WO2019124484A1 - 電気コネクターおよびその製造方法 - Google Patents

電気コネクターおよびその製造方法 Download PDF

Info

Publication number
WO2019124484A1
WO2019124484A1 PCT/JP2018/046949 JP2018046949W WO2019124484A1 WO 2019124484 A1 WO2019124484 A1 WO 2019124484A1 JP 2018046949 W JP2018046949 W JP 2018046949W WO 2019124484 A1 WO2019124484 A1 WO 2019124484A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber sheet
thin metal
layer
metal layer
electrical connector
Prior art date
Application number
PCT/JP2018/046949
Other languages
English (en)
French (fr)
Inventor
昌俊 土屋
敦也 清水
Original Assignee
信越ポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越ポリマー株式会社 filed Critical 信越ポリマー株式会社
Priority to JP2019560552A priority Critical patent/JP7269885B2/ja
Publication of WO2019124484A1 publication Critical patent/WO2019124484A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors

Definitions

  • the present invention relates to an electrical connector and a method of manufacturing the same.
  • Priority is claimed on Japanese Patent Application No. 2017-245575, filed Dec. 21, 2017, the content of which is incorporated herein by reference.
  • the conductive elastomer layer and the insulating elastomer layer which use a conductive material containing silver, have a zebra shape (vertical stripe pattern) for connection between a display device such as a liquid crystal display and a circuit board, connection between electronic circuit boards, etc.
  • An anisotropic conductive connector is known (see, for example, Patent Document 1). This anisotropically conductive connector is formed by alternately and multiply laminating a conductive elastomer layer and an insulating elastomer layer so that the bonding surfaces thereof are parallel to each other.
  • metal thin wires with a wire diameter of 5 ⁇ m to 100 ⁇ m are embedded at the same interval as the electrode pitch of the connected member, and embedded only in the portion facing the electrode portion of the connected member.
  • An anisotropically conductive connector is known which is arranged along the extension direction of (see, for example, Patent Document 2).
  • the present invention has been made in view of the above circumstances, and provides an anisotropic conductive connector that prevents a short circuit due to migration and prevents damage to an electrode to be inspected, and a method of manufacturing the same. With the goal.
  • An electrical connector which is disposed between the connection terminal of the first device and the connection terminal of the second device and electrically connects these, wherein a resin layer and a thin metal layer are alternately multiplexed.
  • the multi-layered body having a rectangular parallelepiped shape is laminated, and the thin metal layer penetrates the multi-layered main body in the thickness direction and the depth direction, and the exposed surface of the thin metal layer in the connection surface with the connection terminal of the multi-layer main body
  • [5] Applying a metal nanopaste to one side of a substrate, firing the metal nanopaste applied to one side of the substrate to form a thin metal layer, and forming it on one side of the substrate Bonding one surface of a first uncured rubber sheet to the thin metal layer, and then vulcanizing the first uncured rubber sheet to form a first rubber sheet; A second uncured rubber sheet such that the metal thin layer is left on one side of the first rubber sheet, and the first metal sheet is covered on the one side of the first rubber sheet.
  • the second uncured rubber sheet is vulcanized to form a second rubber sheet, and an elasticity comprising the first rubber sheet, the thin metal layer, and the second rubber sheet Shaping the body and a plurality of said plurality of thin metal layers being parallel to one another
  • Manufacturing an electrical connector comprising laminating an elastic body to form a laminate, and cutting the laminate perpendicularly to the extending direction of the thin metal layer in the laminate.
  • the anisotropically conductive connector which prevents that the electrode to be examined is damaged can be provided, and its manufacturing method.
  • FIG. 1 shows a schematic configuration of the electrical connector of the present embodiment, wherein (a) is a plan view and (b) is a front view.
  • the electrical connector 10 according to the present embodiment includes a rectangular solid multilayer main body 20 in which resin layers 21 and thin metal layers 22 are alternately and multiply stacked.
  • the thin metal layer 22 penetrates the multilayer body 20 in the thickness direction (Z direction in FIG. 1B) and in the depth direction (Y direction in FIG. 1A).
  • the thin metal layer 22 is a shape of a surface (exposed surface) on which a part of the thin metal layer 22 in the first connection surface (one main surface of the multilayer main body 20) 20a with the connection terminal of the multilayer main body 20 is exposed. Is a rectangle.
  • the shape of the exposed surface of the thin metal layer 22 in the second connection surface (the other main surface of the multilayer body 20) 20b with the connection terminal of the multilayer body 20 is also rectangular.
  • the thickness direction (Z direction in FIG. 1B), the width direction (X direction in FIG. 1A), and the depth direction (Y direction in FIG. 1A) are mutually different. It is an orthogonal direction.
  • the four inner angles of "rectangle” need not be exactly 90 degrees, and “rectangle” may be regarded as thick and linear.
  • the length of the long side of the rectangle is a linear length
  • the length of the short side of the rectangle corresponds to the linear thickness.
  • the thin metal layer 22 is made of a noble metal or a noble metal alloy.
  • the length of the short side of the rectangle of the metal thin layer 22 is 0.01 ⁇ m to 10 ⁇ m.
  • the electrical connector 10 is disposed between the connection terminal of the first device (not shown) and the connection terminal of the second device (not shown) for electrically connecting them.
  • the thin metal layer 22 is a member that electrically connects the connection terminal of the first device and the connection terminal of the second device.
  • the devices include, for example, semiconductor packages, circuit boards, silicon wafers, passive components, liquid crystal modules, and sensors.
  • the elastic layer 23 is formed by laminating the resin layer 21, the thin metal layer 22, and the resin layer 21 in this order.
  • the multilayer body 20 has a plurality of elastic bodies 23 laminated (continuously connected) in the long side direction (X direction shown in FIG. 1A) of one main surface 20a of the multilayer body 20 via the adhesive layer 40 ).
  • the number of laminated elastic bodies 23, that is, the length of the long side of the multilayer body 20 (the length in the X direction shown in FIG. 1A) is not particularly limited, and the number and size of the electrodes to be inspected It adjusts suitably according to area, a pitch, etc.
  • the length of the short side (length in the Y direction shown in FIG.
  • one main surface 20a of the multilayer main body 20 is not particularly limited, and the number and size (area) of the electrodes to be inspected And are adjusted appropriately according to the pitch and the like.
  • the elastic body 23 does not have to be laminated via the adhesive layer 40, and the electric connector 10 without the adhesive layer 40 can also be manufactured by the method for manufacturing an electrical connector described later.
  • the elastic body 23 may be a laminate of one resin layer 21 and one metal thin layer 22.
  • the thin metal layer 22 is disposed on the center line in the long side direction (Y direction shown in FIG. 1A) of the elastic body 23.
  • the plurality of elastic bodies 23 are continuously connected (laminated) such that the thin metal layers 22 are parallel to one another.
  • the thickness of the multilayer body 20 (the length in the Z direction shown in FIG. 1B), that is, the distance between one main surface 20a and the other main surface 20b is preferably 0.03 mm or more and 25 mm or less.
  • the length of the multilayer body 20 in the long side direction may be, for example, 0.05 mm to 300 mm.
  • L 1 is 0.03mm or more 10mm It is preferable that it is the following and it is more preferable that they are 0.3 mm or more and 5 mm or less. If the long side length L 1 of the thin metal layer 22 is within the above range, the electrical connection between the connection terminal of the first device and the connection terminal of the second device is stably maintained over a long period of time Can.
  • L 2 is 0.01 ⁇ m or more 10 ⁇ m Or less, preferably 0.05 ⁇ m or more and 5 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 2 ⁇ m or less. Within the range the length L 2 of the short sides of the rectangle of the thin metal layer 22, it is not damaging the electrodes of the test object. Further, the electrical connection between the connection terminal of the first device and the connection terminal of the second device can be stably maintained for a long time.
  • the pitch P 1 of the thin metal layer 22 in the rectangular direction of the short side is 1 ⁇ m or more 600 ⁇ m or less Is more preferably 1 ⁇ m to 200 ⁇ m, and still more preferably 1 ⁇ m to 50 ⁇ m. If the pitch P 1 of the thin metal layer 22 in the short-side direction of the rectangle is 0.2mm or less, it is possible to perform the electrical connection between the narrow pitch electrode. Further, the electrical connection between the connection terminal of the first device and the connection terminal of the second device can be stably maintained for a long time.
  • the covering layer 50 may be provided on the side surface 20c along the thickness direction of the multilayer body 20 where a part of the thin metal layer 22 is exposed.
  • the thickness of the covering layer 50 is not particularly limited, and can be, for example, 1 ⁇ m to 5 mm.
  • the material (material) of the resin layer 21 forming the multilayer body 20 is not particularly limited as long as it has insulating properties and elasticity, but, for example, silicone rubber, fluororubber, polybutadiene rubber, polyisoprene rubber, polyurethane rubber, Chloroprene rubber, polyester rubber, styrene-butadiene copolymer rubber, natural rubber and the like can be mentioned. Among these, silicone rubber is preferable in terms of high elasticity and excellent heat resistance.
  • the material of the thin metal layer 22 is preferably a metal which migration is less likely to occur than silver, and noble metals such as gold, platinum, palladium, rhodium, iridium, ruthenium, etc.
  • noble metals such as gold, platinum, palladium, rhodium, iridium, ruthenium, etc.
  • An alloy is mentioned.
  • noble metals, tin, copper, lead, nickel and alloys thereof are also included.
  • noble metals such as gold and platinum are preferable, and gold and platinum are particularly preferable.
  • the adhesive constituting the adhesive layer 40 is not particularly limited, but the same material as that of the resin layer 21 may be used, or one different in material from the resin layer 21 may be used.
  • the adhesive include silicone adhesives, modified silicone adhesives, natural rubber latex adhesives, urethane resin adhesives, urethane resin adhesives, vinyl chloride resin adhesives, chloroprene rubber adhesives, Examples thereof include nitrile rubber adhesives, nitrocellulose adhesives, phenol resin adhesives, polyimide adhesives, polyurethane resin adhesives, polyvinyl alcohol adhesives, and the like.
  • liquid silicone rubbers which can be easily thinned are preferable.
  • the liquid silicone rubber is a liquid at the time of coating, but when hardened it becomes a silicone rubber having a low fluidity or a solid state.
  • the material (material) of the covering layer 50 is not particularly limited as long as it has insulating properties and elasticity, and examples thereof include the same materials as the resin layer 21.
  • the electrical connector 10 of the present embodiment includes a rectangular solid multilayer main body 20 in which resin layers 21 and thin metal layers 22 are alternately stacked in multiple layers, and the thin metal layer 22 has a thickness direction of the multilayer main body 20 (see FIG. 1 (b) in the Z direction and the depth direction (Y direction in FIG. 1 (a)), and the shape of the exposed surface of the thin metal layer 22 on the connection surface 20a with the connection terminal of the multilayer body 20 is rectangular
  • the thin metal layer 22 is made of a noble metal or a noble metal alloy, and the short side of the rectangle has a length of 0.01 ⁇ m to 10 ⁇ m. Therefore, a short circuit due to migration can be prevented.
  • the electrical connector 10 of the present embodiment includes the metal thin layer 22 having a rectangular short side length of 0.01 ⁇ m or more and 10 ⁇ m or less, the electrical connector 10 is excellent in high frequency characteristics and electrically connected with narrow pitch electrodes. It can be carried out.
  • the end of the thin metal layer 22 of the electrical connector 10 may protrude from at least one of the one main surface 20a and the other main surface 20b.
  • the end of the thin metal layer means a range from the end face (edge) of the thin metal layer to a quarter of the length in the Z direction of the thin metal layer.
  • the amount of protrusion when the end of the thin metal layer 22 protrudes from the main surface is not particularly limited, and is appropriately adjusted according to the shape, arrangement, and the like of the connection terminals of two devices electrically connected by the electrical connector 10 Be done.
  • the protruding end is plated to be different from the thin metal layer 22.
  • Another plated layer may be formed.
  • the material of another plating layer is not particularly limited, and may be appropriately selected according to the material of the thin metal layer 22.
  • Another plating layer increases the surface area (cross-sectional area) of the end of the thin metal layer 22 and increases the contact area between the end of the thin metal layer 22 and the connection terminal of the device to be connected. The connection state can be kept more stable.
  • step A1 the first step of forming a plated layer on one side of the base
  • step B1 a step of vulcanizing the first clay-like rubber sheet to form a first rubber sheet
  • step C1 a step of removing the plating layer by etching and leaving the plating layer on one side of the first rubber sheet
  • step C1 a step of covering the plating layer on one side of the first rubber sheet
  • step D1 The step of forming (hereinafter referred to as "step D1") and the plated layer And a step of forming a laminate by laminating a plurality of elastic bodies in parallel with each other (hereinafter referred to as “step E1”), the laminate and the extending direction of the plating layer in the laminate. And a step of vertically cutting (hereinafter referred to as “step F1”).
  • the first and second clay-like rubber sheets are examples of the first and second uncured rubber sheets.
  • a rubber sheet made of liquid silicone may be used. In the case of using a rubber sheet made of liquid silicone, it is preferable to use a sheet obtained by semi-curing liquid silicone or one obtained by forming liquid silicone having relatively low fluidity into a sheet.
  • 2 (a) to 2 (c) and 3 (a) to 3 (c) are cross-sectional views schematically showing a method of manufacturing the electrical connector of the present embodiment.
  • FIGS. 2 and 3 the same components as those of the electrical connector according to the embodiment shown in FIG. 1 are designated by the same reference numerals and their description will not be repeated.
  • the plating layer 70 is formed in one surface 60a of the base material 60 (process A1).
  • a plating layer 70 is formed on one surface 60a of the base 60 by electrolytic plating or electroless plating.
  • the substrate 60 is not particularly limited as long as it can form the plating layer 70 by electrolytic plating or electroless plating.
  • the base material 60 for example, as shown in FIG. 2A, a first layer 61 made of copper or brass, a copper alloy such as phosphor bronze or nickel white, and a second layer 62 made of nickel or zinc Or an alloy obtained by laminating a gold-plated layer, a platinum-plated layer, a copper-plated layer or a nickel-plated layer on one surface of a water-soluble film.
  • a water-soluble film polyvinyl alcohol etc. are mentioned, for example.
  • Examples of the material of the plating layer 70 include noble metals such as gold and platinum other than silver, and alloys of these noble metals.
  • step B1 After laminating one surface 81 a of the first clay-like rubber sheet 81 to the plating layer 70 formed on the one surface 60 a of the base material 60, the first clay-like rubber The sheet 81 is vulcanized to form a first rubber sheet (step B1).
  • the first clay-like rubber sheet 81 is not particularly limited.
  • a clay-like silicone rubber, a clay-like fluororubber, a clay-like polybutadiene rubber, and a clay-like poly which cure and cure by heating or light or electromagnetic wave irradiation examples thereof include isoprene rubber, clay-like polyurethane rubber, clay-like chloroprene rubber, clay-like polyester-based rubber, clay-like styrene-butadiene copolymer rubber, clay-like natural rubber and the like.
  • These clay-like rubber sheets are formed by adding a vulcanizing agent and an optional additive to a millable compound and kneading.
  • the clay-like silicone rubber include, for example, so-called rubber compounds such as KE-174-U manufactured by Shin-Etsu Chemical Co., Ltd. 20 or more are preferable and, as for the hardness (durometer A) after hardening of clay-like silicone rubber, 30 or more are more preferable.
  • the upper limit of this hardness is preferably 90 or less.
  • the electric connector can be given appropriate rigidity. The hardness is measured in accordance with the method of JIS K 6249: 2003.
  • liquid silicone rubber which may be used in place of the clay-like silicone rubber, for example, heat by addition reaction such as KE-1935-A, KE-1935-B, etc. made by Shin-Etsu Chemical Co., Ltd. What hardens is mentioned.
  • the viscosity of the liquid silicone rubber before curing is much lower than that of the clay-like silicone compound, for example, preferably 500 Pa ⁇ s or less, preferably 200 Pa ⁇ s or less, and more preferably 100 Pa ⁇ s or less.
  • the lower limit value of the viscosity is preferably 10 Pa ⁇ s or more.
  • the density (23 ° C., unit: g / cm 3 ) of the liquid silicone rubber before curing is preferably lower than that of the clay-like silicone rubber, for example, less than 1.10 is preferable and 1.06 or less is preferable. More preferably, it is 03 or less.
  • the lower limit value of this density is usually 1.00 or more.
  • the upper limit of this hardness is preferably 90 or less.
  • the electric connector can be given appropriate rigidity. The viscosity, density and hardness are measured in accordance with the method of JIS K 6249: 2003.
  • the thickness of the first clay-like rubber sheet 81 is not particularly limited, and the thickness is required according to the thickness required for the multilayer body 20 formed by connecting the elastic bodies 23 formed by the first clay-like rubber sheet 81. Adjusted as appropriate. For example, a thickness of 0.0005 mm to 0.5 mm can be mentioned.
  • the sheet may be called a film.
  • step B1 the first clay-like rubber sheet 81 is heated and vulcanized to form a first rubber sheet 81A.
  • the base material 60 is removed by wet etching to leave the plated layer 70 on one surface 81a of the first rubber sheet 81A (step C1).
  • the substrate 60 on which the plating layer 70 is formed is bonded to the first rubber sheet 81A, and is immersed in a solution of iron chloride.
  • a water-soluble film is used as the substrate 60, a substrate obtained by bonding the first rubber sheet 81A to the substrate 60 on which the plating layer 70 is formed is immersed in water. Thereby, the base material 60 is dissolved and removed.
  • step C1 the plating layer 70 is transferred onto the one surface 81a of the first rubber sheet 81A by removing the base material 60 by wet etching.
  • a second clay-like rubber sheet 82 is attached to one surface 81a of the first rubber sheet 81A so as to cover the plating layer 70, and then a second clay-like sheet is formed.
  • the rubber sheet 82 is vulcanized to form a second rubber sheet, and the elastic body 23 composed of the first rubber sheet 81A, the plating layer 70 and the second rubber sheet 82A is molded (step D1).
  • the second clay-like rubber sheet 82 the same one as the first clay-like rubber sheet 81 is used.
  • the thickness of the second clay-like rubber sheet 82 is made equal to the thickness of the first clay-like rubber sheet 81.
  • step D1 the second clay-like rubber sheet 82 is heated and vulcanized to form a second rubber sheet 82A.
  • step E1 a plurality of elastic bodies 23 obtained in steps A1 to D1 are stacked so that the plated layers 70 are parallel to each other.
  • the laminate 90 is formed (step E1).
  • a method of laminating the elastic body 23 a method of using the adhesive 100, and a method of activating the resin layer 21 by surface treatment such as corona discharge or vacuum infrared to chemically bond the resin layers 21 to each other may be mentioned.
  • the same adhesive as the adhesive constituting the adhesive layer 40 is used.
  • the laminate 90 obtained in the process E1 is cut perpendicularly to the extending direction of the plating layer 70 in the laminate 90 (process G1). Since the direction in which the plating layer 70 in FIG. 3C extends is the left-right direction of the paper surface, for example, cutting is performed in a direction along the depth of the paper surface of FIG. be able to. Thereby, an electrical connector 10 as shown in FIGS. 1 (a) and 1 (b) is obtained. The plated layer 70 is cut into a predetermined length to form a thin metal layer 22.
  • the method of manufacturing the electrical connector of the present embodiment a short circuit due to migration can be prevented, and an excessive force is applied from the thin metal layer 22 to the connection terminal of the device connected to the electrical connector 10 As a result, the electrical connector 10 can be obtained which can prevent the connection terminals of the device from being damaged. Moreover, according to the method of manufacturing the electrical connector of the present embodiment, the manufacturing process can be simplified, and the electrical connector 10 can be easily manufactured.
  • step A2 a step of applying a metal nanopaste on one side of a substrate (hereinafter referred to as “step A2”) and firing of the metal nanopaste applied on one side of a substrate
  • step B2 a step of forming a thin metal layer (hereinafter referred to as "step B2"), and bonding one surface of the first clay-like rubber sheet to the thin metal layer formed on one surface of the substrate
  • step C2 A step of vulcanizing the clay-like rubber sheet of 1 to form a first rubber sheet
  • step D2 a second clay-like rubber sheet is attached to one side of the sheet
  • step D2 a second clay-like rubber sheet is attached to one side of the sheet
  • step D2 one side of the first rubber sheet so as to cover the thin metal layer
  • the second rubber sheet is vulcanized to form a second rubber sheet, and the first rubber is formed.
  • step E2 Forming a plurality of elastic bodies so that the step of forming an elastic body consisting of a thin metal layer and a second rubber sheet (hereinafter referred to as “step E2") and the thin metal layers become parallel to each other Forming the laminate (hereinafter referred to as “step F2") and cutting the laminate perpendicular to the direction in which the thin metal layer in the laminate extends (hereinafter referred to as "step G2") Say)) and.
  • step G2 Cutting the laminate perpendicular to the direction in which the thin metal layer in the laminate extends
  • FIGS. 4 (a) to 4 (c) and 5 (a) to 5 (c) are cross-sectional views showing an outline of a method of manufacturing the electrical connector of this embodiment. 4 and 5, the electrical connector in the first embodiment shown in FIG. 1, and FIGS. 2 (a) to 2 (c) and 3 (a) to 3 (c).
  • the same components as those of the method of manufacturing the electrical connector according to the first embodiment are designated by the same reference numerals and their description will not be repeated.
  • the metal nano paste 110 is apply
  • the method for applying the metal nanopaste 110 to the one surface 60a of the substrate 60 is not particularly limited, and examples thereof include an inkjet method, a gravure printing method, an electrostatic coating method, a spin coat, a die coater and the like.
  • the metal nano paste is, for example, one obtained by dispersing metal particles of nano size (average particle diameter: 1 nm to less than 1 ⁇ m) such as noble metals such as gold and platinum other than silver and alloys of these noble metals in binder resin. is there.
  • step B2 the metal nanopaste 110 applied to the one surface 60a of the substrate 60 is fired to form a thin metal layer 120 (step B2).
  • step B2 the metal nanopaste 110 is fired.
  • step C2 After laminating one surface 81 a of the first clay-like rubber sheet 81 to the thin metal layer 120 formed on the one surface 60 a of the base material 60, the first clay shape The rubber sheet 81 is vulcanized to form a first rubber sheet 81A (step C2).
  • step C2 as in the above-described step B1, the first clay-like rubber sheet 81 is vulcanized to form a first rubber sheet 81A.
  • the base material 60 is removed by wet etching to leave the thin metal layer 120 on one surface 81a of the first rubber sheet 81A (step D2).
  • the substrate 60 is removed by wet etching.
  • step D2 the thin metal layer 120 is transferred onto the one surface 81a of the first rubber sheet 81A by removing the substrate 60 by wet etching.
  • a second clay-like rubber sheet 82 is attached to one surface 81a of the first rubber sheet 81A so as to cover the metal thin layer 120, and then the second clay is formed.
  • the second rubber sheet 82A is formed by vulcanizing the second rubber sheet 82, and the elastic body 23 composed of the first rubber sheet 81A, the metal thin layer 120 and the second rubber sheet 82A is formed (step E2).
  • the elastic body 23 is formed in the same manner as the above-mentioned step D1.
  • step F2 a plurality of elastic bodies 23 obtained in the steps A2 to E2 are laminated so that the thin metal layers 120 are parallel to each other, as shown in FIG. 5 (c). Is formed (step F2).
  • the laminated body 90 is shape
  • the laminate 90 obtained in the process F2 is cut perpendicularly to the extending direction of the thin metal layer 120 in the laminate 90 (process G2).
  • an electrical connector 10 as shown in FIGS. 1 (a) and 1 (b) is obtained.
  • the thin metal layer 120 is cut into a predetermined length to form the thin metal layer 22.
  • the method of manufacturing the electrical connector of the present embodiment a short circuit due to migration can be prevented, and an excessive force is applied from the thin metal layer 22 to the connection terminal of the device connected to the electrical connector 10 As a result, the electrical connector 10 can be obtained which can prevent the connection terminals of the device from being damaged. Moreover, according to the method of manufacturing the electrical connector of the present embodiment, the manufacturing process can be simplified, and the electrical connector 10 can be easily manufactured.
  • the step of projecting the end portions of the plurality of thin metal layers 22 from at least one of the main surface 20 a and the other main surface 20 b of the electrical connector 10 (protrusion step ) May be included.
  • a method of causing the end of the thin metal layer 22 to project from the main surface for example, there is a method of scraping a part of the resin layer constituting the main surface of the electrical connector 10 by mechanical processing such as laser etching, chemical etching or cutting. It can be mentioned.
  • a known electrolytic plating or electroless plating method can be applied.
  • a gold-plated plate was prepared in which a 0.5 ⁇ m thick nickel plated layer was laminated on both sides of a 50 ⁇ m thick copper plate, and a 0.5 ⁇ m thick gold plated layer was laminated on the surface of the nickel plated layer. .
  • a vulcanizing agent (part number: C-19A, manufactured by Shin-Etsu Chemical Co., Ltd.) and 100 parts by mass of millable compound (part number: KE-174-U, Shin-Etsu Chemical Co., Ltd.) and a vulcanizing agent (part number: C-19 B, 2.5 parts by mass of Shin-Etsu Chemical Co., Ltd., and 1 part by mass of silane coupling agent (Product No .: KBM-403, Shin-Etsu Chemical Co., Ltd.) was produced.
  • This first clay-like silicone rubber was molded to a thickness of 85 ⁇ m.
  • the first clay-like rubber sheet is heated at 135 ° C. for 40 minutes to make the first clay-like rubber sheet It was vulcanized and cured to obtain a first rubber sheet made of silicone rubber.
  • the first rubber sheet bonded to a gold-plated plate was immersed in a solution of iron chloride to remove the nickel-white and nickel-plated layers. Thereby, the gold plating layer was transferred onto one surface of the first rubber sheet.
  • a second clay-like rubber sheet having the same structure and thickness as the first clay-like rubber sheet is laminated on one side of the first rubber sheet so as to cover the gold plating layer, and then this second clay
  • the sheet-like rubber sheet is heated at 135 ° C. for 40 minutes to vulcanize and harden the second clay-like rubber sheet to obtain a second sheet made of silicone rubber.
  • an elastic body formed of the first rubber sheet, the second rubber sheet, and the gold plating layer sandwiched therebetween was formed.
  • a plurality of elastic bodies were laminated via liquid silicone rubber so that the gold plating layers overlap each other in parallel, to form a laminated body.
  • liquid silicone rubber was applied to the adhesive surface of the elastic body by screen printing so as to have a thickness of 30 ⁇ m.
  • the laminate was heated at 135 ° C. for 40 minutes to cure and cure the liquid silicone rubber.
  • the obtained laminate was cut perpendicularly to the extending direction of the gold plating layer in the laminate to obtain an electrical connector as shown in FIG.
  • the length of the long side of the gold plating layer at the bonding surface is 5 mm
  • the length of the short side of the gold plating layer at the bonding surface is 0.5 ⁇ m
  • the pitch of the gold plating layer was 200 ⁇ m.
  • a large number of conductive members were arranged in parallel at an interval of 200 ⁇ m with uniform orientation.
  • a cylindrical core material having a diameter of 39.6 ⁇ m made of brass, a 0.1 ⁇ m thick nickel plated layer and a 0.1 ⁇ m thick gold plated layer formed on the outer peripheral surface of the core material We used what we had.
  • a second resin layer having a thickness of 110 ⁇ m made of silicone rubber is formed on one surface of the first resin layer on which a large number of conductive members are disposed, and the second resin layer is used as the first resin layer.
  • the conductive member was fixed between the first resin layer and the second resin layer to form a conductive member-containing sheet.
  • a plurality of conductive member-containing sheets were laminated with the conductive members oriented in the same direction, to form a laminate of conductive member-containing sheets.
  • the laminate was cut vertically to a thickness of 300 ⁇ m with respect to the direction in which the conductive members extend by cutting to obtain an electrical connector having through holes to which the conductive members cut in a circle were joined.
  • the diameter of the conductive member at the bonding surface was 40 ⁇ m
  • the pitch of the conductive members in the lateral direction at the bonding surface was 250 ⁇ m.
  • a laminate (test was prepared by placing the electrical connectors of the example and the comparative example between a probe with a diameter of 1.0 mm with a copper surface plated with nickel and gold and a gold-plated connection terminal. Device).
  • a resistance measuring instrument (trade name: RM3545-01, manufactured by Hioki Electric Co., Ltd.) was connected to the probe and the connection terminal.
  • the resistance value between the probe and the connection terminal is measured, and the displacement amount of the laminate (the amount by which the laminate is compressed in the thickness direction), The relationship with the resistance value between the probe and the connection terminal was investigated.
  • the displacement of the laminate is equal to the displacement of the electrical connector.
  • the load applied to the laminate is measured by an automatic load tester (trade name: MAX-1KN-S-1, manufactured by Nippon Measurement System Co., Ltd.), and the displacement amount of the laminate ( The relationship between the amount of compression) and the load was examined.
  • the relationship between the resistance value between the probe and the substrate and the load applied to the electrical connector was investigated.
  • the result of the relationship between the displacement of the laminate and the load when using the electrical connector of the example is shown in FIG.
  • the result of the relationship between the displacement of the laminate and the load when using the electrical connector of the comparative example is shown in FIG.
  • the result of the relationship between the displacement of the laminate and the resistance between the probe and the connection terminal in the case of using the electrical connector of the embodiment or the comparative example is shown in FIG.
  • the compression amount at which the resistance value is stabilized was 0.015 mm in the example and 0.02 mm in the comparative example.
  • the amount of compression when the resistance value was stabilized was about twice that of the example.
  • the load at that time was 0.58 N in the example and 4.76 N in the comparative example. That is, in the comparative example, the load when the resistance value is stabilized was about eight times that of the example. Therefore, in the embodiment, the load applied to the electrode to be inspected can be reduced, and damage to the electrode can be suppressed.
  • a copper foil comprising a probe of 1.0 mm in diameter with nickel and gold plated on the surface of lead, a 35 ⁇ m thick copper layer, and a 25 ⁇ m thick conductive adhesive, as the electrical connectors of Examples and Comparative Examples.
  • the laminate was placed between a tape-attached glass substrate and a copper layer to form a laminate (test apparatus). In this state, the laminate was compressed in the thickness direction.
  • the contact surface of the electrical connector and the copper foil tape was observed by a scanning electron microscope when a load of 8 N was applied.
  • the image imaged with the scanning electron microscope in an Example is shown in FIG.
  • the image imaged with the scanning electron microscope in a comparative example is shown in FIG. From the results of FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Laminated Bodies (AREA)

Abstract

第一デバイスの接続端子と、第二デバイスの接続端子との間に配置され、これらを電気的に接続する電気コネクター(10)であって、樹脂層(21)と、金属薄層(22)とが交互に多重に積層された直方体形状の多層本体(20)を備え、金属薄層(22)は多層本体(20)を厚さ方向および奥行き方向に貫通し、多層本体(20)の接続端子との接続面(20a)における金属薄層(22)の露出面の形状が矩形であり、金属薄層(22)は、貴金属または貴金属合金からなり、矩形の短辺の長さが0.01μm以上10μm以下である電気コネクター。

Description

電気コネクターおよびその製造方法
 本発明は、電気コネクターおよびその製造方法に関する。本願は、2017年12月21日に、日本に出願された特願2017-245575号に基づき優先権を主張し、その内容をここに援用する。
 液晶ディスプレイ等の表示装置と回路基板との接続や、電子回路基板間の接続等には、銀を含む導電性物質を使用する導電性エラストマー層と絶縁性エラストマー層がゼブラ状(縦縞模様)をなしている異方導電性コネクターが知られている(例えば、特許文献1参照)。この異方導電性コネクターは、導電性エラストマー層と絶縁性エラストマー層とをその接合面が互いに平行となるように、交互に、かつ多重に積層してなる。
 また、線径が5μm~100μmの金属細線が、被接続部材の電極ピッチと同一の間隔で埋設され、かつ被接続部材の電極部と相対する部分のみに埋設されてなり、金属細線が各電極の延出方向に沿って配列されている異方導電性コネクターが知られている(例えば、特許文献2参照)。
特開2000-251980号公報 実開平7-014570号公報
 特許文献1に記載されている異方導電性コネクターでは、電極との接続面をメルカプト系化合物で表面処理することにより、マイグレーションに起因する短絡を防いでいる。しかしながら、過酷な使用環境においては、マイグレーションの発生を完全に防止することは容易ではないという課題があった。
 また、特許文献2に記載されている異方導電性コネクターでは、金属細線としては、比較的安価な真鍮線や、金メッキが施されたリン青銅線等が用いられているため、金属細線によって被接続部材の電極が損傷され易いという課題があった。
 本発明は、上記事情に鑑みてなされたものであって、マイグレーションに起因する短絡を防止するとともに、検査対象の電極が損傷することを防止する異方導電性コネクターおよびその製造方法を提供することを目的とする。
[1]第一デバイスの接続端子と、第二デバイスの接続端子との間に配置され、これらを電気的に接続する電気コネクターであって、樹脂層と、金属薄層とが交互に多重に積層された直方体形状の多層本体を備え、前記金属薄層は前記多層本体を厚さ方向及び奥行き方向に貫通し、前記多層本体の前記接続端子との接続面における前記金属薄層の露出面の形状が矩形であり、前記金属薄層は、貴金属または貴金属合金からなり、前記矩形の短辺の長さが0.01μm以上10μm以下である電気コネクター。
[2]前記矩形の短辺の方向における前記金属薄層のピッチが4μm以上600μm以下である[1]に記載の電気コネクター。
[3]前記金属薄層の一部が露出する、前記多層本体の厚さ方向に沿う側面に、被覆層が設けられた[1]または[2]に記載の電気コネクター。
[4]基材の一面にメッキ層を形成することと、前記基材の一面に形成された前記メッキ層に、第1の未硬化のゴムシートの一面を貼り合わせた後、前記第1の未硬化のゴムシートを加硫して第1のゴムシートを形成することと、前記基材を除去し、前記メッキ層を前記第1のゴムシートの一面に残すことと、前記第1のゴムシートの一面に、前記メッキ層を覆うように、第2の未硬化のゴムシートを貼り合わせた後、前記第2の未硬化のゴムシートを加硫して第2のゴムシートを形成し、前記第1のゴムシート、前記メッキ層および前記第2のゴムシートからなる弾性体を成形することと、前記メッキ層が互いに平行となるように、複数の前記弾性体を積層して、積層体を成形することと、前記積層体を、前記積層体における前記メッキ層の延在する方向に対して垂直に切断することと、を有する、電気コネクターの製造方法。
[5]基材の一面に、金属ナノペーストを塗布することと、前記基材の一面に塗布した金属ナノペーストを焼成し、金属薄層を形成することと、前記基材の一面に形成された前記金属薄層に、第1の未硬化のゴムシートの一面を貼り合わせた後、前記第1の未硬化のゴムシートを加硫して第1のゴムシートを形成することと、前記基材を除去し、前記金属薄層を前記第1のゴムシートの一面に残すことと、前記第1のゴムシートの一面に、前記金属薄層を覆うように、第2の未硬化のゴムシートを貼り合わせた後、前記第2の未硬化のゴムシートを加硫して第2のゴムシートを形成し、前記第1のゴムシート、前記金属薄層および前記第2のゴムシートからなる弾性体を成形することと、前記金属薄層が互いに平行となるように、複数の前記弾性体を積層して、積層体を成形することと、前記積層体を、前記積層体における前記金属薄層の延在する方向に対して垂直に切断することと、を有する、電気コネクターの製造方法。
 本発明によれば、マイグレーションに起因する短絡を防止するとともに、検査対象の電極が損傷することを防止する異方導電性コネクターおよびその製造方法を提供することができる。
第1の実施形態の電気コネクターの概略構成を示す断面図である。 第1の実施形態の電気コネクターの製造方法の概略を示す断面図である。 第1の実施形態の電気コネクターの製造方法の概略を示す断面図である。 第2の実施形態の電気コネクターの製造方法の概略を示す断面図である。 第2の実施形態の電気コネクターの製造方法の概略を示す断面図である。 実施例の電気コネクターを用いた場合について、積層体の変位量(圧縮量)と、電気コネクターに加えられる荷重との関係を示す図である。 比較例の電気コネクターを用いた場合について、積層体の変位量(圧縮量)と、電気コネクターに加えられる荷重との関係を示す図である。 実施例または比較例の電気コネクターを用いた場合について、積層体の変位量(圧縮量)と、プローブと接続端子の間の抵抗値との関係を示す図である。 実施例における走査型電子顕微鏡で撮像した画像である。 比較例における走査型電子顕微鏡で撮像した画像である。
 本発明の電気コネクターおよびその製造方法の実施の形態について説明する。
 なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
(第1の実施形態)
[電気コネクター]
 図1は、本実施形態の電気コネクターの概略構成を示し、(a)は平面図、(b)は正面図である。
 図1に示すように、本実施形態の電気コネクター10は、樹脂層21と、金属薄層22とが交互に多重に積層された直方体形状の多層本体20を備える。
 金属薄層22は、多層本体20を厚さ方向(図1(b)のZ方向)および奥行き方向(図1(a)のY方向)に貫通する。また、金属薄層22は、多層本体20の接続端子との第1の接続面(多層本体20の一方の主面)20aにおける金属薄層22の一部が露出した面(露出面)の形状が矩形である。同様に、多層本体20の接続端子との第2の接続面(多層本体20の他方の主面)20bにおける金属薄層22の露出面の形状も矩形である。
 ここで、多層本体20について、厚さ方向(図1(b)のZ方向)、幅方向(図1(a)のX方向)、奥行き方向(図1(a)のY方向)は、互いに直交する方向である。
 本発明において「矩形」の4つの内角は厳密な90度である必要はなく、「矩形」は厚みのある線形とみなしてもよい。この場合、矩形の長辺の長さは線形の長さであり、矩形の短辺の長さは線形の厚みに相当する。
 また、金属薄層22は、貴金属または貴金属合金からなる。
 さらに、金属薄層22の前記矩形の短辺の長さが0.01μm以上10μm以下である。
 電気コネクター10は、図示略の第一デバイスの接続端子と、図示略の第二デバイスの接続端子との間に配置され、これらを電気的に接続するためのものである。電気コネクター10において、金属薄層22は、第一デバイスの接続端子と第二デバイスの接続端子の電気的接続を行う部材である。デバイスとしては、例えば、半導体パッケージや回路基板、シリコンウエハー、受動部品、液晶モジュールおよびセンサーが挙げられる。
 樹脂層21と、金属薄層22と、樹脂層21とがこの順に積層されて、弾性体23を形成している。
 多層本体20は、複数の弾性体23が、接着層40を介して、多層本体20の一方の主面20aの長辺方向(図1(a)に示すX方向)に積層(連続的に接続)されてなる。弾性体23を積層する数、すなわち、多層本体20の長辺の長さ(図1(a)に示すX方向の長さ)は特に限定されず、検査対象となる電極の数、大きさ(面積)、ピッチ等に応じて適宜調整される。また、多層本体20の一方の主面20aの短辺の長さ(図1(a)に示すY方向の長さ)は特に限定されず、検査対象となる電極の数、大きさ(面積)、ピッチ等に応じて適宜調整される。
 弾性体23は、接着層40を介して積層される必要はなく、後述する電気コネクターの製造方法によって、接着層40を省略した電気コネクター10を製造することもできる。また、弾性体23は、1層の樹脂層21と1層の金属薄層22からなる積層体であってもよい。
 金属薄層22は、弾性体23の長辺方向(図1(a)に示すY方向)における中心線上に配置されている。
 複数の弾性体23は、それぞれの金属薄層22が互いに平行となるように連続的に接続(積層)されている。
 多層本体20の厚さ(図1(b)に示すZ方向の長さ)、すなわち、一方の主面20aと他方の主面20bの距離は、0.03mm以上25mm以下であることが好ましい。
 多層本体20の長辺方向の長さは、例えば0.05mm~300mmとする例が挙げられる。
 多層本体20の一方の主面20aおよび他方の主面20bにおける金属薄層22の矩形の長辺の長さ(図1(a)に示すY方向の長さ)Lは0.03mm以上10mm以下であることが好ましく、0.3mm以上5mm以下であることがより好ましい。
 金属薄層22の矩形の長辺の長さLが上記の範囲内であれば、第一デバイスの接続端子と第二デバイスの接続端子の電気的接続を長期に渡って安定に保持することができる。
 多層本体20の一方の主面20aおよび他方の主面20bにおける金属薄層22の矩形の短辺の長さ(図1(a)に示すX方向の長さ)Lは0.01μm以上10μm以下であり、0.05μm以上5μm以下であることが好ましく、0.1μm以上2μm以下であることがより好ましい。
 金属薄層22の矩形の短辺の長さLが上記の範囲内であれば、検査対象の電極を損傷することがない。また、第一デバイスの接続端子と第二デバイスの接続端子の電気的接続を長期に渡って安定に保持することができる。
 多層本体20の一方の主面20aおよび他方の主面20bにおいて、矩形の短辺方向(図1(a)に示すX方向)における金属薄層22のピッチPが1μm以上600μm以下であることが好ましく、1μm以上200μm以下であることがより好ましく、1μm以上50μm以下であることがさらに好ましい。
 矩形の短辺方向における金属薄層22のピッチPが0.2mm以下であれば、狭ピッチの電極との電気的接続を行うことができる。また、第一デバイスの接続端子と第二デバイスの接続端子の電気的接続を長期に渡って安定に保持することができる。
 本実施形態の電気コネクター10では、多層本体20の厚さ方向に沿う側面であって、金属薄層22の一部が露出する側面20cに、被覆層50が設けられていてもよい。
 被覆層50の厚さは、特に限定されず、例えば、1μm~5mmとすることができる。
 多層本体20を形成する樹脂層21の材質(材料)としては、絶縁性および弾性を有するものであれば特に限定されないが、例えば、シリコーンゴム、フッ素ゴム、ポリブタジエンゴム、ポリイソプレンゴム、ポリウレタンゴム、クロロプレンゴム、ポリエステル系ゴム、スチレン-ブタジエン共重合体ゴム、天然ゴム等が挙げられる。これらの中でも、高弾性で耐熱性に優れる点から、シリコーンゴムが好ましい。
 金属薄層22の材質(材料)としては、銀よりもマイグレーションが起こり難い金属であることが好ましく、銀を除く、金、白金、パラジウム、ロジウム、イリジウム、ルテニウム等の貴金属や、これらの貴金属の合金が挙げられる。また、貴金属以外では、錫、銅、鉛、ニッケルや、これらの合金も挙げられる。これらの材質のうち、導電性や耐腐食性を考慮すると、金、白金等の貴金属が好ましく、金、白金が特に好ましい。
 接着層40を構成する接着剤としては、特に限定されないが、樹脂層21と同じ材質を用いてもよく、樹脂層21と材質が異なるものを用いてもよい。前記接着剤としては、例えば、シリコーン系接着剤、変性シリコーン系接着剤、天然ゴムラテックス接着剤、ウレタン樹脂系接着剤、ウレタン樹脂系接着剤、塩化ビニル樹脂系接着剤、クロロプレンゴム系接着剤、ニトリルゴム系接着剤、ニトロセルロース接着剤、フェノール樹脂系接着剤、ポリイミド系接着剤、ポリウレタン樹脂系接着剤、ポリビニルアルコール系接着剤等が挙げられる。これらの中でも、薄膜化が容易な液状シリコーンゴムが好ましい。ここで、液状シリコーンゴムは、塗工時に液体であるが、硬化することにより流動性が低い又は固形状のシリコーンゴムとなる。
 被覆層50の材質(材料)としては、絶縁性および弾性を有するものであれば特に限定されないが、例えば、樹脂層21と同じ材質が挙げられる。
 本実施形態の電気コネクター10は、樹脂層21と、金属薄層22とが交互に多重に積層された直方体形状の多層本体20を備え、金属薄層22は多層本体20を厚さ方向(図1(b)のZ方向)および奥行き方向(図1(a)のY方向)に貫通し、多層本体20の接続端子との接続面20aにおける金属薄層22の露出面の形状が矩形であり、金属薄層22は、貴金属または貴金属合金からなり、矩形の短辺の長さが0.01μm以上10μm以下である。そのため、マイグレーションに起因する短絡を防止することができる。また、電気コネクター10に接続するデバイスの接続端子と金属薄層22との接続時に、デバイスの接続端子に対して金属薄層22から過剰な力が加えられることがなく、その接続端子が損傷することを防止できる。さらに、本実施形態の電気コネクター10は、矩形の短辺の長さが0.01μm以上10μm以下の金属薄層22を備えるため、高周波特性にも優れ、狭ピッチの電極との電気的接続を行うことができる。
 電気コネクター10が有する金属薄層22の端部は、一方の主面20a及び他方の主面20bの少なくとも一方から突出していてもよい。「金属薄層の端部」とは、金属薄層の端面(端辺)から金属薄層のZ方向の長さの1/4の長さまでの範囲を意味する。 金属薄層22の端部が主面から突出している場合の突出量は、特に限定されず、電気コネクター10によって電気的に接続する2つのデバイスの接続端子の形状、配置等に応じて適宜調整される。
 電気コネクター10が有する金属薄層22の端部が一方の主面20a又は他方の主面20bから突出している場合、その突出した端部にメッキ加工が施されて、金属薄層22とは異なる別のメッキ層が形成されていてもよい。別のメッキ層の材質は、特に限定されず、金属薄層22の材質に応じて適宜選択される。別のメッキ層により金属薄層22の端部の表面積(断面積)が増加し、金属薄層22の端部と、接続するデバイスの接続端子との接触面積が増加し、これらの電気的な接続状態をより安定に保つことができる。
[電気コネクターの製造方法]
 本実施形態の電気コネクターの製造方法は、基材の一面にメッキ層を形成する工程(以下、「工程A1」と言う。)と、基材の一面に形成されたメッキ層に、第1の粘土状ゴムシートの一面を貼り合わせた後、第1の粘土状ゴムシートを加硫して第1のゴムシートを形成する工程(以下、「工程B1」と言う。)と、基材をウェットエッチングにより除去し、メッキ層を第1のゴムシートの一面に残す工程(以下、「工程C1」と言う。)と、第1のゴムシートの一面に、メッキ層を覆うように、第2の粘土状ゴムシートを貼り合わせた後、第2の粘土状ゴムシートを加硫して第2のゴムシートを形成し、第1のゴムシート、メッキ層および第2のゴムシートからなる弾性体を成形する工程(以下、「工程D1」と言う。)と、メッキ層が互いに平行となるように、複数の弾性体を積層して、積層体を成形する工程(以下、「工程E1」と言う。)と、積層体を、積層体におけるメッキ層の延在する方向と垂直に切断する工程(以下、「工程F1」と言う。)と、を有する。
 ここで、前記第1及び前記第2の粘土状ゴムシートは、第1及び第2の未硬化ゴムシートの一例である。
 前記第1及び前記第2の粘土状ゴムシートの代わりに、液状シリコーンからなるゴムシートを用いてもよい。液状シリコーンからなるゴムシートを用いる場合には、液状シリコーンを半硬化させたシート又は流動性が比較的低い液状シリコーンをシート状に成形したものを用いることが好ましい。
 以下、図2(a)~図2(c)および図3(a)~図3(c)を参照して、本実施形態の電気コネクターの製造方法を説明する。
 図2(a)~図2(c)および図3(a)~図3(c)は、本実施形態の電気コネクターの製造方法の概略を示す断面図である。なお、図2および図3において、図1に示した本実施形態における電気コネクターと同一の構成には同一の符号を付し、重複する説明を省略する。
 図2(a)に示すように、基材60の一面60aにメッキ層70を形成する(工程A1)。
 工程A1では、基材60の一面60aに、電解メッキまたは無電解メッキによって、メッキ層70を形成する。
 基材60は、電解メッキまたは無電解メッキによって、メッキ層70を形成することができるものであれば特に限定されない。基材60としては、例えば、図2(a)に示すように、銅または真鍮、リン青銅や洋白等の銅合金からなる第1の層61と、ニッケルまたは亜鉛からなる第2の層62が積層されてなる合金や、水溶性フィルムの一面に、金メッキ層、白金メッキ層、銅メッキ層またはニッケルメッキ層が形成されたものが用いられる。また、水溶性フィルムとしては、例えば、ポリビニルアルコール等が挙げられる。
 メッキ層70の材質としては、銀を除く、金、白金等の貴金属や、これらの貴金属の合金が挙げられる。
 次いで、図2(b)に示すように、基材60の一面60aに形成されたメッキ層70に、第1の粘土状ゴムシート81の一面81aを貼り合わせた後、第1の粘土状ゴムシート81を加硫して第1のゴムシートを形成する(工程B1)。
 第1の粘土状ゴムシート81としては、特に限定されないが、例えば、加熱または光や電磁波照射によって加硫して硬化する、粘土状シリコーンゴム、粘土状フッ素ゴム、粘土状ポリブタジエンゴム、粘土状ポリイソプレンゴム、粘土状ポリウレタンゴム、粘土状クロロプレンゴム、粘土状ポリエステル系ゴム、粘土状スチレン-ブタジエン共重合体ゴム、粘土状天然ゴム等が挙げられる。
 これらの粘土状ゴムシートは、ミラブルコンパウンドに、加硫剤と必要に応じた添加剤を加えて混練してなるものである。
 粘土状シリコーンゴムの具体例としては、例えば、信越化学工業株式会社製のKE-174-U等のいわゆるゴムコンパウンドが挙げられる。
 粘土状シリコーンゴムの硬化後の硬さ(デュロメータA)は、20以上が好ましく、30以上がより好ましい。この硬さの上限値は、90以下であることが好ましい。硬さが上記範囲であると、電気コネクターに適度な剛性を付与できる。
 上記硬さは、JIS K 6249:2003の方法に準拠して測定される。
 また、粘土状シリコーンゴムに代えて使用してもよい前記液状シリコーンゴムの具体例としては、例えば、信越化学工業株式会社製のKE-1935-A,KE-1935-B等の付加反応によって熱硬化するものが挙げられる。
 液状シリコーンゴムの硬化前の粘度は、粘土状シリコーンのコンパウンドよりも格段に低く、例えば、500Pa・s以下であることが好ましく、200Pa・s以下が好ましく、100Pa・s以下がさらに好ましい。この粘度の下限値としては、10Pa・s以上が好ましい。
 液状シリコーンゴムの硬化前の密度(23℃,単位:g/cm)は、粘土状シリコーンゴムよりも低いことが好ましく、例えば、1.10未満が好ましく、1.06以下が好ましく、1.03以下がさらに好ましい。この密度の下限値は、通常1.00以上である。密度が上記範囲であると、液状シリコーンゴムの塗工が容易になる。
 液状シリコーンゴムの硬化後の硬さ(デュロメータA)は、20以上が好ましく、30以上がより好ましい。この硬さの上限値は、90以下であることが好ましい。硬さが上記範囲であると、電気コネクターに適度な剛性を付与できる。
 上記粘度、密度及び硬さは、JIS K 6249:2003の方法に準拠して測定される。
 第1の粘土状ゴムシート81の厚さは、特に限定されず、第1の粘土状ゴムシート81によって形成される弾性体23を連接してなる多層本体20に要求される厚さに応じて適宜調整される。例えば、0.0005mm~0.5mmの厚さが挙げられる。シートはフィルムと呼び替えてもよい。
 工程B1において、第1の粘土状ゴムシート81を加熱、加硫して、第1のゴムシート81Aを形成する。
 次いで、図2(c)に示すように、基材60をウェットエッチングにより除去し、メッキ層70を第1のゴムシート81Aの一面81aに残す(工程C1)。
 基材60として銅を用いた場合には、メッキ層70が形成された基材60に第1のゴムシート81Aを貼り合わせたものを塩化鉄の溶液に浸漬する。また、基材60として水溶性フィルムを用いた場合には、メッキ層70が形成された基材60に第1のゴムシート81Aを貼り合わせたものを水に浸漬する。これにより、基材60を溶解して除去する。
 工程C1において、基材60をウェットエッチングにより除去することにより、第1のゴムシート81Aの一面81a上にメッキ層70を転写する。
 次いで、図3(a)に示すように、第1のゴムシート81Aの一面81aに、メッキ層70を覆うように、第2の粘土状ゴムシート82を貼り合わせた後、第2の粘土状ゴムシート82を加硫して第2のゴムシートを形成し、第1のゴムシート81A、メッキ層70および第2のゴムシート82Aからなる弾性体23を成形する(工程D1)。
 第2の粘土状ゴムシート82としては、第1の粘土状ゴムシート81と同様のものが用いられる。
 第2の粘土状ゴムシート82の厚さは、第1の粘土状ゴムシート81の厚さと等しくする。
 工程D1において、第2の粘土状ゴムシート82を加熱して、加硫し、第2のゴムシート82Aを形成する。
 次いで、図3(b)に示すように、メッキ層70が互いに平行となるように、工程A1~工程D1で得られた弾性体23を複数積層して、図3(c)に示すような積層体90を成形する(工程E1)。
 弾性体23を積層する方法としては、接着剤100を用いる方法、樹脂層21をコロナ放電、真空赤外線等の表面処理により活性化させて、樹脂層21同士を化学結合する方法が挙げられる。
 接着剤100としては、接着層40を構成する接着剤と同様のものが用いられる。
 次いで、工程E1で得られた積層体90を、積層体90におけるメッキ層70の延在する方向と垂直に切断する(工程G1)。図3(c)のメッキ層70が延在する方向は、紙面の左右方向であるので、例えば、図3(c)の紙面の奥行きに沿う方向で切断する、または紙面の上下方向で切断することができる。
 これにより、図1(a)および図1(b)に示すような電気コネクター10を得る。なお、メッキ層70が所定の長さに切断されて金属薄層22となる。
 本実施形態の電気コネクターの製造方法によれば、マイグレーションに起因する短絡を防止することができ、かつ電気コネクター10に接続するデバイスの接続端子に対して金属薄層22から過剰な力が加えられることがなく、デバイスの接続端子が損傷することを防止できる電気コネクター10が得られる。また、本実施形態の電気コネクターの製造方法によれば、作製工程を簡略化して、容易に電気コネクター10を製造することができる。
(第2の実施形態)
[電気コネクターの製造方法]
 本実施形態の電気コネクターの製造方法は、基材の一面に、金属ナノペーストを塗布する工程(以下、「工程A2」と言う。)と、基材の一面に塗布した金属ナノペーストを焼成し、金属薄層を形成する工程(以下、「工程B2」と言う。)と、基材の一面に形成された金属薄層に、第1の粘土状ゴムシートの一面を貼り合わせた後、第1の粘土状ゴムシートを加硫して第1のゴムシートを形成する工程(以下、「工程C2」と言う。)と、基材をウェットエッチングにより除去し、金属薄層を第1のゴムシートの一面に残す工程(以下、「工程D2」と言う。)と、第1のゴムシートの一面に、金属薄層を覆うように、第2の粘土状ゴムシートを貼り合わせた後、第2の粘土状ゴムシートを加硫して第2のゴムシートを形成し、第1のゴムシート、金属薄層および第2のゴムシートからなる弾性体を成形する工程(以下、「工程E2」と言う。)と、金属薄層が互いに平行となるように、複数の弾性体を積層して、積層体を成形する工程(以下、「工程F2」と言う。)と、積層体を、積層体における金属薄層の延在する方向と垂直に切断する工程(以下、「工程G2」と言う。)と、を有する。
 本実施形態においても、第1の実施形態と同様に、前記第1及び前記第2の粘土状ゴムシートの代わりに、液状シリコーンからなるゴムシートを用いてもよい。
 以下、図4(a)~図4(c)および図5(a)~図5(c)を参照して、本実施形態の電気コネクターの製造方法を説明する。
 図4(a)~図4(c)および図5(a)~図5(c)は、本実施形態の電気コネクターの製造方法の概略を示す断面図である。なお、図4および図5において、図1に示した第1の実施形態における電気コネクター、並びに、図2(a)~図2(c)および図3(a)~図3(c)に示した第1の実施形態における電気コネクターの製造方法と同一の構成には同一の符号を付し、重複する説明を省略する。
 図4(a)に示すように、基材60の一面60aに、金属ナノペースト110を塗布する(工程A2)。
 基材60の一面60aに、金属ナノペースト110を塗布する方法は特に限定されないが、例えば、インクジェット法、グラビア印刷法、静電塗布法、スピンコート、ダイコーター等が挙げられる。
 金属ナノペーストとしては、例えば、銀を除く、金、白金等の貴金属や、これらの貴金属の合金等のナノサイズ(平均粒径1nm~1μm未満)の金属粒子がバインダー樹脂に分散されたものである。
 次いで、基材60の一面60aに塗布した金属ナノペースト110を焼成し、金属薄層120を形成する(工程B2)。
 工程B2において、金属ナノペースト110を焼成する。
 次いで、図4(b)に示すように、基材60の一面60aに形成された金属薄層120に、第1の粘土状ゴムシート81の一面81aを貼り合わせた後、第1の粘土状ゴムシート81を加硫して第1のゴムシート81Aを形成する(工程C2)。
 工程C2では、上述の工程B1と同様に、第1の粘土状ゴムシート81を加硫して第1のゴムシート81Aを形成する。
 次いで、図4(c)に示すように、基材60をウェットエッチングにより除去し、金属薄層120を第1のゴムシート81Aの一面81aに残す(工程D2)。
 工程D2では、上述の工程C1と同様に、基材60をウェットエッチングにより除去する。
 工程D2において、基材60をウェットエッチングにより除去することにより、第1のゴムシート81Aの一面81a上に金属薄層120を転写する。
 次いで、図5(a)に示すように、第1のゴムシート81Aの一面81aに、金属薄層120を覆うように、第2の粘土状ゴムシート82を貼り合わせた後、第2の粘土状ゴムシート82を加硫して第2のゴムシート82Aを形成し、第1のゴムシート81A、金属薄層120および第2のゴムシート82Aからなる弾性体23を成形する(工程E2)。
 工程E2では、上述の工程D1と同様に、弾性体23を成形する。
 次いで、図5(b)に示すように、金属薄層120が互いに平行となるように、工程A2~工程E2で得られた弾性体23を複数積層して、図5(c)に示すような積層体90を成形する(工程F2)。
 工程F2では、上述の工程E1と同様に、積層体90を成形する。
 次いで、工程F2で得られた積層体90を、積層体90における金属薄層120の延在する方向と垂直に切断する(工程G2)。
 これにより、図1(a)および図1(b)に示すような電気コネクター10を得る。なお、金属薄層120が所定の長さに切断されて金属薄層22となる。
 本実施形態の電気コネクターの製造方法によれば、マイグレーションに起因する短絡を防止することができ、かつ電気コネクター10に接続するデバイスの接続端子に対して金属薄層22から過剰な力が加えられることがなく、デバイスの接続端子が損傷することを防止できる電気コネクター10が得られる。また、本実施形態の電気コネクターの製造方法によれば、作製工程を簡略化して、容易に電気コネクター10を製造することができる。
 また、各本実施形態の電気コネクターの製造方法は、電気コネクター10の一方の主面20a及び他方の主面20bの少なくとも一方から、複数の金属薄層22の端部を突出させる工程(突出工程)を有していてもよい。
 金属薄層22の端部を主面から突出させる方法としては、例えば、レーザーエッチング、ケミカルエッチング、切削等の機械的加工により電気コネクター10の主面を構成する樹脂層の一部を削る方法が挙げられる。
 突出させた金属薄層22の端部にメッキ層を形成する場合には、公知の電解メッキ又は無電解メッキの方法を適用することができる。
 以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例]
 図1、図2(a)~図2(c)および図3(a)~図3(c)を参照して、本発明の実施例を説明する。
 厚さ50μmの銅板の両面に、厚さ0.5μmのニッケルメッキ層を備える基材と、基材のニッケルメッキ層の表面に厚さ0.5μmの金メッキ層が積層された金メッキ板を用意した。
 ミラブルコンパウンド(品番:KE-174-U、信越化学工業社製)100質量部に、加硫剤(品番:C-19A、信越化学工業社製)0.6質量部および加硫剤(品番:C-19B、信越化学工業社製)2.5質量部と、シランカップリング剤(品番:KBM-403、信越化学工業社製)1質量部を加えて混練し、第1の粘土状シリコーンゴムを作製した。
 この第1の粘土状シリコーンゴムを、厚さ85μmに成形した。
 次いで、金メッキ板の金メッキ層に、第1の粘土状ゴムシートの一面を貼り合わせた後、第1の粘土状ゴムシートを135℃にて40分間加熱して、第1の粘土状ゴムシートを加硫して硬化させ、シリコーンゴムからなる第1のゴムシートとした。
 次いで、金メッキ板に第1のゴムシートを貼り合わせたものを塩化鉄の溶液に浸漬して、洋白およびニッケルメッキ層を除去した。これにより、第1のゴムシートの一面上に金メッキ層を転写した。
 次いで、第1のゴムシートの一面に、金メッキ層を覆うように、第1の粘土状ゴムシートと構成および厚さが等しい第2の粘土状ゴムシートを貼り合わせた後、この第2の粘土状ゴムシートを135℃にて40分間加熱して、第2の粘土状ゴムシートを加硫して硬化させ、シリコーンゴムからなる第2のゴムシートとした。これにより、第1のゴムシートおよび第2のゴムシートと、これらに挟まれた金メッキ層とからなる弾性体を成形した。
 次いで、金メッキ層が互いに平行に重なり合うように、液状シリコーンゴムを介して、弾性体を複数積層して、積層体を成形した。ここでは、弾性体の貼着面に、スクリーン印刷により、厚さが30μmとなるように液状シリコーンゴムを塗布した。また、液状シリコーンゴムを介して、弾性体を積層した後、積層体を135℃にて40分間加熱して、液状シリコーンゴムを加硫して硬化させた。
 次いで、得られた積層体を、積層体における金メッキ層の延在する方向と垂直に切断し、図1に示すような電気コネクターを得た。
 実施例の電気コネクターでは、接合面における金メッキ層の矩形の長辺の長さは5mm、接合面における金メッキ層の矩形の短辺の長さは0.5μm、接合面における矩形の短辺方向の金メッキ層のピッチが200μmであった。
[比較例]
 ポリエチレンテレフタレート基材上に形成したシリコーンゴムからなる厚さ110μmの第一の樹脂層の一方の面上に、多数の導電部材を、向きを揃えて200μmの間隔で並列に配置した。
 導電部材としては、真鍮からなる直径39.6μmの円柱状の芯材と、その芯材の外周面に形成された厚さ0.1μmのニッケルメッキ層および厚さ0.1μmの金メッキ層とを有するものを用いた。
 次いで、多数の導電部材が配置された第一の樹脂層の一方の面上に、シリコーンゴムからなる厚さ110μmの第二の樹脂層を形成し、第二の樹脂層を第一の樹脂層と一体化するとともに、第一の樹脂層と第二の樹脂層の間に導電部材を固定し、導電部材含有シートを形成した。
 次いで、導電部材含有シートの複数枚を、互いに導電部材の向きを揃えて積層し、導電部材含有シートの積層体を形成した。
 次いで、積層体を、厚さ300μmとなるように、切削加工により、導電部材の延在する方向に対して垂直に切断し、輪切りした導電部材が接合された貫通孔を備える電気コネクターを得た。
 比較例の電気コネクターでは、接合面における導電部材の直径は40μm、接合面における横方向の導電部材のピッチが250μmであった。
[評価1]
 実施例と比較例の電気コネクターを、銅の表面にニッケルメッキおよび金メッキが施された直径1.0mmのプローブと、金メッキされた接続端子を有する基板との間に配置して、積層体(試験装置)を形成した。
 また、プローブと基板上の接続端子の間の抵抗値を測定するために、プローブと接続端子に抵抗測定器(商品名:RM3545-01、日置電機社製)を接続した。
 この状態で、積層体を、その厚さ方向に圧縮しながら、プローブと接続端子の間の抵抗値を測定し、積層体の変位量(積層体が厚さ方向に圧縮された量)と、プローブと接続端子の間の抵抗値との関係を調べた。なお、積層体の変位量は、電気コネクターの変位量に等しい。
 また、積層体を圧縮する際に、自動荷重試験機(商品名:MAX-1KN-S-1、日本計測システム社製)により、積層体に加えられる荷重を測定し、積層体の変位量(圧縮量)と、荷重との関係を調べた。
 以上の結果から、プローブと基板の間の抵抗値と電気コネクターに加えられる荷重との関係を調べた。実施例の電気コネクターを用いた場合における、積層体の変位量と荷重との関係の結果を図6に示す。比較例の電気コネクターを用いた場合における、積層体の変位量と荷重との関係の結果を図7に示す。実施例または比較例の電気コネクターを用いた場合における、積層体の変位量と、プローブと接続端子の間の抵抗値との関係の結果を図8に示す。
 図6~図8の結果から、抵抗値が安定する圧縮量は、実施例では0.015mm、 比較例では0.02mmであった。比較例では、抵抗値が安定するときの圧縮量が実施例の約2倍であった。そのときの荷重は実施例では0.58Nであり、比較例では4.76Nであった。すなわち、比較例では、抵抗値が安定するときの荷重が実施例の約8倍であった。従って、実施例では検査対象の電極へ掛かる荷重を低減することができ、電極の損傷を抑制することができる。
[評価2]
 実施例と比較例の電気コネクターを、鉛の表面にニッケルメッキおよび金メッキが施された直径1.0mmのプローブと、厚さ35μmの銅層と厚さ25μmの導電性粘着剤とからなる銅箔テープが貼付されたガラス基板との間に配置して、銅層に向けて積層体(試験装置)を形成した。
 この状態で、積層体を、その厚さ方向に圧縮した。
 実施例および比較例において、8Nの荷重を加えた場合について、電気コネクターと銅箔テープの接触面を走査型電子顕微鏡により観察した。実施例における走査型電子顕微鏡で撮像した画像を図9に示す。比較例における走査型電子顕微鏡で撮像した画像を図10に示す。
 図9の結果から、実施例では、銅箔テープに、電気コネクターの金属薄層に起因する傷が見られなかった。一方、図10の結果から、比較例では、銅箔テープに、電気コネクターの導電部材に起因する傷が見られた。
10 電気コネクター
20 多層本体
21 樹脂層
22 金属薄層
23 弾性体
40 接着層
50 被覆層
60 基材
61 第1の層
62 第2の層
70 メッキ層
81 第1の粘土状ゴムシート
81A 第1のゴムシート
82 第2の粘土状ゴムシート
82A 第2のゴムシート
90 積層体
100 接着剤
110 金属ナノペースト
120 金属薄層

Claims (5)

  1.  第一デバイスの接続端子と、第二デバイスの接続端子との間に配置され、これらを電気的に接続する電気コネクターであって、
     樹脂層と、金属薄層とが交互に多重に積層された直方体形状の多層本体を備え、
     前記金属薄層は前記多層本体を厚さ方向および奥行き方向に貫通し、前記多層本体の前記接続端子との接続面における前記金属薄層の露出面の形状が矩形であり、前記金属薄層は、貴金属または貴金属合金からなり、前記矩形の短辺の長さが0.01μm以上10μm以下である、電気コネクター。
  2.  前記矩形の短辺方向における前記金属薄層のピッチが4μm以上600μm以下である、請求項1に記載の電気コネクター。
  3.  前記金属薄層の一部が露出する、前記多層本体の厚さ方向に沿う側面に、被覆層が設けられた、請求項1または2に記載の電気コネクター。
  4.  基材の一面にメッキ層を形成することと、
     前記基材の一面に形成された前記メッキ層に、第1の未硬化のゴムシートの一面を貼り合わせた後、前記第1の未硬化のゴムシートを加硫して第1のゴムシートを形成することと、
     前記基材を除去し、前記メッキ層を前記第1のゴムシートの一面に残すことと、
     前記第1のゴムシートの一面に、前記メッキ層を覆うように、第2の未硬化のゴムシートを貼り合わせた後、前記第2の未硬化のゴムシートを加硫して第2のゴムシートを形成し、前記第1のゴムシート、前記メッキ層および前記第2のゴムシートからなる弾性体を成形することと、
     前記メッキ層が互いに平行となるように、複数の前記弾性体を積層して、積層体を成形することと、
     前記積層体を、前記積層体における前記メッキ層の延在する方向と垂直に切断することと、を有する、電気コネクターの製造方法。
  5.  基材の一面に、金属ナノペーストを塗布することと、
     前記基材の一面に塗布した金属ナノペーストを焼成し、金属薄層を形成することと、
     前記基材の一面に形成された前記金属薄層に、第1の未硬化のゴムシートの一面を貼り合わせた後、前記第1の未硬化のゴムシートを加硫して第1のゴムシートを形成することと、
     前記基材を除去し、前記金属薄層を前記第1のゴムシートの一面に残すことと、
     前記第1のゴムシートの一面に、前記金属薄層を覆うように、第2の未硬化のゴムシートを貼り合わせた後、前記第2の未硬化のゴムシートを加硫して第2のゴムシートを形成し、前記第1のゴムシート、前記金属薄層および前記第2のゴムシートからなる弾性体を成形することと、
     前記金属薄層が互いに平行となるように、複数の前記弾性体を積層して、積層体を成形することと、
     前記積層体を、前記積層体における前記金属薄層の延在する方向と垂直に切断することと、を有する、電気コネクターの製造方法。
PCT/JP2018/046949 2017-12-21 2018-12-20 電気コネクターおよびその製造方法 WO2019124484A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019560552A JP7269885B2 (ja) 2017-12-21 2018-12-20 電気コネクターの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-245575 2017-12-21
JP2017245575 2017-12-21

Publications (1)

Publication Number Publication Date
WO2019124484A1 true WO2019124484A1 (ja) 2019-06-27

Family

ID=66993549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046949 WO2019124484A1 (ja) 2017-12-21 2018-12-20 電気コネクターおよびその製造方法

Country Status (3)

Country Link
JP (1) JP7269885B2 (ja)
TW (1) TW201935782A (ja)
WO (1) WO2019124484A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57205976A (en) * 1981-06-15 1982-12-17 Kanegafuchi Chemical Ind Columnar structure for anisotropic conductive interconnector
JPH019098Y2 (ja) * 1983-07-01 1989-03-13
JPH03208272A (ja) * 1990-01-10 1991-09-11 Stanley Electric Co Ltd 精細コネクタの製造方法
JPH0668231U (ja) * 1993-02-26 1994-09-22 信越ポリマー株式会社 導電ゴム部材およびこれを用いた耐腐食性異方導電ゴムコネクタ
JP3694825B2 (ja) * 1999-11-18 2005-09-14 日本航空電子工業株式会社 導体パターンの形成方法及びコネクタ、フレキシブルプリント配線板、異方導電性部材

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2808164B2 (ja) * 1990-03-30 1998-10-08 キヤノン株式会社 電気的接続部材の製造方法
JP3283374B2 (ja) 1994-02-18 2002-05-20 株式会社リコー 識別シート
JP2009057518A (ja) * 2007-09-03 2009-03-19 Institute Of Physical & Chemical Research 異方性フィルムおよび異方性フィルムの製造方法
KR101654032B1 (ko) * 2014-11-12 2016-09-06 주식회사 이엔씨테크 납땜 가능한 금속박 적층형 탄성 커넥터 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57205976A (en) * 1981-06-15 1982-12-17 Kanegafuchi Chemical Ind Columnar structure for anisotropic conductive interconnector
JPH019098Y2 (ja) * 1983-07-01 1989-03-13
JPH03208272A (ja) * 1990-01-10 1991-09-11 Stanley Electric Co Ltd 精細コネクタの製造方法
JPH0668231U (ja) * 1993-02-26 1994-09-22 信越ポリマー株式会社 導電ゴム部材およびこれを用いた耐腐食性異方導電ゴムコネクタ
JP3694825B2 (ja) * 1999-11-18 2005-09-14 日本航空電子工業株式会社 導体パターンの形成方法及びコネクタ、フレキシブルプリント配線板、異方導電性部材

Also Published As

Publication number Publication date
JPWO2019124484A1 (ja) 2021-01-14
JP7269885B2 (ja) 2023-05-09
TW201935782A (zh) 2019-09-01

Similar Documents

Publication Publication Date Title
TWI253206B (en) Anisotropic connector device and its manufacturing method, and inspection device of circuit device
CN105451529B (zh) 电磁波屏蔽膜、柔性印刷布线板以及它们的制造方法
JP7080879B2 (ja) 電気コネクターおよびその製造方法
JP2009076431A (ja) 異方性導電膜およびその製造方法
JPH02126578A (ja) エラスチックコネクター
CN110612783B (zh) 印刷配线板及其制造方法
JP5018612B2 (ja) 異方導電性シートおよび異方導電性シートの製造方法
CN109983628B (zh) 导电粒子配置膜、其制造方法、检查探头单元、导通检查方法
JP2876292B2 (ja) コネクタおよびコネクタの製造方法
JP2020027859A (ja) 電気コネクターの製造方法
CN109315069B (zh) 立体配线基板、立体配线基板的制造方法及立体配线基板用基材
WO2019124484A1 (ja) 電気コネクターおよびその製造方法
JP7089534B2 (ja) 電気コネクターおよびその製造方法
JP2000058158A (ja) コネクターおよびその製造方法並びに回路装置検査用アダプター装置
JPH0992365A (ja) ピッチ変換コネクターおよびその製造方法並びにコネクター装置
JP2005251654A (ja) 異方導電性シート及びその製造方法
TW201639056A (zh) 利用黏合劑層疊金屬薄板的半導體檢測板及其製造方法
CN101047062B (zh) 电子部件、其制造方法、其安装结构及其评价方法
WO2021241654A1 (ja) 異方導電性シート、異方導電性シートの製造方法、電気検査装置および電気検査方法
WO2023204144A1 (ja) 複合フィルム
JP2002208447A (ja) 異方導電性シートおよびその製造方法
JPH11273771A (ja) 接続部材
JP2008101931A (ja) 複合導電性シート、異方導電性コネクター、アダプター装置および回路装置の電気的検査装置
JP2020088012A (ja) 配線シート及びその製造方法
JPS583345B2 (ja) 回路の接続方法およびこれに使用するインタ−コネクタ−

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892006

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019560552

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18892006

Country of ref document: EP

Kind code of ref document: A1