene) 유도체가 브릿지에 의해 가교된 구조를 형성하며, 리간드 구조에 루이스 염기로 작용할 수 있는 비공유 전자쌍을 가짐으로써 담체의 루이스 산 특성을 지니는 표면에 담지되어 담지 시에도 높은 중합 활성을 나타낸다. 또한 전자적으로 풍부한 인데노 인돌기 및/또는 플루오렌기를 포함함에 따라 활성이 높고, 적절한 입체 장애와 리간드의 전자적인 효과로 인해 수소 반응성이 낮을 뿐 아니라 수소가 존재하는 상황에서도 높은 활성이 유지된다. 또한 인데노 인돌 유도체의 질소 원자가 자라나는 고분자 사슬의 beta-hydrogen을 수소결합에 의해 안정화시켜 beta-hydrogen elimination을 억제하여 초고분자량의 올레핀계 중합체를 중합할 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 2a로 표시되는 화합물의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나, 본 발명이 이에만 한정되는 것은 아니다.
Figure pat00008
Figure pat00009
Figure pat00010
Figure pat00011
본 발명의 일 실시예에 따르면, 상기 화학식 2b로 표시되는 화합물의 구체적인 예로는 하기 구조식 들 중 하나로 표시되는 화합물을 들 수 있으나, 본 발명이 이에만 한정되는 것은 아니다.
Figure pat00012
Figure pat00013
Figure pat00014
Figure pat00015
Figure pat00016
본 발명의 일 실시예에 따르면, 상기 화학식 2c로 표시되는 화합물의 구체적인 예로는 하기 구조식 들 중 하나로 표시되는 화합물을 들 수 있으나, 본 발명이 이에만 한정되는 것은 아니다.
Figure pat00017
Figure pat00018
Figure pat00019
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 제 1 메탈로센 화합물의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나, 이에만 한정되는 것은 아니다.
Figure pat00020
Figure pat00021
Figure pat00022
Figure pat00023
Figure pat00024
Figure pat00025
Figure pat00026
Figure pat00027
Figure pat00028
Figure pat00029
Figure pat00030
Figure pat00031
Figure pat00032
Figure pat00033
Figure pat00034
Figure pat00035
Figure pat00036
Figure pat00037
Figure pat00038
상기 화학식 1의 제 1 메탈로센 화합물은 활성이 우수하고 고분자량의 올레핀계 중합체를 중합할 수 있다. 특히, 담체에 담지하여 사용할 경우에도 높은 중합 활성을 나타내어, 초고분자량의 폴리올레핀계 중합체를 제조할 수 있다.
또한, 고분자량과 동시에 넓은 분자량 분포를 갖는 올레핀계 중합체를 제조하기 위해 수소를 포함하여 중합 반응을 진행하는 경우에도, 본 발명에 따른 화학식 1의 제 1 메탈로센 화합물은 낮은 수소 반응성을 나타내어 여전히 높은 활성으로 초고분자량의 올레핀계 중합체의 중합이 가능하다. 따라서, 다른 특성을 갖는 촉매와 혼성으로 사용하는 경우에도 활성의 저하없이 고분자량의 특성을 만족시키는 올레핀계 중합체를 제조할 수 있어, 고분자의 올레핀계 중합체를 포함하면서 넓은 분자량 분포를 갖는 올레핀계 중합체를 용이하게 제조할 수 있다.
상기 화학식 1의 제 1 메탈로센 화합물은 인데노인돌 유도체 및/또는 플루오렌 유도체를 브릿지 화합물로 연결하여 리간드 화합물로 제조한 다음, 금속 전구체 화합물을 투입하여 메탈레이션(metallation)을 수행함으로써 수득될 수 있다. 상기 제 1 메탈로센 화합물의 제조방법은 후술하는 실시예에 구체화하여 설명한다.
그리고, 상기 화학식 3으로 표시되는 제 2 메탈로센 화합물로는 예를 들어 하기 구조식들 중 하나로 표시되는 화합물일 수 있으나, 이에만 한정되는 것은 아니다.
Figure pat00039
Figure pat00040
Figure pat00041
Figure pat00042
Figure pat00043
그리고, 상기 화학식 4로 표시되는 제 3 메탈로센 화합물은 시클로펜타디엔닐, 및/또는 인데닐 구조를 포함하고, 탄소수 1 내지 20의 알콕시로 치환된 탄소수 1 내지 20의 알킬기, 보다 바람직하게는 터트-부톡시-헥실기를 포함한다. 이러한 제 3 메탈로센 화합물은 중량평균 분자량 약 10만 이하의 저분자량의 폴리올레핀을 제조할 수 있어, 상기 일 구현예의 혼성 담지 메탈로센 촉매와 같이 제 3 메탈로센 화합물을 제 1 및 제 2 메탈로센 화합물과 혼성 담지해서 올레핀 중합에 사용하는 경우, 원하는 스펙의 용융지수(MI)를 확보하기 위해 공정적으로 투입되는 수소량을 저감시킬 수 있다. 따라서, 슬러리 중합에서 발생하는 왁스를 획기적으로 저감시킬 수 있으면서도, 과량의 수소로 인해 내압 물성에 중요한 역할을 하는 고분자영역이 감소되는 영향을 최소화할 수 있기 때문에, 제조되는 폴리올레핀의 FNCT 특성을 향상시킬 수 있다.
또한, 상기 화학식 4로 표시되는 제 3 메탈로센 화합물로는 예를 들어 하기 구조식들 중 하나로 표시되는 화합물일 수 있으나, 이에만 한정되는 것은 아니다.
Figure pat00044
Figure pat00045
Figure pat00046
Figure pat00047
Figure pat00048
Figure pat00049
Figure pat00050
본 발명에 따른 혼성 담지 메탈로센 촉매는 상기 화학식 1로 표시되는 제 1 메탈로센 화합물의 1종 이상과, 상기 화학식 3 으로 표시되는 제 2 메탈로센 화합물 1종 이상 및 상기 화학식 4로 표시되는 제 3 메탈로센 화합물을 조촉매 화합물과 함께 담체에 혼성 담지한 것이다.
상기 혼성 담지 메탈로센 촉매의 화학식 1로 표시되는 제 1 메탈로센 화합물은 주로 높은 SCB(short chain branch) 함량을 가지는 고분자량의 공중합체를 만드는데 기여하고, 화학식 3으로 표시되는 제 2 메탈로센 화합물은 주로 낮은 SCB 함량을 가지는 저분자량의 공중합체를 만드는데 기여할 수 있다. 또한, 화학식 4로 표시되는 제 3 메탈로센 화합물은 제 2 메탈로센 화합물과 동등 또는 그 이하의 저분자량의 공중합체를 만드는데 기여할 수 있다.
이와 같이, 본 발명의 혼성 담지 메탈로센 촉매에서는 서로 다른 종류의 메탈로센 화합물을 적어도 3종 이상 포함함으로써 분자량 분포가 넓어 파이프 계열의 제품의 제조 시 필요한 저분자 영역을 충분히 확보하면서도, 공정상 발생하는 왁스의 발생량을 줄이는데 기여하여 FNCT 특성을 향상시킬 수 있다.
본 발명에 따른 혼성 담지 메탈로센 촉매에 있어서, 상기 메탈로센 화합물을 활성화하기 위하여 담체에 함께 담지되는 조촉매로는 13족 금속을 포함하는 유기 금속 화합물로서, 일반적인 메탈로센 촉매 하에 올레핀을 중합할 때 사용될 수 있는 것이라면 특별히 한정되는 것은 아니다.
구체적으로, 상기 조촉매 화합물은 하기 화학식 5의 알루미늄 함유 제 1 조촉매, 및 하기 화학식 6의 보레이트계 제 2 조촉매 중 하나 이상을 포함할 수 있다.
[화학식 5]
-[Al(R28)-O-]k-
화학식 5에서, R28은 각각 독립적으로 할로겐, 할로겐 치환 또는 비치환된 탄소수 1 내지 20의 하이드로카빌기이고, k는 2 이상의 정수이고,
[화학식 6]
T+[BG4]-
화학식 6에서, T+은 +1가의 다원자 이온이고, B는 +3 산화 상태의 붕소이고, G는 각각 독립적으로 하이드라이드기, 디알킬아미도기, 할라이드기, 알콕사이드기, 아릴옥사이드기, 하이드로카빌기, 할로카빌기 및 할로-치환된 하이드로카빌기로 이루어진 군에서 선택되고, 상기 G는 20개 이하의 탄소를 가지나, 단 하나 이하의 위치에서 G는 할라이드기이다.
이러한 제 1 및 제 2 조촉매의 사용에 의해, 최종 제조된 폴리올레핀의 분자량 분포가 보다 균일하게 되면서, 중합 활성이 향상될 수 있다.
상기 화학식 5의 제 1 조촉매는 선형, 원형 또는 망상형으로 반복단위가 결합된 알킬알루미녹산계 화합물로 될 수 있고, 이러한 제 1 조촉매의 구체적인 예로는, 메틸알루미녹산(MAO), 에틸알루미녹산, 이소부틸알루미녹산 또는 부틸알루미녹산 등을 들 수 있다.
또한, 상기 화학식 6의 제 2 조촉매는 삼치환된 암모늄염, 또는 디알킬 암모늄염, 삼치환된 포스포늄염 형태의 보레이트계 화합물로 될 수 있다. 이러한 제 2 조촉매의 구체적인 예로는, 트리메탈암모늄 테트라페닐보레이트, 메틸디옥타데실암모늄 테트라페닐보레이트, 트리에틸암모늄 테트라페닐보레이트, 트리프로필암모늄 테트라페닐보레이트, 트리(n-부틸)암모늄 테트라페닐보레이트, 메틸테트라데사이클로옥타데실암모늄 테트라페닐보레이트, N,N-디메틸아닐늄 테트라페닐보레이트, N,N-디에틸아닐늄 테트라페닐보레이트, N,N-디메틸(2,4,6-트리메틸아닐늄)테트라페닐보레이트, 트리메틸암모늄 테트라키스(펜타플로오로페닐)보레이트, 메틸디테트라데실암모늄 테트라키스(펜타페닐)보레이트, 메틸디옥타데실암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리에틸암모늄, 테트라키스(펜타플루오로페닐)보레이트, 트리프로필암모늄테트라키스(펜타프루오로페닐)보레이트, 트리(n-부틸)암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리(2급-부틸)암모늄테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸아닐늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디에틸아닐늄테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸(2,4,6-트리메틸아닐늄)테트라키스(펜타플루오로페닐)보레이트, 트리메틸암모늄테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 트리에틸암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 트리프로필암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 트리(n-부틸)암모늄 테트라키스(2,3,4,6-,테트라플루오로페닐)보레이트, 디메틸(t-부틸)암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, N,N-디메틸아닐늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, N,N-디에틸아닐늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트 또는 N,N-디메틸-(2,4,6-트리메틸아닐늄)테트라키스-(2,3,4,6-테트라플루오로페닐)보레이트 등의 삼치환된 암모늄염 형태의 보레이트계 화합물; 디옥타데실암모늄 테트라키스(펜타플루오로페닐)보레이트, 디테트라데실암모늄 테트라키스(펜타플루오로페닐)보레이트 또는 디사이클로헥실암모늄 테트라키스(펜타플루오로페닐)보레이트 등의 디알킬암모늄염 형태의 보레이트계 화합물; 또는 트리페닐포스포늄 테트라키스(펜타플루오로페닐)보레이트, 메틸디옥타데실포스포늄 테트라키스(펜타플루오로페닐)보레이트 또는 트리(2,6-, 디메틸페닐)포스포늄 테트라키스(펜타플루오로페닐)보레이트 등의 삼치환된 포스포늄염 형태의 보레이트계 화합물 등을 들 수 있다.
본 발명에 따른 혼성 담지 메탈로센 촉매에 있어서, 제 1 메탈로센 화합물, 제 2 메탈로센 화합물 및 제 3 메탈로센 화합물에 포함되는 전체 전이금속 대 담체의 질량비는 1 : 10 내지 1 : 1,000 일 수 있다. 상기 질량비로 담체 및 메탈로센 화합물을 포함할 때, 최적의 형상을 나타낼 수 있다.
또한, 조촉매 화합물 대 담체의 질량비는 1 : 1 내지 1 : 100 일 수 있다. 또한, 화학식 1로 표시되는 제 1 메탈로센 화합물 대 화학식 3 내지 5로 표시되는 제 2 메탈로센 화합물의 질량비는 10 : 1 내지 1 : 10, 바람직하게는 5 : 1 내지 1 : 5 일 수 있다. 상기 질량비로 조촉매 및 메탈로센 화합물을 포함할 때, 활성 및 고분자 미세구조를 최적화할 수 있다.
본 발명에 따른 혼성 담지 메탈로센 촉매에 있어서, 상기 담체로는 표면에 하이드록시기를 함유하는 담체를 사용할 수 있으며, 바람직하게는 건조되어 표면에 수분이 제거된, 반응성이 큰 하이드록시기와 실록산기를 가지고 있는 담체를 사용할 수 있다.
예컨대, 고온에서 건조된 실리카, 실리카-알루미나, 및 실리카-마그네시아 등이 사용될 수 있고, 이들은 통상적으로 Na2O, K2CO3, BaSO4, 및 Mg(NO3)2 등의 산화물, 탄산염, 황산염, 및 질산염 성분을 함유할 수 있다.
상기 담체의 건조 온도는 200 내지 800℃가 바람직하고, 300 내지 600℃가 더욱 바람직하며, 300 내지 400℃가 가장 바람직하다. 상기 담체의 건조 온도가 200℃ 미만인 경우 수분이 너무 많아서 표면의 수분과 조촉매가 반응하게 되고, 800℃를 초과하는 경우에는 담체 표면의 기공들이 합쳐지면서 표면적이 줄어들며, 또한 표면에 하이드록시기가 많이 없어지고 실록산기만 남게 되어 조촉매와의 반응자리가 감소하기 때문에 바람직하지 않다.
상기 담체 표면의 하이드록시기 양은 0.1 내지 10 mmol/g이 바람직하며, 0.5 내지 5 mmol/g일 때 더욱 바람직하다. 상기 담체 표면에 있는 하이드록시기의 양은 담체의 제조방법 및 조건 또는 건조 조건, 예컨대 온도, 시간, 진공 또는 스프레이 건조 등에 의해 조절할 수 있다.
상기 하이드록시기의 양이 0.1 mmol/g 미만이면 조촉매와의 반응자리가 적고, 10 mmol/g을 초과하면 담체 입자 표면에 존재하는 하이드록시기 이외에 수분에서 기인한 것일 가능성이 있기 때문에 바람직하지 않다.
본 발명에 따른 혼성 담지 메탈로센 촉매는 그 자체로서 올레핀계 단량체의 중합에 사용될 수 있다. 또한, 본 발명에 따른 혼성 담지 메탈로센 촉매는 올레핀계 단량체와 접촉 반응되어 예비 중합된 촉매로 제조하여 사용할 수도 있으며, 예컨대 촉매를 별도로 에틸렌, 프로필렌, 1-부텐, 1-헥센, 1-옥텐 등과 같은 올레핀계 단량체와 접촉시켜 예비 중합된 촉매로 제조하여 사용할 수도 있다.
한편, 발명의 다른 구현예에 따르면, 상기 혼성 담지 메탈로센 촉매의 존재 하에, 올레핀 단량체를 중합 반응시키는 단계를 포함하는 폴리올레핀의 제조 방법이 제공될 수 있다.
상기 혼성 담지 메탈로센 촉매로 중합 가능한 올레핀 단량체의 예로는 에틸렌, 알파-올레핀, 사이클릭 올레핀 등이 있으며, 이중 결합을 2개 이상 가지고 있는 다이엔 올레핀계 단량체 또는 트라이엔 올레핀계 단량체 등도 중합 가능하다. 상기 단량체의 구체적인 예로는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이토센, 노보넨, 노보나디엔, 에틸리덴노보넨, 페닐노보넨, 비닐노보넨, 디사이클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-헥사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠, 3-클로로메틸스티렌 등이 있으며, 이들 단량체를 2 종 이상 혼합하여 공중합할 수도 있다. 상기 올레핀 중합체가 에틸렌과 다른 공단량체의 공중합체인 경우에, 상기 공단량체는 프로필렌, 1-부텐, 1-헥센, 4-메틸-1-펜텐 및 1-옥텐으로 이루어진 군에서 선택된 하나 이상의 공단량체인 것이 바람직하다.
상기 올레핀 단량체의 중합 반응을 위하여, 연속식 용액 중합 공정, 벌크 중합 공정, 현탁 중합 공정, 슬러리 중합 공정 또는 유화 중합 공정 등 올레핀 단량체의 중합 반응으로 알려진 다양한 중합 공정이 채용될 수 있다. 이러한 중합 반응은 약 50 내지 110℃ 또는 약 60 내지 100℃의 온도와 약 1 내지 100 bar 또는 약 10 내지 80 bar의 압력 하에서 수행될 수 있다.
또한, 상기 중합 반응에서, 상기 혼성 담지 메탈로센 촉매는 펜탄, 헥산, 헵탄, 노난, 데칸, 톨루엔, 벤젠, 디클로로메탄, 클로로벤젠 등과 같은 용매에 용해 또는 희석된 상태로 이용될 수 있다. 이때, 상기 용매를 소량의 알킬알루미늄 등으로 처리함으로써, 촉매에 악영향을 줄 수 있는 소량의 물 또는 공기 등을 미리 제거할 수 있다.
본 발명에 따른 혼성 담지 메탈로센 촉매를 이용하여, 올레핀 단량체 중합시 왁스의 발생량을 현저하게 감소시킬 수 있을 뿐만 아니라, 제조되는 폴리올레핀의 FNCT 특성도 향상시킬 수 있다.
도 1은 본 발명의 일 실시 예에 따른 폴리올레핀의 제조 방법을 모식적으로 나타낸 공정도이다.
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
제 1 메탈로센 화합물의 제조 실시예
제조예 1
Figure pat00051
1-1 리간드 화합물의 제조
fluorene 2 g을 5 mL MTBE, hexane 100 mL에 녹여 2.5 M n-BuLi hexane solution 5.5 mL를 dry ice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. (6-(tert-butoxy)hexyl)dichloro(methyl)silane 3.6 g을 헥산(hexane) 50 mL에 녹여 dry ice/acetone bath하에서 fluorene-Li 슬러리를 30분 동안 transfer하여 상온에서 밤새 교반하였다. 이와 동시에 5,8-dimethyl-5,10-dihydroindeno[1,2-b]indole (12 mmol, 2.8 g) 또한 THF 60 mL에 녹여 2.5M n-BuLi hexane solution 5.5 mL를 dry ice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. fluorene과 (6-(tert-butoxy)hexyl)dichloro(methyl)silane 과의 반응 용액을 NMR 샘플링하여 반응 완료를 확인한 후 5,8-dimethyl-5,10-dihydroindeno[1,2-b]indole-Li solution을 dry ice/acetone bath하에서 transfer하였다. 상온에서 밤새 교반하였다. 반응 후 ether/water로 추출(extraction)하여 유기층의 잔류수분을 MgSO4로 제거 후 리간드 화합물(Mw 597.90, 12 mmol)을 얻었으며 이성질체(isomer) 두 개가 생성되었음을 1H-NMR에서 확인할 수 있었다.
1H NMR (500 MHz, d6-benzene): -0.30 ~ -0.18 (3H, d), 0.40 (2H, m), 0.65 ~ 1.45 (8H, m), 1.12 (9H, d), 2.36 ~ 2.40 (3H, d), 3.17 (2H, m), 3.41 ~ 3.43 (3H, d), 4.17 ~ 4.21 (1H, d), 4.34 ~ 4.38 (1H, d), 6.90 ~ 7.80 (15H, m)
1-2 메탈로센 화합물의 제조
상기 1-1에서 합성한 리간드 화합물 7.2 g (12 mmol)을 diethylether 50 mL에 녹여 2.5 M n-BuLi hexane solution 11.5 mL를 dry ice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. 진공 건조하여 갈색(brown color)의 sticky oil을 얻었다. 톨루엔에 녹여 슬러리를 얻었다. ZrCl4(THF)2를 준비하고 톨루엔 50 mL를 넣어 슬러리로 준비하였다. ZrCl4(THF)2의 50 mL 톨루엔 슬러리를 dry ice/acetone bath에서 transfer하였다. 상온에서 밤새 교반함에 따라 보라색(violet color)으로 변화하였다. 반응 용액을 필터하여 LiCl을 제거하였다. 여과액(filtrate)의 톨루엔을 진공 건조하여 제거한 후 헥산을 넣고 1시간 동안 sonication하였다. 슬러리를 필터하여 여과된 고체(filtered solid)인 짙은 보라색(dark violet)의 메탈로센 화합물 6 g (Mw 758.02, 7.92 mmol, yield 66mol%)을 얻었다. 1H-NMR상에서 두 개의 isomer가 관찰되었다.
1H NMR (500 MHz, CDCl3): 1.19 (9H, d), 1.71 (3H, d), 1.50 ~ 1.70(4H, m), 1.79(2H, m), 1.98 ~ 2.19(4H, m), 2.58(3H, s), 3.38 (2H, m), 3.91 (3H, d), 6.66 ~ 7.88 (15H, m)
제조예 2
Figure pat00052
2-1 리간드 화합물의 제조
250 mL flask에 5-methyl-5,10-dihydroindeno[1,2-b]indole 2.63 g (12 mmol)을 넣고 THF 50 mL에 녹인 후 2.5M n-BuLi hexane solution 6 mL를 dr yice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. 또 다른 250 mL flask에 (6-(tert-butoxy)hexyl)dichloro(methyl)silane 1.62 g(6 mmol)을 hexane 100 mL에 녹여 준비한 후 dry ice/acetone bath 하에서5-methyl-5,10-dihydroindeno[1,2-b]indole의 lithiated solution에 천천히 적가하여 상온에서 밤새 교반하였다. 반응 후 ether/water로 추출하여 유기층의 잔류수분을 MgSO4로 제거 후 진공 건조하여 리간드 화합물 3.82 g (6 mmol)을 얻었으며 이를 1H-NMR에서 확인하였다.
1H NMR (500 MHz, CDCl3): -0.33 (3H, m), 0.86 ~ 1.53 (10H, m), 1.16 (9H, d), 3.18 (2H, m), 4.07 (3H, d), 4.12 (3H, d), 4.17 (1H, d), 4.25 (1H, d), 6.95 ~ 7.92 (16H, m)
2-2 메탈로센 화합물의 제조
상기 2-1에서 합성한 리간드 화합물 3.82 g (6 mmol)을 toluene 100 mL와 MTBE 5 mL에 녹인 후 2.5M n-BuLi hexane solution 5.6 mL(14 mmol)를 dryice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. 또 다른 flask에 ZrCl4(THF)2 2.26 g (6 mmol)을 준비하고 toluene 100ml를 넣어 슬러리로 준비하였다. ZrCl4(THF)2의 toluene slurry를 litiation된 리간드에 dry ice/acetone bath에서 transfer하였다. 상온에서 밤새 교반하였고 violet color로 변화하였다. 반응 용액을 필터하여 LiCl을 제거한 후 얻어진 여액을 진공 건조하여 hexane을 넣고 sonication하였다. 슬러리를 필터하여 filtered solid인 dark violet 의 메탈로센 화합물 3.40 g (yield 71.1mol%)을 얻었다.
1H NMR (500 MHz, CDCl3): 1.74 (3H, d), 0.85 ~ 2.33(10H, m), 1.29(9H, d), 3.87 (3H, s), 3.92 (3H, s), 3.36(2H, m), 6.48 ~ 8.10 (16H, m)
제 2 메탈로센 화합물의 제조 실시예
제조예 3
Figure pat00053
6-클로로헥사놀(6-chlorohexanol)을 사용하여 문헌(Tetrahedron Lett. 2951 (1988))에 제시된 방법으로 t-Butyl-O-(CH2)6-Cl을 제조하고, 여기에 NaCp를 반응시켜 t-Butyl-O-(CH2)6-C5H5를 얻었다(수율 60%, b.p. 80℃ / 0.1 mmHg).
또한, -78℃에서 t-Butyl-O-(CH2)6-C5H5를 THF에 녹이고, 노르말 부틸리튬(n-BuLi)을 천천히 가한 후, 실온으로 승온시킨 후, 8시간 반응시켰다. 그 용액을 다시 -78℃에서 ZrCl4(THF)2(1.70g, 4.50mmol)/THF(30㎖)의 서스펜젼(suspension) 용액에 기 합성된 리튬염(lithium salt) 용액을 천천히 가하고 실온에서 6시간 동안 더 반응시켰다.
모든 휘발성 물질을 진공 건조하고, 얻어진 오일성 액체 물질에 헥산(hexane) 용매를 가하여 걸러내었다. 걸러낸 용액을 진공 건조한 후, 헥산을 가해 저온(-20℃)에서 침전물을 유도하였다. 얻어진 침전물을 저온에서 걸러내어 흰색 고체 형태의 [tBu-O-(CH2)6-C5H4]2ZrCl2 화합물을 얻었다(수율 92%).
1H NMR (300 MHz, CDCl3): 6.28 (t, J = 2.6 Hz, 2 H), 6.19 (t, J = 2.6 Hz, 2 H), 3.31 (t, 6.6 Hz, 2 H), 2.62 (t, J = 8 Hz), 1.7 - 1.3 (m, 8 H), 1.17 (s, 9 H).
13C NMR (CDCl3): 135.09, 116.66, 112.28, 72.42, 61.52, 30.66, 30.61, 30.14, 29.18, 27.58, 26.00.
제 3 메탈로센 화합물의 제조 실시예
제조예 4
Figure pat00054
4-1 리간드 화합물의 제조
건조된 1L shlenk flask에 102.54g (376.69 mmol)의 3-tether Indene을 넣고 아르곤 하에서 450ml의 THF를 주입하였다. 이 용액을 -30℃까지 냉각한 후 173.3ml (119.56 g, d=0.690g/ml)의 2.5 M nBuLi hexane solution을 적가하였다. 반응 혼합물은 천천히 상온으로 올린 후 다음날까지 교반하였다. 이 Lithiated 3-thether Indene solution을 -78℃까지 냉각한 뒤, dimethyldichlorosilicone 24.3g(188.3mmol)을 준비하여 이 schlenk flask에 적가하였다. 주입이 끝난 혼합물은 상온으로 천천히 올린 후 하루동안 교반하고, flask 내에 200ml의 물을 넣어 quenching 하고 유기층을 분리하여 MgSO4로 건조하였다. 그 결과, 115g(191.4 mmol, 101.6%)의 노란색 오일을 얻었다.
NMR 기준 순도(wt%)=100%. Mw=600.99. 1H NMR(500 MHz, CDCl3): -0.53, -0.35, -0.09(6H, t), 1.18(18H, m), 1.41(8H, m), 1.54(4H, m), 1.68(4H, m), 2.58(4H, m), 3.32(4H, m), 6.04(1H, s), 6.26(1H, s), 7.16(2H, m), 7.28(3H, m), 7.41(3H, m).
4-2 메탈로센 화합물의 제조
오븐에 건조한 2L schlenk flask에 상기 3-1에서 합성한 리간드 화합물 191.35 mmol을 넣고 MTBE 4 당량(67.5g, d=0.7404g/ml)과 Toluene 696g(d=0.87g/ml) 용액을 용매에 녹인 다음, 2.1 당량의 nBuLi solution(160.7ml)을 가해 다음날까지 lithiation을 시켰다. 글러브 박스 내에서 72.187g(191.35 mmol)의 ZrCl4(THF)2를 취해 2L schlenk flask에 담고 톨루엔을 넣은 suspension을 준비하였다. 위 두 개의 flask 모두 -78℃까지 냉각시킨 후 ligand anion을 천천히 Zr suspension에 가하였다. 주입이 끝난 후, 반응 혼합물은 천천히 상온까지 올렸다. 이를 하루동안 교반한 후, 슬러리를 아르곤 하에서 필터하고 여과한 후 필터된 고체와 여과액을 모두 진공 가압 하에서 증발시켰다. 115g(191.35mmol)의 리간드로부터 150.0g(198mmol, >99%)의 촉매 전구체가 Filtrate에서 얻어져 톨루엔 용액 상태로 보관하였다(1.9446g/mmol).
NMR 기준 순도(wt%)=100%. Mw=641.05. 1H NMR(500 MHz, CDCl3): 0.87(6H, m), 1.14(18H, m), 1.11-1.59(16H, m), 2.61, 2.81(4H, m), 3.30(4H, m), 5.54(1H, s), 5.74(1H, s), 6.88(1H, m), 7.02(1H, m), 7.28(1H, m), 7.39(1H, d), 7.47(1H, t), 7.60-7.71(1H, m).
제조예 5
Figure pat00055
5-1 리간드 화합물의 제조
(1) Chlorodimethyl(TMCp)silane(CDMTS) 합성
건조된 250mL shlenk flask에 TMCP 6.0ml (40 mmol)을 THF(60ml)에 녹인 후, -78℃로 냉각하였다. n-BuLi 2.5M hexane solution 17ml(42mmol)을 천천히 적가하고 상온에서 하룻밤동안 교반하였다. 별도의 250mL shlenk flask에 dichlorodimethylsilane 4.8ml, 40mmol을 nhexane에 녹이고, -78 ℃로 냉각한 후, 앞서 반응한 TMCP-lithiation 용액을 천천히 주입하였다. 이를 상온에서 하룻밤 동안 교반하고, 감압하에 용매를 제거하였다. 생성된 product를 톨루엔에 용해하고 filtration하여 남아있는 LiCl을 제거하여 yellow liquid 7.0g(33mmol)을 얻었다(yield 83%).
1H NMR(500 MHz, CDCl3): 0.24(6H, s), 1.82(6H, s), 1.98(6H, s), 3.08(1H, s).
(2) 건조된 250mL shlenk flask에 3-(6-(tert-butoxy)hexyl)-1H-indene(T-Ind) 2.72g(10mmol)을 THF 50ml에 녹인 후, n-BuLi 2.5M hexane solution 8.2ml(20.4mmol)을 dryice/acetone bath에서 천천히 적가하였다. 상온에서 overnight 반응 후 red solution을 얻었다. 별도의 250mL shlenk flask에 앞서 합성한 CDMTS 2.15g(10 mmol)을 THF에 녹인 후, 여기에 T-Ind-Li solution을 dryice/acetone bath에서 dropwise feeding 하였다. 상온에서 overnight 반응후 dark brown slurry를 확인하였다. 물로 quenching하고 에테르로 추출하여 4.18g(9.27 mmol)을 얻었다(yield 92.7%).
1H NMR(500 MHz, CDCl3): 0.43(3H, s), -0.15(3H, s), 1.21(9H, s), 1.42-2.08(22H, m), 2.61(1H, s), 3.35-3.38(2H, m), 3.52(1H, s), 6.21(1H, s), 7.17-7.43(4H, m).
5-2 메탈로센 화합물의 제조
상기 5-1에서 합성한 리간드 화합물 4.18g(9.27mmol)을 톨루엔 100ml에 녹이고, MTBE 4.4ml(4 당량)을 추가로 주입한 용액에 n-BuLi 2.5M hexane solution 8.2ml, 20.4mmol을 dryice/acetone bath에 적가하였다. 상온에서 overnight 반응 후 reddish slurry를 얻었다. 글러브 박스에서 ZrCl4(THF)2 3.50g(9.27mmol)을 준비하여 톨루엔 50 ml solution을 만들고 여기에 ligand-Li solution을 dryice/acetone bath 에서 dropwise feeding 하였다. 상온에서 overnight 반응 후 reddish slurry를 확인하였다. Filtration하여 LiCl을 제거한 후 톨루엔을 90% 정도 진공 건조한 후 헥산으로 재결정하였다. 슬러리를 filter하여 yellow filter cake 2.5g(4.1mmol)을 얻었다(yield 44.1%).
1H NMR(500 MHz, CDCl3): 0.93(3H, s), 1.17(12H, s), 1.37-1.63(8H, m), 2.81-2.87(1H, m), 2.93-2.97(1H, m), 3.29-3.31(2H, t), 5.55(1H, s), 7.02-7.57(4H, m).
제조예 6
Figure pat00056
6-1 리간드 화합물의 제조
건조된 250mL shlenk flask에 Indene 27.88g (240 mmol)을 넣고 아르곤 하에서 800ml의 MTBE를 주입하였다. 이 용액을 0℃까지 냉각한 후 115.2ml (288mmol, d=0.690g/ml)의 2.5 M nBuLi hexane solution을 적가하였다. 반응 혼합물은 천천히 상온으로 올린 후 다음날까지 교반하였다. 순도를 높이고 남아있는 nBuLi이 다음반응에 영향을 줄 수 있기 때문에 용매인 MTBE를 모두 증발시키고 아르곤하에서 schlenk filter를 이용하여 Indene Li salt를 담고 THF 용매 600ml에 용해시켰다. 다른 2L schlenk flask에 Silicon Tether 25.09g(92.48mmol)과 THF 700ml의 용액을 준비하여 이 Schlenk flask를 -78℃까지 냉각한 뒤, Lithiated 된 용액을 적가하였다. 주입이 끝난 혼합물은 상온으로 천천히 올린 후 하루동안 교반하고, flask 내에 400ml의 물을 넣어 quenching 하고 유기층을 분리하여 MgSO4로 건조하였다. 그 결과, 35.41g(82.2 mmol, 88.9%)의 노란색 오일을 얻었다.
NMR 기준 순도(wt%)=100%. Mw=430.70. 1H NMR(500 MHz, CDCl3): -0.45, -0.22, -0.07, 0.54(total 3H, s), 0.87(1H, m), 1.13(9H, m), 1.16-1.46(10H, m), 3.25(2H, m), 3.57(1H, m), 6.75, 6.85, 6.90, 7.11, 7.12, 7.19(total 4H, m), 7.22-7.45(4H, m), 7.48-7.51(4H, m).
6-2 메탈로센 화합물의 제조
오븐에 건조한 1L schlenk flask에 상기 6-1에서 합성한 리간드 화합물을 넣고 diethylEther에 녹인 다음, 2.1 당량의 nBuLi solution을 가해 다음날까지 lithiation을 시켰다. 글러브 박스 내에서 2.1당량의 ZrCl4(THF)2를 취해 2L schlenk flask에 담고 diethylether을 넣은 suspension을 준비하였다. 위 두 개의 flask 모두 -78℃까지 냉각시킨 후 ligand anion을 천천히 Zr suspension에 가하였다. 주입이 끝난 후, 반응 혼합물은 천천히 상온까지 올렸다. 이를 하루동안 교반한 후,
혼합물 내의 ether solution을 진공 감압을 통해 용매를 제거하고 이전 용매 정도 부피의 헥산을 가하였다. 이 때 헥산을 가하는 이유는 합성된 촉매 전구체가 헥산에 대한 용해도가 떨어지기 때문에 결정화를 촉진시키기 때문이다. 이 헥산 슬러리를 아르곤 하에서 필터하고 여과한 후 필터된 고체와 여과액을 모두 진공 가압 하에서 증발시켰다. Filter cake와 Filtrate를 각각 NMR을 통하여 촉매 합성 여부를 확인하고 글러브 박스 내에서 계량하고 샘플링하여 수율, 순도를 확인하였다. 35.41g(82.2mmol)의 리간드로부터 36.28g(77.1mmol, 93.8%)의 붉은색 고체를 filter cake으로 얻었다.
NMR 기준 순도(wt%)=100%. Mw=470.76. 1H NMR(500 MHz, CDCl3): 0.88(3H, m), 1.15(9H, m), 1.17-1.47(10H, m), 1.53(4H, d), 1.63(3H, m), 1.81(1H, m), 6.12(2H, m), 7.15(2H, m), 7.22-7.59(8H, m)
<혼성 담지 촉매의 제조 실시예>
실시예 1
1-1 담지체 건조
실리카(Grace Davison사 제조 SYLOPOL 948)를 400℃의 온도에서 12 시간 동안 진공을 가한 상태에서 탈수하였다.
1-2 담지 촉매 제조
실온의 유리반응기에 톨루엔 용액 100 ml를 넣고 준비된 실리카 10g을 투입한 후, 반응기 온도를 40℃로 올리면서 교반하였다. 실리카를 충분히 분산시킨 후, 10 wt% 메틸알루미녹산(MAO)/톨루엔 용액을 60.6ml 투입하고 80℃로 온도를 올린 후 200 rpm으로 16시간 교반하였다. 이 후 온도를 다시 40℃로 낮춘 후 충분한 양의 톨루엔으로 세척하여 반응하지 않은 알루미늄 화합물을 제거하였다. 다시 톨루엔 100 mL를 투입한 후, 상기 제조예 4에서 제조된 메탈로센 촉매 0.5 mmol을 투입하고 1시간 동안 교반시켰다. 반응이 끝난 후, 상기 제조예 3에서 제조된 메탈로센 촉매 0.5 mmol을 투입하고 1시간 동안 교반시켰다. 그리고, 반응이 끝난 후, 상기 제조예 1에서 제조된 메탈로센 촉매 0.5 mmol을 투입하고 2시간 동안 교반시켰다. 반응이 끝난 후, 교반을 멈추고 톨루엔층을 분리하여 제거한 후, 40℃에서 감압하여 남아 있는 톨루엔을 제거하여, 담지 촉매를 제조하였다.
실시예 2
제조예 1에서 제조된 메탈로센 촉매 대신에 제조예 2에서 제조된 메탈로센 촉매 0.5 mmol 를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 담지 촉매를 제조하였다.
실시예 3
제조예 4에서 제조된 메탈로센 촉매 대신에 제조예 5에서 제조된 메탈로센 촉매 0.5 mmol 를 사용한 것을 제외하고는 실시예 2와 동일한 방법으로 담지 촉매를 제조하였다.
비교예 1
실온의 유리반응기에 톨루엔 용액 100 ml를 넣고 준비된 실리카 10g을 투입한 후, 반응기 온도를 40℃로 올리면서 교반하였다. 실리카를 충분히 분산시킨 후, 10 wt% 메틸알루미녹산(MAO)/톨루엔 용액을 60.6ml 투입하고 80℃로 온도를 올린 후 200 rpm으로 16시간 교반하였다. 이 후 온도를 다시 40℃로 낮춘 후 충분한 양의 톨루엔으로 세척하여 반응하지 않은 알루미늄 화합물을 제거하였다. 다시 톨루엔 100 mL를 투입한 후, 상기 제조예 3에서 제조된 메탈로센 촉매 0.5 mmol을 투입하고 1시간 동안 교반시켰다. 반응이 끝난 후, 상기 제조예 1에서 제조된 메탈로센 촉매 0.5 mmol을 투입하고 2시간 동안 교반시켰다. 반응이 끝난 후, 교반을 멈추고 톨루엔층을 분리하여 제거한 후, 40℃에서 감압하여 남아 있는 톨루엔을 제거하여, 담지 촉매를 제조하였다.
비교예 2
제조예 1에서 제조된 메탈로센 촉매 대신에 제조예 2에서 제조된 메탈로센 촉매 0.5 mmol 를 사용한 것을 제외하고는 비교예 1과 동일한 방법으로 담지 촉매를 제조하였다.
비교예 3
제조예 3에서 제조된 메탈로센 촉매 대신에 제조예 6에서 제조된 메탈로센 촉매 0.5 mmol 를 사용한 것을 제외하고는 비교예 2와 동일한 방법으로 담지 촉매를 제조하였다.
비교예 4
제조예 3에서 제조된 메탈로센 촉매 대신에 제조예 4에서 제조된 메탈로센 촉매 0.5 mmol 를 사용한 것을 제외하고는 비교예 2와 동일한 방법으로 담지 촉매를 제조하였다.
비교예 5
제조예 3에서 제조된 메탈로센 촉매 대신에 제조예 5에서 제조된 메탈로센 촉매 0.5 mmol 를 사용한 것을 제외하고는 비교예 2와 동일한 방법으로 담지 촉매를 제조하였다.
시험예 1: 수소/에틸렌 블렌딩 중합(반회분식)
상기 실시예 1 내지 3 및 비교예 1 내지 5 에서 제조한 각각의 담지 촉매 30 mg을 드라이박스에서 정량하여 50 mL의 유리병에 각각 담은 후 고무 격막으로 밀봉하여 드라이박스에서 꺼내어 주입할 촉매를 준비하였다. 중합은 기계식 교반기가 장착된 온도 조절이 가능하고 고압에서 이용되는 2L 금속 합금 반응기에서 수행하였다.
이 반응기에 1.0 mmol 트리에틸알루미늄(triethylaluminum)이 들어 있는 헥산 1 L를 주입하고, 상기 준비한 각각의 담지 촉매를 반응기에 공기 접촉 없이 투입한 후, 80℃에서 기체 에틸렌 단량체를 40 Kgf/cm2의 압력으로, 수소 기체를 에틸렌 단량체 대비 0.7 vol%로 계속적으로 가하면서 1시간 동안 중합하였다. 중합의 종결은 먼저 교반을 멈춘 후 에틸렌을 배기시켜 제거함으로써 완료시켰다.
이로부터 얻어진 중합체는 중합 용매를 여과시켜 대부분을 제거한 후 80 ℃ 진공 오븐에서 4 시간 동안 건조시켰다.
상기에서 제조한 폴리올레핀의 중합 활성, MI, MFRR, Wax 발생량을 하기 기준에 따라 측정하여 표 1에 나타내었다.
1) MI(5): 수직 중력방향으로 5kg 힘을 가하는 조건에서, 190℃, 10분 동안 2.1mm orifice 를 통과하여 나오는 멜팅된 폴리머 수지의 무게를 ASTM D1238기준에 따라 측정하였다.
2) MFRR(21.6/5): 상기 1)과 동일하게 수직 중력방향으로 21.6kg 힘을 가하는 조건에서, 190℃, 10분 동안 2.1mm orifice 를 통과하여 나오는 멜팅된 폴리머 수지의 무게를, 수직 중력방향으로 5kg 힘을 가하는 조건에서, 190℃, 10분 동안 2.1mm orifice 를 통과하여 나오는 멜팅된 폴리머 수지의 무게로 나누어 산출하였다.
3) Wax 발생량: 공정 헥산 100cc를 24시간 settling하여 가라앉은 wax 부피 함량을 측정하였다.
활성
(kgPE/gCat.2hr)
MI(5) MFRR(21.6/5) Wax 발생량
(cc)
실시예 1-1 6.8 18.2 - 5
실시예 2-1 7.7 0.89 47 10
실시예 3-1 7.0 0.89 32 10
비교예 1-1 6.2 15.9 - 40
비교예 2-1 6.5 0.59 24 50
비교예 3-1 4.9 0.55 23 45
비교예 4-1 3.6 0.27 57 20
비교예 5-1 4.5 0.30 36 15
시험예 2: 수소/에틸렌 블렌딩 중합(연속 회분식 )
도 1에 나타낸 바와 같은 2 기의 0.2 m3 용량의 반응기로 구성된 다단 연속식 CSTR 반응 장치를 준비하였다.
제 1 반응기(R1)에 헥산 23 kg/hr, 에틸렌 7 kg/hr, 수소 2.0 g/hr, 트리에틸알루미늄(TEAL) 30 mmol/hr의 유량으로 각각 주입되고, 또한 상기 실시예 1 내지 3 및 비교예 1 내지 2 에서 제조한 혼성 담지 메탈로센 촉매가 2 g/hr (170 μmol/hr)로 주입되었다. 이때 상기 제 1 반응기는 80℃로 유지되고, 압력은 8 bar로 유지되었으며, 반응물의 체류시간은 2.5 시간으로 유지시켰고, 반응기 내 일정 액위를 유지하면서 연속적으로 중합체를 포함한 슬러리 혼합물이 제 2 반응기로 넘어가도록 하였다.
제 2 반응기(R2)에 헥산 25 kg/hr, 에틸렌 6 kg/hr, 1-부텐 15 cc/min, 트리에틸알루미늄(TEAL) 30 mmol/hr의 유량으로 주입되고, 제조예 1에 따른 혼성 담지 메탈로센 촉매 2 g/hr (170 μmol/hr)와 제조예 2에 따른 분자량 조절제(MwE)가 34 μmol/hr로 주입되었다. 제 2 반응기는 78℃로 유지되고, 압력은 6 bar로 유지되었으며, 반응물의 체류시간은 1.5 시간으로 유지시켰고, 반응기 내 일정 액위를 유지하면서 연속적으로 중합체 혼합물을 포스트 반응기(post reactor)로 넘어가도록 하였다.
상기 포스트 반응기는 75℃로 유지되고, 미반응 단량체가 중합되었다. 이후 중합 생성물은 용매 제거 설비 및 건조기를 거쳐 최종 폴리에틸렌으로 제조되었다. 제조된 폴리에틸렌은 칼슘스테아레이트(두본산업 제조) 1000 ppm 및 열안정제 21B(송원산업 제조) 2000 ppm과 혼합된 다음, 펠렛으로 만들어졌다.
상기에서 제조한 폴리올레핀의 중합 활성, HLMI, 밀도, Wax 발생량, FNCT 를 하기 기준에 따라 측정하여 표 2에 나타내었다.
1) MI: 수직 중력방향으로 21.6kg 힘을 가하는 조건에서, 190℃, 10분 동안 2.1mm orifice 를 통과하여 나오는 멜팅된 폴리머 수지의 무게를 ASTM D1238기준에 따라 측정하였다.
2) Wax 발생량: 공정 헥산 100cc를 24시간 settling하여 가라앉은 wax 부피 함량을 측정하였다.
3) 내응력균열성(FNCT): 80℃, 60MPa, IGEPAL CA-630 10% solution 조건에서 ASTM 기준에 따라 측정하였다.
활성
(kgPE/gSilica)
MI 밀도 Wax 발생량
(cc)
FNCT
(hr)
실시예 1-2 18 16.0 0.942 5 326
실시예 2-2 16 16.2 0.940 10 >1000
실시예 3-2 16 15.8 0.941 10 804
비교예 1-2 10 15.7 0.941 40 110
비교예 2-2 13 14.8 0.940 50 317
상기 표 1 및 표 2를 참조하면, 3종의 메탈로센 화합물을 혼성 담지하여 제조한 촉매를 사용한 실시예 1 내지 3의 경우, 2종의 메탈로센 화합물을 혼성 담지하여 제조한 촉매를 사용한 비교예 1 내지 5에 비하여 왁스의 발생량을 현저히 저감시킬 수 있었고, 매우 높은 내응력 균열성(Full Notch Creep Test, FNCT)을 나타냄을 확인할 수 있다.
R1: 제 1 반응기
R2: 제 2 반응기
Rp: 포스트 반응기
C1: 제 1 혼성 담지 메탈로센 촉매
C2: 제 2 혼성 담지 메탈로센 촉매
M1: 제 1 올레핀계 단량체
M2: 제 2 올레핀계 단량체
MwE: 분자량 조절제

Claims (11)

  1. 하기 화학식 1로 표시되는 제 1 메탈로센 화합물 1종 이상;
    하기 화학식 3으로 표시되는 제 2 메탈로센 화합물 1종 이상;
    하기 화학식 4로 표시되는 제 3 메탈로센 화합물 1종 이상;
    조촉매 화합물; 및
    담체를 포함하는 혼성 담지 메탈로센 촉매:
    [화학식 1]
    Figure pat00057

    상기 화학식 1에서,
    A는 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, C7 내지 C20의 아릴알킬기, C1 내지 C20의 알콕시기, C2 내지 C20의 알콕시알킬기, C3 내지 C20의 헤테로시클로알킬기, 또는 C5 내지 C20의 헤테로아릴기이고;
    D는 -O-, -S-, -N(R)- 또는 -Si(R)(R')- 이고, 여기서 R 및 R'은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, 또는 C6 내지 C20의 아릴기이고;
    L은 C1 내지 C10의 직쇄 또는 분지쇄 알킬렌기이고;
    B는 탄소, 실리콘 또는 게르마늄이고;
    Q는 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이고;
    M은 4족 전이금속이며;
    X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네이트기이고;
    C1 C2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식 2a, 화학식 2b 또는 하기 화학식 2c 중 하나로 표시되고, 단, C1 C2가 모두 화학식 2c인 경우는 제외하며;
    [화학식 2a]
    Figure pat00058

    [화학식 2b]
    Figure pat00059

    [화학식 2c]
    Figure pat00060

    상기 화학식 2a, 2b 및 2c에서, R1 내지 R17 및 R1' 내지 R9'는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 실릴알킬기, C1 내지 C20의 알콕시실릴기, C1 내지 C20의 알콕시기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이며, 상기 R10 내지 R17 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있고;
    [화학식 3]
    (Cp1Ra)n(Cp2Rb)M1Z1 3-n
    상기 화학식 3에서,
    M1은 4족 전이금속이고;
    Cp1 및 Cp2는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디엔닐, 인데닐, 4,5,6,7-테트라하이드로-1-인데닐, 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
    Ra 및 Rb는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고;
    Z1은 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시, 또는 C7 내지 C40의 아릴알콕시이고;
    n은 1 또는 0 이고;
    [화학식 4]
    Figure pat00061

    상기 화학식 4에서,
    M2는 4족 전이 금속이고;
    B는 탄소, 실리콘 또는 게르마늄이고;
    Q1 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬기, 또는 탄소수 1 내지 20의 알콕시로 치환된 탄소수 1 내지 20의 알킬기이고;
    X3 및 X4는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네이트기이고;
    C3 및 C4는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식 4a, 또는 하기 화학식 4b 중 하나로 표시되고,
    [화학식 4a]
    Figure pat00062

    [화학식 4b]
    Figure pat00063

    상기 화학식 4a 및 4b에서, R18 내지 R27 는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬기, N 또는 O의 헤테로 원자를 포함하는 C3 내지 C20의 시클로알킬기, C6 내지 C20의 아릴기, 또는 탄소수 1 내지 20의 알콕시로 치환된 탄소수 1 내지 20의 알킬기이며,
    상기 Q1, Q2, 및 R18 내지 R27 중 적어도 하나 이상은 탄소수 1 내지 20의 알콕시로 치환된 탄소수 1 내지 20의 알킬기이다.
  2. 제1항에 있어서, 상기 화학식 1의 L은 C4 내지 C8의 직쇄 또는 분지쇄 알킬렌기인 혼성 담지 메탈로센 촉매.
  3. 제1항에 있어서, 상기 화학식 1의 A는 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 메톡시메틸기, tert-부톡시메틸기, 1-에톡시에틸기, 1-메틸-1-메톡시에틸기, 테트라하이드로피라닐기, 또는 테트라하이드로퓨라닐기인 혼성 담지 메탈로센 촉매.
  4. 제1항에 있어서, 상기 화학식 1로 표시되는 제 1 메탈로센 화합물은 하기 구조식들 중 하나인 혼성 담지 메탈로센 촉매:
    Figure pat00064
    Figure pat00065

    Figure pat00066
    Figure pat00067

    Figure pat00068
    Figure pat00069

    Figure pat00070
    Figure pat00071

    Figure pat00072
    Figure pat00073

    Figure pat00074
    Figure pat00075

    Figure pat00076
    Figure pat00077

    Figure pat00078
    Figure pat00079

    Figure pat00080
    Figure pat00081

    Figure pat00082

  5. 제1항에 있어서, 상기 화학식 3으로 표시되는 제 2 메탈로센 화합물은 하기 구조식들 중 하나인 혼성 담지 메탈로센 촉매:
    Figure pat00083
    Figure pat00084
    Figure pat00085
    Figure pat00086
    Figure pat00087

  6. 제1항에 있어서, 상기 화학식 4로 표시되는 제 3 메탈로센 화합물은 하기 구조식들 중 하나인 혼성 담지 메탈로센 촉매:
    Figure pat00088
    Figure pat00089

    Figure pat00090
    Figure pat00091

    Figure pat00092
    Figure pat00093

    Figure pat00094

  7. 제1항에 있어서, 상기 조촉매 화합물은 하기 화학식 5의 제 1 조촉매, 및 하기 화학식 6의 제 2 조촉매로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 혼성 담지 메탈로센 촉매:
    [화학식 5]
    -[Al(R28)-O-]k-
    화학식 5에서, R28은 각각 독립적으로 할로겐, 할로겐 치환 또는 비치환된 탄소수 1 내지 20의 하이드로카빌기이고, k는 2 이상의 정수이고,
    [화학식 6]
    T+[BG4]-
    화학식 6에서, T+은 +1가의 다원자 이온이고, B는 +3 산화 상태의 붕소이고, G는 각각 독립적으로 하이드라이드기, 디알킬아미도기, 할라이드기, 알콕사이드기, 아릴옥사이드기, 하이드로카빌기, 할로카빌기 및 할로-치환된 하이드로카빌기로 이루어진 군에서 선택되고, 상기 G는 20개 이하의 탄소를 가지나, 단 하나 이하의 위치에서 G는 할라이드기이다.
  8. 제1항에 있어서, 상기 제 1 메탈로센 화합물, 제 2 메탈로센 화합물 및 제 3 메탈로센 화합물의 전이금속 대 담체의 질량비는 1 : 10 내지 1 : 1,000 인 혼성 담지 메탈로센 촉매.
  9. 제1항에 있어서, 상기 조촉매 화합물 대 담체의 질량비는 1 : 1 내지 1 : 100 인 혼성 담지 메탈로센 촉매.
  10. 제1항의 혼성 담지 메탈로센 촉매의 존재 하에, 올레핀 단량체를 중합 반응시키는 단계를 포함하는 폴리올레핀의 제조 방법.
  11. 제 10 항에 있어서, 상기 올레핀 단량체는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이토센, 노보넨, 노보나디엔, 에틸리덴노보덴, 페닐노보덴, 비닐노보덴, 디사이클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-헥사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠 및 3-클로로메틸스티렌으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 폴리올레핀의 제조 방법.
KR1020160022079A 2016-02-24 2016-02-24 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법 KR102002983B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020160022079A KR102002983B1 (ko) 2016-02-24 2016-02-24 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법
EP17756713.8A EP3348585B1 (en) 2016-02-24 2017-01-12 Supported hybrid metallocene catalyst and polyolefin preparation method using same
PCT/KR2017/000413 WO2017146375A1 (ko) 2016-02-24 2017-01-12 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법
JP2018517348A JP6711906B2 (ja) 2016-02-24 2017-01-12 混成担持メタロセン触媒およびこれを利用したポリオレフィンの製造方法
US15/765,690 US11091568B2 (en) 2016-02-24 2017-01-12 Hybrid supported metallocene catalyst and polyolefin preparation method using same
CN201780003916.4A CN108350110B (zh) 2016-02-24 2017-01-12 混杂负载型茂金属催化剂及使用其制备聚烯烃的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160022079A KR102002983B1 (ko) 2016-02-24 2016-02-24 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법

Publications (2)

Publication Number Publication Date
KR20170099691A true KR20170099691A (ko) 2017-09-01
KR102002983B1 KR102002983B1 (ko) 2019-07-23

Family

ID=59686318

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160022079A KR102002983B1 (ko) 2016-02-24 2016-02-24 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법

Country Status (6)

Country Link
US (1) US11091568B2 (ko)
EP (1) EP3348585B1 (ko)
JP (1) JP6711906B2 (ko)
KR (1) KR102002983B1 (ko)
CN (1) CN108350110B (ko)
WO (1) WO2017146375A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124835A1 (ko) * 2017-12-20 2019-06-27 주식회사 엘지화학 폴리에틸렌 공중합체 및 이의 제조 방법
KR20190074963A (ko) * 2017-12-20 2019-06-28 주식회사 엘지화학 폴리에틸렌 공중합체 및 이의 제조 방법
WO2020091177A1 (ko) * 2018-11-02 2020-05-07 주식회사 엘지화학 신규 전이금속 화합물 및 이를 이용한 폴리프로필렌의 제조방법
KR20200090039A (ko) * 2019-01-18 2020-07-28 주식회사 엘지화학 에틸렌-알파올레핀의 제조 방법 및 사출 성형품의 제조 방법
US11370851B2 (en) 2018-11-02 2022-06-28 Lg Chem, Ltd. Transition metal compound and method for preparing polypropylene using the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102139364B1 (ko) 2016-12-20 2020-07-29 주식회사 엘지화학 올레핀 중합체 및 이의 제조 방법
KR20180083247A (ko) * 2017-01-12 2018-07-20 주식회사 엘지화학 올레핀 중합체 및 이의 제조 방법
US10683376B2 (en) 2017-11-07 2020-06-16 Nova Chemicals (International) S.A. Manufacturing ethylene interpolymer products at higher production rate
US20230110235A1 (en) 2020-08-12 2023-04-13 Lg Chem, Ltd. Method for preparing supported metallocene catalyst, supported metallocene catalyst, and method for preparing polyolefin using the same
WO2024039223A1 (ko) * 2022-08-18 2024-02-22 주식회사 엘지화학 폴리에틸렌 및 그의 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150066484A (ko) * 2013-12-06 2015-06-16 주식회사 엘지화학 메탈로센 화합물
KR20150139462A (ko) * 2014-06-03 2015-12-11 주식회사 엘지화학 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69328996T2 (de) 1992-09-04 2000-11-16 Bp Chem Int Ltd Katalysatorzusammensetzung und Verfahren zur Herstellung von Polyolefinen
DE19517851A1 (de) 1995-05-16 1996-11-21 Hoechst Ag Organometallverbindung
US6759361B2 (en) * 2001-06-04 2004-07-06 Equistar Chemicals, Lp Aluminoboronate activators for single-site olefin polymerization catalysts
US7619047B2 (en) 2006-02-22 2009-11-17 Chevron Phillips Chemical Company, Lp Dual metallocene catalysts for polymerization of bimodal polymers
KR101049261B1 (ko) 2009-09-29 2011-07-13 주식회사 엘지화학 3종 혼성 메탈로센 담지 촉매 및 그의 제조방법
GB0918736D0 (en) 2009-10-26 2009-12-09 Isis Innovation Catalysts
KR101412118B1 (ko) 2010-12-29 2014-07-02 주식회사 엘지화학 혼성 담지 메탈로센 촉매의 제조방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매
KR101623485B1 (ko) 2013-08-01 2016-05-23 주식회사 엘지화학 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하는 올레핀계 중합체의 제조방법
KR101650092B1 (ko) * 2013-08-01 2016-08-22 주식회사 엘지화학 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하는 올레핀계 중합체의 제조방법
WO2015056975A1 (ko) 2013-10-18 2015-04-23 주식회사 엘지화학 혼성 담지 메탈로센 촉매
WO2015056974A1 (ko) 2013-10-18 2015-04-23 주식회사 엘지화학 혼성 담지 메탈로센 촉매의 제조방법
KR101644113B1 (ko) * 2013-10-18 2016-07-29 주식회사 엘지화학 혼성 담지 메탈로센 촉매
KR101631700B1 (ko) 2013-10-18 2016-06-17 주식회사 엘지화학 혼성 담지 메탈로센 촉매의 제조방법
KR101670468B1 (ko) 2013-11-18 2016-10-28 주식회사 엘지화학 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
KR101637026B1 (ko) 2013-11-18 2016-07-07 주식회사 엘지화학 메탈로센 담지 촉매 및 이를 이용하는 폴리올레핀의 제조방법
KR101685662B1 (ko) * 2013-11-21 2016-12-12 주식회사 엘지화학 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
WO2015186970A1 (ko) 2014-06-03 2015-12-10 주식회사 엘지화학 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
WO2015194813A1 (ko) * 2014-06-16 2015-12-23 주식회사 엘지화학 내환경 응력 균열성이 우수한 폴리올레핀
KR101592436B1 (ko) * 2014-06-16 2016-02-05 주식회사 엘지화학 내환경 응력 균열성이 우수한 폴리올레핀
JP6420911B2 (ja) 2014-09-05 2018-11-07 エルジー・ケム・リミテッド 混成担持触媒およびこれを用いるオレフィン系重合体の製造方法
KR101618460B1 (ko) 2014-11-28 2016-05-18 롯데케미칼 주식회사 올레핀 중합용 담지 촉매 및 이를 이용하여 제조된 올레핀 중합체의 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150066484A (ko) * 2013-12-06 2015-06-16 주식회사 엘지화학 메탈로센 화합물
KR20150139462A (ko) * 2014-06-03 2015-12-11 주식회사 엘지화학 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124835A1 (ko) * 2017-12-20 2019-06-27 주식회사 엘지화학 폴리에틸렌 공중합체 및 이의 제조 방법
KR20190074963A (ko) * 2017-12-20 2019-06-28 주식회사 엘지화학 폴리에틸렌 공중합체 및 이의 제조 방법
CN110869399A (zh) * 2017-12-20 2020-03-06 Lg化学株式会社 聚乙烯共聚物及其制备方法
US11225568B2 (en) 2017-12-20 2022-01-18 Lg Chem, Ltd. Polyethylene copolymer and method for preparing same
CN110869399B (zh) * 2017-12-20 2022-06-07 Lg化学株式会社 聚乙烯共聚物及其制备方法
WO2020091177A1 (ko) * 2018-11-02 2020-05-07 주식회사 엘지화학 신규 전이금속 화합물 및 이를 이용한 폴리프로필렌의 제조방법
US11370851B2 (en) 2018-11-02 2022-06-28 Lg Chem, Ltd. Transition metal compound and method for preparing polypropylene using the same
KR20200090039A (ko) * 2019-01-18 2020-07-28 주식회사 엘지화학 에틸렌-알파올레핀의 제조 방법 및 사출 성형품의 제조 방법

Also Published As

Publication number Publication date
CN108350110B (zh) 2020-09-01
US11091568B2 (en) 2021-08-17
JP6711906B2 (ja) 2020-06-17
WO2017146375A1 (ko) 2017-08-31
EP3348585B1 (en) 2019-06-12
CN108350110A (zh) 2018-07-31
EP3348585A4 (en) 2018-11-14
US20190085100A1 (en) 2019-03-21
EP3348585A1 (en) 2018-07-18
KR102002983B1 (ko) 2019-07-23
JP2018529826A (ja) 2018-10-11

Similar Documents

Publication Publication Date Title
KR102002983B1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법
KR101705340B1 (ko) 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
KR101644113B1 (ko) 혼성 담지 메탈로센 촉매
KR101631700B1 (ko) 혼성 담지 메탈로센 촉매의 제조방법
KR101637026B1 (ko) 메탈로센 담지 촉매 및 이를 이용하는 폴리올레핀의 제조방법
KR101685662B1 (ko) 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
KR20150015789A (ko) 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하는 올레핀계 중합체의 제조방법
KR101768193B1 (ko) 메탈로센 담지 촉매 및 이를 이용하는 폴리올레핀의 제조 방법
KR20150066484A (ko) 메탈로센 화합물
KR101927460B1 (ko) 혼성 담지 촉매 및 이를 이용하는 올레핀 중합체의 제조 방법
KR101760494B1 (ko) 메탈로센 담지 촉매 및 이를 이용하는 폴리올레핀의 제조방법
KR20180067945A (ko) 혼성 담지 메탈로센 촉매
KR20170106192A (ko) 에틸렌 슬러리 중합용 혼성 담지 촉매 시스템 및 이를 이용한 에틸렌 중합체의 제조 방법
KR20150057964A (ko) 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하는 올레핀계 중합체의 제조방법
KR101725351B1 (ko) 혼성 담지 메탈로센 촉매의 제조방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매
KR20180083247A (ko) 올레핀 중합체 및 이의 제조 방법
US10550207B2 (en) Method for preparing supported hybrid metallocene catalyst, and supported hybrid metallocene catalyst using the same
KR20160143552A (ko) 메탈로센 담지 촉매 및 이를 이용하는 폴리올레핀의 제조 방법
KR101953768B1 (ko) 혼성 담지 메탈로센 촉매의 제조방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매
KR101949456B1 (ko) 혼성 담지 메탈로센 촉매의 제조 방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매
KR20200090041A (ko) 혼성 담지 메탈로센 촉매의 제조 방법 및 이를 이용한 올레핀 중합체의 제조 방법

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant