WO2015056975A1 - 혼성 담지 메탈로센 촉매 - Google Patents

혼성 담지 메탈로센 촉매 Download PDF

Info

Publication number
WO2015056975A1
WO2015056975A1 PCT/KR2014/009681 KR2014009681W WO2015056975A1 WO 2015056975 A1 WO2015056975 A1 WO 2015056975A1 KR 2014009681 W KR2014009681 W KR 2014009681W WO 2015056975 A1 WO2015056975 A1 WO 2015056975A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
substituted
aryl
alkyl
Prior art date
Application number
PCT/KR2014/009681
Other languages
English (en)
French (fr)
Inventor
홍대식
권헌용
송은경
이용호
조경진
이기수
최이영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140138348A external-priority patent/KR101644113B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2016518095A priority Critical patent/JP6282341B2/ja
Priority to EP14854760.7A priority patent/EP3037167B1/en
Priority to US15/026,544 priority patent/US9926395B2/en
Publication of WO2015056975A1 publication Critical patent/WO2015056975A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls

Definitions

  • the present invention relates to a common supported metallocene catalyst. More specifically, the present invention relates to a common supported metallocene catalyst that can be used for preparing an olepin-based polymer.
  • the present application is directed to Korean Patent Application Nos. 10-2013-0124518 and 2014, filed with the Korean Patent Office on October 18, 2013. Claims the benefit of the filing date of Korean Patent Application No. 10-2014-0138348 filed with the Korea Intellectual Property Office on October 14, the entire contents of which are incorporated herein.
  • the metallocene catalyst is composed of a combination of a main catalyst composed mainly of transition metal compounds and a cocatalyst composed of organometallic compounds composed mainly of aluminum.
  • a catalyst is a homogeneous complex catalyst and is a single site catalyst.
  • the polymer has a narrow molecular weight distribution according to the characteristics of a single active site and a homogeneous composition of the comonomer, and the stereoregularity, copolymerization characteristics, molecular weight, It has the property to change the crystallinity.
  • U.S. Patent 5,0 2; 562 describes a process for preparing a polymerization catalyst by supporting two different transition metal catalysts on one supported catalyst. It is a method of producing a bimodal distribution polymer by supporting a titanium (Ti) -based Ziegler-Natta catalyst generating high molecular weight and a zirconium (Zr) -based metallocene catalyst generating low molecular weight on one support. As a result, the supporting process is complicated and the morphology of the polymer is degraded by the promoter.
  • Ti titanium
  • Zr zirconium
  • U.S. Patent 5,525,678 discloses metallocene compounds and nonmetallocene compounds. It describes a method of using a catalyst system for olefinic polymerization in which a high molecular weight polymer and a low molecular weight polymer can be simultaneously polymerized by simultaneously supporting on a carrier. This has the disadvantage that the metallocene compound and the non-metallocene compound must be separately supported, and the carrier must be pretreated with various compounds for supporting reaction.
  • Patent No. 5,914,289 describes a method for controlling the molecular weight and molecular weight distribution of a polymer by using a metallocene catalyst supported on each carrier, but the amount of solvent used and the time required for preparing the supported catalyst are high. The hassle of having to support each of the metallocene catalysts to be used on a carrier was followed.
  • Korean Patent Application No. 2003-12308 discloses a method of controlling the molecular weight distribution by loading a binuclear metallocene catalyst and a mononuclear metallocene catalyst on a carrier together with an activator to change the combination of the catalysts in the reactor and integrating them. have.
  • this method is limited in realizing the characteristics of each catalyst at the same time, and also has a disadvantage in that the metallocene catalyst portion is liberated in the carrier component of the finished catalyst, causing fouling.
  • the present 'invention is to provide a supported metallocene catalyst heunseong metal capable of producing an olefin polymer having an increased activity is excellent and the high molecular weight and desired physical properties.
  • the present invention includes at least one first metallocene compound represented by Formula 1, at least one second metallocene compound selected from compounds represented by Formulas 3 to 5, a promoter compound and a carrier Provided is a commonly supported metallocene catalyst.
  • the common supported metallocene catalyst according to the present invention comprises two different kinds of metallocene compounds of ⁇ " , in particular, one metallocene compound is an indeno indole derivative and / or fluorene (The fluorene) derivative exhibits high polymerization activity even when supported by using a ligand compound having a crosslinked structure formed by a bridge, and has excellent activity and can be used for polymerization of an ultrahigh molecular weight olefin polymer.
  • the common .supported metallocene catalyst according to the present invention is at least one ' first metallocene compound represented by formula 1, and a second metallocene compound selected from compounds represented by formulas 3 to 5 As mentioned above, it contains a promoter compound and a support
  • Chemical Formula 1 A is hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, C7 to C20 alkylaryl group, C7 to C20 arylalkyl group, C1 to C20 alkoxy group, C2 to C20 A C20 alkoxyalkyl group, a C3 to C20 heterocycloalkyl group, or a C5 to C20 heteroaryl group;
  • D is-, -S-, -N (R)-or -Si (R) (R ')-, wherein R and R' are the same or different from each other, and are each independently hydrogen, halogen, C1 to C20 An alkyl group of C2, an alkenyl group of C2 to C20, or an aryl group of C6 to C20;
  • L is a C1 to C10 straight or branched chain alkylene group
  • B is carbon, silicon or germanium
  • Q is hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, C7 to C20 al3 ⁇ 4aryl group, or C7 to C20 arylalkyl group;
  • M is a Group 4 transition metal
  • X 1 and X 2 are the same as or different from each other, and each independently halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, nitro group, amido group, C1 to C20 alkylsilyl group , A C1 to C20 alkoxy group, or a C1 to C20 sulfonate group;
  • C 1 and C 2 are the same as or different from each other, and are each independently represented by one of the following Chemical Formula 2a, Chemical Formula 2b, or Chemical Formula 2c, except that C 1 and C 2 are both Chemical Formula 2c;
  • R1 to R17 and R1 'to R9' are the same as or different from each other, and each independently hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C1 to C20 alkyl Silyl group, C1 to C20 silylalkyl group, C1 to C20 alkoxysilyl group, C1 to C20 alkoxy group, C6 to C20 aryl group, C7 to C20 alkylaryl group, or C7 to C20 arylalkyl group, Two or more adjacent to each other of R10 to R17 may be linked to each other to form a substituted or unsubstituted aliphatic or aromatic ring;
  • M 1 is a Group 4 transition metal
  • Cp 1 and Cp 2 are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl, and fluorenyl radicals One, they may be substituted with a hydrocarbon of 1 to 20 carbon atoms;
  • R a and R b are the same as or different from each other, and each independently hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 Alkenyl from C20, alkylaryl from C7 to C40, C7-C40 arylalkyl, C8-C40 arylalkenyl, or C2-C10 alkynyl;
  • is a halogen atom, ci to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene, Substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy;
  • n 1 or 0;
  • M 2 is a Group 4 transition metal
  • Cp 3 and Cp 4 are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl and polorerenyl radicals They may be substituted with a hydrocarbon having 1 to 20 carbon atoms;
  • R c and R d are the same as or different from each other, and each independently hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 Alkenyl to C20, alkylaryl of C7 to C40, arylalkyl of C7 to C40, arylalkenyl of C8 to C40, or alkynyl of C2 to C10;
  • Z 2 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene , Substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy;
  • B 1 cross-links the Cp 3 R c ring and the Cp 4 R d ring, or one Cp 4 R d ring
  • n 1 or 0;
  • M 3 is a Group 4 transition metal
  • Cp 5 is any one selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl fluorenyl radicals, which are to be substituted with hydrocarbons having 1 to 20 carbon atoms Can be;
  • R e is hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 to C20 alkenyl, C7 to C40 alkylaryl C7 to C40 arylalkyl, C8 to C40 arylalkenyl, or C2 to C10 alkynyl;
  • Z 3 is a halogen atom, C 1 to C 20 alkyl, C 2 to C 10 alkenyl, C 7 to
  • C40 alkylaryl C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene, substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 aryl Alkoxy;
  • B 2 is at least one or a combination of carbon, germanium, silicon, phosphorus or nitrogen atom containing radicals which crosslink the Cp 5 R e ring and J;
  • J is any one selected from the group consisting of NR f , 0, PR f and S, wherein R f is C1 to C20 alkyl, aryl, substituted alkyl or substituted aryl.
  • the alkyl group of C1 to C20 includes a linear or branched alkyl group, and specifically, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, pentyl group, nuclear group, heptyl group, Octyl group etc. can be mentioned, It is not limited to this.
  • the alkenyl group of C2 to C20 includes a straight or branched alkenyl group, and specifically, may include an allyl group, ethenyl group, propenyl group, butenyl group, pentenyl group, and the like, but is not limited thereto.
  • the C6 to C20 aryl groups include monocyclic or condensed aryl groups, and specifically include phenyl groups, biphenyl groups, naphthyl groups, phenanthrenyl groups, and fluorenyl groups, but are not limited thereto.
  • the C5 to C20 heteroaryl group includes a monocyclic or condensed heteroaryl group, carbazolyl group, pyridyl group, quinoline group, isoquinoline group, Thiophenyl group, furanyl group, imidazole group, oxazolyl group, thiazolyl group, triazine group, tetrahydropyranyl group, tetrahydrofuranyl group, etc. are mentioned, It is not limited to this.
  • alkoxy group for C1 to C20 examples include a methoxy group, an ethoxy group, a phenyloxy group, a cyclonuxyloxy group, and the like, but are not limited thereto.
  • Group 4 transition metal examples include titanium, zirconium, hafnium, and the like, but are not limited thereto.
  • R1 to R17 and R1 'of the formulas 2a, 2b and 2c are each independently hydrogen, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, pentyl group, nuclear group, heptyl group, octyl group, phenyl group, halogen group, trimethylsilyl group , Triethylsilyl group, tripropylsilyl group, tributylsilyl group, triisopropylsilyl group, trimethylsilylmethyl group, meso groups, or ethoxy groups are more preferred, but are not limited thereto.
  • L of Formula 1 is more preferably a straight or branched chain alkylene group of C4 to C8, but is not limited thereto.
  • the alkylene group may be substituted or unsubstituted with an alkyl group of C1 to C20, an alkenyl group of C2 to C20, or an aryl group of C6 to C20.
  • a in Formula 1 is hydrogen, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert- butyl group, mesoxymethyl group, tert-butoxy methyl group, 1-ethoxyethyl group, 1-methyl It is preferable that it is a 1-methoxyethyl group, a tetrahydropyranyl group, or a tetrahydrofuranyl group, but it is not limited to this.
  • B of Formula 1 is preferably silicon, but is not limited thereto.
  • the first metallocene compound of Chemical Formula 1 is a non-covalent electron pair which forms a structure in which an indeno indole derivative and / or a fluorene derivative are crosslinked by a bridge, and may act as a Lewis base on the ligand structure. By having it, it is supported on the surface having the Lewis acid characteristic of the carrier and shows high polymerization activeol even when it is supported. It is also highly active as it contains an electronically rich indeno indole group and / or a pluorene group, and has low hydrogen reaction properties due to proper steric hindrance and the electronic effect of the ligand, and high hydrogen even in the presence of hydrogen. Activity is maintained.
  • the beta-hydrogen of the polymer chain in which the nitrogen atom of the indeno indole derivative is grown is stabilized by hydrogen bonding, thereby inhibiting beta-hydrogen elimination, thereby polymerizing an ultra high molecular weight olefin polymer.
  • specific examples of the compound represented by Chemical Formula 2a may include a compound represented by one of the following structural formulas, but
  • the compound of Formula 2c Specific examples include compounds represented by one of the following structural formulae, but
  • the first metallocene compound of Chemical Formula 1 is excellent in active activity and may polymerize a high molecular weight olefin polymer. In particular, even when used on a carrier, By exhibiting polymerization activity, an ultrahigh molecular weight polyolefin polymer can be produced.
  • the i-metallocene compound of Formula 1 according to the present invention exhibits low hydrogen reaction properties. Still high activity allows the addition of ultra high molecular weight olefinic polymers. Therefore, an olefin polymer that satisfies high molecular weight properties without deterioration of activity can be produced even when used in combination with a catalyst having different properties, thereby including an olefinic polymer having a wide molecular weight distribution while containing an olefinic polymer of the polymer. It can be manufactured easily.
  • the first metallocene compound of Chemical Formula 1 may be prepared by connecting an indenoindole derivative and / or fluorene derivative with a bridge compound to prepare a ligand compound, and then performing metallation by introducing a metal precursor compound. Can be.
  • the manufacturing method of the said 1st metallocene compound is concretely demonstrated to the Example mentioned later.
  • the second metallocene compound is represented by the following formula
  • M 1 is a Group 4 transition metal
  • Cp 1 and Cp 2 are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl, and fluorenyl radicals One, they may be substituted with a hydrocarbon of 1 to 20 carbon atoms;
  • R a and R b are the same as or different from each other, and each independently hydrogen, C1 to
  • C20 alkyl C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 to C20 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl Arylalkenyl of C8 to C40, or alkynyl of C2 to C10;
  • Z 1 is a halogen atom, C 1 to C 20 alkyl, C 2 to C 10 alkenyl, C 7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene, substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 aryl Alkoxy;
  • n 1 or 0;
  • M 2 is a Group 4 transition metal
  • Cp 3 and Cp 4 are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl and fluorenyl radicals They may be substituted with a hydrocarbon having 1 to 20 carbon atoms;
  • 'R c and R d are the same or different and are each independently hydrogen, C1 to C20 alkyl, a C1 to C10 alkoxy, C2 to C20 alkoxy alkyl, C6 to C20 aryl, C6 to C10 aryl-oxy, C2 to C20 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C8 to C40 arylalkenyl, or C2 to C10 alkynyl;
  • Z 2 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40.
  • B 1 is one or more of a carbon, germanium, silicon, phosphorus or nitrogen atom containing radical which crosslinks the Cp 3 R c ring and the Cp 4 R d ring or crosslinks one Cp 4 R d ring to M 2 Or a combination thereof;
  • n 1 or 0;
  • M 3 is a Group 4 transition metal
  • Cp 5 is cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro ⁇ 1-indenyl and Any one selected from the group consisting of fluorenyl radicals, which may be substituted with hydrocarbons having 1 to 20 carbon atoms; ,
  • R e is hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 to C20 alkenyl, C7 to C40 alkylaryl C7-C40 arylalkyl, C8-C40 arylalkenyl, or C2-C10 alkynyl;
  • Z 3 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene , Substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy;
  • B 2 is one or more or a combination of carbon, germanium, silicon, phosphorus or nitrogen atom containing radicals which crosslink the Cp 5 R e ring and J;
  • J is any one selected from the group consisting of NR f , O, PR f and S, wherein R f is ⁇ C1 to C20 alkyl, aryl, substituted alkyl or substituted aryl.
  • the compound represented by Formula ' 5 may be, for example, a compound represented, but is not limited thereto.
  • the common supported metallocene catalyst according to the present invention may include at least one of the first metallocene compound represented by Chemical Formula 1 and the second metallocene compound selected from the compounds represented by Chemical Formulas 3 to 5. At least one species is commonly supported on a carrier together with a promoter compound. '
  • the first metallocene compound represented by the formula (1) of the common supported metallocene catalyst mainly contributes to making a high molecular weight copolymer having a high SCB (short chain branch) content, and a second metal represented by the formula (3).
  • Sen compounds may contribute to the production of low molecular weight co-polymers with predominantly low SCB content.
  • the second metallocene compound represented by Formula 4 or 5 may contribute to making a low molecular weight copolymer having a moderate SCB content.
  • the hybrid supported metallocene catalyst is represented by the chemical formula
  • At least one first metallocene compound of Formula 1 and at least one second metallocene compound of Formula 3 may be included.
  • the common supported metallocene catalyst may include at least one first metallocene compound of Formula 1 and at least one second metallocene compound of Formula 3, Or one or more second metallocene compounds of Formula 5;
  • the first metallocene compound may form a ligand structure in which an indeno indole derivative and a fluorene derivative are crosslinked by a bridge compound, and may act as a Lewis base to the ligand structure.
  • a non-covalent electron pair present, it is supported on the surface having the Lewis acid characteristics of the carrier and shows high polymerization activity even when supported.
  • the high activity and / or low hydrogen response due to the proper steric hindrance and the electronic effect of the ligand, High activity is maintained even in situations.
  • the common supported metallocene catalyst of the present invention includes a first metallocene compound represented by Chemical Formula 1 and a second metallocene compound selected from compounds represented by Chemical Formulas 3 to 5,
  • a first metallocene compound represented by Chemical Formula 1 and a second metallocene compound selected from compounds represented by Chemical Formulas 3 to 5
  • an olefin polymer having a high SCB content and a high molecular weight olefin copolymer and at the same time a wide molecular weight distribution having excellent physical properties and excellent processability can be prepared.
  • the cocatalyst supported on the carrier for activating the metallocene compound is an organometallic compound containing a Group 13 metal. It will not be specifically limited if it can be used at the time of superposition
  • the cocatalyst compound may include at least one of an aluminum-containing first cocatalyst of Formula 6 and a borate-based second cocatalyst of Formula 7 below. '
  • each R 1 is a halogen, halogen substituted or unsubstituted hydrocarbyl group having 1 to 20 carbon atoms, k is an integer of 2 or more,
  • T + is a + monovalent polyatomic ion
  • is boron in the +3 oxidation state
  • G is independently a hydride group, a dialkylamido group, a halide group, an alkoxide group, an aryloxide group, hydro Selected from the group consisting of carbyl groups, halocarbyl groups and halo-substituted hydrocarbyl groups, wherein G has up to 20 carbons, but at up to one position G is a halide group.
  • the first cocatalyst of Chemical Formula 6 may be an alkylaluminoxane compound having a repeating unit bonded in a linear, circular or reticular form.
  • Examples of the first cocatalyst include methylaluminoxane (MAO) and ethyl. Aluminoxane, isobutyl aluminoxane, butyl aluminoxane, etc. are mentioned.
  • the second cocatalyst of Formula 7 may be a borate-based compound in the form of a trisubstituted ammonium salt, or a dialkyl ammonium salt, a trisubstituted phosphonium salt.
  • Such a second cocatalyst include trimetalammonium tetraphenylborate, methyldioctadecylammonium tetraphenylborate triethylammonium tetraphenylborate tripropylammonium tetraphenylborate, tri (n-butyl) ammonium tetraphenylborate, methyl Tetratecyclooctadecylammonium tetraphenylborate, ⁇ , ⁇ -dimethylaniline tetraphenylborate, ⁇ , ⁇ -diethylaninynium tetraphenylborate, ⁇ , ⁇ -dimethyl (2,4,6-trimethylaninynium) tetra Phenylborate, trimethylammonium tetrakis (pentafluorophenyl) borate, methylditetradecylammonium tetrakis (
  • the mass ratio of the total transition metal to the carrier contained in the first metallocene compound represented by Formula 1 and the second metallocene compound represented by Formulas 3 to 5 is 1 : 10 to 1: 1,000.
  • the carrier and the metallocene compound are included in the mass ratio, the optimum shape can be exhibited.
  • the mass ratio of the promoter compound to the carrier may be 1: 1 to 1: 100.
  • the mass ratio of the first metallocene compound represented by Formula 1 to the second metallocene compound represented by Formulas 3 to 5 is 10: 1 to 1:10, preferably 5: 1 to 1: 5. have.
  • the support to the can be used a carrier containing hydroxyl groups on the surface, preferably the drying is to remove the moisture on the surface ", half male large-hydroxy group Carriers having siloxane groups can be used.
  • silica, silica-alumina, silica-magnesia, etc., dried at a high temperature may be used, and these are usually oxides, carbonates, sulfates, such as N 0, K 2 C0 3 , BaS0 4 , and Mg (N0 3 ) 2 . , And nitrate components.
  • Drying degree of the carrier is preferably 200 to 800 ° C., more preferably 300 to 600 ° C., most preferably 300 to 400 ° C. If the drying temperature of the carrier is less than 200 ° C, there is too much moisture . Moisture and promoter on the surface will react, and if it exceeds 800 ° C, the pores on the surface of the carrier will coalesce and the surface area will decrease, and there will be no hydroxy groups on the surface and only siloxane groups will remain. It is undesirable because the reaction site decreases.
  • the amount of hydroxy groups on the surface of the carrier is preferably 0.1 to 10 mmol / g, more preferably 0.5 to 5 mmol / g.
  • the amount of hydroxyl groups on the surface of the carrier can be controlled by the method and conditions for preparing the carrier or by drying conditions such as temperature, time, vacuum or spray drying.
  • the amount of the hydroxyl group is less than 1 mmol / g, the reaction space with the cocatalyst is small. If the amount of the hydroxyl group is more than 10 mmol / g, the hydroxyl group may be due to moisture other than the hydroxyl group present on the surface of the carrier particle. Not.
  • the common supported metallocene catalyst according to the present invention can be used by itself for the polymerization of olepin-based monomers.
  • the common supported metallocene catalyst according to the present invention may be prepared by using a pre-polymerized catalyst in contact with an olefinic monomer.
  • the catalyst may be separately used for ethylene, propylene, 1-butene, 1-nuxene, and 1-octene. It may be prepared and used as a prepolymerized catalyst by contacting with an olefinic monomer such as the like.
  • the common supported metallocene catalyst according to the present invention may include, for example, supporting a cocatalyst compound on a carrier, supporting a first metallocene compound represented by Formula 1 on the carrier, and on the carrier.
  • the compound represented by Formula 3 to 5 may be prepared by supporting the second metallocene compound selected.
  • the order of the step of supporting the first metallocene compound and the step of supporting the second metallocene compound may be changed as necessary. That is, the first metallocene compound is first supported on the carrier, and then the second metallocene compound is further supported to prepare a common supported metallocene catalyst, or the second metallocene compound is supported on the carrier. After supporting first, the common metallocene catalyst may be prepared by further supporting the first metallocene compound.
  • the temperature may be performed at a temperature of about 0 to about 100 ° C. and a pressure of normal pressure, but is not limited thereto.
  • the olefin resin can be prepared by polymerizing the olefin resin in the presence of the common supported metallocene catalyst of the present invention as described above.
  • the olefinic monomers are ethylene, alpha-olefins, cyclic olefins, double It may be a diene olefin or a triene olefin having two or more bonds.
  • olefin monomers include ethylene, propylene, 1-butene, 1-pentene, 4-methyl ⁇ 1-pentene, 1-nuxene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, 1-nucledecene, 1-atose, norbornene, norbonadiene, ethylidenenorbornene, phenylnorbornene, vinylnorbornene, dicyclopentadiene, 1,4-butadiene And 1,5-pentadiene, 1,6-nuxadiene, styrene, alpha-methylstyrene, divinylbenzene, 3-chloromethylstyrene, and the like, and these monomers may be mixed and copolymerized.
  • the polymerization reaction may be carried out by homopolymerizing one olefin monomer or copolymerizing two or more monomers using one continuous slurry polymerization reactor, a loop slurry reactor, a gas phase reactor or a solution reactor.
  • the common supported metallocene catalyst is an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms, for example, pentane, nucleic acid, heptane, nonane, decan, and isomers thereof and aromatic hydrocarbon solvents such as toluene and benzene, dichloromethane and chlorobenzene. It may be dissolved or liquefied and injected into a hydrocarbon solvent substituted with a chlorine atom such as.
  • the solvent used herein is preferably used by removing a small amount of water or air that acts as a catalyst poison by treating a small amount of alkyl aluminum, and may be carried out by further using a promoter.
  • an ellepin-based polymer having a wide molecular weight distribution of a BOCD structure having a low SCB content of a low molecular weight ⁇ portion and a high SCB content of a high molecular weight portion is prepared. can do.
  • the olefin polymer is not only excellent in physical properties, but also excellent in workability.
  • the leupin-based polymers prepared using the common supported metallocene catalyst of the present invention may exhibit a high weight average molecular weight of about 300,000 or more or about 350,000 or more.
  • the common supported metallocene catalyst of the present invention exhibits excellent activity
  • the olefinic polymer prepared using the common supported metallocene catalyst of the present invention is, for example, about 3.0 to about 8.0, preferably about 4.0 to about
  • a broad molecular weight distribution (PDI) of about 8.0, more preferably 5.0 to about 8.0 can be seen to indicate excellent processability.
  • PDI broad molecular weight distribution
  • the solution was changed to violet color at room temperature overnight.
  • the reaction solution was filtered to remove LiCl.
  • the toluene of the filtrate was removed by vacuum drying, and the nucleic acid was added and sonicated for 1 hour.
  • the quality of the solid (filtered solid) was filtered to filter the slurry is purple (dark violet) the metallocene compound 6 g (Mw 758.02, 7.92 mmol , yield 66mol 0/0) to give the a.
  • Two isomers were observed on 1 H-NMR.
  • a ligand compound 3.82 g (6 mmol) of toluene and 100 mL MTBE dissolved in 5 mL 'after a 2.5M n-BuLi hexane solution 5.6 mL (l 4 mmol) prepared in 2-1 and writer in dryice / acetone bath Stir overnight at room temperature.
  • 2.26 g (6 mmol) of ZrCl 4 (THF) 2 was prepared, and 100 ml of toluene was added to prepare a slurry.
  • Toluene slurry of ZrCl 4 (THF) 2 was transferred to litiated ligand in a dry ice / acetone bath. It stirred at room temperature overnight and it changed into violet color.
  • the reaction solution was filtered to remove LiCl, and the filtrate was dried in vacuo, and hexane was added to sonication.
  • the slurry was filtered to obtain 3.40 g (yield 71.1 mol%) of a metal violet compound of dark violet as a filtered solid.
  • t-Butyl-0- (C3 ⁇ 4) 6 -Cl was prepared by the method shown in Tetrahedron Lett. 2951 (.1988) and reacted with NaCp.
  • t-Butyl-0- (CH 2 ) 6 -C 5 H 5 was obtained (yield 60%, bp 80 ° C / 0.1 mmHg).
  • t-Butyl-0- (CH 2 ) 6 -C 5 H 5 was dissolved in THF at -781 :, and normal butyllithium (n-BuLi) was slowly added thereto, and the temperature was raised to room temperature, followed by reaction for 8 hours. .
  • the solution was again synthesized lithium salt in a suspension solution of ZrCl 4 (THF) 2 (1 .7 ( ) g, 4.50 mmol) / THF ( 3 0m £) at -78 ° C. ) was added slowly and further reacted at room temperature for 6 hours.
  • 6-t-butoxynucleic acid (6-t-buthoxyhexane) was confirmed by 1 H-NMR. From the 6-t-butoxynucleic acid, it was found that the Gringanrd reaction proceeded well. Thus, 6-t-buthoxyhexyl magnesium chloride was synthesized.
  • TiCl 3 (THF) 3 (10 mmol) was rapidly added to the dilithium salt of -78 ligand synthesized from (Dimethyl (tetramethylCpH) t-Butylaminosilane) in THF solution.
  • the reaction solution was slowly stirred for 12 hours at room temperature at -78 ° C.
  • an equivalent amount of PbCl 2 (10 mmol) was added to the reaction solution at room temperature, followed by stirring for 12 hours. After stirring for 12 hours, a dark black solution was obtained.
  • nucleic acid was added to filter the product.
  • Silica (SYLOPOL 948, manufactured by Grace Davison) was dehydrated under vacuum at a temperature of 400 ° C. for 15 hours.
  • the supported catalyst was prepared in the same manner as in Example 1, except that 0.25 mm of the metallocene catalyst of Preparation Example 2 was used instead of 0.25 mmol of the metallocene catalyst of Preparation Example 1 in Example 1.
  • Example 4 After 1 hour of 0.25 mmol reaction of the metallocene catalyst of Preparation Example 1 was finished in Example 1, 0.25 mmol reaction of the metallocene catalyst of Preparation Example 4 was further performed. Thereafter, the supported catalyst was prepared in the same manner except that 0.25 mmol reaction of the metallocene catalyst of Preparation Example 3 was performed.
  • Example 4
  • the supported catalyst was prepared in the same manner as in Example 3, except that 0.25 mmol of the metallocene catalyst of Preparation Example 2 was used instead of 0.25 mmol of the metallocene catalyst of Preparation Example 1, which was reacted initially in Example 3.
  • Example 5
  • a supported catalyst was prepared in the same manner as in Comparative Example 3, except that 1.0 mmol of anilinium borate ( ⁇ , ⁇ -dimethylanilinium tetrakis (pentafluorophenyl) borate, AB) was added to the last step.
  • anilinium borate ⁇ , ⁇ -dimethylanilinium tetrakis (pentafluorophenyl) borate, AB
  • the polymer obtained therefrom was filtered to remove most of the polymerization solvent and then dried in an 80 ° C. vacuum oven for 4 hours.
  • Examples 1 to 5 for the common supported catalyst of the present invention include two or more metallocene compounds, but have a much higher activity than the comparative example including only a single catalyst or a second metallocene compound. It can be seen that a polymer having a high molecular weight and a wide molecular weight distribution can be produced.

Abstract

본 발명은 혼성 담지 메탈로센 촉매에 관한 것이다. 보다 구체적으로는 서로 다른 2종 이상의 메탈로센 화합물을 이용한 혼성 담지 메탈로센 촉매로서, 이 중 1종의 메탈로센 화합물은 담지 시에도 높은 중합 활성을 나타내어, 활성이 우수하고, 초고분자량의 올레핀계 중합체의 중합에 이용될 수 있다. 본 발명의 혼성 담지 메탈로센 촉매에 따르면, 고분자량 및 원하는 물성을 가지는 올레핀계 중합체를 제조할 수 있다.

Description

【명세서】
【발명의 명칭】
흔성 담지 메탈로센 촉매
【기술분야】
본 발명은 흔성 담지 메탈로센 촉매에 관한 것이다. 보다 상세하게는 을레핀계 중합체 제조에 사용될 수 있는 흔성 담지 메탈로센 촉매에 관한 것이다ᅳ 본 출원은 2013년 10월 18일에 한국특허청에 제출된 한국 특허 출원 제 10-2013-0124518호 및 2014년 10월 14일에 한국특허청에 제출된 한국 특허 출원 제 10-2014-0138348호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
【배경기술】
을레핀 중합 촉매계는 지글러 나타 및 메탈로센 촉매계로 분류할 수 있으며, 이 두 가지의 고활성 촉매계는 각각의 특징에 맞게 발전되어 왔다. 지글러 나타 촉매는 50년대 발명된 이래 기존의 상업 프로세스에 널리 적용되어 왔으나, 활성점이 여러 개 흔재하는 다활성점 촉매 (multi site catalyst)이기 때문에, 중합체의 분자량 분포가 넓은 것이 특징이며, 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 있다는 문제점이 있다.
한편, 메탈로센 촉매는 전이금속 화합물이 주성분인 주촉매와 알루미늄이 주성분인 유기 금속 화합물인 조촉매의 조합으로 이루어지며, 이와 같은 촉매는 균일계 착체 촉매로 단일 활성점 촉매 (single site catalyst)이며, 단일 활성점 특성에 따라 분자량 분포가 좁으며, 공단량체의 조성 분포가 균일한 고분자가 얻어지며, 촉매의 리간드 구조 변형 및 중합 조건의 변경에 따라 고분자의 입체 규칙도, 공중합 특성, 분자량, 결정화도 등을 변화시킬 수 있는 특성을 가지고 있다.
미국 특허 제 5,0 2;562호에는 두 개의 상이한 전이금속 촉매를 한 개의 담지 촉매 상에 지지.시켜 중합 촉매를 제조하는 방법이 기재되어 있다. 이는 고분자량을 생성하는 티타늄 (Ti) 계열의 지글러 -나타 촉매와 저분자량을 생성하는 지르코늄 (Zr) 계열의 메탈로센 촉매를 하나의 지지체에 담지시켜 이정 분산 (bimodal distribution) 고분자를 생성하는 방법으로써, 담지 과정이 복잡하고, 조촉매로 인해 증합체의 형상 (morphology)이 나빠지는 단점이 있다ᅳ
미국 특허 제 5,525,678호에는 메탈로센 화합물과 비메탈로센 화합물을 담체 위에 동시에 담지시켜 고분자량의 중합체와 저분자량의 중합체가 동시에 중합될 수 있는 을레핀 중합용 촉매계를 사용하는 방법을 기재하고 있다. 이는 메탈로센 화합물과 비메탈로센 화합물들을 각각 따로 담지시켜야 하고, 담지 반웅을 위해 담체를 여러 가지 화합물로 전처리해야 하는 단점이 있다.
미국. 특허 제 5,914,289호에는 각각의 담체에 담지된 메탈로센 촉매를 아용하여 고분자의 분자량 및 분자량 분포를 제어하는 방법이 기재되어 있으나, 담지촉매 제조시 사용된 용매의 양 및 제조시간이 많이 소요되고, 사용되는 메탈로센 촉매를 담체에 각각 담지시켜야 하는 번거로움이 따랐다.
대한민국 특허 출원 제 2003-12308호에는 담체에 이중핵 메탈로센 촉매와 단일핵 메탈로센 촉매를 활성화제와 함께 담지하여 반응기 내 촉매의 조합을 변화시키며 증합함으로써 분자량 분포를 제어하는 방안을 개시하고 있다. 그러나, 이러한 방법은 각각의 촉매의 특성을 동시에 구현하기에 한계가 있으며, 또한 완성된 촉매의 담체 성분에서 메탈로센 촉매 부분이 유리되어 반웅기에 파울링 (fouling)을 유발하는 단점이 있다.
따라서, 상기한 단점들을 해결하기 위해서 간편하게 활성이 우수한 흔성 담지 메탈로센 촉매를 제조하여 원하는 물성의 올레핀계 중합체를 제조하는 방법에 대한 요구가 계속되고 있다.
【발명의 내용】
【해결하려는 과제】 ·
상기 종래기술의 문제를 해결하기 위해, 본 '발명은 활성이 우수하고, 고분자량 및 원하는 물성을 가지는 올레핀계 증합체를 제조할 수 있는 흔성 담지 메탈로센 촉매를 제공하고자 한다.
【과제의 해결수단】
본 발명은 하기 화학식 1로 표시되는 제 1 메탈로센 화합물 1종 이상, 하기 화학식 3 내지 화학식 5로 표시되는 화합물 중에서 선택되는 제 2 메탈로센 화합물 1종 이상, 조촉매 화합물 및 담체를 포함하는 흔성 담지 메탈로센 촉매를 제공한다.
[화학식 1]
Figure imgf000004_0001
[화학식 3]
Figure imgf000004_0002
[화학식 4]
(Cp'R^B^Cp'R^M'Z^.,,,
[화학식 5]
(Cp5 e)B2(J)M3Z3 2
상기 화학식 1, 3, 4 및 5에 대해서는 하기에서 상세히 설명한다.
【발명의 효과]
본 발명에 따른 흔성 담지 메탈로센 촉매는 서로 다른 2종 이 ^"의 쩨탈로센 화합물을 포함하고, 특히 1종의 메탈로센 화합물은 인데노 인돌 (indeno indole) 유도체 및 /또는 플루오렌 (fluorene) 유도체가 브릿지에 의해 가교 구조를 형성한 리간드 화합물을 이용함으로서 담지 시에도 높은 중합 활성을 나타내어, 활성이 우수하고, 초고분자량의 올레핀계 중합체의 중합에 이용될 수 있다.
【발명의 실시를 위한 구체적인 내용】
이하, 발명의 구체적인 구현예에 따른 흔성 담지 메탈로센 촉매에 대해 설명하기로 한다. 본 발명에 따른 흔성 .담지 메탈로센 촉매는 하기 화학식 1로 표시되는 제' 1 메탈로센 화합물 1종 이상, 하기 화학식 3 내지 화학식 5로 표시되는 화합물 중에서 선택되는 제 2 메탈로센 화합물 1종 이상, 조촉매 화합물 및 담체를 포함한다.
[
Figure imgf000004_0003
상기 화학식 1에서 A는 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, C7 내지 C20의 아릴알킬기, C1 내지 C20의 알콕시기, C2 내지 C20의 알콕시알킬기, C3 내지 C20의 해테로시클로알킬기, 또는 C5 내지 C20의 헤테로아릴기이고;
D는 -으, -S-, -N(R)- 또는 -Si(R)(R')- 이고, 여기서 R 및 R'은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, 또는 C6 내지 C20의 아릴기이고;
L은 C1 내지 C10의 직쇄 또는 분지쇄 알킬렌기이고;
B는 탄소, 실리콘 또는 게르마늄이고;
Q는 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알¾아릴기, 또는 C7 내지 C20의 아릴알킬기이고;
M은 4족 전이금속이며;
X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네이트기이고;
C1 및 C2는 서로 동일하가나 상이하고, 각각 독립적으로 하기 화학식 2a, 화학식 2b 또는 하기 화학식 2c 중 하나로 표시되고, 단, C1 및 C2가 모두 화학식 2c인 경우는 제외하며;
Figure imgf000005_0001
[화학식 2b]
Figure imgf000006_0001
[화학식 2c]
Figure imgf000006_0002
상기 화학식 2a, 2b 및 2c에서, Rl 내지 R17 및 R1' 내지 R9'는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 실릴알킬기, C1 내지 C20의 알콕시실릴기, C1 내지 C20의 알콕시기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이며, 상기 R10 내지 R17 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있고;
[화학식 3]
Figure imgf000006_0003
상기 화학식 3에서,
M1은 4족 전이금속이고;
Cp1 및 Cp2는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디엔닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐, 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
Ra 및 Rb는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고;
ζι은 할로겐 원자, ci 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시 , 또는 C7 내지 C40의 아릴알콕시이고;
n은 1 또는 0 이고;
[화학식 4]
(Cp'R^ .nB'iCp'R^M'Z^.,.
. 상기 화학식 4에서,
. M2는 4족 전이 금속이고;
Cp3 및 Cp4는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐 및 폴루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
Rc 및 Rd는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고;
Z2는 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시 , 또는 C7 내지 C40의 아릴알콕시이고;
B1은 Cp3Rc 고리와 Cp4Rd 고리를 가교 결합시키거나, 하나의 Cp4Rd 고리를
M2에 가교 결합시키는, 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼 중 하나 이상 또는 이돌의 조합이고;
m은 1 또는 0 이고;
[화학식 5]
(Cp5Re)B2(J)M3Z3 2 상기 화학식 5에서,
M3은 4족 전이 금속이고;
Cp5는 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐 맟 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
Re는 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고;
Z3은 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지
C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시 , 또는 C7 내지 C40의 아릴알콕시이고;
B2는 Cp5Re 고리와 J를 가교 결합시키는 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼중 하나 이상 또는 이들의 조합이고;
J는 NRf, 0, PRf 및 S로 이루어진 군에서 선택된 어느 하나이고, 상기 Rf는 C1 내지 C20의 알킬, 아릴, 치환된 알킬 또는 치환된 아릴이다.
본 발명에 따른 흔성 담지 메탈로센 촉매에 있어서, 상기 화학식 1, 3, 4 및 5의 치환기들을 보다 구체적으로 설명하면 하기와 같다.
상기 C1 내지 C20의 알킬기로는 직쇄 또는 분지쇄의 알킬기를 포함하고, 구체적으로 메틸기, 에틸기,프로필기, 이소프로필기, n-부틸기, tert-부틸기, 펜틸기, 핵실기, 헵틸기, 옥틸기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C2 내지 C20의 알케닐기로는 직쇄 또는 분지쇄의 알케닐기를 포함하고, 구체적으로 알릴기, 에테닐기, 프로페닐기, 부테닐기, 펜테닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C6 내지 C20의 아릴기로는 단환 또는 축합환의 아릴기를 포함하고, 구체적으로 페닐기, 비페닐기, 나프틸기, 페난트레닐기, 플루오레닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C5 내지 C20의 헤테로아릴기로는 단환 또는 축합환의 헤테로아릴기를 포함하고, 카바졸릴기, 피리딜기, 퀴놀린기, 이소퀴놀린기, 티오페닐기, 퓨라닐기, 이미다졸기, 옥사졸릴기, 티아졸릴기, 트리아진기, 테트라하이드로피라닐기, 테트라하이드로퓨라닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C1 내지 C20의 알콕시기로는 메톡시기, 에톡시기, 페닐옥시기, 시클로핵실옥시기 등을 들 수 있으나, 이에만 한정되는 것은 아니다ᅳ
상기 4족 전이금속으로는 티타늄, 지르코늄, 하프늄 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
본 발명에 따른 흔성 담지 메탈로센 촉매에 있어서, 상기 화학식 2a, 2b 및 2c의 R1 내지 R17 및 R1' .내지 R9'는 각각 독립적으로 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 펜틸기, 핵실기, 헵틸기, 옥틸기, 페닐기, 할로겐기, 트리메틸실릴기, 트리에틸실릴기, 트리프로필실릴기, 트리부틸실릴기, 트리이소프로필실릴기, 트리메틸실릴메틸기, 메특시기, 또는 에톡시기인 것이 더욱 바람직하나, 이에만 한정되는 것은 아니다.
상기 화학식 1의 L은 C4 내지 C8의 직쇄 또는 분지쇄 알킬렌기인 것이 더욱 바람직하나, 이에만 한정되는 것은 아니다. 또한, 상기 알킬렌기는 C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, 또는 C6 내지 C20의 아릴기로 치환 또는 비치환될 수 있다.
또한, 상기 화학식 1의 A는 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 메특시메틸기, tert-부특시메틸기, 1-에톡시에틸기, 1-메틸 -1- 메특시에틸기, 테트라하이드로피라닐기, 또는 테트라하이드로퓨라닐기인 것이 바람직하나, 이에만 한정되는 것은 아니다.
또한, 상기 화학식 1의 B는 실리콘인 것이 바람직하나, 이에만 한정되는 것은 아니다.
상기 화학식 1의 제 1 메탈로센 화합물은 인데노 인돌 (indeno indole) 유도체 및 /또는 플루오렌 (fluorene) 유도체가 브릿지에 의해 가교된 구조를 형성하며, 리간드 구조에 루이스 염기로 작용할 수 있는 비공유 전자쌍을 가짐으로써 담체의 루이스 산 특성을 지니는 표면에 담지되어 담지 시에도 높은 중합 활성올 나타낸다. 또한 전자적으로 풍부한 인데노 인돌기 및 /또는 플투오렌기를 포함함에 따라 활성이 높고, 적절한 입체 장애와 리간드의 전자적인 효과로 인해 수소 반웅성이 낮을 뿐 아니라 수소가 존재하는 상황에서도 높은 활성이 유지된다. 또한 인데노 인돌 유도체의 질소 원자가 자라나는 고분자 사슬의 beta-hydrogen을 수소결합에 의해 안정화시켜 beta-hydrogen elimination을 억제하여 초고분자량의 올레핀계 중합체를 중합할 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 2a로 표시되는 화합물의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물올 들 수 있으나, 본
Figure imgf000010_0001
본 발명의 일 실시예에 따르면, 상기 화학식 2b로 표시되는 화합물의 구체.적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나, 본 발명이
Figure imgf000011_0001
본 발명의 일 실시예에 따르면, 상기 화학식 2c로 표시되는 화합물의 구체적인 예로는 하기 구조식 들 중 하나로 표시되는 화합물을 들 수 있으나, 본
Figure imgf000012_0001
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 제 1 메탈로센 화합물의 구체적인 예로는 '하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나,
Figure imgf000012_0002
Figure imgf000013_0001
Figure imgf000014_0001
. 상기 화학식 1의 제 1 메탈로센 화합물은 활성아 우수하고 고분자량의 올레핀계 중합체를 중합할 수 있다. 특히, 담체에 담지하여 사용할 경우에도 높은 중합 활성을 나타내어, 초고분자량의 폴리올레핀계 중합체를 제조할 수 있다.
또한, 고분자량과 동시에 넓은 분자량 분포를 갖는 을레핀계 중합체를 제조하기 위해 수소를 포함하여 중합 반웅을 진행하는 경우에도, 본 발명에 따른 화학식 1의 제 i 메탈로센 화합물은 낮은 수소 반웅성을 나타내어 여전히 높은 활성으로 초고분자량의 올레핀계 중합체의 증합이 가능하다. 따라서, 다른 특성을 갖는 촉매와 흔성으로 사용하는 경우에도 활성의 저하없이 고분자량의 특성을 만족시키는 올레핀계 중합체를 제조할 수 있어, 고분자의 을레핀계 중합체를 포함하면서 넓은 분자량 분포를 갖는 을레핀계 중합체를 용이하게 제조할 수 있다.
상기 화학식 1의 제 1 메탈로센 화합물은 인데노인돌 유도체 및 /또는 플루오렌 유도체를 브릿지 화합물로 연결하여 리간드 화합물로 제조한 다음, 금속 전구체 화합물을 투입하여 메탈레이션 (metallation)을 수행함으로써 수득될 수 있다. 상기 제 1 메탈로센 화합물의 제조방법은 후술하는 실시예에 구체화하여 설명한다.
본 발명의 담지 촉매에 있어서, 상기 제 2 메탈로센 화합물은 하기 화학식
3 내지 5로 표시되는 화합물 중 선택되는 1종 이상일 수 있다.
[화학식 3]
Figure imgf000015_0001
상가 화학식 3에서, ·
M1은 4족 전이금속이고;
Cp1 및 Cp2는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디엔닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐, 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
Ra 및 Rb는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지
C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고;
Z1은 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시 , 또는 C7 내지 C40의 아릴알콕시이고;
n은 1 또는 0 이고;
[화학식 4]
(Cp'R^ .^'iCp'R^M'Z2,.,,
상기 화학식 4에서,
M2는 4족 전이 금속이고;
Cp3 및 Cp4는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며; ' Rc 및 Rd는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고;
Z2는 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40.의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시, 또는 C7 내지 C40의 아릴알콕시이고;
B1은 Cp3Rc 고리와 Cp4Rd 고리를 가교 결합시키거나, 하나의 Cp4Rd 고리를 M2에 가교 결합시키는, 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼 중 하나 이상 또는 이들의 조합이고;
m은 1 또는 0 이고;
[화학식 5]
(Cp5Re)B2(J)M3Z3 2
상기 화학식 5에서,
M3은 4족 전이 금속이고;
Cp5는 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로ᅳ 1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며; ,
Re는 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고;
Z3은 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시 , 또는 C7 내지 C40의 아릴알콕시이고;
B2는 Cp5Re 고리와 J를 가교 결합시키는 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼중 하나 이상 또는 이들의 조합이고;
J는 NRf, O, PRf 및 S로 이루어진 군에서 선택된 어느 하나이고, 상기 Rf는 ■ C1 내지 C20의 알킬, 아릴, 치환된 알킬 또는 치환된 아릴이다.
상기 화학식 4에서, m이 1인 경우는 Cp3Rc 고리와 Cp4Rd 고리 또는 Cp4Rd 고리와 M2가 B1에 의해 가교 결합된 브릿지 화합물 구조인 것을 의미하며, m이 0인 경우는 비가교 화합물 구조를 의미한다.
상기 화학식 3으로 표시되는 화합물로는 예를 들어 하기 구조식
Figure imgf000017_0001
Figure imgf000018_0001

Figure imgf000019_0001
또한, 화학식 ' 5로 표시되는 화합물로는 예를 들어 표시되는 화합물일 수 있으나, 이에만 한정되는 것은 아니다.
Figure imgf000019_0002
Figure imgf000020_0001
본 발명에 따른 흔성 담지 메탈로센 촉매는 상기 화학식 1로 표시되는 제 1 메탈로센 화합물의 1종 이상과, 상기 화학식 3 내지 화학식 5로 표시되는 화합물 중 선택되는 제 2 메탈로센 화합물의 1종 이상을 조촉매 화합물과 함께 담체에 흔성 담지한 것이다. '
상기 흔성 담지 메탈로센 촉매의 화학식 1로 표시되는 제 1 메탈로센 화합물은 주로 높은 SCB(short chain branch) 함량을 가지는 고분자량의 공중합체를 만드는데 기여하고, 화학식 3으로 표시되는 제 2 메탈로센 화합물은 주로 낮은 SCB 함량을 가지는 저분자량의 공증합체를 만드는데 기여할 수 있다. 또한, 화학식 4 또는 5로 표시되는 제 2 메탈로센 화합물은 중간 정도의 SCB 함량을 가지는 저분자량의 공중합체를 만드는데 기여할 수 있다.
본 발명의 일 실시예에 따르면, 상기 혼성 담지 메탈로센 촉매는 화학식
1의 제 1 메탈로센 화합물 1종 이상과, 화학식 3의 제 2 메탈로센 화합물 1종 이상을 포함할 수 있다.
본 발명의 다른 일 실시예에 따르면, 상기 흔성 담지 메탈로센 촉매는 화학식 1의 제 1 메탈로센 화합물 1종 이상과, 및 화학식 3의 제 2 메탈로센 화합물 1종 이상에 더하여 , 화학식 4 또는 화학식 5의 제 2 메탈로센 화합물을 1종 이상 포함할 수 있다.
본 발명에 따른 흔성 담지 메탈로센 촉매에 있어서, 상기 제 1 메탈로센 화합물은 인데노 인돌 유도체와 플루오렌 유도체가 브릿지 화합물에 의해 가교된 리간드 구조를 형성하며, 리간드 구조에 루이스 염기로 작용할 수 있는 비공유 전자쌍을 가짐으로써 담체의 루이스 산 특성을 지니는 표면에 담지되어 담지 시에도 높은 중합 활성을 나타낸다. 또한 전자적으로 풍부한 인데노 인돌기 및 /또는 플루오렌기를 포함함에 따라 활성이 높고/적절한 입체 장애와 리간드의 전자적인 효과로 인해 수소 반웅성이 낮을 뿐 아니라 수소가 존재하는 상황에서도 높은 활성이 유지된다. 따라서, 이러한 전이금속 화합물을 이용하여 흔성 담지 메탈로센 촉매를 만드는 경우, 인데노인돌 유도체의 질소 원자가 자라나는 고분자 사슬의 베타ᅳ수소를 수소결합에 의해 안정화시켜 초고분자량의 을레핀계 중합체를 중합할 수 있다.
또한, 발명의 흔성 담지 메탈로센 촉매에서는 상기 화학식 1로 표시되는 제 1 메탈로센 화합물 및 상기 화학식 3 내지 5로 표시되는 화합물 중 선택되는 제 2 메탈로센 화합물을 포함하여, 서로 다론 종류의 메탈로센 화합물을 적어도 2종 이상 포함함으로써 높은 SCB 함량을, 가지는 고분자량의 올레핀계 공중합체이면서, 동시에 분자량 분포가 넓어 물성이 우수할 뿐만 아니라 가공성도 우수한 올레핀 중합체를 제조할 수 있다.
본 발명에 따른 흔성 담지 메탈로센 촉매에 있어서, 상기 메탈로센 화합물을 활성화하기 위하여 담체에 함께 담지되는 조촉매로는 13족 금속을 포함하는 유기 금속 화합물로서, 일반적인 메탈로센 촉매 하에 올레핀을 중합할 때 사용될 수 있는 것이라면 특별히 한정되는 것은 아니다.
구체적으로, 상기 조촉매 화합물은 하기 화학식 6의 알투미늄 함유 제 1 조촉매, 및 하기 화학식 7의 보레이트계 제 2 조촉매 중 하나 이상을 포함할 수 있다. '
[화학식 6]
-[Al(R,g)-0-]k - 화학식 6에서, Rl 8은 각각 독립적으로 할로겐, 할로겐 치환 또는 비치환된 탄소수 1 내지 20의 하이드로카빌기이고, k는 2 이상의 정수이고,
[화학식 7]
T+[BG4]"
화학식 7에서 , T+은 +1가의 다원자 이온이고 , Β는 +3 산화 상태의 붕소이고: G는 각각 독립적으로 하이드라이드기, 디알킬아미도기, 할라이드기, 알콕사이드기, 아릴옥사이드기, 하이드로카빌기, 할로카빌기 및 할로-치환된 하이드로카빌기로 이루어진 군에서 선택되고, 상기 G는 20개 이하의 탄소를 가지나, 단 하나 이하의 위치에서 G는 할라이드기이다.
이러한 제 1 및 제 2 조촉매의 사용에 의해, 최종 제조된 폴리을레핀의 분자량 분포가 보다 균일하게 되면서, 중합 활성이 향상될 수 있다. 상기 화학식 6의 제 1 조촉매는 선형, 원형 또는 망상형으로 반복단위가 결합된 알킬알루미녹산계 화합물로 될 수 있고, 이러한 제 1 조촉매의 구체작인 예로는, 메틸알루미녹산 (MAO), 에틸알루미녹산, 이소부틸알루미녹산 또는 부틸알루미녹산 등을 들 수 있다.
또한, 상기 화학식 7의 제 2 조촉매는 삼치환된 암모늄염, 또는 디알킬 암모늄염, 삼치환된 포스포늄염 형태의 보레이트계 화합물로 될 수 있다. 이러한 제 2 조촉매의 구체적인 예로는, 트리메탈암모늄 테트라페닐보레이트, 메틸디옥타데실암모늄 테트라페닐보레이트 트리에틸암모늄 테트라페닐보레이트 트리프로필암모늄 테트라페닐보레이트, 트리 (n-부틸)암모늄 테트라페닐보레이트, 메틸테트라테사이클로옥타데실암모늄 테트라페닐보레이트, Ν,Ν-디메틸아닐늄 테트라페닐보레이트, Ν,Ν-디에틸아닐늄 테트라페닐보레이트, Ν,Ν-디메틸 (2,4,6- 트리메틸아닐늄)테트라페닐보레이트, 트리메틸암모늄 테트라키스 (펜타플로오로페닐)보레이트, 메틸디테트라데실암모늄 테트라키스 (펜타페닐)보레이트, 메틸디옥타데실암모늄 테트라키스 (펜타플루오로페닐)보레이트, 트리에틸암모늄, 테트라키스 (펜타플루오로페닐)보레이트,
트리프로필암모늄테트라키스 (펜타프루오로페닐)보레이트, 트리 (η-부틸)암모늄 테트라키스 (펜타폴루오로페닐)보레이트, 트리 (2급- 부틸)암모늄테트라키스 (펜타플루오로페닐)보레이트, Ν,Ν-디메틸아닐늄 테트라키스 (펜타플루오로페닐)보레이트, . Ν,Ν- 디에틸아닐늄테트라키스 (펜타플루오로페닐)보레이트, Ν,Ν-디메틸 (2,4,6- 트리메틸아닐늄)테트라키스 (펜타플루오로페닐)보레이트,
트리메틸암모늄테트라키스 (2,3 ,4,6-테트라플루오로페닐)보레 ο -, 트리에틸암모늄 테트라키스 (2,3,4,6ᅳ테트라플루오로페닐)보레이트, 트리프로필암모늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트, 트리 (η-부틸)암모늄 테트라키스 (2,3,4,6-,테트라플루오로페닐)보레이트, 디메틸 (t-부틸)암모늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트, Ν,Ν-디메틸아닐늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트, Ν,Ν-디에틸아닐늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트 또는 Ν, Ν-디메틸 -(2,4,6- 트리메틸아닐늄)테트라키스 -(2,3,4,6-테트라플루오로페닐)보레이트 등의 삼치환된 암모늄염 형태의 보레이트계 화합물; 디옥타데실암모늄 테트라키스 (펜타플루오로페닐)보레이트, 디테트라데실암모늄 테트라키스 (펜타폴루오로페닐)보레이트 또는 디사이클로핵실암모늄 테트라키스 (펜타플루오로페닐)보레이트 등의 디알킬암모늄염 형태의 보레이트계 화합물; 또는 트리페닐포스포늄 테트라키스 (펜타플투오로페닐)보레이트, 메틸디옥타데실포스포늄 테트라키스 (펜타플루오로페닐)보레이트 또는 트리 (2,6-, 디메틸페닐)포스포늄 테트라키스 (펜타플루오로페닐)보레이트 등의 삼치환된 포스포늄염 형태의 보레이트계 화합물 등을 들 수 있다.
본 발명에 따른 흔성 담지 메탈로센 촉매에 있어서, 화학식 1로 표시되는 제 1 메탈로센 화합물 및 화학식 3 내지 5로 표시되는 제 2 메탈로센 화합물에 포함되는 전체 전이금속 대 담체의 질량비는 1 : 10 내지 1 : 1 ,000 일 수 있다. 상기 질량비로 담체 및 메탈로센 화합물을 포함할 때, 최적의 형상을 나타낼 수 있다.
또한, 조촉매 화합물 대 담체의 질량비는 1 : 1 내지 1 : 100 일 수 있다. 또한, 화학식 1로 표시되는 제 1 메탈로센 화합물 대 화학식 3 내지 5로 표시되는 제 2 메탈로센 화합물의 질량비는 10: 1 내지 1: 10, 바람직하게는 5 : 1 내지 1 : 5 일 수 있다. 상기 질량비로 조촉매 및 메탈로센 화합물을 포함할 때, 활성 및 고분자 미세구조를 최적화할 수 있다.
본 발명에 따른 흔성 담지 메탈로센 촉매에 있어서, 상기 담체로는 표면에 하이드록시기를 함유하는 담체를 사용할 수 있으며, 바람직하게는 건조되어 표면에 수분이' 제거된, 반웅성이 큰 하이드록시기와 실록산기를 가지고 있는 담체를 사용할 수 있다.
예컨대, 고온에서 건조된 실리카, 실리카 -알루미나, 및 실리카 -마그네시아 등이 사용될 수 있고, 이들은 통상적으로 N 0, K2C03, BaS04, 및 Mg(N03)2 등의 산화물, 탄산염, 황산염, 및 질산염 성분을 함유할 수 있다.
상기 담체의 건조 은도는 200 내지 800 °C가 바람직하고, 300 내지 600 °C가 더욱 바람직하며, 300 내지 400°C가 가장 바람직하다. 상기 담체의 건조 온도가 200 °C 미만인 경우 수분이 너무 많아서 .표면의 수분과 조촉매가 반웅하게 되고, 800 °C를 초과하는 경우에는 담체 표면의 기공들이 합쳐지면서 표면적이 줄어들며, 또한 표면에 하이드록시기가 많이 없어지고 실록산기만 남게 되어 조촉매와의 반응자리가 감소하기 때문에 바람직하지 않다ᅳ
상기 담체 표면의 하이드록시기 양은 0.1 내지 10 mmol/g이 바람직하며, 0.5 내지 5 mmol/g일 때 더욱 바람직하다. 상기 담체 표면에 있는 하이드록시기의 양은 담체의 제조방법 및 조건 또는 건조 조건, 예컨대 온도, 시간, 진공 또는 스프레이 건조 등에 의해 조절할 수 있다.
상기 하이드록시기의 양이 으1 mmol/g 미만이면 조촉매와의 반웅자리가 적고, 10 mmol/g을 초과하면 담체 입자 표면에 존재하는 하이드록시기 이외에 수분에서 기인한 것일 가능성이 있기 때문에 바람직하지 않다.
본 발명에 따른 흔성 담지 메탈로센 촉매는 그 자체로서 을레핀계 단량체의 중합에 사용될 수 있다. 또한, 본 발명에 따른 흔성 담지 메탈로센 촉매는 을레핀계 단량체와 접촉 반웅되어 예비 중합된 촉매로 제조하여 사용할 수도 있으며, 예컨대 촉매를 별도로 에틸렌, 프로필렌, 1-부텐, 1-핵센, 1-옥텐 등과 같은 을레핀계 단량체와 접촉시켜 예비 중합된 촉매로 제조하여 사용할 수도 있다.
본 발명에 따른 흔성 담지 메탈로센 촉매는, 예를 들어, 담체에 조촉매 화합물을 담지시키는 단계, 상기 담체에 상기 화학식 1로 표시되는 제 1 메탈로센 화합물을 담지시키는 단계, 및 상기 담체에 상기 화학식 3 내지 5로 표시되는 화합물 증 선택되는 제 2 메탈로센 화합물을 담지시키는 단계로 제조될 수 있다. 상기 흔성 담지 메탈로센 촉매의 제조방법에 있어서, 상기 제 1 메탈로센 화합물을 담지시키는 단계 및 상기 제 2 메탈로센 화합물을 담지시키는 단계의 순서는 필요에 따라 바뀔 수 있다. 즉, 상기 제 1 메탈로센 화합물을 담체에 먼저 담지시킨 후, 상기 제 2 메탈로센 화합물을 추가로 담지하여 흔성 담지 메탈로센 촉매를 제조하거나, 또는 상기 제 2 메탈로센 화합물을 담체에 먼저 담지시킨 후, 상기 제 1 메탈로센 화합물을 추가로 담지하여 흔성 담지 메탈로센 촉매를 제조할 수도 있다.
상기와 같은 흔성 담지 메탈로센 촉매의 제조시, 온도는 약 0 내지 약 100°C , 압력은 상압인 조건에서 수행할 수 있으나, 이에 한정되는 것은 아니다. 상기와 같은 본 발명의 흔성 담지 메탈로센 촉매의 존재하에 을레핀계 단량체를 중합함으로써, 을레핀계 중합체를 제조할 수 있다.
상기 을레핀계 단량체는 에틸렌, 알파-올레핀, 사이클릭 올레핀, 이중 결합을 2개 이상 가지고 있는 디엔 올레핀 또는 트리엔 올레핀일 수 있다.
상기 올레핀계 단량체의 구체적인 예로서, 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸ᅳ 1-펜텐, 1-핵센, 1-헵텐, 1-옥텐, 1 -데센, 1 -운데센, 1-도데센, 1-테트라데센, 1- 핵사데센, 1-아아토센, 노보넨, 노보나디엔, 에틸리덴노보넨, 페닐노보넨, 비닐노보넨, 디사이클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-핵사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠, 3-클로로메틸스티렌 등을 들 수 있으며, 이들 단량체를 2종 이상 흔합하여 공중합할 수도 있다.
상기 중합 반응은 하나의 연속식 슬러리 중합 반웅기, 루프 슬러리 반웅기, 기상 반웅기 또는 용액 반웅기를 이용하여 하나의 、 올레핀계 단량체로 호모중합하거나 또는 2종 이상의 단량체로 공중합하여 진행할 수 있다.
상기 흔성 담지 메탈로센 촉매는 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 핵산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 를루엔, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 회석하여 주입할 수 있다. 여기에 사용되는 용매는 소량의 알킬 알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하며, 조촉매를 더 사용하여 실시하는 것도 가능하다.
본 발명의 흔성 담지 메탈로센 촉매를 이용하여 을레핀계 중합체를 제조할 경우, 저분자^ 부분의 SCB 함량이 낮고, 고분자량 부분의 SCB 함량이 높은 BOCD 구조의 넓은 분자량 분포를 가지는 을레핀계 중합체를 제조할 수 있다. 상기 을레핀계 중합체는 물성이 우수할 뿐만 아니라, 가공성 또한 우수한 효과가 있다.
예를 들어, 본 발명의 흔성 담지 메탈로센 촉매를 이용하여 제조된 을레핀계 증합체는 약 30만 이상 또는 약 35만 이상의 높은 중량 평균 분자량을 나타낼 수 있다.
또한 본 발명의 흔성 담지 메탈로센 촉매는 우수한 활성을 나타내며, 본 발명의 흔성 담지 메탈로센 촉매를 이용하여 제조된 을레핀계 중합체는 예를 들어, 약 3.0 내지 약 8.0, 바람직하게는 약 4.0 내지 약 8.0, 보다 바람직하게는 5.0 내지 약 8.0의 넓은 분자량 분포 (PDI)를 보여 우수한 가공성을 나타낼 수 있다. 이하, 본 발명의 실시예를 통해 본 발명에 대해 상세히 설명한다. 그러나, 본 발명의 실시예들은 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예들로 인하여 한정되는 식으로 해석되어서는 안 된다.
<실시예 >
제 1 메탈로센 화합물의 제조 실시예
Figure imgf000026_0001
1-1 리간드 화합물의 제조
fluorene 2 g을 5 mL MTBE, hexane 100 mL에 녹여 2.5 M n-BuLi hexane solution 5.5 mL를 dry ice/acetone bath에서 적가하여 상은에서 밤새 교반하였다. (6-(tert- butoxy)hexyl)dichloro(methyl)silane 3.6 'g을 핵산 (hexane) 50 mL에 녹여 dry ice/acetone bath하에서 fluorene-Li 슬러리를 30분 동안 transfer하여 상은에서 밤새 교반하였다. 이와 동시에 5,8-dimethyl-5,10-dihydroincleno[l,2-b]mdole (12 mmol, 2.8 g) 또한 THF 60 mL에 녹여 2.5M n-BuLi hexane solution 5.5 mL를 dry ice/acetone bath에서 적가하여 상온에서 밤새 교반하였다 · fluorene과 (6-(tert-butoxy)hexyl)dichloro(inethyl)silane 과의 반웅 용액을 NMR 샘폴링하여 반웅 완료를 확인한 후 5,8-d nethyl-5,10- dihydroindeno[ 1 ,2-b]indole-Li solution을 dry ice/acetone bath하에서 transfer하였다. 상온에서 밤새 교반하였다. 반웅 후 ether/water로 추출 (extraction)하여 유기층의 잔류수분을 MgS04로 제거 후 리간드 화합물 (Mw 597.90, 12 mmol)을 얻었으며 이성질체 (isomer) 두 개가 생성되었음을 1H-NMR에서 확인할 수 있었다.
Ή NMR (500 MHz, d6-benzene): -0.30 - -0.18 (3H, d), 0.40 (2H, m), 0.65 ~ 1.45 (8H, m), 1.12 (9H, d), 2.36 ~ 2.40 (3H, d), 3.17 (2H, m), 3.41 〜 3.43 (3H, d), 4.17 ~ 4.21 (1H, d), 4.34 ~ 4.38 (1H, d), 6.90〜 7.80 (15H, m)
1-2 메탈로센 화합물의 제조
상기 1-1에서 합성한 리간드 화합물 7.2 g (12 mmol)을 diethylether 50 mL에 녹여 2.5 M n-BuLi hexane solution 11.5 mL를 dry ice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. 진공 건조하여 갈색 (brown color)의 sticky oil을 얻었다. 를루엔에 녹여 슬러리를 얻었다. ZrC (THF)2를 준비하고 틀루엔 50 mL를 넣어 슬러리로 준비하였다. ZrCl4(THF)2의 50 mL를루엔 슬러리를 dry ice/acetone bath에서 transfer하였다. 상온에서 밤새 교반함에 따라 보라색 (violet color)으로 변화하였다. 반웅 용액을 필터하여 LiCl을 제거하였다. 여과액 (filtrate)의 를루엔을 진공 건조하여 제거한 후 핵산을 넣고 1시간 동안 sonication하였다. 슬러리를 필터하여 여과된 고체 (filtered solid)인 질은 보라색 (dark violet)의 메탈로센 화합물 6 g (Mw 758.02, 7.92 mmol, yield 66mol0/0)을 얻었다. 1H-NMR상에서 두 개의 isomer가 관찰되었다.
Ή NMR (500 MHz, CDC13): 1.19 (9H, d), 1.71 (3H, d), 1.50 ~ 1.70(4H, m), 1.79(2H, m), 1.98 ~ 2.19(4H, m), 2.58(3H, s), 3.38 (2H, m), 3.91 (3H, d), 6.66 ~ 7.88 (15H, m)
Figure imgf000027_0001
2-1 리간드 화합물의 제조
250 mL flask에 5-methyl-5,10-dihydromdeno[l,2-b]indole 2.63 g (12 mmol)을 넣고 THF 50 mL에 녹인 후 2.5M n-BuLi hexane solution 6 mL를 dr yice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. 또 다른 250 mL flask에 (6-(tert- butoxy)hexyl)dichloro(methyl)silane 1.62 g(6 mmol)^: he膽 e 100 mL에 녹여 준비한 후 dry ice/acetone bath 하에서 5-methyl-5,10-dihydroindeno[l,2-b]indole의 lithiated solution에 천천히 적가하여 상온에서 밤새 교반하였다. 반응 후 ether/water로 추출하여 유기층의 잔류수분을 MgS04로 제거 후 진공 건조하여 리간드 화합물 3.82 g (6 mmol)올 얻었으며 이를 1H-NMR에서 확인하였다. Ή NMR (500 MHz, CDC13): -0.33 (3H, m), 0.86〜 1.53 (10H, m), 1.16 (9H, d), 3.18 (2H, m), 4.07 (3H, d), 4.12 (3H, d), 4.17 (1H, d), 4.25 (1H, d), 6.95 ~ 7.92 (16H, m)
2-2 메탈로센 화합물의 제조
상기 2-1에서 합성한 리간드 화합물 3.82 g (6 mmol)을 toluene 100 mL와 MTBE 5 mL에 녹'인 후 2.5M n-BuLi hexane solution 5.6 mL(l 4 mmol)를 dryice/acetone bath에서 작가하여 상온에서 밤새 교반하였다. 또 다른 flask에 ZrCl4(THF)2 2.26 g (6 mmol)을 준비하고 toluene 100ml를 넣어 슬러리로 준비하였다. ZrCl4(THF)2의 toluene slurry를 litiation된 리간드에 dry ice/acetone bath에서 transfer하였다. 상온에서 밤새 교반하였고 violet color로 변화하였다. 반웅 용액을 필터하여 LiCl을 제거한 후 얻어진 여액을 진공 건조하여 hexane을 넣고 sonication하였다. 슬러리를 필터하여 filtered solid인 dark violet 의 메탈로센 화합물 3.40 g (yield 71.1mol%)을 얻었다.
Ή NMR (500 MHz, CDC13): 1.74 (3H, d), 0.85 〜 2.33(1 OH, m), 1.29(9H, d), 3.87 (3H, s), 3.92 (3H, s), 3.36(2H, m), 6.48 ~ 8.10 (16H, m) 제 2 메탈로센 화합물의 제조 실시예
제조예 3
6-클로로핵사놀 (6-chlorohexanol)을 사용하여 문헌 (Tetrahedron Lett. 2951 (.1988))에 제시된 방법으로 t-Butyl-0-(C¾)6-Cl을 제조하고, 여기에 NaCp를 반응시켜 t-Butyl-0-(CH2)6-C5H5를 얻었다 (수율 60%, b.p. 80 °C / 0.1 mmHg).
또한, -781:에서 t-Butyl-0-(CH2)6-C5H5를 THF에 녹이고, 노르말 부틸리튬 (n- BuLi)을 천천히 가한 후, 실온으로 승온시킨 후, 8시간 반웅시켰다. 그 용액을 다시 -78 °C에서 ZrCl4(THF)2(l .7()g, 4.50mmol)/THF(30m£)의 서스펜견 (suspension) 용액에 기 합성된 리튬염 (lithium salt) 용액을 천천히 가하고 실온에서 6시간 동안 더 반응시켰다.
모든 휘발성 물질을 진공 건조하고, 얻어진 오일성 액체 물질에 핵산 (hexane) 용매를 가하여 걸러내었다. 걸러낸 용액을 진공 건조한 후, 헥산을 가해 저온 (-20°C)에서 침전물을 유도하였다. 얻어진 침전물을 저온에서 걸러내어 흰색 고체 형태의 [tBu-0-(CH2)6-C5H4]2ZrCl2화합물을 얻었다 (수율 92%).
Ή NMR (300 MHz, CDC13): 6.28 (t, J = 2.6 Hz, 2 H), 6.19 (t, J = 2.6 Hz, 2 H), 3.31 (t, 6.6 Hz, 2 H), 2.62 (t, J = 8 Hz), 1.7 - 1.3 (m, 8 H), 1.17 (s, 9 H).
13C NMR (CDC13): 135.09, 116.66, 112.28, 72.42, 61.52, 30.66, 30.61, 30.14, 29.18, 27.58, 26.00. 제조예 4
(tBu-O-rCH^^rCH SifCsiCHQ^ftBu-N^TiCh 의 제조
상온에서 50 g의 Mg(s)를 10 L반응기에 가한 후, THF 300 mL을 가하였다 . 12 0.5 g 정도를 가한 후, 반응기 온도를 50 °C로 유지하였다. 반응기 온도가 안정화된 후 250 g의 6-t-부록시핵실 클로라이드 (6-t-buthoxyhexyl chloride)를 피딩펌프 (feeding pump)를 이용하여 5 mL/min의 속도로 반응기에 가하였다. 6-t- 부톡시핵실 클로라이드를 가함에 따라 반웅기 온도가 4 내지 5 °C정도 상승하는 것을 관찰하였다. 계속적으로 64-부록시핵실 클로라이드을 가하면서 12 시간 교반하였다. 반응 12시간 후 검은색의 반응용액을 얻었다. 생성된 검은색의 용액 2 mL 취한 뒤 물을 가하여 유기층을 얻어 1H-NMR을 통해 6-t-부록시핵산 (6-t- buthoxyhexane)을 확인하였다. 상기 6-t-부톡시핵산으로부터 그리냐드 (Gringanrd) 반웅이 잘 진행되었음을 알 수 있었다. 그리하여 6-t-부특시핵실 마그네슘 클로라이드 (6-t-buthoxyhexyl magnesium chloride)를 합성하였다.
MeSiCl3 500 g과 1 L의 THF를 반웅기에 가한 후 반웅기 온도를 -20°C까지 냉각하였다. 합성한 6-t-부록시핵실 마그네슘 클로라이드 중 560 g을 피딩펌프를 이용하여 5 mL/min의 속도로 반웅기에 가하였다. 그리냐드 시약 (Grignard reagent)의 피딩 (feeding)이 끝난 후 반웅기 은도를 천천히 상온으로 올리면서 12시간 교반하였다. 반웅 12시간 후 흰색의 MgCl2염이 생성되는 것을 확인하였다. 핵산 4 L을 가하여 랩도리 (labdori)을 통해 염을 제거하여 필터용액을 앋었다. 얻은 필터용액을 반웅기에 가한 후 70°C에서 핵산을 제거하여 엷은 노란색의 액체를 얻었다. 얻은 액체를 1H-NMR을 통해 원하는 메틸 (6-t-부특시 핵실)디클로로실란 {Methyl(6-t-buthoxy hexyl)dichlorosilane} 화합물임을 확인하였다.
IH-NMR (CDC13): 3.3 (t, 2H), 1.5 (m, 3H), 1.3 (m, 5H), 1.2 (s, 9H), 1.1 (m, 2H), 0.7
(s, 3H)
테트라메틸시클로펜타디엔 (tetramethylcyclopentadiene) 1.2 mol (150 g)와 2.4 L의 THF를 반응기에 가한 후 반응기 온도를 -20°C로 냉각하였다. n-BuLi 480 mL 피딩펌프를 이용하여 5 mL/min의 속도로 반응기에 가하였다. n-BuLi을 가한 후 반응기 온도를 천천히 상온으로 을리면서 12시간 교반하였다. 반웅 12시간 후, 당량의 메틸 (6-t-부특시 핵실)디클로로실란 (Methyl(6-t— buthoxy hexyl)dichlorosilane) (326 g, 350 mL)을 빠르게 반웅기에 가하였다. 반응기 은도를 천천히 상은으로 올리면서 12시간 교반한 후 다시 반웅기 온도를 0°C로 냉각시킨 후 2당량의 t- BuNH2을 가하였다. 반응기 온도를 천천히 상온으로 올리면서 12시간 교반하였다. 반웅 12시간 후 THF을 제거하고 4 L의 핵산을 가하여 랩도리를 통해 염을 제거한 필터용액을 얻었다. 필터용액을 다시 반응기에 가한 후, 핵산을 70°C에서 제거하여 노란색의 용액을 얻었다. 얻을 노란색의 용액을 1H-NMR을 통해 메틸 (6- t-부톡시핵실) (테트라메틸 CpH)t-부틸아미노실란 (Methyl(6-t- buthoxyhexyl)(tetramethylCpH)t-Butylaminosilane) 화합물임을 확인하였다.
n-BuLi과 리간드 디메틸 (테트라메틸 CpH)t-부틸아민실란
(Dimethyl(tetramethylCpH)t-Butylaminosilane)로부터 THF용액에서 합성한 -78 의 리간드의 디리튬염에 TiCl3(THF)3(10 mmol)을 빠르게 가하였다. 반응용액을 천천히 -78 °C에서 상온으로 을리면서 12시간 교반하였다. 12시간 교반 후, 상온에서 당량의 PbCl2(10mmol)를 반응용액에 가한 후 12시간 교반하였다. 12시간 교반 후, 푸른색을 띠는 짙은 검은색의 용액을 얻었다. 생성된 반응용액에서 THF를 제거한 후 핵산을 가하여 생성물을 필터하였다. 얻을 필터용액에서 핵산을 제거한 후, 1H-NMR로부터 원하는 ([methyl(6-t-buthoxyhexyl)silyl( 5-tetramethylCp)(t- Butylamido)]TiCl2)인 (tBu-0-(CH2)6)(CH3)Si(C5(CH3)4)(tBu-N)TiCl2 임을 확인하였다.
1H-NMR (CDC13): 3.3 (s, 4H), 2.2 (s, 6H), 2.1 (s, 6H), 1.8 〜 0.8 (m), 1.4 (s, 9H), 1.2(s, 9H), 0.7 (s, 3H)
<흔성 담지 촉매의 제조실시예 >
실시예 1
1-1 담지체 건조
실리카 (Grace Davison사 제조 SYLOPOL 948)를 400°C의 은도에서 15 시간 동안 진공을 가한 상태에서 탈수하였다.
1-2 담지 촉매 제조
건조된 실리카 10 g를 유리 반응기에 넣고, 틀루엔 100 mL을 추가로 넣고 교반을 한다. 10 wt% 메틸알루미녹산 (MAO)/를루엔 용액을 50 mL를 가하여 40°C에서 교반하며 천천히 반웅시켰다. 이 후 충분한 양의 를루엔으로 세척하여 반웅하지 않은 알루미늄 화합물을 제거하고, 감압하여 남아 있는 를루엔을 제거하였다. 다시 를루엔 100 mL를 투입한 후, 상기 제조예 1에서 제조된 메탈로센 촉매 으25 mm이을 를루엔에 녹여 같이 투입하여 1시간 동안 반웅을 시켰다. 반웅이 끝난 후, 상기 제조예 3에서 제조된 메탈로센 촉매 0.25 mm이을 를루엔에 녹여 투입한 후, 1시간 동안 반웅을 추가로 시켰다. 반웅이 끝난 후, 교반을 멈추고 를루엔층을 분리제거 후, 아닐리늄 보레이트 (N, N-dimethylanilinium tetrakis(pentafluorophenyl)borate, AB) 1.0 mm이을 투입하고 1시간 동안 교반을 시킨 후, 5( C에서 감압하여 를루엔을 제거하여, 담지 촉매를 제조하였다. 실시예 2
실시예 1에서 제조예 1의 메탈로센 촉매 0.25 mmol 대신 제조예 2의 메탈로센 촉매 0.25 mm이을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 담지 촉매를 제조하였다. 실시예 3 o
상기 실시예 1에서 제조예 1의 메탈로센 촉매 0.25 mmol 반웅 1시간이 끝난 후, 제조예 4의 메탈로센 촉매 0.25 mmol 반웅 1시간을 추가로 진행한다. 이 후, 제조예 3의 메탈로센 촉매 0.25 mmol 반웅을 진행하는 것을 제외하고는 동일한 방법으로 담지 촉매를 제조하였다. 실시예 4
상기 실시예 3에서 처음에 반응시킨 제조예 1의 메탈로센 촉매 0.25 mmol 대신 제조예 2의 메탈로센 촉매 0.25 mmol 반응을 사용한 것을 제외하고는 동일한 방법으로 담지 촉매를 제조하였다. 실시예 5
상기 실시예 3에서 처음에 반웅시킨 제조예 1의 메탈로센 촉매 0.25 mmol 대신 제조예 2의 메탈로센 촉매 0.25 mmol 반웅을 먼저 진행한다. 이후 두 번째 촉매로 제조예 1의 메탈로센 촉매 0.25 mmol 을 사용하고, 마지막으로 제조예 3의 메탈로센 촉매를 사용하는 것을 제외하고는 동일한 방법으로 담지 촉매를 제조하였다. 비교예 1
건조된 실리카 10 g를 유리 반응기에 넣고, 를루엔 100 mL을 추가로 넣고 교반을 한다. 10 wt% 메틸알루미녹산 (MAO)/를루엔 용액을 50 mL를 가하여 40°C에서 교반하며 천천히 반응시켰다. 이 후 충분한 양의 '를루엔으로 세척하여 반웅하지 않은 알루미늄 화합물을 제거하고, 감압하여 남아 있는 를루엔을 쎄거하였다. 다시 를루엔 100 mL를 투입한 후, 상기 제조예 3에서 제조된 메탈로센 촉매 0.25 mmol을 를루엔에 녹여 같이 투입하여 1시간 동안 반웅을 시켰다. 반응이 끝난 후, 50 °C에서 감압하여 를루엔을 제거하여, 담지 촉매를 제조하였다. 비교예 2 '
상기 비교예 1에서 처음에 반웅시킨 제조예 3의 메탈로센 촉매 0.25 mmol 대신 제조예 4의 메탈로센 촉매 0.25 mmol . 반웅을 사용한 것을 제외하고는 동일한 방법으로 담지 촉매를 제조하였다. 비교예 3
상기 비교예 2에서 처음에 반웅시킨 제조예 4의 메탈로센 촉매 0.25 mmol 반웅 이후, 제조예 3의 메탈로센 촉매 0.25 mmol 반웅을 추가로 진행한 것을 제외하고는 동일한 방법으로 담지 촉매를 제조하였다. 비교예 4
상기 비교예 3에서 마자막에 아닐리늄 보레이트 (Ν,Ν-dimethylanilinium tetrakis(pentafluorophenyl)borate, AB) 1.0 mmol을 투입한 것을 제외하고는 동일한 방법으로 담지 촉매를 제조하였다. <실험예 > 에틸렌 _핵센 공증합
상기 실시예 1 내지 5 및 비교예 1 내지 4 에서 제조한 각각의 담지 촉매 50mg을 드라이박스에서 정량하여 50mL의 유리병에 각각 담은 후 고무 격막으로 밀봉하여 드라이박스에서 꺼내어 주입할 촉매를 준비하였다. 중합은 기계식 교반기가 장착된 온도 조절이 가능하고 고압에서 이용되는 2L 금속 합금 반웅기에서 수행하였다.
이 반응기에 1.0]1^이 트리에틸알루미늄( 1^& 1^ 1111)이 들어 있는 핵산 1 L와 1-핵센 (5mL)을 주입하고, 상기 준비한 각각의 담지 촉매를 반응기에 공기 접촉 없이 투입한 후, 80°C에서 기체 에틸렌 단량체를 9 Kgf/cm2의 압력으로 계속적으로 가하면서 1시간 동안 중합하였다. 중합의 종결은 먼저 교반을 멈춘 후 에틸렌을 배기시켜 제거함으로써 완료시켰다.
이로부터 얻어진 중합체는 중합 용매를 여과시켜 대부분을 제거한 후 80 °C 진공 오븐에서 4 시간 동안 건조시켰다.
' 상기에서 제조한 각각의 촉매에 대한 중합 조건, 에틸렌 /1-핵센 중합 활성, 얻어진 중합체의 분자량 및 분자량 분포를 하기 표 1에 나타내었다.
【표 1]
메탈로센 조촉매 (아닐리늄
중합 활성 분자량 분자량 . 촉매 보레이트)
구분 (kg-PE/g- (*104 분포
(제조예 사용여부
Cat.) g/mol) (MWD) 번호)
실시예 1 1/3 0 10.2 32.0 6.3 실시예 2 2/3 O 9.2 36.0 6.8 실시예 3 1 /4/3 0 8.9 40.2 5.4 실시예 4 2/4/3 o 7.8 45.2 5.7 실시예 5 2/1/3 0 8.2 49.8 6.5 비교예 1 3 X 3.6 16.7 2.1 비교예 2 4 X 1.2 113.3 2.2 . 비교예 3 4/3 X 3.8 20.2 3.4 비교예 4 4/3 0 7.4 19.2 3.0 상기 표 2를 참고하면, 본 발명의 흔성 담지 촉매에 대한 실시예 1 내지 5는 2종 이상의 메탈로센 화합물을 포함하면서도, 단일 촉매 또는 제 2 메탈로센 화합물만을 포함하는 비교예보다 훨씬 높은 활성, 높은 분자량 및 넓은 분자량 분포를 가지는 중합체를 제조할 수 있음을 알 수 있다ᅳ :

Claims

[특허청구범위】
【청구항 1】
하기 화학식 1로 표시되는 제 1 메탈로센 화합물 1종 이상;
하기 화학식 3 내지 5로 표시되는 화합물 중에서 선택되는 제 2 메탈로센 화합물 1종 이상;
조촉매 화합물; 및
담체를 포함하는 흔성 담지 메탈로센 촉매:
[
Figure imgf000035_0001
상기 화학식 1에서,
Α는 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, C7 내지 C20의 아릴알킬기, C1 내지 C20의 알콕시기, C2 내지 C20의 알콕시알킬기, C3 내지 C20의 헤테로시클로알킬기, 또는 C5 내지 C20의 헤테로아릴기이고;
D는 -0-, -S-, -N(R)- 또는 -Si(R)(R 이고, 여기서 R 및 R'은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기 , 또는 C6 내지 C20의 아릴기이고;
L은 C1 내지 C10의 직쇄 또는 분지쇄 알킬렌기이고;
B는 탄소, 실리콘 또는 게르마늄이고;
Q는 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이고; .
M은 4족 전이금속이며;
X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네이트기이고; C1 및 C2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식 2a, 화학식 2b 또는 하기. 화학식 2c 중 하나로 표시되고, 단, C1 및 C2가 모두 화학식 2c인 경우는 제외하며;
[
Figure imgf000036_0001
[화학식 2c]
Figure imgf000036_0002
상기 화학식 2a, 2b 및 2c에서, R1 내지 R17 및 R1' 내지 R9'는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 실릴알킬기, C1 내지 C20의 알콕시실릴기, C1 내지 C20의 알콕시기, C6 내지 C20의 아릴기, C1 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이며, 상기 R10 내지 R17 증 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있고;
[화학식 3]
Figure imgf000037_0001
상기 화학식 3에서,
M1은 4족 전이금속이고;
Cp1 및 Cp2는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디엔닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐, 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내자 20의 탄화수소로 치환될 수 있으며;
Ra 및 Rb는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고;
Z1은 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기 , C2 내지 C20의 알킬알콕시,또는 C7 내지 C40의 아릴알콕시이고;
n은 1 또는 0 이고;
[화학식 4]
(Cp3Rc) mB'(Cp4Rd)M2Z23-m
상기 화학식 4에서,
M2는 4족 전이 금속이고;
Cp3 및 Cp4는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
Rc 및 Rd는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고; Z2는 할로겐 원자, CI 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시 , 또는 C7 내지 C40의 아릴알콕시이고;
B1은 Cp3Rc 고리와 Cp4Rd 고리를 가교 결합시키거나, 하나의 Cp4Rd 고리를
M2에 가교 결합시키는, 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼 중 하나 이상 또는 이들의 조합이고;
m은 1 또는 0 이고;
[화학식 5]
(Cp5Re)B2(J)M3Z3 2
상기 화학식 5에서,
M3은 4족 전이 금속이고;
Cp5는 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로— 1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, .이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
Re는 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고;
Z3은 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지
C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시 , 또는 C1 내지 C40의 아릴알콕시이고;
B2는 Cp5Re 고리와 J를 가교 결합시키는 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼중 하나 이상 또는 이들의 조합이고;
J는 NRf, O, PRf 및 S로 이루어진 군에서 선택된 어느 하나이고, 상기 Rf는 C1 내지 C20의 알킬, 아릴, 치환된 알킬 또는 치환된 아릴이다.
【청구항 2】
게 1항에 있어서, 상기 화학식 2a, 2b 및 2c의 R1 내지 R17 및 R1' 내지 R9'는 각각 독립적으로 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 펜틸기, 핵실기, 헵틸기, 옥틸기, 페닐기, 할로겐기, 트리메틸실릴기, 트리에틸실릴기, 트리프로필실릴기, 트리부틸실릴기, 트리이소프로필실릴기, 트리메틸실릴메틸기, 메특시기, 또는 에록시기인 흔성 담지 메탈로센 촉매.
【청구항 3 ]
제 1항에 있어서, 상기 화학식 1의 L은 C4 내지 C8의 직쇄 또 분지쇄 알킬렌기인 흔성 담지 메탈로센 촉매.
【청구항 4】
제 1항에 있어서, 상기 화학식 1의 A는 수소, 메틸기, 에틸기, 프로필기, 이소프로필기 , n-부틸기 , tert-부틸기 , 메톡시메틸기, tert-부특시메틸기 , 1-에록시에틸기: 1-메틸 -1-메특시에틸기, 테트라하이드로피라닐기, 또는 테트라하이드로퓨라닐기인 흔성 담지 메탈로센 촉매.
【청구항 5】
거 11항에 있어서, 상기 화학식 1로 표시되는 제 1 메탈로센 화합물은 하기 구조식 중 하나인 흔성 담지 메탈로센 촉매:
Figure imgf000039_0001
Figure imgf000040_0001
39
Figure imgf000041_0001
Figure imgf000042_0001
【청구항 6】
제 1항에 있어서, 상기 화학식 3으로 표시되는 제 2 메탈로센 화합물은 기 구조식들 중 하나인 흔성 담지 메탈로센 촉매:
Figure imgf000042_0002
Figure imgf000043_0001
Figure imgf000043_0002
【청구항 7】
제 1항에 있어서, 상기 화학식 4로 표시되는 제 2 메탈로센 화합물은 하기 구조식들 중 하나인 흔성 담지 메탈로센 촉매:
Figure imgf000043_0003
Figure imgf000044_0001
【청구항 8】
제 1항에 있어서, 상기 화학식 5로 표시되는 제 2 메탈로센 화합물은 하기 구조식들 중 하나인 흔성 담지 메탈로센 촉매:
Figure imgf000044_0002
Figure imgf000045_0001
【청구항 9】
제 1항에 있어서, 상기 조촉매 화합물은 하기 화학식 6의 제 1 조촉매, 및 하기 화학식 7의 제 2 조촉매로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 흔성 담지 메탈로센 촉매:
[화학식 6]
-[Al(R18)-0-]k- 화학식 6에서, R18은 각각 독립적으로 할로겐, 할로겐 치환 또는 비치환된 탄소수 1 내지 20의 하이드로카빌기이고, k는 2 이상의 정수아고,
[화학식 7]
T+[BG4]ᅳ
. 화학식 7에서 , T+은 +1가의 다원자 이온이고 , Β는 +3 산화 상태의 붕소이고: G는 각각 독립적으로 하이드라이드기, 디알킬아미도기, 할라이드기, 알콕사이드기, 아릴옥사이드기, 하이드로카빌기, 할로카빌기 및 할로-치환된 하이드로카빌기로 이루어진 군에서 선택되고, 상기 G는 20개 이하의 탄소를 가지나, 단 하나 이하의 위치에서 G는 할라이드기이다.
【청구항 10】
제 1항에 있어서, 상기 제 1 메탈로센 화합물 및 제 2 메탈로센 화합물의 전이금속 대 담체의 질량비는 1 : 10 내지 1 : 1,000 인 흔성 담지 메탈로센 촉매.
【청구항 11】
거 U항에 있어서, 상기 조촉매 화합물 대 담체의 질량비는 1 : 1 내지 1: 100 인 흔성 담지 메탈로센 촉매.
PCT/KR2014/009681 2013-10-18 2014-10-15 혼성 담지 메탈로센 촉매 WO2015056975A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016518095A JP6282341B2 (ja) 2013-10-18 2014-10-15 混成担持メタロセン触媒
EP14854760.7A EP3037167B1 (en) 2013-10-18 2014-10-15 Hybrid-supported metallocene catalyst
US15/026,544 US9926395B2 (en) 2013-10-18 2014-10-15 Hybrid supported metallocene catalyst

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0124518 2013-10-18
KR20130124518 2013-10-18
KR1020140138348A KR101644113B1 (ko) 2013-10-18 2014-10-14 혼성 담지 메탈로센 촉매
KR10-2014-0138348 2014-10-14

Publications (1)

Publication Number Publication Date
WO2015056975A1 true WO2015056975A1 (ko) 2015-04-23

Family

ID=52828353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009681 WO2015056975A1 (ko) 2013-10-18 2014-10-15 혼성 담지 메탈로센 촉매

Country Status (1)

Country Link
WO (1) WO2015056975A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186970A1 (ko) * 2014-06-03 2015-12-10 주식회사 엘지화학 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
WO2016093580A1 (ko) * 2014-12-08 2016-06-16 주식회사 엘지화학 가공성이 우수한 에틸렌/알파-올레핀 공중합체
US9988469B2 (en) 2014-06-03 2018-06-05 Lg Chem, Ltd. Method for preparing polyolefin and polyolefin prepared thereby
JP2018529826A (ja) * 2016-02-24 2018-10-11 エルジー・ケム・リミテッド 混成担持メタロセン触媒およびこれを利用したポリオレフィンの製造方法
US10155830B2 (en) 2014-12-08 2018-12-18 Lg Chem, Ltd. Ethylene/alpha-olefin copolymers having excellent processability

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032562A (en) 1989-12-27 1991-07-16 Mobil Oil Corporation Catalyst composition and process for polymerizing polymers having multimodal molecular weight distribution
US5525678A (en) 1994-09-22 1996-06-11 Mobil Oil Corporation Process for controlling the MWD of a broad/bimodal resin produced in a single reactor
US5914289A (en) 1996-02-19 1999-06-22 Fina Research, S.A. Supported metallocene-alumoxane catalysts for the preparation of polyethylene having a broad monomodal molecular weight distribution
KR20030012308A (ko) 2001-07-31 2003-02-12 주식회사 예스아이비 배팅형 복권 시스템 및 배팅 방법
KR20110035968A (ko) * 2009-09-29 2011-04-06 주식회사 엘지화학 3종 혼성 메탈로센 담지 촉매 및 그의 제조방법
US20120059135A1 (en) * 2009-03-30 2012-03-08 Mitsui Chemicals, Inc. Copolymer of olefin and conjugated diene, and process for producing the same
KR20120076156A (ko) * 2010-12-29 2012-07-09 주식회사 엘지화학 혼성 담지 메탈로센 촉매의 제조방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매
KR20120087706A (ko) * 2011-01-28 2012-08-07 주식회사 엘지화학 메탈로센 화합물 및 이를 이용하여 제조되는 올레핀계 중합체
WO2013133595A1 (en) * 2012-03-06 2013-09-12 Sk Innovation Co., Ltd. Hybrid supported metallocene catalyst, method for preparing the same, and process for preparing polyolefin using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032562A (en) 1989-12-27 1991-07-16 Mobil Oil Corporation Catalyst composition and process for polymerizing polymers having multimodal molecular weight distribution
US5525678A (en) 1994-09-22 1996-06-11 Mobil Oil Corporation Process for controlling the MWD of a broad/bimodal resin produced in a single reactor
US5914289A (en) 1996-02-19 1999-06-22 Fina Research, S.A. Supported metallocene-alumoxane catalysts for the preparation of polyethylene having a broad monomodal molecular weight distribution
KR20030012308A (ko) 2001-07-31 2003-02-12 주식회사 예스아이비 배팅형 복권 시스템 및 배팅 방법
US20120059135A1 (en) * 2009-03-30 2012-03-08 Mitsui Chemicals, Inc. Copolymer of olefin and conjugated diene, and process for producing the same
KR20110035968A (ko) * 2009-09-29 2011-04-06 주식회사 엘지화학 3종 혼성 메탈로센 담지 촉매 및 그의 제조방법
KR20120076156A (ko) * 2010-12-29 2012-07-09 주식회사 엘지화학 혼성 담지 메탈로센 촉매의 제조방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매
KR20120087706A (ko) * 2011-01-28 2012-08-07 주식회사 엘지화학 메탈로센 화합물 및 이를 이용하여 제조되는 올레핀계 중합체
WO2013133595A1 (en) * 2012-03-06 2013-09-12 Sk Innovation Co., Ltd. Hybrid supported metallocene catalyst, method for preparing the same, and process for preparing polyolefin using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TETRAHEDRON LETT., 1988, pages 2951

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186970A1 (ko) * 2014-06-03 2015-12-10 주식회사 엘지화학 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
US9988469B2 (en) 2014-06-03 2018-06-05 Lg Chem, Ltd. Method for preparing polyolefin and polyolefin prepared thereby
WO2016093580A1 (ko) * 2014-12-08 2016-06-16 주식회사 엘지화학 가공성이 우수한 에틸렌/알파-올레핀 공중합체
US10155830B2 (en) 2014-12-08 2018-12-18 Lg Chem, Ltd. Ethylene/alpha-olefin copolymers having excellent processability
JP2018529826A (ja) * 2016-02-24 2018-10-11 エルジー・ケム・リミテッド 混成担持メタロセン触媒およびこれを利用したポリオレフィンの製造方法
US11091568B2 (en) 2016-02-24 2021-08-17 Lg Chem, Ltd. Hybrid supported metallocene catalyst and polyolefin preparation method using same

Similar Documents

Publication Publication Date Title
JP6282341B2 (ja) 混成担持メタロセン触媒
JP6247751B2 (ja) 混成担持メタロセン触媒の製造方法
EP3106474B1 (en) Method of preparing a polyolefin
JP6488002B2 (ja) 加工性に優れたオレフィン系重合体
JP2017518423A (ja) 耐環境応力亀裂性に優れたポリオレフィン
KR102073252B1 (ko) 올레핀 공중합체 합성용 촉매 조성물 및 올레핀 공중합체의 제조 방법
WO2016036204A1 (ko) 가공성이 우수한 올레핀계 중합체
EP3348585A1 (en) Supported hybrid metallocene catalyst and polyolefin preparation method using same
JP6440832B2 (ja) メタロセン化合物、メタロセン担持触媒およびこれを用いるポリオレフィンの製造方法
KR102064990B1 (ko) 에틸렌 슬러리 중합용 혼성 담지 촉매 시스템 및 이를 이용한 에틸렌 중합체의 제조 방법
KR20150037520A (ko) 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
KR102028736B1 (ko) 혼성 담지 메탈로센 촉매의 제조방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매
EP3255066A1 (en) Method for producing metallocene-supported catalyst
KR101606825B1 (ko) 혼성 담지 메탈로센 촉매의 제조방법
WO2015056975A1 (ko) 혼성 담지 메탈로센 촉매
EP3330296B1 (en) Method for preparing supported metallocene catalyst
WO2015186970A1 (ko) 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
WO2015056974A1 (ko) 혼성 담지 메탈로센 촉매의 제조방법
KR102215024B1 (ko) 폴리올레핀의 제조 방법
KR20200090041A (ko) 혼성 담지 메탈로센 촉매의 제조 방법 및 이를 이용한 올레핀 중합체의 제조 방법
WO2017155211A1 (ko) 에틸렌 슬러리 중합용 혼성 담지 촉매 시스템 및 이를 이용한 에틸렌 중합체의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854760

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014854760

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014854760

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016518095

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15026544

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE