WO2019123866A1 - 温度検知材料、及びそれを用いた温度逸脱時間の推定システム - Google Patents

温度検知材料、及びそれを用いた温度逸脱時間の推定システム Download PDF

Info

Publication number
WO2019123866A1
WO2019123866A1 PCT/JP2018/041114 JP2018041114W WO2019123866A1 WO 2019123866 A1 WO2019123866 A1 WO 2019123866A1 JP 2018041114 W JP2018041114 W JP 2018041114W WO 2019123866 A1 WO2019123866 A1 WO 2019123866A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
color
temperature detection
detection material
time
Prior art date
Application number
PCT/JP2018/041114
Other languages
English (en)
French (fr)
Inventor
航平 會田
森 俊介
繁貴 坪内
新太郎 武田
昌宏 川崎
康太郎 荒谷
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to EP18891263.8A priority Critical patent/EP3730911B1/en
Priority to US16/955,516 priority patent/US11635335B2/en
Priority to CN201880081390.6A priority patent/CN111542736B/zh
Publication of WO2019123866A1 publication Critical patent/WO2019123866A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance
    • G01K11/16Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance of organic materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/02Thermometers giving results other than momentary value of temperature giving means values; giving integrated values
    • G01K3/04Thermometers giving results other than momentary value of temperature giving means values; giving integrated values in respect of time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • G01N31/229Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators for investigating time/temperature history
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/50Sympathetic, colour changing or similar inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • C09K9/02Organic tenebrescent materials

Definitions

  • the present invention relates to a temperature sensing material and a system for estimating a temperature deviation time using the same.
  • Cryopreserved pharmaceutical products such as fresh food, frozen food, vaccines and biopharmaceuticals require a cold chain that keeps the temperature low without interruption in the production, transport and consumption distribution processes.
  • the shipping container In order to constantly measure and record the temperature at the time of distribution, the shipping container is usually equipped with a data logger that can record time and temperature continuously, and if there is any damage to the product, clarify the location of the responsibility It is possible.
  • data loggers are not suitable for individual management of products due to their price and size.
  • temperature indicators do not have the recording accuracy of data loggers, they can be applied to individual products, and the surface is stained if it exceeds or falls below a preset temperature, so it is necessary to know changes in the temperature environment. It is possible.
  • a time-temperature indicator that changes color by integration of time and temperature.
  • a time temperature indicator for example, an ink whose color changes due to penetration of an ink whose viscosity changes with temperature through the penetrable material can be mentioned.
  • this time temperature indicator since the ink alone does not function as the time temperature indicator, there is a problem that the structure of the indicator becomes complicated and it is difficult to reduce the price. Furthermore, there is a problem that it can not be reused.
  • Patent Document 1 discloses that the color-changed state is changed from the decolorized state by relatively low temperature heating, and the color-developing state can be maintained by subsequent cooling.
  • Reversible thermochromic microcapsule pigments are disclosed that contain a reversible thermochromic composition that exhibits a discoloring behavior that can return to the colored state again.
  • Patent Document 2 discloses a temperature-measuring member which has different coloring concentration depending on temperature, is irreversible at ambient temperature, and changes color by crystal-non-crystal or phase separation-non-phase separation. It is disclosed that temperature management is performed by irradiating the light of the wavelength which the color at the time of color development of this temperature sensing member absorbs, and detecting the reflected light intensity or the transmitted light intensity.
  • a temperature detection material that can be initialized by a simple method, changes color by integration of time and temperature, and irreversibly changes color within a predetermined temperature range.
  • thermochromic microcapsule pigment disclosed in Patent Document 1 does not consider the change in color due to the integration of time and temperature.
  • the temperature control member disclosed in Patent Document 2 has not been sufficiently studied about the reproducibility of the color change due to the integration of time and temperature.
  • Crystallization is a phenomenon that occurs due to the generation of crystal nuclei, and is a phenomenon that occurs randomly according to the crystal nucleation frequency that differs for each material.
  • the crystallization is strongly influenced by the presence of impurities and the interface such as the wall of the container. When crystal nuclei are generated at one place and crystallization starts, crystallization is propagated to the surroundings under the influence of the nuclei. Therefore, crystallization is accelerated.
  • the color of the detection material In the temperature detection material, in order to detect the deviation time from the color change, the color of the detection material needs to change with a constant relationship with time. On the other hand, since the temperature-changing material whose color changes due to crystallization changes its color at random, the accuracy of time detection becomes low. Furthermore, once the crystallization starts at one place, the crystallization progresses rapidly, so the color change is completed rapidly. Therefore, it is difficult to estimate the elapsed time from the degree of color change.
  • an object of the present invention is to provide a temperature detection material whose color density changes continuously with time above or below a predetermined temperature, and a temperature deviation time estimation system using the same.
  • the temperature detection material according to the present invention is a temperature detection material having a structure in which a temperature-indicating material that changes color due to crystallization is dispersed in a dispersion medium, and the average particle diameter of the temperature-indicating material is at the time of observation It is characterized in that the resolution is lower than that and the volume fraction of the temperature indicator in the temperature detection material is 5% or more and less than 90%.
  • the present invention it is possible to provide a temperature detection material whose color density changes continuously with time above or below a predetermined temperature, and a temperature deviation time estimation system using the same.
  • the temperature detection material according to an embodiment of the present invention has a structure in which a temperature-indicating material that changes in color due to crystallization is dispersed in a dispersion medium.
  • the temperature indicator a material whose color density changes reversibly due to temperature change (temperature increase / decrease) is used.
  • the temperature measuring material includes a leuco dye which is an electron donating compound, a developer which is an electron accepting compound, and a decoloring agent for controlling the temperature range of the color change.
  • FIG. 1 is a diagram showing a differential scanning calorimetry (DSC) curve of a temperature indicator according to one embodiment.
  • the temperature-indicating material A is a material which solidifies in an amorphous state without crystallization when rapidly cooled after melting
  • the temperature-indicating material B is a material which turns into a supercooled liquid state when cooled after melting.
  • FIG. 1 (a) is a DSC curve of temperature indicator A.
  • FIG. 1 (a) is a DSC curve of temperature indicator A.
  • an exothermic peak (crystallization peak) due to crystallization is observed in the temperature rising process (right-pointing arrow ( ⁇ ) in the figure).
  • T a is the starting temperature in the heating process (the crystallization start temperature in the heating process).
  • T d is the melting point.
  • the start temperature T a depends on the temperature rise rate and the elapsed time. When the temperature is raised slowly, the start temperature appears at a low temperature, and when the temperature is raised rapidly, the start temperature appears at a high temperature, or the start temperature does not appear and melting occurs at the melting point T d . It develops when crystallization occurs.
  • the crystallization start temperature may be set according to the requirements of the detection temperature and the detection time. For example, in the case of a temperature-indicating material which starts crystallization after one hour at a certain temperature, it can be used as a starting temperature to detect that one hour has elapsed at the starting temperature.
  • Tg is a glass transition point. Below the glass transition temperature, crystallization does not start. In the case of a material that is easily crystallized, the starting temperature and the glass transition temperature often become the same temperature because crystallization occurs easily when the temperature is higher than the glass transition temperature.
  • FIG. 1 (b) shows the DSC curve of the temperature indicator B.
  • T a is the onset temperature of the exothermic peak (crystallization peak) due to crystallization in the temperature lowering process (crystallization onset temperature in the temperature lowering process).
  • T d is the melting point.
  • the start temperature depends on the temperature decrease rate and the elapsed time. When the temperature is lowered slowly, the start temperature appears at high temperature, and when the temperature is dropped rapidly, the start temperature appears at low temperature. In order to develop when crystallization occurs, the starting temperature is set according to the requirements of the sensing temperature and sensing time as a temperature sensing material.
  • a temperature-indicating material which starts crystallization after one hour at a certain temperature
  • it can be used as a starting temperature to detect that one hour has elapsed at the starting temperature.
  • the starting temperature and the melting point become the same temperature because the material is easily crystallized when the temperature is lower than the melting point.
  • Such a material can not be used as a temperature indicator. That is, a material which is easily subcooled and which has a large difference between the crystallization start temperature and the melting point is preferable.
  • FIG. 2 is a diagram showing the color density change of the temperature-indicating material according to an embodiment.
  • the vertical axis is color density
  • the horizontal axis is temperature.
  • FIG. 2A shows the relationship between the color density of the temperature indicating material A and the temperature.
  • the temperature measuring material A has hysteresis characteristics in color density change.
  • Temperature-indicating material A is the use of crystallized hard material decolorizer, when quenched from P a molten state or decoloring starting temperature T d of the temperature-indicating material A below the color developing start temperature T a, decoloring While the agent incorporates the developer, it forms an amorphous state and maintains the decolored state. From this state, when the temperature is raised to the color development start temperature T a or more in the temperature rising process, the decoloring agent is crystallized and color develops. Therefore, when using the temperature detection material containing the temperature-indicating material A, when performing temperature control below the color development start temperature T a , it is detected whether or not the temperature deviates from the control range and the temperature reaches T a or more. it can.
  • FIG. 2 (b) is a view showing the relationship between the color density of the temperature indicating material B and the temperature.
  • the temperature indicator B has hysteresis characteristics in color density change. Temperature-indicating material B, when the temperature from the state of the erasing temperature T d or more P is molten decreases, until color development temperature T a are maintained decolored state. When the color development temperature T a or less, the decoloring agent is in a crystalline state below the freezing point and separated from the leuco dye and the color developer, whereby the leuco dye and the color developer are combined to develop color. Therefore, when the temperature sensing material comprising temperature indicating material B, and when the temperature control to a temperature higher than the color development initiation temperature T a, departing from the control range, to detect whether or not reached a temperature below T a be able to.
  • the temperature detection material When the temperature detection material is used to control the temperature of an article during distribution of the article such as the article, it is required that the color does not return. Even if the temperature rises once during distribution and the color changes, if the temperature falls or rises again during the distribution process and the color returns to the original state, it is impossible to grasp the presence or absence of the change in temperature. However, since the temperature indicator according to the present embodiment does not return color unless it is heated to the decoloring temperature T d or more, it is possible to know changes in the temperature environment.
  • the leuco dye is an electron-donating compound, and conventionally known dyes for pressure-sensitive copying paper and dyes for heat-sensitive recording paper can be used.
  • conventionally known dyes for pressure-sensitive copying paper and dyes for heat-sensitive recording paper can be used.
  • triphenylmethanephthalide type, fluoran type, phenothiazine type, indolylphthalide type, leucoauramine type, spiropyran type, rhodamine lactam type, triphenylmethane type, triazene type, spirophthalan xanthene type, naphtholactam type, Azomethines and the like can be mentioned.
  • leuco dyes include 9- (N-ethyl-N-isopentylamino) spiro [benzo [a] xanthene-12,3'-phthalide], 2-methyl-6- (Np-tolyl-N- Ethylamino) -fluorane 6- (diethylamino) -2-[(3-trifluoromethyl) anilino] xanthene-9-spiro-3′-phthalide, 3,3-bis (p-diethylaminophenyl) -6-dimethylamino Phthalide, 2′-anilino-6 ′-(dibutylamino) -3′-methylspiro [phthalide-3,9′-xanthene], 3- (4-diethylamino-2-methylphenyl) -3- (1-ethyl) -2-Methylindol-3-yl) -4-azaphthalide, 1-ethyl-8- [N-ethyl- [N
  • the temperature indicator may be used in combination of two or more leuco dyes.
  • the developer is to change the structure of the leuco dye to make it color by coming into contact with the electron donating leuco dye.
  • known ones can be used as a developer used for thermosensitive recording paper, pressure-sensitive copying paper and the like.
  • Specific examples of such a developer include benzyl 4-hydroxybenzoate, 2,2'-biphenol, 1,1-bis (3-cyclohexyl-4-hydroxyphenyl) cyclohexane, 2,2-bis (3) -Cyclohexyl-4-hydroxyphenyl) propane, bisphenol A, bisphenol F, bis (4-hydroxyphenyl) sulfide, p-hydroxybenzoic acid ester, phenols such as gallic acid ester, and the like can be mentioned.
  • the developer is not limited to these, and may be a compound that is an electron acceptor and can change color of the leuco dye.
  • metal salts of carboxylic acid derivatives, salicylic acid and salicylic acid metal salts, sulfonic acids, sulfonic acids, sulfonic acids, phosphoric acids, phosphoric acid metal salts, acidic phosphoric acid esters, acidic phosphoric acid ester metal salts, phosphorous acids, phosphorous acid Metal salts and the like may be used.
  • organic color developing agents such as benzyl 4-hydroxybenzoate, 2,2'-bisphenol, bisphenol A and gallic acid esters are preferable.
  • the temperature indicator may be a combination of one or two or more of these developers.
  • the color density of the leuco dye at the time of color development can be adjusted by combining the developers.
  • the amount of developer used is selected according to the desired color density. For example, it may be selected in the range of about 0.1 to 100 parts by mass with respect to 1 part by mass of the leuco dye described above.
  • the decoloring agent is a compound capable of dissociating the bond between the leuco dye and the developer, and is a compound capable of controlling the coloration temperature of the leuco dye and the developer.
  • the decoloring agent solidifies in a phase-separated state.
  • the decoloring agent is molten, and the function of dissociating the bond between the leuco dye and the developer is exhibited. Therefore, the state change temperature of the decoloring agent becomes important for the temperature control of the temperature indicator.
  • the decoloring agent a wide variety of materials capable of dissociating the bond between the leuco dye and the developer can be used. If the polarity is low and does not exhibit color developability to leuco dyes, and if the polarity is high enough to dissolve the leuco dyes and developers, various materials can be decolorizing agents.
  • hydroxy compounds, ester compounds, peroxy compounds, carbonyl compounds, aromatic compounds, aliphatic compounds, halogen compounds, amino compounds, imino compounds, N-oxide compounds, hydroxyamine compounds, nitro compounds, azo compounds, diazo compounds A variety of organic compounds can be used, such as compounds, azide compounds, ether compounds, oil and fat compounds, sugar compounds, peptide compounds, nucleic acid compounds, alkaloid compounds, steroid compounds, and the like.
  • tricaprin isopropyl myristate, m-tolyl acetate, diethyl sebacate, dimethyl adipate, 1,4-diacetoxybutane, decyl decanoate, diethyl phenylmalonate, diisobutyl phthalate, triethyl citrate, phthalate Acid benzyl butyl, butyl phthalyl butyl glycolate, methyl N-methylanthranilate, ethyl anthranilate, 2-hydroxyethyl salicylate, methyl nicotinate, butyl 4-aminobenzoate, methyl p-tolulate, 4-nitrobenzoic acid Ethyl, 2-phenylethyl phenylacetate, benzyl cinnamate, methyl acetoacetate, geranyl acetate, dimethyl succinate, dimethyl sebacate, diethyl oxalacetate, monoolein
  • decoloring agent it is possible to adjust the freezing point, the crystallization rate and the melting point.
  • the decoloring agent used for the thermochromic material A it is necessary that the decoloring agent is not crystallized in the quenching process from the temperature at which the decoloring agent is melted, and is amorphized near the glass transition point. Therefore, materials that are difficult to crystallize are preferable. An amorphous state is formed in most materials if the quenching rate is made very fast, but in view of practicality, it is preferable that crystallization is difficult so as to form an amorphous state by quenching using a general-purpose cooling device. It is further preferable to use a material which is difficult to crystallize to an amorphous state in the process of naturally cooling from the molten state above the melting point.
  • decoloring agents that form an amorphous state when cooled from the melting point to the glass transition temperature at a rate of 1 ° C./min or more are preferable, and cooling from the melting point to the glass transition point at a rate of 20 ° C./min or more It is more preferable to use a decolorant which forms an amorphous state when it is used.
  • the temperature range of the subcooling state is wide, that is, the temperature difference between the solidification point and the melting point of the decoloring agent is large. Also, the temperature of the melting point or the freezing point depends on the temperature control range to be targeted.
  • the color initialization temperature needs to be high enough to hardly occur near the control temperature, but in consideration of practicality, it is desirable that the temperature be within a temperature range that can be heated by a general-purpose heating device.
  • a temperature detection material in order to use a microcapsule and a matrix material in order to disperse
  • the temperature-indicating material contains at least the above-mentioned leuco dyes, developers and decolorizers.
  • the developer and the decoloring agent may be absent.
  • materials other than leuco dyes, developers and decolorizers can be included as long as the ability to change color is maintained by crystallization. For example, by including a pigment, it is possible to change the color at the time of decoloring and at the time of developing.
  • thermochromic material A is, at the above starting temperature T a is a material color change speed depending on temperature changes, temperature indicating material B are color changing speed depending on the temperature and becomes equal to or less than the starting temperature T a It is a changing material. These color changes occur due to crystallization. Therefore, the color change is a phenomenon which occurs randomly depending on the crystallization rate, and the temporal reproducibility is low.
  • FIG. 3 is a schematic view showing the form of a temperature detection material according to an embodiment. As shown in FIG. 3, the temperature detection material 1 is in a form in which a large number of temperature indicating materials 2 are dispersed in the dispersion medium 3.
  • Crystallization is a phenomenon that occurs due to the generation of crystal nuclei, and is a phenomenon that occurs randomly according to the crystal nucleation frequency (crystallization rate) depending on the temperature for each material. Therefore, the time for generating crystal nuclei, that is, the time for crystallization is not constant, and the time reproducibility is low. However, when there are many thermometers having the same crystallization rate and the time for crystallization of each thermometer is measured, the average time is considered to approach a constant value as the number of thermometers to be measured increases. Be Therefore, if there are a large number of temperature indicators, the average time for crystallization of the temperature indicators will always be uniform. Therefore, when a temperature detection material having a form in which a large number of temperature display materials are present is used, the color at the time of observation becomes the average color of a large number of temperature display materials, so that the reproducibility of color change can be improved.
  • a temperature detection material in which the color density changes continuously (slowly) with respect to time is required. If the color density of the material changes continuously with time, it is possible to estimate the elapsed time from the color density of the material. By providing a large number of temperature indicators and observing the average color of a large number of temperature indicators, it is possible to provide a temperature sensing material in which the color density changes continuously (slowly) with time.
  • the temperature detection material is in a form in which a large number of temperature indicator materials are dispersed in a dispersion medium.
  • the dispersion medium in the temperature detection material any material can be used as long as the temperature measuring material can be dispersed. However, it is necessary to make uniform the influence of the interface between the temperature measuring material and the dispersion medium with respect to the crystallization of all the temperature measuring materials dispersed. Therefore, it is preferable that the interface in contact with the temperature indicator be formed of a single material. It may be made of only a material that does not affect the crystallization of the temperature-increasing material.
  • thermoelectric material there are a method of dispersing the temperature indicator directly in the matrix material and a method of microencapsulating the temperature indicator to disperse the microcapsules in the dispersion medium as a method of dispersion satisfying the above conditions.
  • a material in which a temperature measuring material is dispersed in a matrix material may be dispersed in another material. It is also possible to think of a microcapsule film as a dispersion medium and use a microencapsulated temperature indicator as it is.
  • the size of the temperature measuring material dispersed in the dispersion medium of the temperature detection material becomes important.
  • the diameter of the particles of the temperature indicator is preferably equal to or less than the resolution at the time of observation. If the diameter of the temperature indicator particles is larger than the resolution at the time of observation, it is difficult to observe the average color of a large number of temperature indicators.
  • the particle diameter of the temperature indicator is smaller than the resolution at the time of observation, and by observing the average color of many temperature indicators, the temporal reproducibility of the color change is high, and the color density is continuously Slowly changing temperature sensing materials can be obtained.
  • the average value of the diameter of the temperature measuring material particles is equal to or less than the resolution of the eye and camera. Therefore, the average particle size of the temperature indicator is preferably 20 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • the average time of color change of the temperature indicating material to be observed approaches a constant value, so that the temporal reproducibility becomes high and the performance as the temperature sensing material is improved. Do. Therefore, it is preferable that the number of temperature indicating materials in the temperature detection material is large. Therefore, it is considered preferable that the average particle diameter of the temperature indicator be small and the volume fraction of the temperature indicator to the dispersion medium be high. However, when the volume fraction of the temperature indicator relative to the dispersion medium is too high, it becomes difficult to disperse the temperature indicator. Therefore, the volume fraction of the temperature indicator in the temperature detection material is preferably 5% or more and less than 90%, and more preferably 10% or more and 50% or less.
  • microcapsulation In order to form a temperature sensing material, there is a method of microencapsulating a temperature measuring material.
  • the interface in contact with the temperature indicator is limited to the capsule material only, and therefore, it can be dispersed in various dispersion media.
  • the type of dispersion medium is not particularly limited.
  • the microcapsulation improves the environmental resistance of the temperature-measuring material to light, humidity, and the like, and enables storage stability, stabilization of color-change characteristics, and the like.
  • the temperature detection material is dispersed in a solvent to prepare an ink, it is possible to suppress the influence of the leuco dye, the developer, and the decoloring agent from compounds such as other resin agents and additives.
  • microencapsulation Various known techniques can be applied to microencapsulation. For example, an emulsion polymerization method, a suspension polymerization method, a coacervation method, an interfacial polymerization method, a spray drying method and the like can be mentioned, but it is not limited thereto. Also, two or more different methods may be combined.
  • the resin film used for the microcapsules includes a urea resin film composed of a polyhydric amine and a carbonyl compound, a melamine / formalin prepolymer, a methylol melamine prepolymer, a melamine resin film composed of a methylated melamine prepolymer, a polyvalent isocyanate and a polyol compound And urethane resin film consisting of polybasic acid chloride and polyvalent amine, and vinyl resin film consisting of various monomers such as vinyl acetate, styrene, (meth) acrylate, acrylonitrile and vinyl chloride.
  • additional processing can be performed such as improving the dispersion stability of the microcapsules by performing surface treatment of the formed resin film and adjusting the surface energy at the time of forming the ink or the paint.
  • the method of forming the temperature sensing material is not limited to microencapsulation.
  • By protecting with a matrix material it becomes possible to stabilize storage stability, color change characteristics, etc. like microcapsules by a simple method that is not microencapsulation.
  • the temperature detection material is dispersed in a solvent to prepare an ink, it is possible to suppress the influence of the leuco dye, the developer, and the decoloring agent from compounds such as other resin agents and additives.
  • the matrix material needs to be a material that does not impair the color development and decoloring properties of the temperature measuring material when mixed with the temperature measuring material. Therefore, it is preferable that the material itself does not exhibit color development.
  • a material nonpolar materials which are not electron acceptors can be used.
  • the temperature measuring material in order to form a phase separation structure in which the temperature measuring material is dispersed in the matrix material, it is necessary to use a material satisfying the following three conditions as the matrix material.
  • the three conditions are: solid state at the operating temperature of the temperature sensing material, melting point higher than the melting point of the temperature indicator, and material having low compatibility with the leuco dye, the decoloring agent, and the developer Is. This is because the temperature and time detection functions are lost when any of the leuco dye, the developer and the decolorizer is compatible with the matrix material.
  • a matrix material in a solid state at the operating temperature is used.
  • materials having energy ⁇ p by dipole interaction between molecules predicted by the Hansen solubility parameter and energy ⁇ h by hydrogen bond between molecules each can be preferably used.
  • a material having no polar group and a material composed only of hydrocarbon can be preferably used.
  • materials which become melt liquids having a low viscosity above the melting point and easily solidify below the melting point are easy to handle.
  • materials which are soluble in an organic solvent and solidified in the volatilization process of the organic solvent are also easy to handle.
  • paraffin wax, microcrystalline wax, polyolefin, polyethylene, polypropylene, cycloolefin, polystyrene, terpene resin, silicone resin, silicone oil and the like can be mentioned.
  • the polyolefin examples include low molecular weight polyethylene, low molecular weight polypropylene and the like.
  • the molecular weight of the polyolefin and the viscosity in the liquid state are not particularly limited, but when the viscosity is low in the liquid state, the inclusion of air bubbles is small and the formability is good.
  • the molecular weight is 50,000 or less
  • the viscosity in the vicinity of the melting point is 10 Pa ⁇ S or less
  • the molecular weight is 10,000 or less
  • the viscosity in the vicinity of the melting point is 1 Pa ⁇ S or less Is more preferred.
  • these matrix materials can be used in combination of two or more.
  • a matrix material which is in a liquid state at a use temperature can be used as a temperature detection material by showing a temperature measuring material and a phase separation structure. If the matrix material is a liquid of high viscosity, it is excellent in handleability as in the solid state matrix material. However, when the matrix material is a high-viscosity liquid, sedimentation of the temperature indicator in the matrix material can not be avoided in long-term use, and eventually it will separate into two phases. Therefore, the long-term stability as a temperature detection material is low.
  • FIG. 4 is an optical micrograph of the phase separation structure according to one embodiment.
  • FIG. 4 is an optical micrograph showing the phase separation structure of the temperature detection material, where (a) is in the developed state and (b) is in the decolored state. From the optical micrograph, it can be confirmed that the temperature detection material 1 forms a phase separation structure in which the temperature indicator 2 is dispersed in the matrix material 3.
  • the temperature detecting material maintains a solid state even if a color change occurs with a state change from solid to liquid or liquid to solid. can do.
  • the matrix material and the temperature indicating material are separated from each other and the matrix material does not affect the color change of the temperature indicating material, it is possible to maintain the temperature and time detection function of the temperature indicating material as it is.
  • the phase separation structure can be crushed and pulverized in a mortar or the like. This enables the same handling as the microcapsules.
  • phase separation structure and the microcapsules are treated with silane coupling, surface grafting, corona, etc. for dispersion stabilization for ink formation, improvement of resistance to solvents, improvement of environmental resistance to light and humidity, etc. You may surface-treat by a process etc. It is also possible to further coat the phase separation structure and the microcapsules with a matrix material or microcapsules.
  • the phase separation structure is prepared, for example, by heating the leuco dye, the developer, the decoloring agent, and the matrix material to a temperature above the melting point of the matrix material and mixing them, and then obtaining the mixture as a matrix material. It can be obtained by cooling to a temperature below the freezing point of In the cooling process, the matrix material and the temperature-increasing material are rapidly phase-separated to form a phase-separated structure in which a phase composed of a leuco dye, a developer and a decoloring agent is dispersed in the matrix material.
  • the temperature sensing material and the non-color-developable material may or may not be compatible depending on the compatibility of the temperature sensing material with the matrix material when heated to a temperature above the melting point of the matrix material. At this time, it is preferable to be compatible from the viewpoint of handleability. In order to cause the temperature-sensitive material and the matrix material to be phase-separated at the use temperature and to be compatible with each other in the heated state, it is preferable to adjust the polarity of the decoloring agent having a particularly high content.
  • the polarity of the decoloring agent When the polarity of the decoloring agent is too small, it becomes compatible with the matrix material at the operating temperature, and when the polarity is too large, it separates from the matrix material in a heated state.
  • a decoloring agent whose energy ⁇ p by intermolecular dipolar interaction predicted by the Hansen solubility parameter and energy ⁇ h by intermolecular hydrogen bond are each 1 or more and 10 or less. Can.
  • a surfactant may be added to be compatible.
  • the size of the dispersion structure of the temperature-sensitive material differs depending on the compatibility between the temperature-sensitive material and the matrix material.
  • the decoloring agent having a large content and the matrix material when the compatibility is good to a certain extent, it disperses finely, and when the compatibility is poor, it disperses largely.
  • the size of the dispersion structure is preferably 100 nm or more and 20 ⁇ m or less. In the cooling process, it is also possible to reduce the size of the dispersed structure by cooling with stirring or adding a surfactant.
  • a temperature detection ink by preparing in advance a phase separation structure in which a temperature indicating material is dispersed in a matrix material, or a microencapsulated temperature detection material and mixing it with a solvent.
  • the temperature detection ink can be applied to an ink such as a pen, a stamp, a crayon, and an ink jet or a paint for printing.
  • the temperature detection ink exhibits a form in which a temperature detection material is dispersed in a solvent.
  • a solvent having low compatibility with the matrix material containing microcapsules and the microcapsules.
  • a highly polar solvent As the solvent having high polarity, alcohols such as water, glycerin, methanol, ethanol and propanol can be preferably used. In addition, ketones such as acetone, methyl ethyl ketone and cyclohexanone, esters such as ethyl acetate, methyl acetate, ethyl propionate and methyl propionate, and ethers such as dimethyl ether and tetrahydrofuran can be used.
  • alcohols such as water, glycerin, methanol, ethanol and propanol
  • ketones such as acetone, methyl ethyl ketone and cyclohexanone
  • esters such as ethyl acetate, methyl acetate, ethyl propionate and methyl propionate
  • ethers such as dimethyl ether and tetrahydrofuran
  • a solvent in which the material of the microcapsule is resistant When a microencapsulated temperature detection material is used, it is preferable to use a solvent in which the material of the microcapsule is resistant. When a material with high polarity is used as the material of the microcapsule, it is better to use an organic solvent with low polarity. Specifically, nonpolar solvents such as hexane, benzene, toluene, petroleum, mineral oil, silicone oil, etc.
  • Oils are particularly preferred, and in addition, ketones such as acetone, methyl ethyl ketone and cyclohexanone, esters such as ethyl acetate, methyl acetate, ethyl propionate and methyl propionate, and ethers such as dimethyl ether and tetrahydrofuran.
  • ketones such as acetone, methyl ethyl ketone and cyclohexanone
  • esters such as ethyl acetate, methyl acetate, ethyl propionate and methyl propionate
  • ethers such as dimethyl ether and tetrahydrofuran.
  • a solvent with high polarity When a material with low polarity is used as the material of the microcapsule, it is better to use a solvent with high polarity, and specifically, alcohols such as water, glycerin, methanol, ethanol and propanol can be preferably used.
  • alcohols such as water, glycerin, methanol, ethanol and propanol
  • ketones such as acetone, methyl ethyl ketone and cyclohexanone
  • esters such as ethyl acetate, methyl acetate, ethyl propionate and methyl propionate
  • ethers such as dimethyl ether and tetrahydrofuran
  • temperature detection inks have temperature and time detection functions even in the liquid state, and furthermore, only the temperature detection material constitutes a printed matter by the solvent being volatilized by printing, writing, or imprinting on the print target etc. Do.
  • This printed matter can be used as a temperature and time detection indicator.
  • an additive may be further added to a solution such as an organic solvent or water as long as the temperature and time detection function is not affected.
  • a solution such as an organic solvent or water
  • a pigment it is possible to change the color at the time of decoloring and at the time of developing.
  • temperature detection ink Various additives and solvents can be used as the temperature detection ink. It is also possible to adjust the viscosity by changing the amount of temperature detection material or additive. Thereby, it is applicable as ink for various printing apparatuses, such as offset printing, gravure, flexographic printing, a label printer, a thermal printer.
  • the temperature detection ink can be applied to the ink for charge control type ink jet printer.
  • the ink for charge control type ink jet printer includes a temperature detection material, a volatile organic solvent, a resin, and a conductive agent.
  • the resistance of the ink solution When the resistance of the ink solution is high, the ink particles do not fly straight and tend to bend at the ink discharge portion in the charge control type ink jet printer. Therefore, the resistance of the ink solution needs to be approximately 2000 ⁇ cm or less.
  • the resistance of the ink solution is as large as about 5,000 to several tens of thousands of ⁇ cm. . If the resistance is high, desired printing becomes difficult in the charge control type ink jet printer. Therefore, in order to reduce the resistance of the ink solution, it is necessary to add a conductive agent to the ink.
  • the conductive agent needs to be dissolved in the solvent used, and it is important not to affect the color tone.
  • the conductive agent generally has a salt structure. Since this has a charge bias in the molecule, it is presumed that high conductivity can be exhibited.
  • the conductive agent is preferably a salt structure, and the cation is preferably a tetraalkylammonium ion structure.
  • the alkyl chain may be either linear or branched, and the solubility in a solvent is improved as the carbon number is larger. However, as the carbon number is smaller, the resistance can be reduced with a slight addition rate.
  • a practical carbon number when used for ink is about 2 to 8.
  • anion hexafluorophosphate ion, tetrafluoroborate ion and the like are preferable in that they have high solubility in a solvent.
  • the perchlorate ion is also highly soluble, it is not practical to use for the ink because it is explosive. Besides, chlorine, bromine and iodine ions are also mentioned, but these are not preferable since they have a tendency to corrode metals such as iron and stainless steel when they come in contact.
  • preferred conductive agents are tetraethylammonium hexafluorophosphate, tetrapropylammonium hexafluorophosphate, tetrabutylammonium hexafluorophosphate, tetrapentylammonium hexafluorophosphate, tetrahexylammonium hexafluorophosphate, tetraoctylammonium Hexafluorophosphate, tetraethylammonium tetrafluoroborate, tetrapropylammonium tetrafluoroborate, tetrabutylammonium tetrafluoroborate, tetrapentylammonium tetrafluoroborate, tetrahexylammonium tetrafluoroborate, tetraoctylammonium tetrafluoroborate, etc. That.
  • FIG. 5 is a schematic view showing the structure of a temperature indicator.
  • the temperature indicator comprises a substrate (support) 5, a temperature sensing material 1 disposed on the substrate, a transparent substrate (protective layer) 6 disposed on the temperature sensing material, and a spacer 7
  • the detection material 1 is sandwiched between the base 5 and the transparent base 6.
  • the materials of the substrate and the transparent substrate are not particularly limited, as long as the temperature detection material is sandwiched between the transparent substrate and the substrate and the color change of the temperature detection material can be visually recognized. Moreover, it is also possible not to use a transparent base material. In this case, no spacer may be used.
  • the material of the substrate can be freely selected according to the required function.
  • Organic materials such as paper and plastics, inorganic materials such as ceramics and metals, and composite materials thereof can be freely selected.
  • the layer structure may be formed of several kinds of materials. It is selected according to the properties required for temperature and time indicators, such as high strength, heat resistance, weather resistance, chemical resistance, heat insulation, conductivity, etc. By using a seal, it is also possible to make close contact with an object to be detected.
  • the base material is preferably larger than the temperature detection material because it only needs to sandwich the temperature detection material.
  • a continuous porous material may be used as the substrate.
  • the continuous porous material is impregnated with the temperature detection material.
  • the processability of the temperature indicator can be altered depending on the processability of the continuous porous material.
  • a material which does not denature even if the temperature detection material is in contact for a long time is required. Therefore, specifically, a material which is difficult to dissolve in a common organic solvent, such as polyethylene, polypropylene and cellulose, is preferable.
  • silicon dioxide is also suitable.
  • the structure of the continuous porous material examples include sponges, non-woven fabrics, and woven fabrics.
  • cellulose it may be a book, or a sheet used when preparing a document.
  • the material of the transparent substrate can also be freely selected according to the required function.
  • Organic materials such as paper and plastics, inorganic materials such as ceramics and metals, and composite materials thereof can be freely selected. Transparency is necessary because it is necessary to visually observe the color change of at least a part of the temperature and time detection ink.
  • organic materials such as highly transparent paper, highly transparent plastic such as acrylic, polycarbonate, cycloolefin and the like, and highly transparent inorganic compounds such as glass and transparent electrode film can be mentioned.
  • highly transparent materials it is also possible to make thin films to enhance transparency.
  • the layer structure may be formed of several kinds of materials. Among these, high strength, heat resistance, weather resistance, chemical resistance, heat insulation, conductivity, resistance to thermal shock to quenching, etc. can be selected according to the characteristics required for the temperature and time indicator.
  • the size of the transparent substrate is not limited as long as the temperature and time detector can be visually recognized. From the viewpoint of visibility, the width direction is preferably 30 ⁇ m or more when the transparent substrate is rectangular, and when the transparent substrate is elliptical.
  • the temperature indicator may comprise other materials between the transparent substrate and the temperature sensing material or on top of the transparent substrate to the extent that the temperature sensing material is visible. For example, by providing a print sheet between the transparent substrate and the temperature detection material, print information printed on the print sheet can be displayed.
  • the transparent substrate and the substrate may be processed to have holes or the like. By making the holes, the printed paper between the transparent substrate and the spacer is exposed. With such a structure, information can be written on the printed paper which has been exposed during transportation or the like.
  • the temperature indicator may also include a thermal barrier between the transparent substrate and the temperature sensing material.
  • a thermal barrier between the transparent substrate and the temperature sensing material.
  • the heat insulating layer for example, an air layer, a gas layer such as argon or nitrogen, a vacuum layer, a porous material such as sponge or airgel, a fiber material such as glass wool, rock wool or cellulose fiber, urethane, polystyrene, foam rubber, etc.
  • a foam material can be used.
  • a base material and a transparent base material with a heat insulation material instead of installing a heat insulation layer.
  • the thermal conductivity from the substrate to the temperature detection material may be improved and the thermal conductivity from the transparent substrate to the temperature detection material may be deteriorated.
  • a thermal insulation layer may be provided on the top of the temperature detection material, or the material and thickness of the transparent substrate and the substrate may be adjusted to make the thermal conductivity of the substrate higher than the thermal conductivity of the transparent substrate.
  • the thermal conductivity from the base material to the temperature and time detection body may be deteriorated, and the thermal conductivity from the transparent base material to the temperature and time detection body may be improved.
  • the thermal conductivity of the transparent substrate may be made higher than the thermal conductivity of the substrate by providing a heat insulating layer under the temperature detection material, or adjusting the material and thickness of the transparent substrate and the substrate.
  • FIG. 6 is a schematic view showing the structure of a temperature indicator.
  • FIG. 6 shows a temperature indicator using three temperature sensing materials.
  • the temperature indicator comprises a substrate 5 having a recess 4 and a protective layer 6 provided on the surface of the substrate.
  • the protective layer is, for example, a sheet film. Recesses 4 each hold a temperature detection material.
  • the temperature detection material can be initialized by heating the temperature detection material to a temperature equal to or higher than the melting point of the temperature indicator, and then cooling the material at a predetermined speed or more.
  • the temperature detection ink is heated to a temperature not lower than the melting point of the temperature indicating material and lower than the boiling point of the solvent.
  • the heating method is not particularly limited.
  • a heater, a hot plate, a means for heating the ink container in a heated solvent or the like, and the like can be mentioned.
  • a laminator or the like may be used.
  • the cooling method after heating is also not particularly limited.
  • a means for cooling the ink container with natural cooling a cooler, a freezer, etc. may be mentioned.
  • a cooling rate above a certain level is required.
  • quenching by a cooling device is required, and for materials with a low crystallization rate, natural cooling can be preferably used. .
  • the temperature detection material changes in color by integration of time and temperature depending on the crystallization rate. Therefore, by intentionally slowing down the cooling rate, crystallization can be advanced in advance and slightly developed before being used for temperature control. Thereby, it is possible to make detection time earlier than what carried out quenching processing about the same temperature and time detection ink.
  • the color is developed when it reaches a predetermined temperature (color development start temperature Ta) or more, and the color development speed is higher as the temperature is higher. From this, it can be estimated that if the temperature detection material is not developed, it is only exposed for a short time to a predetermined temperature or higher.
  • the color is developed when the temperature becomes lower than a predetermined temperature (color development start temperature Ta), and the color development speed is higher as the temperature is lower. From this, it can be estimated that if the temperature detection material is not developed, it is only exposed to a predetermined temperature or less for a short time.
  • FIG. 7 shows the relationship between color density and time of the temperature detection material according to one embodiment.
  • the temperature detection material changes its color continuously with time when the crystallization start temperature is reached.
  • the temperature sensing material is initialized and exposed to the same temperature again, repeating the same changes before initialization. Therefore, by recording the relationship between the time for each temperature and the color density in advance, it is possible to estimate, from the color density, the time elapsed after deviating from the temperature (hereinafter referred to as the temperature deviation time).
  • a plurality of temperature detection materials may be combined to estimate the temperature deviation time. For example, when the upper limit temperature detection material of color development start temperature is 10 ° C. and the upper limit temperature detection material of color development start temperature of 20 ° C. in combination, the upper limit temperature detection material of color development start temperature is 10 ° C. If only the color changes, it is possible to identify exposure to 10 ° C. or more and less than 20 ° C., so the estimation accuracy of the temperature deviation time is improved.
  • the estimation accuracy is improved by using a temperature that can be obtained from a thermometer, weather information or the like for the estimation of the temperature deviation time.
  • a temperature that can be obtained from a thermometer, weather information or the like for the estimation of the temperature deviation time.
  • the temperature indicator with an upper limit temperature material with a color development start temperature of 10 ° C. is attached to an article transported at 0 ° C. while the outside temperature is 20 ° C., the color of the indicator changes, It can be identified that it was exposed to 10 ° C to 20 ° C. Also in this case, the estimation accuracy of the temperature deviation time can be improved.
  • FIG. 8 is a block diagram of a deviation time estimation system. As shown in FIG. 8, the temperature deviation time estimation system 10 is acquired by the reader 11 that acquires color information of the temperature detection material, the input device 12, the output device 13, the communication device 14, the storage device 15, and the reader. And a processing unit 16 for estimating the time elapsed since the temperature detection material deviates from the temperature.
  • the reader 11 acquires color information of the temperature detection material.
  • the reading method of the color information of the temperature detection material is not particularly limited.
  • the temperature detection material can be photographed by a camera, and the well concentration can be calculated from the gradation of the photographed image.
  • light may be projected onto the temperature detection material with a laser or the like, and color information may be calculated from the amount of reflection or absorption of the projected light.
  • CIE color spaces such as L * a * b * and L * C * h *
  • examples of color information of color tone include RGB color space, HSV color space, Munsell color space, and the like.
  • the storage unit 15 stores the relationship between the color density of each temperature detection material and time. In addition, identification information of the temperature detection material or the temperature indicator, and color information of the temperature detection material read by the reader may be stored.
  • the processing device 16 determines that the temperature detection material deviates from the temperature based on the color information of the temperature detection material acquired by the reader and the relationship between time and the color density for each temperature of the temperature detection material stored in the storage unit. Estimate the time elapsed since then.
  • the processing device may further estimate the temperature deviation time using temperature information such as the outside air temperature acquired by the communication device or the like. Further, the temperature deviation time may be estimated using color information of a plurality of temperature detection materials having different detection temperatures (color development start temperatures). The estimation accuracy can be improved by using temperature information or color information of a plurality of temperature detection materials having different detection temperatures.
  • the quality management system includes a management device that manages an environment in which the item is placed, and a management terminal that acquires color tone information of the temperature detection material.
  • the management terminal transmits the article identification information, the time when the color tone information is acquired, and the effect of the color change in association with each other in the management device.
  • FIG. 9 is a diagram showing the configuration of the quality management system.
  • the goods manufactured in the factory are conveyed to the store, and after the goods are managed in the store, the quality control in the distribution route where the goods are delivered to the customer will be described as an example.
  • the quality management system includes a management terminal 20 (management device) that acquires a code (article identification information) (for example, a bar code) attached to an article and color tone information of a temperature indicator. Be done.
  • the management terminal and the management server 20 are communicably connected via the network NW.
  • the distribution route is a factory that manufactures articles, a warehouse that stores articles, a shipping place, a transport vehicle, a transshipment site for transferring articles to another transport vehicle, a transport vehicle, and a store.
  • workers use the management terminal to collect quality control data.
  • the collection of quality control data is carried out at the transshipment site when the goods are manufactured at the factory, stored at the warehouse, stored at the shipping site, transported by the carrier, transported by the transport vehicle When it is carried by a carrier, it is carried out when it is received at a store, when it is stored for sale at a store, etc.
  • the operator can visually confirm the temperature control state of each process and the temperature load state of the article by confirming the color tone of the temperature detection material at each place. In addition to visual confirmation of the operator, it is preferable to obtain numerical information as a color tone.
  • the worker transmits the optical state of the article and its temperature detection ink, and the quality control information such as the image, the reading place, and the time to the management server 20 using the management terminal in each process such as shipping, transportation, storage.
  • a management terminal may be used to read the optical state of the temperature sensing material.
  • each person relating to the distribution of the article can quantitatively manage or share each state in the distribution process of the article to be managed by acquiring the color tone of the temperature indicating material as numerical information.
  • the store by checking the color tone state of the temperature detection material for the conveyed article, it is possible to visually confirm the temperature control state and the temperature load state of the article after the process such as shipment from the factory to the transportation. Furthermore, it is possible to connect to the management server 20 via a management terminal or the like to check information such as quality management information until delivery of the article.
  • the management terminal determines whether the quality is maintained or not based on the color tone information of the temperature indicator, and displays the determination result. That is, when there is a color change, it is displayed that the distribution of the article is not suitable on the display unit, and when there is no color change, it is displayed on the display unit that the distribution of the article is suitable.
  • the determination result is transmitted from the management server to the management terminal. Quality control data including the determination result is stored in the control server as quality control information.
  • the management terminal side processes the quality judgment as to whether or not the quality is maintained. This is to decentralize the determination processing and the like in a system that targets a large number of articles. If the processing capacity of the management server 20 is high, the quality determination may be performed on the management server side.
  • the management server 20 includes a processing unit, a storage unit, an input unit, an output unit, and a communication unit.
  • the storage unit of the management server stores article information which is detailed information of each article to be managed, temperature indicator information, distribution condition information, distribution management information, production information, quality management information, and the like.
  • the management server exchanges information with the management terminal.
  • the management server preferably stores color density-time information indicating the relationship between the color density of the temperature detection material attached to the article and the time spent in the environment in the storage unit.
  • the management terminal acquires color density time information based on the acquired item identification information from the management apparatus, and the color density and color density time information of the acquired color tone information
  • the time spent in the environment can be calculated based on In addition to displaying the calculated time on the display unit, it is possible to associate the article identification information with the calculated time and transmit it to the management device.
  • the calculation of the time put in the environment may be performed on the management server side.
  • the article information which is information of the article to be managed includes a code (article identification information), a name (article name), a production date, a distribution deadline date, a size, a price, a surface Color tone, temperature control necessity regarding temperature indicator, appropriate temperature, location of temperature indicator (marking location), etc. may be mentioned.
  • the temperature indicator information includes a code (article identification information), an appropriate temperature, a determination temperature, and the like.
  • the quality control system collects color tone information of the temperature detection material attached to the article, and manages the environment in which the article is placed based on the color tone information (for example, The management server 20) and the management terminal (for acquiring the product identification information for identifying the product attached to the product, and for acquiring the color tone information of the temperature detection ink, and the management terminal includes the acquired color tone information
  • the management device associates the item identification information with the time when the color tone information is acquired and whether or not there is a color change (for example, display temperature data) and transmits it. It is possible to centrally manage the display temperature data.
  • ⁇ Preparation of temperature detection material 1 part by mass of 3,3-bis (p-dimethylaminophenyl) -6-dimethylaminophthalide (CVL manufactured by Yamada Chemical Industry Co., Ltd.) as a leuco dye, and octyl gallate manufactured by Tokyo Chemical Industry Co., Ltd. as a developer 1 part by mass, 100 parts by mass of a mixture of methyl p-tolulate and 2-phenylethyl phenylacetate as a decoloring agent in a mass ratio of 8: 2; 100 parts by mass of Hiwax NP 105 manufactured by Mitsui Chemicals, Inc. Using. These materials were melted and mixed at 150 ° C., which is equal to or higher than the melting points of the decoloring agent and the matrix material, and solidified by natural cooling to produce a temperature detection material having a phase separation structure.
  • ⁇ Evaluation of average particle size of temperature indicator> About the produced temperature detection material, the average particle diameter of the temperature indicator was evaluated.
  • the average particle diameter of the temperature indicator of the temperature detection material having a phase separation structure was evaluated using a scanning electron microscope (S4800, manufactured by Hitachi, Ltd.).
  • the cross section of the temperature detection material was observed by a scanning electron microscope, and the particle size distribution of each particle was measured from the observation image to evaluate as a median diameter.
  • the prepared temperature detection material was placed in a container, and the color was initialized by leaving it in an environment at or above the melting point of the decoloring agent. After initialization, it was allowed to stand under the temperature below the color development initiation temperature, and the color change was observed.
  • (Comparative example 1) 1 part by mass of 3,3-bis (p-dimethylaminophenyl) -6-dimethylaminophthalide (CVL manufactured by Yamada Chemical Industry Co., Ltd.) as a leuco dye, and octyl gallate manufactured by Tokyo Chemical Industry Co., Ltd. as a developer
  • One part by mass 100 parts by mass of a mixture of methyl p-tolulate and 2-phenylethyl phenylacetate at a mass ratio of 8: 2 as a decoloring agent was used. These materials were melted and mixed at 150 ° C., which is equal to or higher than the melting point of the decoloring agent, and then solidified by natural cooling to produce a temperature detection material composed of only the temperature indicator.
  • the temperature and time detection functions were evaluated in the same manner as in Example 1.
  • (Comparative example 2) 1 part by mass of 3,3-bis (p-dimethylaminophenyl) -6-dimethylaminophthalide (CVL manufactured by Yamada Chemical Industry Co., Ltd.) as a leuco dye, and octyl gallate manufactured by Tokyo Chemical Industry Co., Ltd. as a developer 1 part by mass, 100 parts by mass of a mixture of methyl p-tolulate and 2-phenylethyl phenylacetate as a decoloring agent in a mass ratio of 8: 2; 10 parts by mass of Hi Wax NP105 manufactured by Mitsui Chemicals, Inc. as a matrix Using.
  • CVL manufactured by Yamada Chemical Industry Co., Ltd. Yamada Chemical Industry Co., Ltd.
  • octyl gallate manufactured by Tokyo Chemical Industry Co., Ltd.
  • a developer 1 part by mass, 100 parts by mass of a mixture of methyl p-tolulate and 2-phenylethyl phenylacetate as
  • Example 1 Materials were melted and mixed at 150 ° C., which is equal to or higher than the melting point of the decolorizing agent and the matrix material, and solidified by natural cooling to produce a temperature detection material.
  • the temperature and time detection functions were evaluated in the same manner as in Example 1.
  • a surfactant is an oil phase in which these materials are dissolved in 2-ethylhexyl acrylate by dissolving 2,2'-azobis (isobutyronitrile) as a polymerization initiator and styrene constituting a resin film.
  • 2,2'-azobis isobutyronitrile
  • a certain sorbitan fatty acid ester and a sodium salt were added to the aqueous phase and microcapsulated by stirring with a stirrer.
  • the temperature detection material which has a structure which included the temperature indicator in the microcapsule was produced.
  • the average particle diameter of the microcapsulated temperature sensing material was evaluated using a laser diffraction / scattering particle size distribution analyzer (Horiba, Ltd., LA-920). The median diameter was evaluated from the measured particle size distribution. Further, the temperature and time detection functions were evaluated in the same manner as in Example 1.
  • a temperature indicator was made using three temperature sensing materials.
  • a leuco dye, 2'-methyl-6 '-(Np-tolyl-N-ethylamino) spiro [isobenzofuran-1 (3H), 9'-[9H] xanthene] -3-one (Yamada Chemical Co., Ltd. stock A second temperature detection material having a phase separation structure was produced in the same manner as the first temperature detection material except that it was changed to company-made RED 520).
  • a leuco dye was obtained by using 6 '-[ethyl (3-methylbutyl) amino-3'-methyl-2'-(phenylamino) spiro [isobenzofuran-1 (3H), 9 '-(H) xanthene] -3-one (
  • a third temperature sensing material having a phase separation concept was produced in the same manner as the first temperature sensing material except that it was changed to Yamada Chemical Industry Co., Ltd. S-205).
  • a transparent PET seal film was attached to the acrylic plate from above the temperature detection material to produce a temperature indicator.
  • the average particle diameter of the temperature indicator of the first to third temperature detection materials was evaluated in the same manner as in Example 1.
  • the temperature and time detection functions of the first to third temperature detection materials are performed by leaving the temperature indicator at a temperature above the melting point of the decolorizer to initialize the color, and then the color development start temperature As described above, the sample was allowed to stand under the environment below the melting point of the decoloring agent, and the color change was observed.
  • a surfactant is an oil phase in which these materials are dissolved in 2-ethylhexyl acrylate by dissolving 2,2'-azobis (isobutyronitrile) as a polymerization initiator and styrene constituting a resin film.
  • 2,2'-azobis isobutyronitrile
  • a certain sorbitan fatty acid ester and a sodium salt were added to the aqueous phase and microcapsulated by stirring with a stirrer.
  • a temperature detection material was prepared by microencapsulating a temperature indicating material.
  • the temperature detection ink was prepared using the produced temperature detection material.
  • a container provided with a stirring blade pure water, a copolymer of polyvinyl alcohol and polyvinyl acetate having a number average molecular weight (Mn) of 10,000 as resin (repeating number of polyvinyl alcohol unit: repeating number of polyvinyl acetate unit ⁇ ⁇ ⁇ ⁇ 36: 64, hydroxyl value 285), microcapsules were charged and mixed for about 1 hour to prepare a temperature detection ink.
  • the ink was poured into the depression 4 of the acrylic plate, and a transparent PET seal film was pasted on the acrylic plate to which the ink was poured to produce a temperature indicator.
  • the average particle diameter of the temperature indicator of the temperature detection material was evaluated in the same manner as in Example 2.
  • the temperature and time detection functions of the temperature indicator were evaluated in the same manner as in Example 3.
  • Example 3 Materials were melted and mixed at 150 ° C., which is equal to or higher than the melting point of the decoloring agent, poured into the depression 4 of the acrylic plate, and allowed to cool naturally.
  • the indicator was produced by sticking a transparent PET seal film like FIG. 6 from on the acrylic board which poured the temperature indicator.
  • the indicator temperature and time detection functions were evaluated in the same manner as in Example 3.
  • the volume fraction of the temperature indicator and the average particle diameter of the temperature indicator of the temperature detection materials prepared in Examples 1 to 4 and Comparative Examples 1 to 3 are shown in Table 1.
  • FIG. 10 is a photograph showing temperature deviation time and color density in temperature detection materials according to Examples 1 and 2 and Comparative Examples 1 and 2.
  • the temperature indicator used in Examples 1 and 2 and Comparative Examples 1 and 2 is a material which starts color development by crystallization at a predetermined temperature or less as temperature indicator B described in FIGS. 1 and 2. is there.
  • the temperature detection materials according to Examples 1 and 2 by placing them in an environment of ⁇ 10 ° C., it was confirmed that the color changed continuously with time.
  • the temperature detection materials according to Comparative Examples 1 and 2 when the color changed at a certain place, the color change progressed to the periphery, and it was confirmed that the color change sharply. In addition, after the color change was completed, the color was initialized again above the melting point of the decoloring agent and observed again, and it was confirmed that the color change started at different places and times. From this, in the temperature detection material according to Comparative Examples 1 and 2, it is difficult to estimate the elapsed time from the degree of color change. It is considered that the temperature detection material according to Comparative Example 1 is made of only the temperature indicator and does not form a dispersed structure. Moreover, although the comparative example 2 is produced with the material similar to Example 1, since the matrix material which is a dispersion medium is less than Example 1, it is considered because it does not form a dispersion structure.
  • FIG. 11 is a photograph showing temperature deviation time and color density in temperature detection materials according to Examples 3 and 4 and Comparative Example 3.
  • the temperature indicator used in Examples 3 and 4 and Comparative Example 3 is a material that starts color development by crystallization at a predetermined temperature or more, like the temperature indicator A described in FIGS. 1 and 2.
  • the temperature detection material according to Comparative Example 3 when the color changed at a certain point, the color change progressed to the periphery, and it was confirmed that the color change sharply. In addition, after the color change was completed, the color was initialized again above the melting point of the decoloring agent and observed again, and it was confirmed that the color change started at different places and times. From this, in the temperature detection material according to Comparative Example 3, it is difficult to estimate the elapsed time from the degree of color change. It is considered that this is because the temperature detection material according to Comparative Example 3 is made of only the temperature indicator and does not form a dispersion structure.
  • FIG. 12 is a graph showing the time dependency of the color density of the temperature detection material of Examples 1 to 4 and Comparative Examples 1 to 3.
  • FIG. 12A is a graph showing the time dependency of the color density at -10 ° C. of the temperature detection materials according to Examples 1 and 2 and Comparative Examples 1 and 2.
  • the temperature of ⁇ 10 ° C. is equal to or lower than the color development start temperature of the temperature detection material according to Examples 1 and 2 and Comparative Examples 1 and 2.
  • Example 1 and 2 and Comparative Examples 1 and 2 it can be confirmed that the color density changes with time.
  • the temperature detection material having the phase separation structure of Example 1 and the microencapsulated temperature detection material of Example 2 it was confirmed that the color changed continuously with time. Further, it was confirmed that no color change was observed even when the temperature detection materials of Example 1 and Example 2 were allowed to stand at 0 ° C., which is a temperature higher than the color development start temperature. From this, it was found that the temperature detection materials of Example 1 and Example 2 could detect that the temperature became lower than the predetermined temperature. Also, after the color change is completed, the color is initialized by heating above the melting point of the decoloring agent, and after standing still at -10 ° C. and observing, it is completely the same as the graph of FIG.
  • the temperature detection materials of Example 1 and Example 2 can estimate the temperature deviation time from the color density. For example, when the color density of the temperature detection material of Example 1 is 95, it can be estimated from the graph of FIG. 12A that it has been exposed to ⁇ 10 ° C. for 20 minutes.
  • FIG. 12B is a graph showing the time dependency of color density at 10 ° C. of the temperature detection materials according to Examples 3 and 4 and Comparative Example 3.
  • 10 degreeC is the temperature more than the color development start temperature of the temperature detection material which concerns on Example 3, 4 and the comparative example 3.
  • Example 3 In the temperature detection material having the phase separation structure of Example 3 and the microencapsulated temperature detection material of Example 4, it was confirmed that the color changed continuously with time. It was also confirmed that no color change was observed even if the temperature detection materials of Examples 3 and 4 were allowed to stand at 0 ° C., which is a temperature lower than the color development initiation temperature. From this, it was found that the temperature detection materials of Examples 3 and 4 can detect that the temperature has reached a predetermined temperature or more. Also, after the color change is completed, the color is initialized by heating above the melting point of the decoloring agent, and after standing still at 10 ° C. and observing, the same change as the graph in FIG. 12 (b) It could be confirmed to indicate.
  • the temperature detection materials of Examples 3 and 4 can estimate the temperature deviation time from the color density. For example, when the color density of the temperature detection material of Example 3 is 75, it can be estimated that exposure to 10 ° C. for 50 minutes is made from the graph of FIG. 12 (b).
  • the temperature detection material according to the present embodiment by using the temperature detection material according to the present embodiment, the temperature detection material in which the color density changes continuously with time under the deviation temperature, the temperature deviation information using the same, and the temperature deviation time estimation can be performed. I was able to confirm that it was possible.
  • the present invention is not limited to the embodiments described above, but includes various modifications.
  • the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • SYMBOLS 1 temperature detection material, 2 ... display material (leuco dye, color developer, composition of a decoloring agent), 3 ... dispersion medium, 4 ... recessed part (dent), 5 ... base material (support), 6 ... transparent Base material (protective layer), 7 ... spacer, 8 ... printed paper, 9 ... thermal insulation layer, 10 ... temperature deviation time estimation system, 11 ... reading device, 12 ... input device, 13 ... output device, 14 ... communication device, 15 ... storage device, 16 ... processing device, 20 ... management device.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Heat Sensitive Colour Forming Recording (AREA)

Abstract

所定温度以上又は以下において、色濃度が時間に対して連続的に変化する温度検知材料、及びそれを用いた温度逸脱時間推定システムを提供することを目的とする。 上記目的を達成するため、本発明に係る温度検知材料は、結晶化により色変化する示温材が分散媒に分散した構造を有する温度検知材料であって、示温材の平均粒子径が観察時の分解能以下であって、温度検知材料における示温材の体積分率が5%以上であることを特徴とする。

Description

温度検知材料、及びそれを用いた温度逸脱時間の推定システム
 本発明は、温度検知材料、及びそれを用いた温度逸脱時間の推定システムに関する。
 生鮮食品、冷凍食品や、ワクチン、バイオ医薬品等の低温保存医薬品は、生産、輸送、消費の流通過程の中で、途切れることなく低温に保つコールドチェーンが必要である。流通時の温度を絶えず測定・記録するため、通常、運送コンテナには時間と温度を連続的に記録可能なデータロガーを搭載した場合が多く、製品にダメージがあればその責任の所在を明らかにすることが可能である。一方、データロガーはその価格およびサイズから製品の個別管理には不向きである。
 製品個別の品質を管理する場合は、データロガーではなく、比較的安価な温度インジケータを利用する方法がある。温度インジケータはデータロガーほどの記録精度はないものの、製品個別に貼付け可能であり、あらかじめ設定された温度を上回るか、下回るかした場合に表面が染色されるため、温度環境の変化を知ることが可能である。
 しかしながら、温度インジケータは不可逆的に色が変化するという性質があるため、製品管理に使用する前の温度管理が必要になる。また、再利用ができないことが課題となっている。
 製品個別への温度インジケータの貼付を想定した場合、医薬品等高価な製品の管理には、偽造防止というニーズがあり、温度逸脱した後のインジケータにおいて完全な不可逆性が求められる。しかしながら、生鮮食品等の安価な製品の管理では、コスト面から、使用温度範囲で不可逆であれば十分であり、完全な不可逆性以上に、温度インジケータの再利用や、常温での輸送、常温での保管にニーズがある。そのため、ある簡便な手法で色の初期化ができる温度インジケータが求められている。
 また、生鮮食品やバイオ医薬品等、温度と時間に依存して品質が劣化する製品を管理する場合は、時間と温度の積算で色が変化する時間温度インジケータ(Time-Temperature Indicator)が利用される。このような時間温度インジケータとしては、例えば、温度により粘性が変化するインクが浸透材中を浸透することで色を変化させるもの等が挙げられる。しかしながら、この時間温度インジケータの場合、インク単体では時間温度インジケータとしての機能を果たさないため、インジケータの構造が複雑になり低価格化が難しいという課題がある。さらに、再利用ができないという課題がある。
 色の初期化が可能な温度検知インクとして、特許文献1には、比較的低温の加熱により、消色状態から発色状態となり、その後の冷却によっても発色状態を維持ができ、加熱により消色状態を経て再び発色状態に復帰し得る変色挙動を示す可逆熱変色性組成物を内包する可逆熱変色性マイクロカプセル顔料が開示されている。
 特許文献2には、温度により発色の濃度が異なり、環境温度下では不可逆性で、結晶-非結晶又は相分離-非相分離で色が変化する示温部材が開示されている。この示温部材の発色時の色が吸収する波長の光を照射してその反射光強度又は透過光強度を検知することにより温度管理を行うことが開示されている。
特開2017-106005号公報 特開2001-091368号公報
 上述した通り、簡便な手法で色の初期化が可能であり、時間と温度の積算で色が変化し、所定の温度範囲内では色の変化が不可逆的である温度検知材料が求められている。
 特許文献1に開示された可逆熱発色性マイクロカプセル顔料は、時間と温度の積算による色の変化は考慮されていない。
 特許文献2に開示された温度管理部材は、時間と温度の積算による色変化の再現性について十分に検討されていない。特に、結晶化により色変化する材料の場合、色変化の再現性を検討する必要がある。結晶化は、結晶核が生成されることで生じる現象であり、材料ごとに異なる結晶核生成頻度に従いランダムに発生する現象であるためである。また、結晶化は、不純物の存在や容器の壁面等の界面の影響を強く受ける。一箇所で結晶核が生成され結晶化が始まると、その核の影響を受け、周囲に結晶化が伝播する。そのため、結晶化が速まってしまう。
 温度検知材料において、色変化から逸脱時間を検知するためには、検知材料の色が時間に対して常に一定の関係性を有して変化する必要がある。これに対し、結晶化で色が変化する示温材は、ランダムで色が変わるため、時間検知の精度が低くなってしまう。さらに、一度一箇所で結晶化が始まると、急峻に結晶化が進行するため、急峻に色変化が完了してしまう。そのため、色変化の度合いから経過時間を見積もることが困難である。
 そこで、本発明は、所定温度以上又は以下において、色濃度が時間に対して連続的に変化する温度検知材料、及びそれを用いた温度逸脱時間推定システムを提供することを目的とする。
 上記目的を達成するため、本発明に係る温度検知材料は、結晶化により色変化する示温材が分散媒に分散した構造を有する温度検知材料であって、示温材の平均粒子径が観察時の分解能以下であって、温度検知材料における示温材の体積分率が5%以上90%未満であることを特徴とする。
 本発明によれば、所定温度以上又は以下において、色濃度が時間に対して連続的に変化する温度検知材料、及びそれを用いた温度逸脱時間推定システムを提供することができる。
一実施形態に係る示温材の示差走査熱量測定曲線を示す図である。 一実施形態に係る示温材の色濃度変化を示す図である。 一実施形態に係る温温度検知材料の形態を示す模式図である。 一実施形態に係る相分離構造体の光学顕微鏡写真である。 温度インジケータの構成を示す模式図である。 温度インジケータの構成を示す模式図である。 一実施形態に係る温度検知材料の色濃度と時間の関係を示す図である。 逸脱時間推定システムの構成図である。 品質管理システムの構成図である。 実施例1、2、比較例1、2の温度検知材料における温度逸脱時間と色濃度を示す写真である。 実施例3、4、比較例3の温度検知材料における温度逸脱時間と色濃度を示す写真である。 実施例1~4、比較例1~3の温度検知材料の色濃度の時間依存性を示すグラフである。
 以下、本発明を実施するための形態(以下「実施形態」という)について、適宜図面を参照しながら詳細に説明する。なお、各図において、共通する部分には同一の符号を付し重複した説明を省略する。
 本発明の一実施形態に係る温度検知材料は、結晶化により色変化する示温材が分散媒に分散した構造を有する。
 <示温材>
 示温材としては、温度変化(昇温/降温)により色濃度が可逆的に変化する材料を用いる。示温材は、電子供与性化合物であるロイコ染料と、電子受容性化合物である顕色剤と、変色の温度範囲を制御するための消色剤と、を含む。
 図1は、一実施形態に係る示温材の示差走査熱量測定(DSC)曲線を示す図である。なお、示温材Aは、融解後に急冷すると結晶化せずに非晶状態のまま凝固する材料、示温材Bは融解後に冷却すると過冷却状態の液体状態となる材料である。
 図1(a)は、示温材AのDSC曲線である。降温過程(図の左向き矢印(←))において、結晶化が起こらないため、結晶化による発熱ピークが観察されない。一方、昇温過程(図の右向き矢印(→))において、結晶化による発熱ピーク(結晶化ピーク)が観察される。Tは昇温過程における開始温度(昇温過程における結晶化開始温度)である。Tは融点である。
 開始温度Tは、昇温速度や経過時間に依存する。低速で昇温すると低温に開始温度が現れ、高速で昇温すると高温に開始温度が現れるか、あるいは開始温度が現れず融点Tで融解する。結晶化が起こると顕色する。検知温度と検知時間の要求に合わせて、結晶化開始温度を設定すればよい。例えば、ある温度で1時間経過した後に結晶化が開始する示温材であれば、その温度を開始温度とし、開始温度で1時間経過したことを検知する材料として使用可能である。また、Tはガラス転移点である。ガラス転移点以下では、結晶化が開始されない。結晶化しやすい材料の場合、ガラス転移点以上の温度になると容易に結晶化するため、開始温度とガラス転移点が同じ温度になることが多い。
 図1(b)は、示温材BのDSC曲線を示す。Tは降温過程における結晶化による発熱ピーク(結晶化ピーク)の開始温度(降温過程における結晶化開始温度)である。Tは融点である。開始温度は、降温速度や経過時間に依存する。低速で降温すると高温に開始温度が現れ、高速で降温すると低温に開始温度が現れる。結晶化が起こると顕色するため、温度検知材料としての、検知温度と検知時間の要求に合わせて、開始温度を設定する。例えば、ある温度で1時間経過した後に結晶化が開始する示温材であれば、その温度を開始温度とし、開始温度で1時間経過したことを検知する材料として使用可能である。また、過冷却状態になりにくい材料の場合、融点以下の温度になると容易に結晶化するため、開始温度と融点が同じ温度になる。このような材料は示温材として用いることができない。すなわち、過冷却状態になりやすく、結晶化開始温度と融点の差が大きい材料が好ましい。
 図2は、一実施形態に係る示温材の色濃度変化を示す図である。図2の各図において、縦軸は色濃度、横軸は温度である。
 図2(a)は、示温材Aの色濃度と温度の関係を示す図である。示温材Aは、色濃度変化にヒステリシス特性を有する。示温材Aは、消色剤に結晶化しにくい材料を用いると、示温材Aの消色開始温度T以上の溶融状態であるPから顕色開始温度T以下に急冷させた際、消色剤が顕色剤を取りこんだまま非晶状態を形成して消色状態を保持する。この状態から、昇温過程で、顕色開始温度T以上に温度を上げると、消色剤が結晶化して顕色する。したがって、示温材Aを含む温度検知材料を用いれば、顕色開始温度T未満で温度管理するときに、管理範囲を逸脱し、T以上の温度に達したか否かを検知することができる。
 図2(b)は、示温材Bの色濃度と温度の関係を示す図である。示温材Bは、色濃度変化にヒステリシス特性を有する。示温材Bは、消色温度T以上の溶融状態であるPの状態から温度が低下していくと、顕色温度Tまでは消色状態を維持している。顕色温度T以下になると、消色剤が凝固点以下で結晶状態になり、ロイコ染料と顕色剤と分離されることで、ロイコ染料と顕色剤が結合し顕色する。したがって、示温材Bを含む温度検知材料を用いれば、顕色開始温度Tより高い温度に温度管理するときに、管理範囲を逸脱し、T以下の温度に達したか否かを検知することができる。
 温度検知材料を、商品等の物品の流通時における物品の温度管理に利用する場合は、色戻りしないことが要求される。流通時に一度温度が上昇し、色が変化したとしても、流通過程で再び温度が降下又は上昇し、色が元に戻ってしまうと、温度の変化の有無を把握することができないためである。しかしながら、本実施形態に係る示温材は、消色温度T以上に加熱しない限り色戻りしないため、温度環境の変化を知ることが可能である。
 次に、各示温材のロイコ染料、顕色剤、消色剤について説明する。
 (ロイコ染料)
 ロイコ染料は、電子供与性化合物であって、従来、感圧複写紙用の染料や、感熱記録紙用染料として公知のものを利用できる。例えば、トリフェニルメタンフタリド系、フルオラン系、フェノチアジン系、インドリルフタリド系、ロイコオーラミン系、スピロピラン系、ローダミンラクタム系、トリフェニルメタン系、トリアゼン系、スピロフタランキサンテン系、ナフトラクタム系、アゾメチン系等が挙げられる。ロイコ染料の具体例としては、9-(N-エチル-N-イソペンチルアミノ)スピロ[ベンゾ[a]キサンテン-12,3’-フタリド]、2-メチル-6-(Np-トリル-N-エチルアミノ)-フルオラン6-(ジエチルアミノ)-2-[(3-トリフルオロメチル)アニリノ]キサンテン-9-スピロ-3’-フタリド、3,3-ビス(p-ジエチルアミノフェニル)-6-ジメチルアミノフタリド、2’-アニリノ-6’-(ジブチルアミノ)-3’-メチルスピロ[フタリド-3,9’-キサンテン]、3-(4-ジエチルアミノ-2-メチルフェニル)-3-(1-エチル-2-メチルインドール-3-イル)-4-アザフタリド、1-エチル-8-[N-エチル-N-(4-メチルフェニル)アミノ]-2,2,4-トリメチル-1,2-ジヒドロスピロ[11H-クロメノ[2,3-g]キノリン-11,3’-フタリド]が挙げられる。
 示温材は、2種以上のロイコ染料を組み合わせて用いてもよい。
 (顕色剤)
 顕色剤は、電子供与性のロイコ染料と接触することで、ロイコ染料の構造を変化させて呈色させるものである。顕色剤としては、感熱記録紙や感圧複写紙等に用いられる顕色剤として公知のものを利用できる。このような顕色剤の具体例としては、4-ヒドロキシ安息香酸ベンジル、2,2′-ビフェノール、1,1-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)シクロヘキサン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、ビスフェノールA、ビスフェノールF、ビス(4-ヒドロキシフェニル)スルフィド、パラオキシ安息香酸エステル、没食子酸エステル等のフェノール類等を挙げることができる。顕色剤は、これらに限定されるものではなく、電子受容体でありロイコ染料を変色させることができる化合物であればよい。また、カルボン酸誘導体の金属塩、サリチル酸およびサリチル酸金属塩、スルホン酸類、スルホン酸塩類、リン酸類、リン酸金属塩類、酸性リン酸エステル類、酸性リン酸エステル金属塩類、亜リン酸類、亜リン酸金属塩類等を用いてもよい。特に、ロイコ染料や後述する消色剤に対する相溶性が高いものが好ましく、4-ヒドロキシ安息香酸ベンジル、2,2′-ビスフェノール、ビスフェノールA、没食子酸エステル類等の有機系顕色剤が好ましい。
 示温材は、これらの顕色剤を1種、または、2種類以上組み合わせてもよい。顕色剤を組合せることによりロイコ染料の呈色時の色濃度を調整可能である。顕色剤の使用量は所望される色濃度に応じて選択する。例えば、通常上述したロイコ色素1質量部に対して、0.1~100質量部程度の範囲内で選択すればよい。
 (消色剤)
 消色剤は、ロイコ染料と顕色剤との結合を解離させることが可能な化合物であり、ロイコ染料と顕色剤との呈色温度を制御できる化合物である。一般的に、ロイコ染料が呈色した状態の温度範囲では、消色剤が相分離した状態で固化している。また、ロイコ染料が消色状態となる温度範囲では、消色剤は融解しており、ロイコ染料と顕色剤との結合を解離させる機能が発揮された状態である。そのため、消色剤の状態変化温度が示温材の温度制御に対して重要になる。
 消色剤としては、ロイコ染料と顕色剤との結合を解離させることが可能である材料を幅広く用いることができる。極性が低くロイコ染料に対して顕色性を示さず、ロイコ染料と顕色剤を溶解させる程度に極性が高ければ、様々な材料が消色剤になり得る。代表的には、ヒドロキシ化合物、エステル化合物、ペルオキシ化合物、カルボニル化合物、芳香族化合物、脂肪族化合物、ハロゲン化合物、アミノ化合物、イミノ化合物、N-オキシド化合物、ヒドロキシアミン化合物、ニトロ化合物、アゾ化合物、ジアゾ化合物、アジ化合物、エーテル化合物、油脂化合物、糖化合物、ペプチド化合物、核酸化合物、アルカロイド化合物、ステロイド化合物等、多様な有機化合物を用いることができる。具体的には、トリカプリン、ミリスチン酸イソプロピル、酢酸m-トリル、セバシン酸ジエチル、アジピン酸ジメチル、1、4-ジアセトキシブタン、デカン酸デシル、フェニルマロン酸ジエチル、フタル酸ジイソブチル、くえん酸トリエチル、フタル酸ベンジルブチル、ブチルフタリルブチルグリコラート、N-メチルアントラニル酸メチル、アントラニル酸エチル、サリチル酸2-ヒドロキシエチル、ニコチン酸メチル、4-アミノ安息香酸ブチル、p-トルイル酸メチル、4-ニトロ安息香酸エチル、フェニル酢酸2-フェニルエチル、けい皮酸ベンジル、アセト酢酸メチル、酢酸ゲラニル、こはく酸ジメチル、セバシン酸ジメチル、オキサル酢酸ジエチル、モノオレイン、パルミチン酸ブチル、ステアリン酸エチル、パルミチン酸メチル、ステアリン酸メチル、酢酸リナリル、フタル酸ジ-n-オクチル、安息香酸ベンジル、ジエチレングリコールジベンゾアート、p-アニス酸メチル、酢酸m-トリル、けい皮酸シンナミル、プロピオン酸2-フェニルエチル、ステアリン酸ブチル、ミリスチン酸エチル、ミリスチン酸メチル、アントラニル酸メチル、酢酸ネリル、パルミチン酸イソプロピル、4-フルオロ安息香酸エチル、シクランデラート(異性体混合物)、ブトピロノキシル、2-ブロモプロピオン酸エチル、トリカプリリン、レブリン酸エチル、パルミチン酸ヘキサデシル、酢酸tert-ブチル、1、1-エタンジオールジアセタート、しゅう酸ジメチル、トリステアリン、アセチルサリチル酸メチル、ベンザルジアセタート、2-ベンゾイル安息香酸メチル、2、3-ジブロモ酪酸エチル、2-フランカルボン酸エチル、アセトピルビン酸エチル、バニリン酸エチル、イタコン酸ジメチル、3-ブロモ安息香酸メチル、アジピン酸モノエチル、アジピン酸ジメチル、1、4-ジアセトキシブタン、ジエチレングリコールジアセタート、パルミチン酸エチル、テレフタル酸ジエチル、プロピオン酸フェニル、ステアリン酸フェニル、酢酸1-ナフチル、ベヘン酸メチル、アラキジン酸メチル、4-クロロ安息香酸メチル、ソルビン酸メチル、イソニコチン酸エチル、ドデカン二酸ジメチル、ヘプタデカン酸メチル、α-シアノけい皮酸エチル、N-フェニルグリシンエチル、イタコン酸ジエチル、ピコリン酸メチル、イソニコチン酸メチル、DL-マンデル酸メチル、3-アミノ安息香酸メチル、4-メチルサリチル酸メチル、ベンジリデンマロン酸ジエチル、DL-マンデル酸イソアミル、メタントリカルボン酸トリエチル、ホルムアミノマロン酸ジエチル、1、2-ビス(クロロアセトキシ)エタン、ペンタデカン酸メチル、アラキジン酸エチル、6-ブロモヘキサン酸エチル、ピメリン酸モノエチル、乳酸ヘキサデシル、ベンジル酸エチル、メフェンピル-ジエチル、プロカイン、フタル酸ジシクロヘキシル、サリチル酸4-tert-ブチルフェニル、4-アミノ安息香酸イソブチル、4-ヒドロキシ安息香酸ブチル、トリパルミチン、1、2-ジアセトキシベンゼン、イソフタル酸ジメチル、フマル酸モノエチル、バニリン酸メチル、3-アミノ-2-チオフェンカルボン酸メチル、エトミデート、クロキントセット-メキシル、ベンジル酸メチル、フタル酸ジフェニル、安息香酸フェニル、4-アミノ安息香酸プロピル、エチレングリコールジベンゾアート、トリアセチン、ペンタフルオロプロピオン酸エチル、3-ニトロ安息香酸メチル、酢酸4-ニトロフェニル、3-ヒドロキシ-2-ナフトエ酸メチル、くえん酸トリメチル、3-ヒドロキシ安息香酸エチル、3-ヒドロキシ安息香酸メチル、トリメブチン、酢酸4-メトキシベンジル、ペンタエリトリトールテトラアセタート、4-ブロモ安息香酸メチル、1-ナフタレン酢酸エチル、5-ニトロ-2-フルアルデヒドジアセタート、4-アミノ安息香酸エチル、プロピルパラベン、1、2、4-トリアセトキシベンゼン、4-ニトロ安息香酸メチル、アセトアミドマロン酸ジエチル、バレタマートブロミド、安息香酸2-ナフチル、フマル酸ジメチル、アジフェニン塩酸塩、4-ヒドロキシ安息香酸ベンジル、4-ヒドロキシ安息香酸エチル、酪酸ビニル、ビタミンK4、4-ヨード安息香酸メチル、3、3-ジメチルアクリル酸メチル、没食子酸プロピル、1、4-ジアセトキシベンゼン、メソしゅう酸ジエチル、1、4-シクロヘキサンジカルボン酸ジメチル(cis-、trans-混合物)、1、1、2-エタントリカルボン酸トリエチル、ヘキサフルオログルタル酸ジメチル、安息香酸アミル、3-ブロモ安息香酸エチル、5-ブロモ-2-クロロ安息香酸エチル、フタル酸ビス(2-エチルヘキシル)、アリルマロン酸ジエチル、ブロモマロン酸ジエチル、エトキシメチレンマロン酸ジエチル、エチルマロン酸ジエチル、フマル酸ジエチル、マレイン酸ジエチル、マロン酸ジエチル、フタル酸ジエチル、1、3-アセトンジカルボン酸ジメチル、フタル酸ジメチル、3-アミノ安息香酸エチル、安息香酸エチル、4-(ジメチルアミノ)安息香酸エチル、ニコチン酸エチル、フェニルプロピオル酸エチル、ピリジン-2-カルボン酸エチル、2-ピリジル酢酸エチル、3-ピリジル酢酸エチル、安息香酸メチル、フェニル酢酸エチル、4-ヒドロキシ安息香酸アミル、2、5-ジアセトキシトルエン、4-オキサゾールカルボン酸エチル、1、3、5-シクロヘキサントリカルボン酸トリメチル(cis-、trans-混合物)、3-(クロロスルホニル)-2-チオフェンカルボン酸メチル、ペンタエリトリトールジステアラート、ラウリン酸ベンジル、アセチレンジカルボン酸ジエチル、メタクリル酸フェニル、酢酸ベンジル、グルタル酸ジメチル、2-オキソシクロヘキサンカルボン酸エチル、フェニルシアノ酢酸エチル、1-ピペラジンカルボン酸エチル、ベンゾイルぎ酸メチル、フェニル酢酸メチル、酢酸フェニル、こはく酸ジエチル、トリブチリン、メチルマロン酸ジエチル、しゅう酸ジメチル、1、1-シクロプロパンジカルボン酸ジエチル、マロン酸ジベンジル、4-tert-ブチル安息香酸メチル、2-オキソシクロペンタンカルボン酸エチル、シクロヘキサンカルボン酸メチル、4-メトキシフェニル酢酸エチル、4-フルオロベンゾイル酢酸メチル、マレイン酸ジメチル、テレフタルアルデヒド酸メチル、4-ブロモ安息香酸エチル、2-ブロモ安息香酸メチル、2-ヨード安息香酸メチル、3-ヨード安息香酸エチル、3-フランカルボン酸エチル、フタル酸ジアリル、ブロモ酢酸ベンジル、ブロモマロン酸ジメチル、m-トルイル酸メチル、1、3-アセトンジカルボン酸ジエチル、フェニルプロピオル酸メチル、酪酸1-ナフチル、o-トルイル酸エチル、2-オキソシクロペンタンカルボン酸メチル、安息香酸イソブチル、3-フェニルプロピオン酸エチル、マロン酸ジ-tert-ブチル、セバシン酸ジブチル、アジピン酸ジエチル、テレフタル酸ジエチル、フタル酸ジプロピル、1、1-エタンジオールジアセタート、アジピン酸ジイソプロピル 、フマル酸ジイソプロピル、けい皮酸エチル、2-シアノ-3、3-ジフェニルアクリル酸2-エチルヘキシル、ネオペンチルグリコールジアクリラート、トリオレイン、ベンゾイル酢酸エチル、p-アニス酸エチル、スベリン酸ジエチル、ソルビタントリステアレート、ソルビタンモノステアレート、ステアリン酸アミド、モノステアリン酸グリセロール、ジステアリン酸グリセロール、3-(tert-ブトキシカルボニル)フェニルボロン酸、ラセカドトリル、4-[(6-アクリロイルオキシ)ヘキシルオキシ]-4’-シアノビフェニル、2-(ジメチルアミノ)ビニル3-ピリジルケトン、アクリル酸ステアリル、4-ブロモフェニル酢酸エチル、フタル酸ジベンジル、3、5-ジメトキシ安息香酸メチル、酢酸オイゲノール、3、3’-チオジプロピオン酸ジドデシル、酢酸バニリン、炭酸ジフェニル、オキサニル酸エチル、テレフタルアルデヒド酸メチル、4-ニトロフタル酸ジメチル、(4-ニトロベンゾイル)酢酸エチル、ニトロテレフタル酸ジメチル、2-メトキシ-5-(メチルスルホニル)安息香酸メチル、3-メチル-4-ニトロ安息香酸メチル、2、3-ナフタレンジカルボン酸ジメチル、アジピン酸ビス(2-エチルヘキシル)、4’-アセトキシアセトフェノン、trans-3-ベンゾイルアクリル酸エチル、クマリン-3-カルボン酸エチル、BAPTAテトラエチルエステル、2、6-ジメトキシ安息香酸メチル、イミノジカルボン酸ジ-tert-ブチル、p-ベンジルオキシ安息香酸ベンジル、3、4、5-トリメトキシ安息香酸メチル、3-アミノ-4-メトキシ安息香酸メチル、ジステアリン酸ジエチレングリコール、3、3’-チオジプロピオン酸ジテトラデシル、4-ニトロフェニル酢酸エチル、4-クロロ-3-ニトロ安息香酸メチル、1、4-ジプロピオニルオキシベンゼン、テレフタル酸ジメチル、4-ニトロけい皮酸エチル、5-ニトロイソフタル酸ジメチル、1、3、5-ベンゼントリカルボン酸トリエチル、N-(4-アミノベンゾイル)-L-グルタミン酸ジエチル、酢酸2-メチル-1-ナフチル、7-アセトキシ-4-メチルクマリン、4-アミノ-2-メトキシ安息香酸メチル、4、4’-ジアセトキシビフェニル、5-アミノイソフタル酸ジメチル、1、4-ジヒドロ-2、6-ジメチル-3、5-ピリジンジカルボン酸ジエチル、4、4’-ビフェニルジカルボン酸ジメチル、オクタン酸-4-ベンジルオキシフェニルエチル、ノナン酸-4-ベンジルオキシフェニルエチル、デカン酸-4-ベンジルオキシフェニルエチル、ウンデカン酸-4-ベンジルオキシフェニルエチル、ドデカン酸-4-ベンジルオキシフェニルエチル、トリデカン酸-4-ベンジルオキシフェニルエチル、テトラデカン酸-4-ベンジルオキシフェニルエチル、ペンタデカン酸-4-ベンジルオキシフェニルエチル、ヘキサデカン酸-4-ベンジルオキシフェニルエチル、ヘプタデカン酸-4-ベンジルオキシフェニルエチル、オクタデカン酸-4-ベンジルオキシフェニルエチル、オクタン酸1、1-ジフェニルメチル、ノナン酸1、1-ジフェニルメチル、デカン酸1、1-ジフェニルメチル、ウンデカン酸1、1-ジフェニルメチル、ドデカン酸1、1-ジフェニルメチル、トリデカン酸1、1-ジフェニルメチル、テトラデカン酸1、1-ジフェニルメチル、ペンタデカン酸1、1-ジフェニルメチル、ヘキサデカン酸1、1-ジフェニルメチル、ヘプタデカン酸1、1-ジフェニルメチル、オクタデカン酸1、1-ジフェニルメチル等のエステル化合物や、コレステロール、コレステリルブロミド、β-エストラジオール、メチルアンドロステンジオール、プレグネノロン、安息香酸コレステロール、酢酸コレステロール、リノール酸コレステロール、パルミチン酸コレステロール、ステアリン酸コレステロール、n-オクタン酸コレステロール、オレイン酸コレステロール、3-クロロコレステン、trans-けい皮酸コレステロール、デカン酸コレステロール、ヒドロけい皮酸コレステロール、ラウリン酸コレステロール、酪酸コレステロール、ぎ酸コレステロール、ヘプタン酸コレステロール、ヘキサン酸コレステロール、こはく酸水素コレステロール、ミリスチン酸コレステロール、プロピオン酸コレステロール、吉草酸コレステロール、フタル酸水素コレステロール、フェニル酢酸コレステロール、クロロぎ酸コレステロール、2、4-ジクロロ安息香酸コレステロール、ペラルゴン酸コレステロール、
コレステロールノニルカルボナート、コレステロールヘプチルカルボナート、コレステロールオレイルカルボナート、コレステロールメチルカルボナート、コレステロールエチルカルボナート、コレステロールイソプロピルカルボナート、コレステロールブチルカルボナート、コレステロールイソブチルカルボナート、コレステロールアミルカルボナート、コレステロール n-オクチルカルボナート、コレステロールヘキシルカルボナート、アリルエストレノール、アルトレノゲスト、9(10)-デヒドロナンドロロン、エストロン、エチニルエストラジオール、エストリオール、安息香酸エストラジオール、β-エストラジオール17-シピオナート、17-吉草酸β-エストラジオール、α-エストラジオール、17-ヘプタン酸β-エストラジオール、ゲストリノン、メストラノール、2-メトキシ-β-エストラジオール、ナンドロロン、(-)-ノルゲストレル、キネストロール、トレンボロン、チボロン、スタノロン、アンドロステロン、アビラテロン、酢酸アビラテロン、デヒドロエピアンドロステロン、デヒドロエピアンドロステロンアセタート、エチステロン、エピアンドロステロン、17β-ヒドロキシ-17-メチルアンドロスタ-1、4-ジエン-3-オン、メチルアンドロステンジオール、メチルテストステロン、Δ9(11)-メチルテストステロン、1α-メチルアンドロスタン-17β-オール-3-オン、17α-メチルアンドロスタン-17β-オール-3-オン、スタノゾロール、テストステロン、プロピオン酸テストステロン、アルトレノゲスト、16-デヒドロプレグネノロンアセタート、酢酸16、17-エポキシプレグネノロン、11α-ヒドロキシプロゲステロン、17α-ヒドロキシプロゲステロンカプロアート、17α-ヒドロキシプロゲステロン、酢酸プレグネノロン、17α-ヒドロキシプロゲステロンアセタート、酢酸メゲストロール、酢酸メドロキシプロゲステロン、酢酸プレグネノロン、5β-プレグナン-3α、20α-ジオール、ブデソニド、コルチコステロン、酢酸コルチゾン、コルチゾン、コルテキソロン、デオキシコルチコステロンアセタート、デフラザコート、酢酸ヒドロコルチゾン、ヒドロコルチゾン、17-酪酸ヒドロコルチゾン、6α-メチルプレドニゾロン、プレドニゾロン、プレドニゾン、酢酸プレドニゾロン、デオキシコール酸ナトリウム、コール酸ナトリウム、コール酸メチル、ヒオデオキシコール酸メチル、β-コレスタノール、コレステロール-5α、6α-エポキシド、ジオスゲニン、エルゴステロール、β-シトステロール、スチグマステロール、β-シトステロールアセタート等のステロイド化合物等が挙げられる。ロイコ染料および顕色剤との相溶性の観点から、これらの化合物を含むことが好ましい。勿論、これらの化合物に限定されるものではなく、ロイコ染料と顕色剤との結合を解離させることが可能である材料であれば何でもよい。
 また、これらの消色剤を1種、または2種類以上組み合わせてもよい。消色剤を組合せることにより、凝固点、結晶化速度、融点の調整が可能である。
 示温材Aに用いる消色剤としては、消色剤が融解している温度から、急冷過程において結晶化せず、ガラス転移点近傍で非晶化する必要がある。そのため、結晶化しにくい材料が好ましい。急冷速度を非常に速くすればほとんどの材料で非晶状態を形成するが、実用性を考慮すると、汎用的な冷却装置による急冷で非晶状態を形成する程度に結晶化しにくい方が好ましい。融点以上の融解状態から自然に冷却する過程で非晶状態を形成する程度に結晶化しにくい材料がさらに好ましい。具体的には、1℃/分以上の速度で融点からガラス転移点まで冷却したときに非晶状態を形成する消色剤が好ましく、20℃/分以上の速度で融点からガラス転移点まで冷却したときに非晶状態を形成する消色剤がさらに好ましい。
 示温材Bに用いる消色剤としては、過冷却状態の温度範囲が広いこと、すなわち消色剤の凝固点と融点の温度差が大きいことが望ましい。また、融点または凝固点の温度は、対象とする温度管理範囲に依存する。
 色を初期化するためには、示温材の消色剤の融点以上に温度を上げる必要がある。色の初期化温度としては、管理温度付近では起こりづらい程度に高温である必要があるが、実用性を考慮すると、汎用的な加熱装置により加熱可能な温度域であることが望ましい。また温度検知材料としては、示温材を分散するためにマイクロカプセルやマトリックス材料を用いるため、これらの耐熱性も考慮する必要がある。具体的には、40℃~250℃程度が好ましく、60℃~150℃程度が最も好ましい。
 示温材には、少なくとも上記のロイコ染料、顕色剤、消色剤を含む。ただし、顕色作用および消色作用を1分子中に含む材料を含む場合、顕色剤および消色剤は無くてもよい。また、結晶化により色が変わる性能が保持されれば、ロイコ染料、顕色剤、消色剤以外の材料を含むこともできる。例えば、顔料を含むことで、消色時、顕色時の色を変更することが可能である。
 <温度検知材料>
 上記の示温材Aは、開始温度T以上になると温度に依存して色変化速度が変化する材料であり、示温材Bは、開始温度T以下になると温度に依存して色変化速度が変化する材料である。これらの色変化は結晶化よりに生じる。そのため、色変化は、結晶化速度に依存してランダムで発生する現象であり、時間的な再現性が低い。
 図3は、一実施形態に係る温度検知材料の形態を示す模式図である。図3に示すように、温度検知材料1は、多数の示温材2が分散媒3に分散した形態である。
 結晶化は、結晶核が生成されることで生じる現象であり、材料ごとに温度に依存した結晶核生成頻度(結晶化速度)に従い、ランダムに発生する現象である。そのため、結晶核が生成する、すなわち結晶化する時間は一定ではなく、時間的な再現性が低い。しかしながら、結晶化速度が等しい示温材が多数存在し、それぞれの示温材が結晶化する時間を測定した場合、その平均時間は、測定する示温材の数が多くなるにつれて、一定値に近づくと考えられる。そのため、示温材が多数に存在すれば、示温材が結晶化する平均時間は常に均一になる。したがって、示温材が多数に存在する形態を有する温度検知材料を用いれば、観察時の色が多数の示温材の平均の色になるため、色の変化の再現性を上げることができる。
 また、結晶化は、不純物の存在や容器の壁面等の界面の影響を強く受け、発生しやすくなるため、結晶化速度が等しい示温材を多数存在させるためには、すべての示温材において、界面から結晶化が受ける影響を均一にする必要がある。さらに、示温材同士が近くに存在している場合、結晶化は一箇所で結晶核が生成されると、その核の影響を受け周囲に伝播することで結晶化速度が速まるため、示温材同士の結晶化速度が等しくなくなってしまう。そのため、多数の示温材において、それぞれの示温材同士の結晶化の影響を無視できる程度に隔離された状態が必要になる。
 一度、一箇所で示温材の結晶化が始まると、急峻に色変化が完了してしまうため、色変化の度合いから経過時間を見積もることが困難である。そのため、色濃度が時間に対して連続的に(緩やかに)変化する温度検知材料が求められる。色濃度が時間に対して連続的に変化する材料であれば、材料の色濃度から、経過時間を推定することが可能になる。示温材を多数存在させ、多数の示温材の平均の色を観察することによって、時間に対して色濃度が連続的に(緩やかに)変化する温度検知材料を提供することができる。
 上記の条件を満足するため、温度検知材料は、図3に示したように、多数の示温材が分散媒に分散した形態である。
 温度検知材料における分散媒としては、示温材を分散させることができれば、どんな材料でも用いることができる。しかし、分散した全ての示温材の結晶化に対し、示温材と分散媒の界面から受ける影響を均一にする必要がある。そのため、示温材と接する界面が単一材料で形成されていることが好ましい。示温材の結晶化に対して影響を与えない材料のみで形成されていても良い。
 上記の条件を満たす分散化の手法として、示温材を直接マトリックス材料中に分散させる手法と、示温材をマイクロカプセル化して、マイクロカプセルを分散媒に分散させる手法がある。また、示温材をマトリックス材料中に分散させた材料をさらに他の材料に分散させても良い。マイクロカプセル膜を分散媒と考え、マイクロカプセル化した示温材をそのまま用いることも可能である。
 色濃度から経過時間を推定するためには、温度検知材料の分散媒中に分散した示温材のサイズが重要になる。具体的には、示温材の粒子の直径が、観察時の分解能以下であることが好ましい。観察時の分解能より示温材の粒子の直径が大きい場合、多数存在する示温材の平均の色を観察することが難しい。観察時の分解能より示温材の粒子径が小さく、多数存在する示温材の平均の色を観察することで、色変化の時間的な再現性が高く、色濃度が時間に対して連続的に(緩やかに)変化する温度検知材料を得ることができる。特に実用性を考慮すると、示温材の粒子の直径の平均値は、目視及びカメラの分解能以下であることが好ましい。そのため、示温材の平均粒子径が20μm以下であることが好ましく、5μm以下であることがさらに好ましい。
 温度検知材料は、示温材が多数に存在すればするほど、観察する示温材の色変化の平均時間が一定値に近づくため、時間的な再現性が高くなり、温度検知材料としての性能が向上する。そのため、温度検知材料内の示温材の数が多いことが好ましい。したがって、示温材の平均粒子径は小さく、分散媒に対する示温材の体積分率は高い方が好ましいと考えられる。ただし、分散媒に対する示温材の体積分率が高すぎると、示温材を分散させることが困難になる。そのため、温度検知材料における示温材の体積分率は5%以上90%未満であることが好ましく、10%以上50%以下であることがさらに好ましい。
 (マイクロカプセル化)
 温度検知材料を形成するために、示温材をマイクロカプセル化する手法がある。マイクロカプセル化することにより、示温材と接する界面がカプセル材のみに限定されるため、様々な分散媒に分散させることが可能になる。この場合、分散媒の種類は特に限定されない。また、マイクロカプセル化することにより、示温材の光や湿度等に対する耐環境性が向上し、保存安定性、変色特性の安定化等も可能となる。また、温度検知材料を溶媒に分散しインクを調製した際に、ロイコ染料、顕色剤、消色剤が他の樹脂剤、添加剤等の化合物から受ける影響を抑制することが可能である。
 マイクロカプセル化には、公知の各種手法を適用することが可能である。例えば、乳化重合法、懸濁重合法、コアセルベーション法、界面重合法、スプレードライング法等を挙げることができるが、これらに限定されるものではない。また、2種以上異なる方法を組み合わせてもよい。
 マイクロカプセルに用いる樹脂被膜としては、多価アミンとカルボニル化合物から成る尿素樹脂被膜、メラミン・ホルマリンプレポリマ、メチロールメラミンプレポリマ、メチル化メラミンプレポリマーから成るメラミン樹脂被膜、多価イソシアネートとポリオール化合物から成るウレタン樹脂被膜、多塩基酸クロライドと多価アミンから成るアミド樹脂被膜、酢酸ビニル、スチレン、(メタ)アクリル酸エステル、アクリロニトリル、塩化ビニル等の各種モノマー類から成るビニル系の樹脂被膜が挙げられるが、これらに限定されるものではない。さらに、形成した樹脂被膜の表面処理を行い、インクや塗料化する際の表面エネルギーを調整することで、マイクロカプセルの分散安定性を向上させる等、追加の処理をすることもできる。
 (相分離構造体化)
 温度検知材料の形成手法は、マイクロカプセル化に限定されない。例えば、示温材を色および消色作用のないマトリックス材料で保護して固体材料(相分離構造体)化する方法がある。マトリックス材料で保護することにより、マイクロカプセル化ではない簡便な手法により、マイクロカプセル同様に保存安定性、変色特性の安定化等が可能となる。また、温度検知材料を溶媒に分散しインクを調製した際に、ロイコ染料、顕色剤、消色剤が他の樹脂剤、添加剤等の化合物から受ける影響を抑制することが可能である。
 マトリックス材料は、示温材と混合したときに、示温材の顕色性および消色性を損なわない材料である必要がある。そのため、それ自身が顕色性を示さない材料であることが好ましい。このような材料として、電子受容体ではない非極性材料を用いることができる。
 また、マトリックス材料中に示温材が分散した相分離構造を形成させるために、マトリックス材料としては次の3つの条件を満たす材料を用いる必要がある。3つの条件とは、温度検知材料の使用温度で固体状態であること、融点が示温材の融点よりも高いこと、ロイコ染料、消色剤、および顕色材と相溶性の低い材料であること、である。ロイコ染料、顕色剤、消色剤、いずれかの材料がマトリックス材料と相溶した状態では、温度及び時間検知機能は損なわれてしまうためである。また、取扱性の観点から、使用温度で固体状態のマトリックス材料を用いる。
 以上の条件を満たすマトリックス材料としては、ハンセン溶解度パラメーターにより予測される分子間の双極子相互作用によるエネルギーδpおよび分子間の水素結合によるエネルギーδhがそれぞれ3以下である材料を好ましく用いることができる。具体的には、極性基を有さない材料、炭化水素のみで構成される材料を好ましく用いることができる。具体的には、パラフィン系、マイクロクリスタリン系、オレフィン系、ポリプロピレン系、ポリエチレン系等のワックスや、プロピレン、エチレン、スチレン、シクロオレフィン、シロキサン、テルペン等の骨格を多く持つ低分子材料や高分子材料、これらの共重合体等が挙げられる。
 これらの中でも、融点以上で低粘度の溶融液になり、融点以下で容易に固体化する材料が取扱い性がよい。また、有機溶媒に溶け、有機溶媒の揮発過程で固体化する材料も取扱い性がよい。具体的には、パラフィンワックス、マイクロクリスタリンワックス、ポリオレフィン、ポリエチレン、ポリプロピレン、シクロオレフィン、ポリスチレン、テルペン樹脂、シリコーン樹脂、シリコーンオイル等が挙げられる。
 ポリオレフィンとしては、例えば、低分子ポリエチレン、低分子ポリプロピレン等が挙げられる。ポリオレフィンの分子量および液体状態での粘度は特に限定されないが、液体状態で低粘度であると気泡の内包が少なく成形性がよい。具体的には、分子量5万以下であって、融点近傍での粘度が10Pa・S以下であることが好ましく、分子量1万以下であって、融点近傍での粘度が1Pa・S以下であることがさらに好ましい。
 また、これらのマトリックス材料は、複数種を併用することも可能である。
 また、使用温度において液体状態であるマトリックス材料でも、示温材と相分離構造を示せば、温度検知材料として用いることが可能である。マトリックス材料が高粘度の液体であれば、固体状態のマトリックス材料と同様に取り扱い性に優れる。しかしながら、マトリックス材料が高粘度液体の場合、長期間の使用においてマトリックス材料中の示温材の沈降は避けられず、最終的には2相に分離してしまう。そのため、温度検知材料としての長期安定性は低い。
 図4は、一実施形態に係る相分離構造体の光学顕微鏡写真である。図4は、温度検知材料の相分離構造を示す光学顕微鏡写真であり、(a)は顕色している状態の場合、(b)は消色している状態の場合である。光学顕微鏡写真から、温度検知材料1が、マトリックス材料3中に示温材2が分散した相分離構造を形成していることが確認できる。
 示温材の融点よりも高い融点を有するマトリックス材料を用いることにより、示温材が固体から液体、液体から固体への状態変化を伴い、色変化が生じたとしても、温度検知材料は固体状態を保持することができる。また、マトリックス材料と示温材とは相分離しており、且つマトリックス材料が示温材の色変化に影響を与えないことから、示温材の温度及び時間検知機能をそのまま保持することが可能である。
 相分離構造体は、乳鉢等で砕いて、粉体化することが可能である。これによりマイクロカプセルと同様の取り扱いが可能になる。
 相分離構造体およびマイクロカプセルは、インク化のための分散安定化や、溶剤への耐性向上や、光や湿度等に対する耐環境性が向上等のため、シランカップリング処理、表面グラフト化、コロナ処理等により表面処理をしても構わない。また、相分離構造体およびマイクロカプセルを、さらにマトリックス材料やマイクロカプセルで被覆することも可能である。
 相分離構造体は、例えば、ロイコ染料と、顕色剤と、消色剤と、マトリックス材料と、をマトリックス材料の融点以上の温度に加温し、混合した後、得られた混合物をマトリックス材料の凝固点以下の温度に冷却することによって得ることができる。冷却過程において、マトリックス材料と示温材とが速やかに相分離し、マトリックス材料中にロイコ染料と、顕色剤と、消色剤とからなる相が分散した相分離構造が形成する。
 マトリックス材料の融点以上に加温し液体状態にする際、示温材と、マトリックス材料の相溶性次第で、示温材と非顕色性材料が相溶する場合と、相溶しない場合がある。このとき、相溶している方が取扱いやすさの観点において好ましい。使用温度で示温材とマトリックス材料が相分離し、加温状態で示温材とマトリックス材料が相溶するためには、特に含有量の多い消色剤の極性を調整するとよい。消色剤の極性が小さすぎると使用温度でマトリックス材料と相溶してしまい、極性が大きすぎると、加温状態でマトリックス材料と分離してしまう。具体的な極性の計算方法として、ハンセン溶解度パラメーターにより予測される分子間の双極子相互作用によるエネルギーδpおよび分子間の水素結合によるエネルギーδhがそれぞれ1以上10以下である消色剤を好ましく用いることができる。しかしながら、消色剤の極性が大きく、加温状態でも示温材とマトリックス材料が相溶しない材料についても、撹拌しながら冷却することで、相分離構造を形成させることは可能である。また、界面活性剤を添加して、相溶させてもよい。
 マトリックス材料の凝固点以下に冷却し、相分離構造を形成させる際、示温材と、マトリックス材料の相溶性次第で、示温材の分散構造の大きさが異なる。特に含有量の多い消色剤とマトリックス材料について、ある程度相溶性がよいと細かく分散し、相溶性が悪いと大きく分散する。温度検知機能を維持する観点から分散構造の大きさは、100nm以上20μm以下であることが好ましい。冷却過程において、撹拌しながら冷却することや界面活性剤を添加することで、分散構造の大きさを小さくすることも可能である。
 <インク化>
 予めマトリックス材料中に示温材が分散した相分離構造体や、マイクロカプセル化した温度検知材料を作製し、溶剤と混合することにより、温度検知インクを作製することが可能である。温度検知インクは、ペン、スタンプ、クレヨン、インクジェット等のインクや印刷用の塗料に適用することが可能となる。
 温度検知インクは、溶剤中に温度検知材料が分散した形態を示す。そのためには、示温材を包含するマトリックス材料やマイクロカプセルと相溶性が低い溶剤を用いる必要がある。
 マトリックス材料を用いた相分離構造体を温度検知材料として用いる場合、溶剤としては、極性の高い溶媒を用いることが好ましい。極性の高い溶媒としては、水、グリセリン、メタノール、エタノール、プロパノール等のアルコール類を好ましく用いることができる。他にも、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸メチル、プロピオン酸エチル、プロピオン酸メチル等のエステル類、ジメチルエーテル、テトラヒドロフラン等のエーテル類等を用いることができる。
 マイクロカプセル化した温度検知材料を用いる場合、溶剤としては、マイクロカプセルの材質が耐性をもつ溶媒を用いることが好ましい。マイクロカプセルの材質として極性の高い材質を用いた場合、極性の低い有機溶媒を用いたほうが良く、具体的には、ヘキサン、ベンゼン、トルエン等の無極性溶媒、石油、鉱物油、シリコーンオイル等の油類が特に好ましく、他には、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸メチル、プロピオン酸エチル、プロピオン酸メチル等のエステル類、ジメチルエーテル、テトラヒドロフラン等のエーテル類等があげられる。
 マイクロカプセルの材質として極性の低い材質を用いた場合、極性の高い溶媒を用いたほうが良く、具体的には、水、グリセリン、メタノール、エタノール、プロパノール等のアルコール類を好ましく用いることができる。他にも、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸メチル、プロピオン酸エチル、プロピオン酸メチル等のエステル類、ジメチルエーテル、テトラヒドロフラン等のエーテル類等を用いることができる。
 これらの温度検知インクは液体状態においても温度及び時間検知機能を有し、さらに被印字対象等に印字、筆記、押印等することにより溶媒が揮発することで、温度検知材料のみが印字物を構成する。この印字物を、温度及び時間検知インジケータとして使用することができる。
 温度検知インクには、温度及び時間検知機能に影響しない程度であれば、有機溶媒や水等の溶液に添加物をさらに添加してもよい。例えば、顔料を含むことで、消色時、顕色時の色を変更することが可能である。
 温度検知インクは、各種添加剤や溶媒が使用可能である。また温度検知材料や添加剤の量を変えることで、粘度を調整することも可能である。これにより、オフセット印刷、グラビア印刷、フレキソ印刷、ラベルプリンタ、サーマルプリンタ等の様々な印刷装置用インクとして適用可能である。
 <インクジェット用インク>
 温度検知インクは、帯電制御式インクジェットプリンタ用インクに適用することができる。帯電制御式インクジェットプリンタ用インクは、温度検知材料と、揮発性の有機溶媒と、樹脂と、導電剤と、を含む。
 インク溶液の抵抗が高い場合、帯電制御式インクジェットプリンタにおけるインクの吐出部において、インク粒子がまっすぐ飛ばず、曲がる傾向がある。そのため、インク溶液の抵抗は概ね2000Ωcm以下にする必要がある。
 インクに含まれる樹脂、顔料、有機溶媒(特に、インクジェットプリンタ用インクの有機溶媒としてよく用いられる2-ブタノン、エタノール)は導電性が低いので、インク溶液の抵抗は5000~数万Ωcm程度と大きい。抵抗が高いと、帯電制御式インクジェットプリンタでは所望の印字が困難となる。そこで、インク溶液の抵抗を下げるために、インクに導電剤を添加する必要がある。
 導電剤としては、錯体を用いることが好ましい。導電剤は用いる溶剤に溶解することが必要で、色調に影響を与えないことも重要である。また導電剤は一般には塩構造のものが用いられる。これは分子内に電荷の偏りを有するので、高い導電性が発揮できるものと推定される。
 以上のような観点で検討した結果、導電剤は塩構造で、陽イオンはテトラアルキルアンモニウムイオン構造が好適である。アルキル鎖は直鎖、分岐どちらでもよく、炭素数が大きいほど溶媒に対する溶解性は向上する。しかし炭素数が小さいほど、僅かの添加率で抵抗を下げることが可能となる。インクに使う際の現実的な炭素数は2~8程度である。
 陰イオンはヘキサフルオロフォスフェートイオン、テトラフルオロボレートイオン等が溶剤に対する溶解性が高い点で好ましい。
 なお、過塩素酸イオンも溶解性は高いが、爆発性があるので、インクに用いるのは現実的ではない。それ以外に、塩素、臭素、ヨウ素イオンも挙げられるが、これらは鉄やステンレス等の金属に接触するとそれらを腐食させる傾向があるので好ましくない。
 以上より、好ましい導電剤は、テトラエチルアンモニウムヘキサフルオロフォスフェート、テトラプロピルアンモニウムヘキサフルオロフォスフェート、テトラブチルアンモニウムヘキサフルオロフォスフェート、テトラペンチルアンモニウムヘキサフルオロフォスフェート、テトラヘキシルアンモニウムヘキサフルオロフォスフェート、テトラオクチルアンモニウムヘキサフルオロフォスフェート、テトラエチルアンモニウムテトラフルオロボレート、テトラプロピルアンモニウムテトラフルオロボレート、テトラブチルアンモニウムテトラフルオロボレート、テトラペンチルアンモニウムテトラフルオロボレート、テトラヘキシルアンモニウムテトラフルオロボレート、テトラオクチルアンモニウムテトラフルオロボレート等が挙げられる。
 <温度インジケータ>
 図5は、温度インジケータの構成を示す模式図である。温度インジケータは、基材(支持体)5と、基材上に配置された温度検知材料1と、温度検知材料上に配置された透明基材(保護層)6と、スペーサ7を備え、温度検知材料1を、基材5と透明基材6で挟んだ構造である。
 基材と透明基材の材料は特に限定されず、温度検知材料を、透明基材と基材で挟み込み、且つ温度検知材料の変色を視認できれば良い。また、透明基材は用いないことも可能である。この場合、スペーサを用いないでも良い。
 基材の材料は、要求される機能によって自由に選択できる。紙やプラスチック等の有機材料や、セラミックスや金属等の無機材料や、それらの複合材料等自由に選択可能である。数種の材料で層構造を形成しても良い。高強度、耐熱性、耐候性、耐薬品性、断熱性、導電性等、温度及び時間インジケータに要求される特性に合わせて選択する。シールを用いることで、検知したい対象物に対して密着させることも可能である。基材は、温度検知材料を挟み込めればよいので、温度検知材料よりも大きいことが好ましい。
 また、基材として、連続多孔質材料を用いてもよい。この場合、連続多孔質材料に温度検知材料を含浸させた構造とする。温度検知材料を連続多孔質材料に含浸させることにより、連続多孔質材料の加工性に応じて、温度インジケータの加工性を変更することができる。連続多孔質材料としては、温度検知材料が長期間接触していても変性しないような材質が求められる。そのため、具体的には、ポリエチレン、ポリプロピレン、セルロース等、通常の有機溶媒に溶解しにくい材質が好適である。無機化合物としては、二酸化珪素も好適である。
 連続多孔質材料の構造としては、スポンジ、不織布、織布等が挙げられる。セルロースの場合は書籍、書類を作成時に用いられる用紙でもかまわない。二酸化珪素、ポリエチレン、ポリプロピレンの粉体を同様の化学構造のバインダーで保持して連続多孔質体を形成し、使用することも可能である。連続多孔質体は空隙の密度が大きい程、温度検知材料が浸透する密度が大きくなるため、色濃度が減少を抑えることが可能である。
 透明基材の材料についても、要求される機能によって自由に選択できる。紙やプラスチック等の有機材料や、セラミックスや金属等の無機材料や、それらの複合材料等自由に選択可能である。温度及び時間検知インクの少なくとも一部の箇所の変色を視認する必要があるため、透明性が必要である。たとえば、透明性の高い紙、アクリル、ポリカーボネート、シクロオレフィン等の透明性の高いプラスチック等の有機材料や、ガラス、透明電極膜等の透明性の高い無機化合物等が挙げられる。これらの透明性の高い材料以外にも、薄膜化して透明性を高めた材料も可能である。数種の材料で層構造を形成しても良い。これらの中から、高強度、耐熱性、耐候性、耐薬品性、断熱性、導電性や、急冷に対する熱衝撃への耐性等、温度及び時間インジケータに要求される特性に合わせて選択できる。
 透明基材の大きさは、温度及び時間検知体を視認できればよいため、大きさについては限定されない。視認性の観点からは、透明基材が長方形の場合は短手方向、楕円の場合は短径が30μm以上が好ましい。
 温度インジケータは温度検知材料が視認できる程度の範囲で、透明基材と温度検知材料の間または透明基材の上部に他の材料を備えていてもよい。例えば、透明基材と温度検知材料の間に印字紙を備えることにより、印字紙に印字された印字情報を表示することができる。透明基材および基材には、穴をあける等の加工がされていてもよい。穴をあけることにより、透明基材とスペーサの間の印字紙が剥き出しとなる。このような構造とすることにより、輸送途中等に剥き出しになった印字紙に情報を記入することができる。
 また、温度インジケータは透明基材と温度検知材料の間に断熱層を備えていても良い。断熱層としては、例えば、空気層、アルゴンや窒素等のガス層、真空層、スポンジ、エアロゲル等の多孔性材料、グラスウール、ロックウール、セルロースファイバー等の繊維材料、ウレタン、ポリスチレン、発泡ゴム等の発泡材料を用いることができる。断熱層を配置することにより、温度検知材料の外部の温度が、管理温度を逸脱してから(温度検知材料の検知温度に達してから)温度検知材料が変色するまでの時間を調整できる。また、この時間は、基材と透明基材の材質および厚さによって調整することができる。また、断熱層を設置するのではなく、基材と透明基材のどちらかを断熱材料で構成してもよい。以上のように、断熱層を設けること、基材と透明基材の材質や厚さを調整することにより、基材から温度検知材料までの熱伝導率と、透明基材から温度検知材料までの熱伝導率を制御することが可能になる。
 基材5をシールにして対象物に貼る場合、外気の温度と対象物表面の温度が異なることが想定される。対象物表面の温度を検知したい場合は、基材から温度検知材料までの熱伝導性を良くし、透明基材から温度検知材料までの熱伝導率を悪くすればよい。例えば、温度検知材料の上部に断熱層を設けたり、透明基材および基材の材質や厚さを調整し、透明基材の熱伝導率よりも基材の熱伝導率を高くすればよい。一方、外気の温度を検知したい場合、基材から温度及び時間検知体までの熱伝導性を悪くし、透明基材から温度及び時間検知体までの熱伝導率を良くすればよい。例えば、温度検知材料の下部に断熱層を設けたり、透明基材および基材の材質や厚さを調整し、基材の熱伝導率よりも透明基材の熱伝導率を高くすればよい。
 温度インジケータには、温度検知材料を複数種類用いても良い。図6は温度インジケータの構成を示す模式図である。図6に3種類の温度検知材料を用いた温度インジケータを示す。温度インジケータは凹部(窪み)4を有する基材5と、基材の表面に設けられた保護層6を備える。保護層は、例えばシートフィルムである。凹部4は、それぞれ温度検知材料を保持する。
 <色の初期化プロセス>
 温度検知材料は、示温材の融点以上の温度に温度検知材料を加熱し、その後所定の速度以上で冷却することにより初期化できる。なお、温度検知インクの場合は、示温材の融点以上かつ溶剤の沸点未満の温度に温度検知インクを加熱する。
 加熱方法は特に限定されない。インク容器中のインクを加熱する場合、例えば、ヒーター、ホットプレート、加熱した溶媒中等でインク容器を加熱する手段等が挙げられる。温度インジケータ中の材料を加熱する場合は、ラミネータ等を用いてもよい。
 加熱後の冷却方法についても特に限定されない。例えば、自然冷却、クーラー、フリーザー等でインク容器を冷却する手段等が挙げられる。示温材の結晶化速度によって一定以上の冷却速度が必要になり、結晶化速度が速い材料では冷却装置による急冷が必要であり、結晶化速度が遅い材料では自然冷却による冷却を好ましく用いることができる。
 冷却装置による冷却速度を調整することで、温度検知材料の検知時間を調整することも可能である。温度検知材料は、結晶化速度に応じて時間と温度の積算で色が変化する。そのため、冷却速度をあえて遅くすることで、温度管理に使用する前に予め結晶化を進め、僅かに顕色させることができる。これにより、同一の温度及び時間検知インクについて、急冷処理を行ったものよりも、検知時間を早めることが可能である。
 <温度逸脱時間の推定方法及び推定システム>
 上記温度検知材料を用いた温度逸脱時間の推定方法について説明する。
 上限温度を検知する示温材Aを用いた温度検知材料の場合、所定温度(顕色開始温度Ta)以上になると顕色し、高温になるほど顕色速度が速くなる。このことから、温度検知材料が顕色していなければ、所定温度以上には短時間しか晒されていないことが推定できる。
 また、下限温度を検知する示温材Bを用いた温度検知材料の場合、所定温度(顕色開始温度Ta)以下になると顕色し、低温になるほど顕色速度が速くなる。このことから、温度検知材料が顕色していなければ、所定温度以下には短時間しか晒されていないことが推定できる。
 温度検知材料の温度ごとの時間と色濃度の関係を予め記憶しておくことで、温度検知材料が顕色していた場合、その色濃度から、温度逸脱時の温度と時間の関係を逆算することができる。図7に一実施形態に係る温度検知材料の色濃度と時間の関係を示す。図7に示すように、温度検知材料は、結晶化開始温度に達すると、時間に対して色が連続的に変化する。温度検知材料を初期化し、再度同じ温度に曝すと、初期化前の同じ変化を繰り返す。したがって、あらかじめ、温度毎の時間と色濃度の関係を記録しておくことにより、色濃度から、温度を逸脱してから経過した時間(以下、温度逸脱時間という。)を推定することができる。
 温度逸脱時間の推定には、複数の温度検知材料を組み合わせても良い。例えば、顕色開始温度が10℃の上限温度検知材料と、顕色開始温度が20℃の上限温度検知材料の2つを併用した場合に、顕色開始温度が10℃の上限温度検知材料の色しか変化していなければ、10℃以上20℃未満に曝されたことが特定できるため、温度逸脱時間の推定精度が向上する。
 また、温度逸脱時間の推定には、温度計や気象情報等から入手できる温度を用いることにより、推定精度が向上する。たとえば、外気温が20℃の中、0℃で輸送している物品に顕色開始温度が10℃の上限温度材料を備える温度インジケータを貼り付けた場合、インジケータの色が変化していれば、10℃~20℃に曝されたことが特定できる。この場合も、温度逸脱時間の推定精度を向上できる。
 上記温度検知材料を用いた温度逸脱時間の推定システムについて説明する。
 図8は逸脱時間推定システムの構成図である。図8に示すように、温度逸脱時間の推定システム10は、温度検知材料の色情報を取得する読取装置11、入力装置12、出力装置13、通信装置14、記憶装置15と、読取装置により取得された色情報と、温度検知材料が温度を逸脱してから経過した時間を推定する処理装置16と、を備える。
 読取装置11は、温度検知材料の色情報を取得する。温度検知材料の色情報の読取方法は特に限定されない。例えば、温度検知材料をカメラで撮影し、撮影した画像の階調から井戸濃度を算出することができる。また、温度検知材料にレーザー等で光を投光し、投光された光の反射量若しくは吸収量から色情報を算出しても良い。なお、色調の数値情報としては、L*a*b*やL*C*h*等のCIE色空間の他にRGB色空間、HSV色空間、マンセル色空間等が挙げられる。
 記憶装置15は、温度検知材料の温度毎の色濃度と時間の関係とを記憶している。そのほかにも温度検知材料や温度インジケータの識別情報や、読取装置により読み取られた温度検知材料の色情報を格納していても良い。
 処理装置16は、読取装置により取得された温度検知材料の色情報と、記憶部に記憶された温度検知材料の温度毎の色濃度と時間の関係と、に基づいて温度検知材料が温度を逸脱してから経過した時間を推定する。処理装置は、さらに、通信装置等により取得された外気温等の温度情報を用いて温度逸脱時間を推定してもよい。また、検知温度(顕色開始温度)が異なる複数の温度検知材料の色情報を用いて温度逸脱時間を推定しても良い。温度情報や、検知温度が異なる複数の温度検知材料の色情報を用いることにより、推定精度を向上できる。
 <物品管理システム> 
 次に、温度インジケータを用いた品質管理システムについて説明する。品質管理システムは、物品が置かれた環境を管理する管理装置と、温度検知材料の色調情報を取得する管理端末と、を備える。管理端末は、色調情報を取得した際に、管理装置に物品識別情報と色調情報を取得した時刻と色変化があったか否かの旨とを関連付けて送信する。
 図9は、品質管理システムの構成を示す図である。ここでは、工場で製造された物品が、店舗に搬送され、店舗で物品が管理されたのち顧客に物品がわたる流通ルートにおける品質管理を例にあげて説明する。
 品質管理システム(物品管理システム)は、物品に添付されたコード(物品識別情報)(例えば、バーコード)および温度インジケータの色調情報を取得する管理端末、管理サーバ20(管理装置)を含んで構成される。管理端末、管理サーバ20は、ネットワークNWを介して通信可能に接続されている。
 流通ルートは、物品を製造する工場、物品を保管する倉庫、出荷場、搬送車、物品を他の搬送車に積み替える積替場、搬送車、店舗である。各場所で、作業者は管理端末を用いて品質管理データの収集をする。
 品質管理データの収集は、工場において物品が製造されたとき、倉庫で保管されているとき、出荷場で出荷されるとき、搬送車で搬送されているとき、積替場で積替え作業が行われたとき、搬送車で搬送されているとき、店舗に入荷されるとき、店舗で販売のために保管されているとき等に行われる。
 各場所で作業者は、温度検知材料の色調を確認することで各過程の温度管理状況や物品の温度負荷状態を視覚的に確認することができる。また、作業者の視覚的な確認のみならず、色調として数値情報を得るとよい。
 作業者は、出荷、搬送、保管等各過程において、物品とその温度検知インクの光学状態およびその画像や読取り場所、時間等の品質管理情報として、管理端末を用いて管理サーバ20に送信する。
 温度検知材料の光学状態の読取りには、管理端末を使用するとよい。これにより、物品の流通に関する各者が、管理対象の物品の流通過程での各状態を、示温材料の色調を数値情報として取得することにより、定量的に管理したり、共有することができる。
 店舗では、搬送された物品について、温度検知材料の色調状態を確認することで工場の出荷時から搬送等の過程後の温度管理状況や物品の温度負荷状態を視覚的に確認することができる。さらに、管理端末等を介して管理サーバ20に接続して、物品の納品時までの品質管理情報等の情報を確認することができる。
 管理端末は、温度インジケータの色調情報に基づき、品質が保持されているか否かを判定し、判定結果を表示する。つまり、色変化があった際に、表示部に物品の流通が適さない旨を表示し、色変化がなかった際に、表示部に物品の流通が適する旨を表示する。判定結果は管理サーバから管理端末に送信される。判定結果を含む品質管理データは管理サーバに品質管理情報として記憶される。
 本実施形態では、品質が保持されているか否かの品質判定を管理端末側で処理している。これは、多数の物品を対象とするシステムでは、判定処理等の集中を分散させるためである。管理サーバ20の処理能力が高ければ、品質判定を管理サーバ側で実行してもよい。
 管理サーバ20は、処理部、記憶部、入力部、出力部、通信部を有する。管理サーバの記憶部には、管理対象の各物品の詳細な情報である物品情報、温度インジケータ情報、流通条件情報、流通管理情報、生産情報、品質管理情報等が記憶されている。管理サーバは、管理端末との間で情報の授受を行う。
 管理サーバには、物品に添付された温度検知材料の色濃度とその環境に置かれた時間との関係を示す色濃度-時間情報を記憶部に記憶しておくことが好ましい。管理サーバに色濃度-時間情報を記憶しておくことによって、管理端末は、取得した物品識別情報に基づく色濃度時間情報を管理装置から取得し、取得した色調情報の色濃度と色濃度時間情報に基づきその環境に置かれた時間を算出することができる。また、算出した時間を表示部に表示するとともに、管理装置に物品識別情報と算出した時間とを関連付けて送信することができる。なお、その環境に置かれた時間の算出は、管理サーバ側で行っても良い。
 管理サーバに記憶されている物品情報の例としては、管理対象の物品の情報である物品情報は、コード(物品識別情報)、名称(品名)、生産日、流通期限日、サイズ、価格、表面色調、温度インジケータに関する温度管理要否、適正温度、温度インジケータの箇所(マーキング箇所)等が挙げられる。温度インジケータ情報としては、コード(物品識別情報)、適正温度、判定温度等が挙げられる。
 以上をまとめると、品質管理システム(物品管理システム)は、物品に添付された温度検知材料の色調情報を収集し、色調情報に基づいたその物品が置かれた環境を管理する管理装置(例えば、管理サーバ20)と、物品に添付された該物品を識別する物品識別情報を取得するとともに、温度検知インクの色調情報を取得する管理端末(と、を有する。管理端末は、取得した色調情報を取得した際に、管理装置に物品識別情報と色調情報を取得した時刻と色変化があったか否かの旨とを関連付けて(例えば、示温データ)送信する。これにより、流通段階の各場所で取得した示温データを一元的に管理することができる。
 次に、実施例および比較例を示しながら、温度検知材料を更に具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
 <温度検知材料の作製>
 ロイコ染料として3,3-ビス(p-ジメチルアミノフェニル)-6-ジメチルアミノフタリド(山田化学工業株式会社製CVL)を1質量部、顕色剤として東京化成工業株式会社製没食子酸オクチルを1質量部、消色剤としてp-トルイル酸メチルとフェニル酢酸2-フェニルエチルを質量比8:2で混合したものを100質量部、マトリックス材料として三井化学株式会社製ハイワックスNP105を100質量部用いた。これらの材料を、消色剤およびマトリックス材の融点以上である150℃で溶かして混合し、自然冷却により固化させることで、相分離構造を有する温度検知材料を作製した。
 <示温材の平均粒子径の評価>
 作製した温度検知材料について、示温材の平均粒子径を評価した。相分離構造を有する温度検知材料の示温材の平均粒子径は、走査型電子顕微鏡(株式会社日立製作所製、S4800)を用いて評価した。走査型電子顕微鏡により温度検知材料の断面を観察し、その観察画像から各粒子の粒度分布を測定することで、メディアン径として評価した。
 <温度と時間の検知機能の評価>
 作製した温度検知材料を容器に入れ、消色剤の融点以上の環境下に静置することにより、色の初期化を行った。初期化後に、顕色開始温度以下の環境下に静置し、色変化する様子を観察した。
 (比較例1)
 ロイコ染料として3,3-ビス(p-ジメチルアミノフェニル)-6-ジメチルアミノフタリド(山田化学工業株式会社製CVL)を1質量部、顕色剤として東京化成工業株式会社製没食子酸オクチルを1質量部、消色剤としてp-トルイル酸メチルとフェニル酢酸2-フェニルエチルを質量比8:2で混合したものを100質量部用いた。これらの材料を、消色剤の融点以上である150℃で溶かして混合した後、自然冷却により固化させることで、示温材のみから構成される温度検知材料を作製した。実施例1と同様に温度と時間の検知機能を評価した。
 (比較例2)
 ロイコ染料として3,3-ビス(p-ジメチルアミノフェニル)-6-ジメチルアミノフタリド(山田化学工業株式会社製CVL)を1質量部、顕色剤として東京化成工業株式会社製没食子酸オクチルを1質量部、消色剤としてp-トルイル酸メチルとフェニル酢酸2-フェニルエチルを質量比8:2で混合したものを100質量部、マトリックス材料として三井化学株式会社製ハイワックスNP105を10質量部用いた。これらの材料を、消色剤およびマトリックス材の融点以上である150℃で溶かして混合し、自然冷却により固化させることで、温度検知材料を作製した。実施例1と同様に温度と時間の検知機能を評価した。
 ロイコ染料として6’-[エチル(3-メチルブチル)アミノ-3’-メチル-2’-(フェニルアミノ)スピロ[イソベンゾフラン-1(3H),9’-(H)キサンテン]-3-オン(山田化学工業株式会社製S-205)を1質量部、顕色剤として東京化成工業株式会社製没食子酸オクチルを1質量部、消色剤としてp-トルイル酸メチルとフェニル酢酸2-フェニルエチルを質量比8:2で混合したものを100質量部用いた。これらの材料を、重合開始剤の2,2´-アゾビス(イソブチロニトリル)と、樹脂被膜の構成するスチレンとを、アクリル酸-2-エチルヘキシルに溶解させた油相を、界面活性剤であるソルビタン脂肪酸エステル、ナトリウム塩を添加した水相中に投入し、スターラーにより攪拌することでマイクロカプセル化した。以上のように、示温材をマイクロカプセルで内包した構造を有する温度検知材料を作製した。
 マイクロカプセル化された温度検知材料の示温材の平均粒子径は、レーザー回折/散乱式粒度分布計(株式会社堀場製作所,LA-920)を用いて評価した。測定した粒度分布からメディアン径を評価した。また、実施例1と同様に温度と時間の検知機能を評価した。
 3種の温度検知材料を用いた温度インジケータを作製した。
 ロイコ染料として3,3-ビス(p-ジメチルアミノフェニル)-6-ジメチルアミノフタリド(山田化学工業株式会社製CVL)を1質量部、顕色剤として東京化成工業株式会社製没食子酸オクチルを1質量部、消色剤として東京化成工業株式会社製ビタミンK4を100質量部、マトリックス材料として三井化学株式会社製ハイワックスNP105を100質量部用いた。これらの材料を、消色剤およびマトリックス材の融点以上である150℃で溶かして混合し、アクリル板の窪み4に注ぎ込み、自然冷却させることで、相分離構造を有する第1温度検知材料を作製した。
 ロイコ染料を2´-メチル-6´-(N-p-トリル-N-エチルアミノ)スピロ[イソベンゾフラン-1(3H),9´-[9H]キサンテン]-3-オン(山田化学工業株式会社製RED520)に変えたこと以外第1温度検知材料と同様にして、相分離構造を有する第2温度検知材料を作製した。
 ロイコ染料を6’-[エチル(3-メチルブチル)アミノ-3’-メチル-2’-(フェニルアミノ)スピロ[イソベンゾフラン-1(3H),9’-(H)キサンテン]-3-オン(山田化学工業株式会社製S-205)に変えたこと以外第1温度検知材料と同様にして、相分離構想を有する第3温度検知材料を作製した。
 図6のように透明のPET製のシールフィルムを、温度検知材料の上からアクリル板に貼ることで、温度インジケータを作製した。
 第1~第3の温度検知材料の示温材の平均粒子径は実施例1と同様の方法で評価した。第1~第3の温度検知材料の温度と時間の検知機能は、温度インジケータを消色剤の融点以上の環境下に静置することにより、色の初期化を行った後、顕色開始温度以上、消色剤の融点未満の環境下に静置し、色変化する様子を観察した。
 ロイコ染料として2´-メチル-6´-(N-p-トリル-N-エチルアミノ)スピロ[イソベンゾフラン-1(3H),9´-[9H]キサンテン]-3-オン(山田化学工業株式会社製RED520)を1質量部、顕色剤として東京化成工業株式会社製没食子酸オクチルを1質量部、消色剤として東京化成工業株式会社製ビタミンK4を100質量部用いた。これらの材料を、重合開始剤の2,2´-アゾビス(イソブチロニトリル)と、樹脂被膜の構成するスチレンとを、アクリル酸-2-エチルヘキシルに溶解させた油相を、界面活性剤であるソルビタン脂肪酸エステル、ナトリウム塩を添加した水相中に投入し、スターラーにより攪拌することでマイクロカプセル化した。以上のように示温材をマイクロカプセル化した温度検知材料を作製した。
 作製した温度検知材料を用いて温度検知インクを調製した。攪拌羽根を設けた容器に純水、樹脂として数平均分子量(Mn)10,000のポリビニルアルコールとポリ酢酸ビニルの共重合物(ポリビニルアルコールユニットの繰り返し数:ポリ酢酸ビニルユニットの繰り返し数≒36:64、水酸基価は285)、マイクロカプセルを投入し、約1時間混合することにより、温度検知インクを調製した。このインクをアクリル板の窪み4に注ぎ込み、透明のPET製のシールフィルを、インクを注いだアクリル板の上に貼ることで、温度インジケータを作製した。
 温度検知材料の示温材の平均粒子径は実施例2と同様の方法で評価した。温度インジケータの温度と時間の検知機能は実施例3と同様の方法で評価した。
 (比較例3)
 ロイコ染料として6’-[エチル(3-メチルブチル)アミノ-3’-メチル-2’-(フェニルアミノ)スピロ[イソベンゾフラン-1(3H),9’-(H)キサンテン]-3-オン(山田化学工業株式会社製S-205)を1質量部、顕色剤として東京化成工業株式会社製没食子酸オクチルを1質量部、消色剤として東京化成工業株式会社製ビタミンK4を100質量部用いた。これらの材料を、消色剤の融点以上である150℃で溶かして混合し、アクリル板の窪み4に注ぎ込み、自然冷却させた。図6のように透明のPET製のシールフィルムを、示温材を注いだアクリル板の上から貼ることで、インジケータを作製した。インジケータの温度と時間の検知機能は実施例3と同様の方法で評価した。
 実施例1~4、比較例1~3で作製した温度検知材料の、示温材の体積分率及び示温材の平均粒子径を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 温度と時間の検知機能の確認結果を図10~図12を用いて説明する。
 図10は、実施例1、2、比較例1、2に係る温度検知材料おける温度逸脱時間と色濃度を示す写真である。なお、実施例1、2、比較例1、2で用いた示温材は、図1及び2で説明した示温材Bのように、所定温度以下になると結晶化することにより顕色開始する材料である。実施例1、2に係る温度検知材料については、-10℃の環境に置くことにより、時間に対して色が連続的に変化する様子が確認できた。
 一方、比較例1、2に係る温度検知材料では、ある箇所で色が変わると、その色変化が周囲に進展し、急峻に色変化する様子が確認できた。また、色変化が終わった後に、消色剤の融点以上でもう一度色を初期化した後、再度観察すると、異なる箇所及び時間で色変化が始まることが確認できた。このことより、比較例1、2に係る温度検知材料では、色変化の度合いから経過時間を見積もることは困難である。比較例1に係る温度検知材料は示温材のみから構成されており分散構造を形成しないためであると考えられる。また、比較例2は、実施例1と同様の材料で作製されているが、分散媒であるマトリックス材料が実施例1より少ないために、分散構造を形成していないためである考えられる。
 図11は、実施例3、4、比較例3に係る温度検知材料における温度逸脱時間と色濃度を示す写真である。なお、実施例3、4、比較例3で用いた示温材は、図1及び2で説明した示温材Aのように、所定温度以上になると結晶化することにより顕色開始する材料である。
 実施例3、4に係る温度検知材料については、10℃の環境に置くことにより、時間に対して色が連続的に変化する様子が確認できた。
 一方、比較例3に係る温度検知材料では、ある箇所で色が変わると、その色変化が周囲に進展し、急峻に色変化する様子が確認できた。また、色変化が終わった後に、消色剤の融点以上でもう一度色を初期化した後、再度観察すると、異なる箇所及び時間で色変化が始まることが確認できた。このことより、比較例3に係る温度検知材料では、色変化の度合いから経過時間を見積もることは困難である。これは、比較例3に係る温度検知材料が示温材のみから構成されており、分散構造を形成していないためであると考えられる。
 以上の結果から、示温材が分散媒中に分散した構造を有する温度検知材料を用いることにより、所定温度以上又は以下において、時間に対する色変化が連続的となることが分かった。
 図12は実施例1~4、比較例1~3の温度検知材料の色濃度の時間依存性を示すグラフである。図12(a)は、実施例1、2、比較例1、2に係る温度検知材料の-10℃での色濃度の時間依存性を示すグラフである。なお、-10℃は、実施例1、2、比較例1、2に係る温度検知材料の顕色開始温度以下の温度である。
 実施例1、2、比較例1、2は時間経過ともに色濃度が変化していることが確認できる。実施例1の相分離構造を有する温度検知材料、および実施例2のマイクロカプセル化した温度検知材料では、色が時間に対して連続的に変化する様子が確認できた。また、実施例1および実施例2の温度検知材料を、顕色開始温度よりも高い温度である0℃に静置しても、色変化は全く見られないことが確認できた。このことより、実施例1および実施例2の温度検知材料は、所定温度以下となったことを検知できることが分かった。また、色変化が終わった後に、消色剤の融点の以上に加熱し、色を初期化した後、再度-10℃に静置して観察した結果、図12(a)のグラフと全く同じ変化を示すことが確認できた。このことより、実施例1および実施例2の温度検知材料は、色濃度から温度逸脱時間を推定することが可能である。たとえば、実施例1の温度検知材料の色濃度が95であった場合、図12(a)のグラフより、-10℃に20分曝されたことが推定可能である。
 一方、比較例1および比較例2の温度検知材料では、色がある時間において急峻に変化する様子が確認できた。また、色変化が終わった後に、消色剤の融点以上でもう一度色を初期化した後、再度-10℃に静置して観察した結果、異なる時間で色濃度が変化することが確認できた。これらのことから、比較例1および比較例2の温度検知材料では、色濃度から温度逸脱時間を推定することは困難である。
 図12(b)は、実施例3、4、比較例3に係る温度検知材料の10℃における色濃度の時間依存性を示すグラフである。なお、10℃は実施例3、4及び比較例3に係る温度検知材料の顕色開始温度以上の温度である。
 実施例3の相分離構造を有する温度検知材料、および実施例4のマイクロカプセル化した温度検知材料では、色が時間に対して連続的に変化する様子が確認できた。また、実施例3、4の温度検知材料を、顕色開始温度よりも低い温度である0℃に静置しても、色変化は全く見られないことが確認できた。このことより、実施例3、4の温度検知材料は、所定温度以上となったことを検知できることが分かった。また、色変化が終わった後に、消色剤の融点の以上に加熱し、色を初期化した後、再度10℃に静置して観察した結果、図12(b)のグラフと全く同じ変化を示すことが確認できた。このことより、実施例3、4の温度検知材料は、色濃度から温度逸脱時間を推定することが可能である。たとえば、実施例3の温度検知材料の色濃度が75であった場合、図12(b)のグラフより、10℃に50分晒されたことが推定可能である。
 一方、比較例3の温度インジケータでは、色がある時間において急峻に変化する様子が確認できた。また、色変化が終わった後に、消色剤の融点以上でもう一度色を初期化した後、再度10℃に静置して観察した結果、異なる時間で色濃度が変化することが確認できた。これらのことから、比較例3の温度検知材料では、色濃度から温度逸脱時間を推定することは困難である。
 以上より、本実施例に係る温度検知材料を用いることにより、逸脱温度下において、色濃度が時間に対して連続的に変化する温度検知材料、それを用いた温度逸脱情報及び温度逸脱時間推定が可能であることを確認できた。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1…温度検知材料、2…示温材(ロイコ染料、顕色剤、消色剤の組成物)、3…分散媒、4…凹部(窪み)、5…基材(支持体)、6…透明基材(保護層)、7…スペーサ、8…印字紙、9…断熱層、10…温度逸脱時間の推定システム、11…読取装置、12…入力装置、13…出力装置、14…通信装置、15…記憶装置、16…処理装置、20…管理装置。

Claims (14)

  1.  結晶化により色変化する示温材が分散媒に分散した構造を有する温度検知材料であって、
     前記示温材の平均粒子径が観察時の分解能以下であって、
     前記温度検知材料における前記示温材の体積分率が5%以上90%未満であることを特徴とする温度検知材料。
  2.  請求項1に記載の温度検知材料であって、
     前記示温材の平均粒子径は20μm以下であることを特徴とする温度検知材料。
  3.  請求項2に記載の温度検知材料であって、
     前記示温材がマイクロカプセルに内包された構造、又は前記示温材がマトリックス材料中に分散した相分離構造を有することを特徴とする温度検知材料。
  4.  請求項3に記載の温度検知材料であって、
     前記マトリックス材料は、パラフィンワックス、マイクロクリスタリンワックス、ポリオレフィン、ポリエチレン、ポリプロピレン、シクロオレフィン、ポリスチレン、テルペン樹脂、シリコーン樹脂、シリコーンオイルのいずれかであることを特徴とする温度検知材料。
  5.  請求項1乃至4のいずれか一項に記載の温度検知材料であって、
     前記示温材の平均粒子径が5μm以下であることを特徴とする温度検知材料。
  6.  請求項1乃至5のいずれか一項に記載の温度検知材料であって、
     前記温度検知材料における前記示温材の含有量が10体積%以上50体積%以下であることを特徴とする温度検知材料。
  7.  請求項1乃至6のいずれか一項に記載の温度検知材料であって、
     前記示温材は、昇温過程おいて所定温度で顕色を開始し、顕色した状態から融解させることにより消色する材料であることを特徴とする温度検知材料。
  8.  請求項7に記載の温度検知材料であって、
     前記温度検知材料は、前記所定温度以上で温度に依存して色変化速度が変化する材料であることを特徴とする温度検知材料。
  9.  請求項1乃至6のいずれか一項に記載の温度検知材料であって、
     前記示温材は、降温過程において所定温度で顕色を開始し、顕色した状態から加熱により融解させることで消色する材料であることを特徴とする温度検知材料。
  10.  請求項9に記載の温度検知材料であって、
     前記温度検知材料は、前記所定温度以下において温度に依存して色変化速度が変化する材料であることを特徴とする温度検知材料。
  11.  物品に添付された請求項1乃至9のいずれか一項に記載の温度検知材料の色情報を取得する読取装置と、
     前記温度検知材料の温度毎の時間と色濃度の関係を記憶する記憶装置と、
     前記記憶装置に記憶された前記温度検知材料の温度毎の時間と色濃度の関係と、前記読取装置により取得された色濃度情報と、から、前記所定温度以上又は以下となってから経過した時間を推定する処理装置と、を備えることを特徴とする温度逸脱時間の推定システム。
  12.  請求項11に記載の温度逸脱時間の推定システムであって、
     前記処理装置は、さらに複数の温度検知材料の色濃度を用いて、前記経過した時間を推定することを特徴とする温度逸脱時間の推定システム。
  13.  請求項11又は12に記載の温度逸脱時間の推定システムであって、
     前記処理装置は、さらに温度情報を用いて、前記経過した時間を推定することを特徴とする温度逸脱時間の推定システム。
  14.  請求項11乃至13のいずれか一項に記載の温度逸脱時間の推定システムであって、
     前記読取装置は、画像から色情報を算出し取得する装置、または対象物に投光された光の反射量若しくは吸収量から色情報を算出して取得する装置であることを特徴とする温度逸脱時間の推定システム。
PCT/JP2018/041114 2017-12-21 2018-11-06 温度検知材料、及びそれを用いた温度逸脱時間の推定システム WO2019123866A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18891263.8A EP3730911B1 (en) 2017-12-21 2018-11-06 Temperature sensing material, and temperature deviation time estimating system employing same
US16/955,516 US11635335B2 (en) 2017-12-21 2018-11-06 Temperature sensing material, and temperature deviation time estimating system employing same
CN201880081390.6A CN111542736B (zh) 2017-12-21 2018-11-06 温度检测材料和使用其的温度偏离时间的推定系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-244633 2017-12-21
JP2017244633A JP7136557B2 (ja) 2017-12-21 2017-12-21 温度検知材料、及びそれを用いた温度逸脱時間の推定システム

Publications (1)

Publication Number Publication Date
WO2019123866A1 true WO2019123866A1 (ja) 2019-06-27

Family

ID=66994635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041114 WO2019123866A1 (ja) 2017-12-21 2018-11-06 温度検知材料、及びそれを用いた温度逸脱時間の推定システム

Country Status (5)

Country Link
US (1) US11635335B2 (ja)
EP (1) EP3730911B1 (ja)
JP (1) JP7136557B2 (ja)
CN (1) CN111542736B (ja)
WO (1) WO2019123866A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016005078A1 (de) * 2016-04-27 2017-11-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur Temperaturüberwachung einer kryokonservierten biologischen Probe
DE102016005075A1 (de) 2016-04-27 2017-11-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur Temperaturüberwachung einer kryokonservierten biologischen Probe
DE102016005133A1 (de) 2016-04-27 2017-11-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur Temperaturüberwachung einer kryokonservierten biologischen Probe
DE102016005070A1 (de) 2016-04-27 2017-11-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur Temperaturüberwachung einer kryokonservierten biologischen Probe
JP7022516B2 (ja) * 2017-04-17 2022-02-18 株式会社日立産機システム 温度検知材料、それを用いた温度検知インク、温度インジケータ、および物品管理システム
JP7136557B2 (ja) * 2017-12-21 2022-09-13 株式会社日立製作所 温度検知材料、及びそれを用いた温度逸脱時間の推定システム
JP6854849B2 (ja) * 2019-06-19 2021-04-07 三菱電機株式会社 電流検出装置および電流検出装置の製造方法
JP7267140B2 (ja) * 2019-07-25 2023-05-01 株式会社 ゼンショーホールディングス 商品供給装置、商品供給システム、商品供給方法及び商品供給プログラム
KR102548914B1 (ko) * 2021-06-02 2023-06-28 주식회사 동성실리콘 온도에 따라 색이 변하는 자기 융착 실리콘 테이프 및 이의 제조방법
CN113554936A (zh) * 2021-07-26 2021-10-26 南通市福瑞达包装有限公司 一种热敏标签
CN114250024B (zh) * 2021-12-07 2022-07-19 湖南航天三丰科工有限公司 一种温感反光涂料及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091368A (ja) 1998-10-22 2001-04-06 Toshiba Tec Corp 温度管理部材及びこれを用いた温度管理方法
WO2017038292A1 (ja) * 2015-09-03 2017-03-09 株式会社日立製作所 温度履歴表示体
JP2017106005A (ja) 2015-12-04 2017-06-15 パイロットインキ株式会社 可逆熱変色性マイクロカプセル顔料
WO2017203851A1 (ja) * 2016-05-24 2017-11-30 株式会社日立製作所 温度履歴表示体及びそれを用いた物品の品質管理方法
WO2017203850A1 (ja) * 2016-05-24 2017-11-30 株式会社日立製作所 環境履歴表示物、データ読取処理装置、データ読取処理方法、物品の品質管理方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5663115A (en) 1994-03-01 1997-09-02 Kabushiki Kaisha Toshiba Thermal recording medium and recording method
JP3176018B2 (ja) 1994-03-01 2001-06-11 株式会社東芝 感熱記録媒体及び記録方法
JP2000131152A (ja) 1998-10-22 2000-05-12 Toshiba Tec Corp 温度管理方法及び温度管理装置
JP2001041830A (ja) 1999-02-05 2001-02-16 Toshiba Tec Corp 示温材料および温度管理部材
EP1713644A1 (en) * 2004-02-09 2006-10-25 Sun Chemical Corporation Reversible thermochromic systems
US7302846B2 (en) * 2004-03-12 2007-12-04 Hadala Anthony J Temperature-sensing device for determining the level of a fluid
CN101285721A (zh) * 2008-05-16 2008-10-15 蔡清海 变色油墨附着于物件表面的温度计
JP5595652B2 (ja) 2008-11-25 2014-09-24 株式会社サクラクレパス 熱変色性組成物および熱変色性マイクロカプセル
JP5366044B2 (ja) * 2008-12-05 2013-12-11 株式会社松井色素化学工業所 可逆感温変色性ヒステリシス組成物
WO2010068279A1 (en) 2008-12-11 2010-06-17 Landec Corporation Thermochromic indicator
JP6383694B2 (ja) * 2015-03-30 2018-08-29 株式会社日立産機システム 温度履歴表示体及びその製造方法
EP3109286B1 (en) 2015-06-26 2019-07-24 Dong-A Pencil Co., Ltd. Thermochromic micro particles and thermochromic ink composition, writing apparatus and smart window using the same
JP7115987B2 (ja) * 2016-12-14 2022-08-09 株式会社日立産機システム 温度検知材料、それを用いた温度検知インク、温度インジケータ、温度検知材料の製造方法、及び物品管理システム
JP7136557B2 (ja) * 2017-12-21 2022-09-13 株式会社日立製作所 温度検知材料、及びそれを用いた温度逸脱時間の推定システム
JP7022597B2 (ja) * 2018-01-22 2022-02-18 株式会社日立製作所 温度検知インク、温度検知インクの初期化方法、温度インジケータ、および物品管理システム
JP6866318B2 (ja) * 2018-01-22 2021-04-28 株式会社日立製作所 温度検知ラベル及びそれを用いた物品管理システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091368A (ja) 1998-10-22 2001-04-06 Toshiba Tec Corp 温度管理部材及びこれを用いた温度管理方法
WO2017038292A1 (ja) * 2015-09-03 2017-03-09 株式会社日立製作所 温度履歴表示体
JP2017106005A (ja) 2015-12-04 2017-06-15 パイロットインキ株式会社 可逆熱変色性マイクロカプセル顔料
WO2017203851A1 (ja) * 2016-05-24 2017-11-30 株式会社日立製作所 温度履歴表示体及びそれを用いた物品の品質管理方法
WO2017203850A1 (ja) * 2016-05-24 2017-11-30 株式会社日立製作所 環境履歴表示物、データ読取処理装置、データ読取処理方法、物品の品質管理方法

Also Published As

Publication number Publication date
JP7136557B2 (ja) 2022-09-13
CN111542736A (zh) 2020-08-14
US20210010873A1 (en) 2021-01-14
JP2019113323A (ja) 2019-07-11
CN111542736B (zh) 2023-08-29
EP3730911A1 (en) 2020-10-28
US11635335B2 (en) 2023-04-25
EP3730911B1 (en) 2024-05-01
EP3730911A4 (en) 2021-12-22

Similar Documents

Publication Publication Date Title
WO2019123866A1 (ja) 温度検知材料、及びそれを用いた温度逸脱時間の推定システム
WO2018193781A1 (ja) 温度検知材料、それを用いた温度検知インク、温度インジケータ、および物品管理システム
JP7022597B2 (ja) 温度検知インク、温度検知インクの初期化方法、温度インジケータ、および物品管理システム
JP7115987B2 (ja) 温度検知材料、それを用いた温度検知インク、温度インジケータ、温度検知材料の製造方法、及び物品管理システム
CN111433577B (zh) 温度检测标签和使用该温度检测标签的物品管理装置
JP7174590B2 (ja) 温度検知材料、それを用いた温度検知インク、温度インジケータ、及び物品管理システム
JP2020079761A (ja) 温度インジケータ及びそれを用いた物品管理システム
JP7220528B2 (ja) 温度検知インク
JP2020098169A (ja) 熱処理装置、熱処理方法及びそれを用いた物品管理システム
WO2023079780A1 (ja) 温度インジケータ製造システムおよび温度インジケータ製造方法
JP2021050276A (ja) インク、該インクの製造方法、および該インクを用いた温度インジケータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018891263

Country of ref document: EP

Effective date: 20200721