WO2019117217A1 - ゴム組成物およびタイヤ - Google Patents

ゴム組成物およびタイヤ Download PDF

Info

Publication number
WO2019117217A1
WO2019117217A1 PCT/JP2018/045764 JP2018045764W WO2019117217A1 WO 2019117217 A1 WO2019117217 A1 WO 2019117217A1 JP 2018045764 W JP2018045764 W JP 2018045764W WO 2019117217 A1 WO2019117217 A1 WO 2019117217A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
styrene
rubber composition
block copolymer
rubber
Prior art date
Application number
PCT/JP2018/045764
Other languages
English (en)
French (fr)
Inventor
崇浩 齊藤
光彩 青木
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to JP2019559183A priority Critical patent/JPWO2019117217A1/ja
Publication of WO2019117217A1 publication Critical patent/WO2019117217A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L57/00Compositions of unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C08L57/02Copolymers of mineral oil hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to rubber compositions and tires.
  • an object of this invention is to provide the rubber composition which made dry handling property, WET performance, and low loss property highly balanced.
  • Another object of the present invention is to provide a tire having a high level of dry handling, wet performance and low loss.
  • the rubber composition according to the present invention comprises a rubber component, a styrene-alkylene block copolymer and a softener, and the total styrene content of the styrene-alkylene block copolymer is the total of the styrene-alkylene block copolymer. It is a rubber composition which is 25 mass% or more with respect to a mass, and the compounding quantity of the said softener is 10 mass parts or more with respect to 100 mass parts of said rubber components. This makes it possible to highly balance dry handling, wet performance, and low loss.
  • the tire according to the present invention is a tire using the rubber composition described in any of the above. This makes it possible to highly balance dry handling, wet performance, and low loss.
  • the rubber composition which made dry handling property, WET performance, and low loss property highly balanced can be provided. According to the present invention, it is possible to provide a tire having a high level of dry handling performance, wet performance, and low loss performance.
  • the rubber composition according to the present invention comprises a rubber component, a styrene-alkylene block copolymer and a softener, and the total styrene content of the styrene-alkylene block copolymer is the total of the styrene-alkylene block copolymer. It is a rubber composition which is 25 mass% or more with respect to a mass, and the compounding quantity of the said softener is 10 mass parts or more with respect to 100 mass parts of said rubber components. This makes it possible to highly balance dry handling, wet performance, and low loss.
  • the styrene block in the polymer acts like a filler in the vulcanized product of the rubber composition, while the alkylene block is present between the styrene blocks, and it is speculated that this is due to the reduction of rubbing between the styrene blocks. Be done.
  • ⁇ Rubber component> It does not specifically limit as a rubber component, The rubber component used in a well-known rubber composition can be used.
  • the rubber component include natural rubber (NR), styrene butadiene rubber (SBR), butadiene rubber (BR), acrylonitrile butadiene rubber, chloroprene rubber, polyisoprene rubber, modified products thereof and the like.
  • the rubber component may be used alone or in combination of two or more.
  • the rubber composition according to the present invention preferably contains natural rubber as a rubber component. This makes it possible to balance dry handling, wet performance, low loss and cold resistance.
  • the rubber composition according to the present invention preferably contains, as a rubber component, one or more selected from the group consisting of unmodified SBR and modified SBR.
  • the rubber composition according to the present invention preferably contains a modified conjugated diene-based polymer such as modified SBR as the rubber component.
  • modified conjugated diene-based polymer examples include modified (co) polymers as the polymer component P2 of WO 2017/077712 and modified SBR such as modified polymer C and modified polymer D described in the Examples. Etc.
  • the styrene-alkylene block copolymer is a copolymer having a block derived from a styrenic monomer and an alkylene block.
  • the styrene / alkylene block copolymer in the rubber composition according to the present invention has a total styrene content of 25% by mass or more based on the total mass of the styrene / alkylene block copolymer. is there.
  • the styrene / alkylene block copolymer may be used alone or in combination of two or more.
  • the total styrene content (total content of blocks derived from styrenic monomers) of the styrene / alkylene block copolymer may be appropriately adjusted at 25% by mass or more, for example, 30% by mass or more, 35% by mass or more or 50% by mass % Or more and 60% by mass or less.
  • the total styrene content is preferably 50% by mass or more based on the total mass of the styrene-alkylene block copolymer.
  • the styrene content of the styrene-alkylene block copolymer and the content of the alkylene unit described later are determined by the integral ratio of 1 H-NMR.
  • the styrene block of the styrene-alkylene block copolymer has units derived from a styrene-based monomer (polymerized a styrene-based monomer).
  • styrenic monomers include styrene, ⁇ -methylstyrene, p-methylstyrene, vinyl toluene and the like. Among these, styrene is preferable as the styrene-based monomer.
  • the alkylene block of the styrene-alkylene block copolymer has alkylene (divalent saturated hydrocarbon group) units.
  • alkylene unit for example, an alkylene group having 1 to 20 carbon atoms can be mentioned.
  • the alkylene unit may be a linear structure, a branched structure, or a combination thereof.
  • Examples of the alkylene unit having a linear structure include, for example,-(CH 2 -CH 2 ) -unit (ethylene unit),-(CH 2 -CH 2 -CH 2 -CH 2 ) -unit (butylene unit), etc. .
  • alkylene unit having a branched structure examples include — (CH 2 —CH (C 2 H 5 )) — unit (butylene unit) and the like. Among them, it is preferable to have an — (CH 2 —CH (C 2 H 5 )) — unit as an alkylene unit.
  • the total content of the alkylene units may be appropriately adjusted, and is, for example, 40 to 75% by mass with respect to the total mass of the styrene-alkylene block copolymer.
  • the rubber composition according to the present invention is characterized in that the alkylene block of the styrene-alkylene block copolymer is-(CH 2 -CH (C 2 H 5 ))-unit (A) and-(CH 2 -CH 2 )- It has a unit (B), and the total content of the units (A) is preferably 40% by mass or more, more preferably 50% by mass or more based on the total mass of all the alkylene blocks (A units + B units) And 65% by mass or more. This makes it possible to achieve both wet performance and low loss while having excellent dry handling properties.
  • the styrene / alkylene block copolymer is styrene / ethylene butylene / styrene block copolymer (SEBS), styrene / ethylene propylene / styrene block copolymer (SEPS) and styrene -One or more selected from the group consisting of ethylene-ethylene-propylene-styrene block copolymers (SEEPS).
  • SEBS styrene / ethylene butylene / styrene block copolymer
  • SEPS styrene / ethylene propylene / styrene block copolymer
  • SEEPS styrene -One or more selected from the group consisting of ethylene-ethylene-propylene-styrene block copolymers
  • the styrene / alkylene block copolymer is preferably a styrene / ethylene butylene / styrene block copolymer.
  • the ethylene butylene block of this styrene ethylene butylene styrene block copolymer is a block which has an ethylene unit and a butylene unit which were mentioned above.
  • the styrene-alkylene block copolymer may contain other structural units other than the above-mentioned styrene block and alkylene block.
  • the preparation method of a styrene alkylene block copolymer is not specifically limited, A well-known method can be used.
  • a precursor copolymer is obtained by copolymerizing a styrene-based monomer such as styrene and a conjugated diene compound such as 1,3-butadiene or an olefin such as butene, and hydrogenating this precursor copolymer.
  • Styrene-alkylene block copolymers can be obtained.
  • the styrene / alkylene block copolymer may be a commercially available product.
  • Examples of such commercial products include JSR DYNARON (registered trademark) 8903P, 9901P, etc. manufactured by JSR Corporation.
  • the blending amount of the styrene-alkylene block copolymer in the rubber composition is not particularly limited, and may be appropriately adjusted.
  • the blending amount of the styrene-alkylene block copolymer is 4 to 30 parts by mass with respect to 100 parts by mass of the rubber component.
  • the blending amount of styrene / alkylene block copolymer is 8.5 to 30 parts by mass with respect to 100 parts by mass of the rubber component. Is preferred.
  • the rubber composition according to the present invention contains 10 parts by mass or more of a softener with respect to 100 parts by mass of the rubber component.
  • the softener include oil and thermoplastic resin.
  • a softening agent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the softener may be one or more selected from the group consisting of oil and thermoplastic resin.
  • the blending amount of the softener may be 10 parts by mass or more, for example, 50 parts by mass or less with respect to 100 parts by mass of the rubber component.
  • the blending amount of the softener is preferably 15 to 30 parts by mass with respect to 100 parts by mass of the rubber component.
  • oils include aromatic oils, paraffin oils, naphthenic oils, petroleum extracts such as treated distillate aromatic extracts (TDAE) oils, SRAE oils, etc., plant oils such as palm oil, castor oil, cottonseed oil, soybean oil, etc.
  • oils organic acid ester-based oils such as octyl oleate, 2-ethylhexyl oleate, bis [2-ethylhexyl] phthalate, and bis [2-ethylhexyl] sebacate.
  • the oil of the present invention includes both an oil as an oil extending component of a rubber component and an oil as a compounding agent.
  • thermoplastic resin for example, C 5 resins, C 5 ⁇ C 9 resins, C 9 resins, terpene resins, terpene - aromatics-based resin, rosin resin, dicyclopentadiene resin, alkylphenol resin And those obtained by partially hydrogenating these.
  • the blending amount of the thermoplastic resin is not particularly limited and can be appropriately adjusted according to the purpose. For example, it is 5 to 50 parts by mass with respect to 100 parts by mass of the rubber component.
  • the C 5 -based resin refers to a C 5 -based synthetic petroleum resin, and means a resin obtained by polymerizing a C 5 fraction with a Friedel-Crafts-type catalyst such as AlCl 3 or BF 3 .
  • a Friedel-Crafts-type catalyst such as AlCl 3 or BF 3 .
  • copolymers containing isoprene, cyclopentadiene, 1,3-pentadiene and 1-pentene as main components
  • copolymers of 2-pentene and dicyclopentadiene and 1,3-pentadiene as main components. Polymers and the like.
  • the C 5 -C 9 resin refers to a C 5 -C 9 synthetic petroleum resin, which is obtained by polymerizing a C 5 -C 11 fraction with a Friedel-Crafts-type catalyst such as AlCl 3 or BF 3 Means resin.
  • a Friedel-Crafts-type catalyst such as AlCl 3 or BF 3 Means resin.
  • copolymers having styrene, vinyl toluene, ⁇ -methylstyrene, indene or the like as a main component can be mentioned.
  • a C 5 to C 9 based resin containing few components of C 9 or more is preferable because of its excellent compatibility with the rubber component.
  • a resin in which the proportion of the C 9 or more component in the C 5 to C 9 resin is less than 50% by mass is preferable, and a resin in which the proportion is 40% by mass or less is more preferable.
  • those partially hydrogenated for example, Alcon (registered trademark) of Arakawa Chemical Industries, Ltd.) and the like can also be mentioned.
  • -C 9 series resin- C 9 resins refers to C 9 based synthetic petroleum resins, it means a resin obtained a C 9 fraction was polymerized using a Friedel-Crafts catalyst such as AlCl 3 or BF 3.
  • a Friedel-Crafts catalyst such as AlCl 3 or BF 3.
  • copolymers having as main components indene, methyl indene, ⁇ -methyl styrene, vinyl toluene and the like can be mentioned.
  • those partially hydrogenated for example, Alcon (registered trademark) of Arakawa Chemical Industries, Ltd.) and the like can also be mentioned.
  • the terpene resin can be obtained by blending turpentine oil obtained at the same time as obtaining rosin from pine tree trees or a polymerization component separated therefrom, and polymerizing using a Friedel-Crafts-type catalyst.
  • turpentine oil obtained at the same time as obtaining rosin from pine tree trees or a polymerization component separated therefrom, and polymerizing using a Friedel-Crafts-type catalyst.
  • ⁇ -pinene resin, ⁇ -pinene resin and the like can be mentioned.
  • the terpene-aromatic resin can be obtained by reacting terpenes with various phenols using a Friedel-Crafts-type catalyst, or by further condensing with formalin.
  • terpene-phenol resin and the like can be mentioned.
  • resins in which the phenol component in the terpene-phenol resin is less than 50% by mass are preferable, and resins having 40% by mass or less are more preferable.
  • the terpene as a raw material is not particularly limited and may be appropriately selected according to the purpose.
  • Examples thereof include monoterpene hydrocarbons such as ⁇ -pinene and limonene. Among these, those containing ⁇ -pinene are preferable, and ⁇ -pinene is more preferable.
  • the rosin resin is not particularly limited and may be appropriately selected according to the purpose.
  • natural resin rosins such as gum rosin, tall oil resin and wood rosin contained in raw pine jani and tall oil; modified rosin; modified rosin And rosin derivatives.
  • the modified rosin derivative is, for example, polymerized rosin, partially hydrogenated rosin thereof, glycerin ester rosin, partially hydrogenated rosin or fully hydrogenated rosin thereof, pentaerythritol ester rosin, partially hydrogenated rosin or fully hydrogenated rosin Etc.
  • the dicyclopentadiene resin can be obtained by polymerizing dicyclopentadiene using a Friedel-Crafts-type catalyst such as AlCl 3 or BF 3 .
  • a Friedel-Crafts-type catalyst such as AlCl 3 or BF 3 .
  • Specific examples of commercially available products of dicyclopentadiene resin include Quinton 1920 (manufactured by Nippon Zeon Co., Ltd.), Quinton 1105 (manufactured by Nippon Zeon Co., Ltd.), and Marcarets M-890A (manufactured by Maruzen Petrochemical Co., Ltd.).
  • alkylphenol-type resin there is no restriction
  • alkylphenol- acetylene resin such as p-tert- butylphenol- acetylene resin, the alkyl phenol formaldehyde resin of low polymerization degree etc. are mentioned Be
  • the rubber composition according to the present invention comprises a filler, a vulcanization accelerator, a silane coupling agent, a vulcanizing agent and a glycerin fatty acid ester in addition to the rubber component, the styrene / alkylene block copolymer and the softener. It may further include one or more selected.
  • ⁇ Filler> As the filler, for example, silica, carbon black, aluminum oxide, clay, alumina, talc, mica, kaolin, glass balloon, glass beads, calcium carbonate, magnesium carbonate, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, titanium oxide, Examples include potassium titanate and barium sulfate.
  • the fillers may be used alone or in combination of two or more.
  • the filler preferably contains silica.
  • the silica is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), calcium silicate and aluminum silicate.
  • BET specific surface area of silica is not particularly limited, for example, a 40 ⁇ 350m 2 / g or 80 ⁇ 300m 2 / g, preferably from 150 ⁇ 280m 2 / g, more preferably 190 ⁇ 250m 2 / g.
  • the amount of silica in the filler is not particularly limited and can be appropriately adjusted according to the purpose, but is preferably 50 to 100% by mass, and more preferably 75 to 100% by mass with respect to the total mass of the filler % Is more preferable, 85 to 100% by mass is particularly preferable, and 90% by mass or more and less than 100% by mass is more preferable.
  • the carbon black is not particularly limited and includes, for example, high, medium or low structure SAF, ISAF, ISAF-HS, IISAF, N339, HAF, FEF, GPF, SRF grade, etc. carbon black.
  • the compounding amount of the filler is not particularly limited and may be appropriately adjusted. For example, it is 20 to 120 parts by mass with respect to 100 parts by mass of the rubber component.
  • the compounding amount of the filler is preferably 50 to 100 parts by mass with respect to 100 parts by mass of the rubber component from the viewpoint of low loss property and wet performance.
  • the rubber composition according to the present invention further comprises a filler,
  • the filler comprises silica and carbon black
  • the compounding amount of the filler is 50 parts by mass or more with respect to 100 parts by mass of the rubber component, It is preferable that the amount of silica in the filler is 75% by mass or more based on the total mass of the filler.
  • the rubber composition according to the present invention preferably contains a vulcanization accelerator in addition to the rubber component and the styrene-alkylene block copolymer.
  • the vulcanization accelerator is, for example, at least one selected from guanidines, sulfenamides, thiazoles, thiourea and diethylthiourea. Each of these may be used alone or in combination of two or more.
  • the compounding amount of the vulcanization accelerator is not particularly limited and may be appropriately adjusted according to the purpose.
  • it is 0.1 to 20 parts by mass with respect to 100 parts by mass of the rubber component.
  • the effect of the vulcanization is easily obtained when the amount is 0.1 parts by mass or more, and the excessive progress of the vulcanization can be suppressed when the amount is 20 parts by mass or less.
  • guanidines are not particularly limited and can be appropriately selected according to the purpose.
  • 1,3-diphenylguanidine, 1,3-di-o-tolyl guanidine and 1-o-tolylbiguanide are preferable in view of high reactivity, and 1,3-diphenyl guanidine is more preferable.
  • sulfenamides are not particularly limited and may be appropriately selected depending on the purpose.
  • the thiazoles are not particularly limited and may be appropriately selected depending on the purpose.
  • -Thiourea- Thiourea is a compound represented by NH 2 CSNH 2 .
  • Diethylthiourea is a compound represented by C 2 H 5 NHCSNHC 2 H 5 .
  • silane coupling agent By using a silane coupling agent, it is possible to obtain a tire which is further excellent in workability at the time of rubber processing and which is more excellent in abrasion resistance.
  • the silane coupling agent may be used alone or in combination of two or more.
  • the silane coupling agent is not particularly limited and may be appropriately selected depending on the intended purpose, for example, formula (I) :( R 1 O) 3-p (R 2) p Si-R 3 -S a A compound represented by the formula (II): (R 4 O) 3-s (R 5 ) s Si-R 6 -S k -R 7 -R 3 -Si (OR 1 ) 3-r (R 2 ) r And compounds represented by -S k -R 6 -Si (OR 4 ) 3 -t (R 5 ) t .
  • R 1 is each independently a linear, cyclic or branched alkyl group having 1 to 8 carbon atoms, a linear or branched alkoxyalkyl group having 2 to 8 carbon atoms, or a hydrogen atom
  • 2 is each independently a linear, cyclic or branched alkyl group having 1 to 8 carbon atoms
  • each R 3 is independently a linear or branched alkylene group having 1 to 8 carbon atoms.
  • a is 2 to 6 as an average value
  • p and r may be the same or different and each is 0 to 3 as an average value. However, both p and r can not be 3.
  • R 4 is each independently a linear, cyclic or branched alkyl group having 1 to 8 carbon atoms, a linear or branched alkoxyalkyl group having 2 to 8 carbon atoms, or a hydrogen atom
  • 5 is each independently a linear, cyclic or branched alkyl group having 1 to 8 carbon atoms
  • each R 6 is independently a linear or branched alkylene group having 1 to 8 carbon atoms.
  • R 7 is the formula (-S-R 8 -S -) , (- R 9 -S m1 -R 10 -) and (-R 11 -S m2 -R 12 -S m3 -R 13 -) either Group (wherein R 8 to R 13 are each a divalent hydrocarbon group having 1 to 20 carbon atoms, a divalent aromatic group, or a divalent organic group containing a hetero element other than sulfur and oxygen, , M1, m2 and m3 may be the same or different and each is an average value of 1 or more and 4 or less), k is independently 6 to 6 as an average value, and s and t are each individually The average value is 0 to 3. However, both s and t can not be 3.
  • silane coupling agent represented by the formula (I) for example, bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (3-methyldimethoxysilylpropyl) tetra Sulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (3-triethoxysilylpropyl) disulfide, bis (3-trimethoxysilylpropyl) disulfide, bis (3-methyldimethoxysilylpropyl) disulfide, bis (2 -Triethoxysilylethyl) disulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-trimethoxysilylpropyl) trisulfide, bis (3-methyldimethoxysilylpropyl) trisulfide, bis 2-triethoxy
  • silane coupling agent for example, Si363 (ethoxy (3-mercaptopropyl) bis (3,6,9,12,15-pentaoxaoctacosan-1-yloxy) silane manufactured by Evonik Degussa, [C 13 H], 27 O (CH 2 CH 2 O) 5 ] 2 (CH 3 CH 2 O) Si (CH 2 ) 3 SH) and the like.
  • the amount is preferably 2 to 20 parts by mass, and more preferably 4 to 12 parts by mass, with respect to 100 parts by mass of the rubber component.
  • the ratio of the compounding amount (mass) of the silane coupling agent to the compounding amount (mass) of silica is not particularly limited, and may be appropriately adjusted according to the purpose. However, 0.01 to 0.20 is preferable, 0.03 to 0.20 is more preferable, and 0.04 to 0.10 is particularly preferable. If this ratio is 0.01 or more, the effect of reducing the heat buildup of the rubber composition can be easily obtained, and if it is 0.20 or less, the production cost of the rubber composition is reduced to improve the economic efficiency. be able to.
  • the vulcanizing agent is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include sulfur.
  • the vulcanizing agent may be used alone or in combination of two or more.
  • the compounding amount of the vulcanizing agent is not particularly limited and can be appropriately adjusted according to the purpose.
  • it is 0.1 to 2.0 parts by mass with respect to 100 parts by mass of the rubber component.
  • the amount is more preferably 0 to 2.0 parts by mass, and particularly preferably 1.2 to 1.8 parts by mass.
  • the rubber composition of the present invention contains silica as a filler, it further comprises a glycerin fatty acid ester, and the glycerin fatty acid ester is an ester of glycerin and two or more fatty acids, and the glycerin fatty acid ester is Glycerin characterized in that the fatty acid component most abundant in the total fatty acids is 10 to 90% by mass, and the monoester component is further contained 50 to 100% by mass in the glycerin fatty acid ester among two or more kinds of fatty acids constituting It is preferred to include a fatty acid ester composition.
  • the glycerin fatty acid ester composition is contained, the processability of the rubber composition is improved, and by applying the rubber composition to a tire, the low loss property of the tire can be further improved.
  • the glycerin fatty acid ester is an ester of glycerin and two or more fatty acids.
  • glycerine fatty acid ester is a compound which ester bond forms with at least one of three OH groups of glycerol, and the COOH group of a fatty acid.
  • the glycerol fatty acid ester is a glycerin fatty acid diester formed by esterifying one glycerol and two fatty acid molecules ( It may be a diester component) or a glycerol fatty acid triester (triester component) formed by esterifying one molecule of glycerol and three molecules of fatty acid, or a mixture thereof, but a glycerol fatty acid monoester is preferable.
  • glycerol fatty acid ester is a mixture of glycerol fatty acid monoester, glycerol fatty acid diester, and glycerol fatty acid triester
  • the content rate of each ester can be measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • two fatty acids which comprise glycerol fatty-acid diester, and three fatty acids which comprise glycerol fatty-acid triester may be same or different.
  • the glycerin fatty acid ester is an ester of glycerin and two or more fatty acids, and may be a glycerin fatty acid diester or a glycerin fatty acid triester formed by esterifying two or more fatty acids with one glycerin molecule, but one glycerin A mixture of a glycerol fatty acid monoester formed by esterifying one fatty acid with one molecule of the two or more kinds of fatty acids and a glycerol fatty acid monoester formed by esterifying one glycerol and one molecule of another fatty acid Is preferred.
  • the two or more types of fatty acids that is, the constituent fatty acids of glycerin fatty acid esters
  • the two or more types of fatty acids have 8 to 22 carbon atoms from the viewpoint of processability, low loss property, and destruction characteristics of rubber compositions.
  • Certain fatty acids are preferable, fatty acids having 12 to 18 carbon atoms are more preferable, fatty acids having 14 to 18 carbon atoms are more preferable, and fatty acids having 16 carbon atoms and fatty acids having 18 carbon atoms are more preferable.
  • one of the most abundant fatty acid component and the second most abundant fatty acid component is a C16 fatty acid and the other is a C18 fatty acid More preferable.
  • the mass ratio of the fatty acid having 16 carbon atoms to the fatty acid having 18 carbon atoms (carbon number 16)
  • the range of 90/10 to 10/90 is preferable, the range of 80/20 to 20/80 is more preferable, and the range of 75/25 to 25/75 is even more preferable. If the mass ratio of the fatty acid having 16 carbon atoms to the fatty acid having 18 carbon atoms is within this range, the processability, the low loss property, and the fracture characteristics of the rubber composition can be further improved.
  • the constituent fatty acid of the glycerin fatty acid ester may be linear or branched, but is preferably linear, and may be saturated fatty acid or unsaturated fatty acid, but is preferably saturated fatty acid.
  • caprylic acid, pelargonic acid, capric acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, isostearic acid, oleic acid, linoleic acid, linolenic acid, aralgic acid as the constituent fatty acid of the glycerin fatty acid ester Arachidonic acid, behenic acid and the like can be mentioned.
  • lauric acid, myristic acid, palmitic acid and stearic acid are preferable, and palmitic acid and stearic acid are more preferable.
  • glycerin fatty acid ester specifically, lauric acid monoglyceride, myristic acid monoglyceride, palmitic acid monoglyceride and stearic acid monoglyceride are preferable, and palmitic acid monoglyceride and stearic acid monoglyceride are more preferable.
  • the blending amount of the glycerin fatty acid ester composition is preferably 0.5 parts by mass or more, more preferably 100 parts by mass of the silica, from the viewpoint of processability of the rubber composition. 1 part by mass or more, still more preferably 1.5 parts by mass or more, and from the viewpoint of the fracture characteristics of the rubber composition, preferably 20 parts by mass or less, more preferably 10 parts by mass with respect to 100 parts by mass of the silica. It is at most parts by weight, more preferably at most 5 parts by weight.
  • the rubber composition according to the present invention does not deviate from the purport of the present invention, in addition to the above-mentioned components, components usually used in the rubber industry, such as anti-aging agents, vulcanization acceleration assistants and organic acid compounds. It can be appropriately selected and contained in the range.
  • the method for preparing the rubber composition according to the present invention is not particularly limited, and components such as a rubber component, a styrene / alkylene block copolymer, a softener, and a filler may be kneaded using a known kneading method.
  • the tire according to the present invention is a tire using the rubber composition described in any of the above. This makes it possible to highly balance dry handling, wet performance, and low loss.
  • part of a rubber composition is not specifically limited, It is preferable to use for the tread rubber of a tire.
  • C- 5 resin Exxon Mobil Chemical Co., Ltd., trade name ECR 1102 C 5 ⁇ C 9 resin (in the table, referred to as the C5 / C9 resin): Exxon Mobil Chemical Co., Ltd. under the trade name: ECR213 C 9 series resin: Shin Nippon Petrochemical Co., Ltd., trade name Neopolymer 140 Oil (in the table, described as TDAE oil): Exxon Mobil Tyrex 20 Oil (in the table, described as SRAE oil): NC-140 manufactured by JX Nippon Oil & Energy Corporation Wax: Micro crystalline wax, manufactured by Nippon Seiwa Co., Ltd.
  • Anti-aging agent N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, trade name Nocrac 6C manufactured by Ouchi Shinko Chemical Co., Ltd.
  • Anti-aging agent (TMDQ) 2,2,4-trimethyl-1,2-dihydroquinoline polymer, trade name Noclac 224 manufactured by Ouchi Shinko Chemical Co., Ltd.
  • Vulcanization accelerator di-2-benzothiazolyl disulfide, trade name Noccellar DM manufactured by Ouchi Shinko Chemical Co., Ltd.
  • Vulcanization accelerator (CBS) N-cyclohexyl-2-benzothiazolesulfenamide, trade name of Sanshin Kagaku Kogyo Co., Ltd., trade name Sunseller CM-G
  • Rubber compositions are prepared according to the formulations shown in Tables 1-2.
  • the rubber composition is used for tread rubber, and a radial tire for passenger car of size: 195 / 65R15 is produced according to a conventional method.
  • ⁇ Low loss property> The loss tangent (tan ⁇ ) of a vulcanized rubber obtained by vulcanizing each rubber composition at 145 ° C. for 33 minutes is measured with a spectrometer manufactured by Ueshima Seisakusho, temperature 50 ° C., initial strain 2%, dynamic strain 1%, frequency It predicts under the condition of 52 Hz.
  • the tan ⁇ of Comparative Example 1 is displayed as an index of 100. The results are shown in Table 2. The smaller the index value, the better the low loss.
  • the dry handling property, wet performance, and low loss property are obtained by the rubber composition containing 25% by mass or more of the total styrene content of the styrene / alkylene block copolymer and containing a predetermined amount of the softener. Can be highly balanced.
  • the rubber composition which made dry handling property, WET performance, and low loss property highly balanced can be provided. According to the present invention, it is possible to provide a tire having a high level of dry handling performance, wet performance, and low loss performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

ドライハンドリング性と、WET性能と、低ロス性とを高度にバランスさせたゴム組成物を提供すること。ゴム成分とスチレン・アルキレンブロック共重合体と軟化剤とを含み、前記スチレン・アルキレンブロック共重合体の合計スチレン含量が、前記スチレン・アルキレンブロック共重合体の総質量に対して、25質量%以上であり、前記軟化剤の配合量が、前記ゴム成分100質量部に対して、10質量部以上である、ゴム組成物。

Description

ゴム組成物およびタイヤ 関連出願の相互参照
 本願は、2017年12月14日に出願の日本国特許出願第2017-240080号の優先権の利益を主張するものであり、その内容は、参照により本願に組み込まれる。
 本発明は、ゴム組成物およびタイヤに関する。
 近年、環境問題への関心の高まりに伴う世界的な二酸化炭素排出規制の動きに関連して、自動車の低燃費化に対する要求が強まりつつある。このような要求に対応するため、タイヤ性能についても転がり抵抗の低減が求められている。従来、タイヤの転がり抵抗を低減させる手法として、タイヤ構造を最適化する手法も検討されてきたが、タイヤに適用するゴム組成物について、tanδが低く(以下、「低ロス性」という)、低発熱性の優れたものを用いることも、現在一般的な手法として行われている。
 また、従来、スチレンブタジエンゴムとシリカを使いこなすことで、WET性能と低ロス性を両立したタイヤが主流であった。
国際公開第2015/079703号 国際公開第2017/077712号
 近年、天然ゴムをベースに、熱可塑性樹脂や軟化剤を従来よりも多量に配合することで、更に高いWET性能と低ロス性を発揮できることが分かった(例えば、特許文献1および2参照)。しかし、その場合、耐摩耗性や乾燥路面での操縦安定性(ドライハンドリング性)に改善の余地があった。
 そこで、本発明は、ドライハンドリング性と、WET性能と、低ロス性とを高度にバランスさせたゴム組成物を提供することを目的とする。また、本発明は、ドライハンドリング性と、WET性能と、低ロス性とを高度にバランスさせたタイヤを提供することを目的とする。
 本発明に係るゴム組成物は、ゴム成分とスチレン・アルキレンブロック共重合体と軟化剤とを含み、前記スチレン・アルキレンブロック共重合体の合計スチレン含量が、前記スチレン・アルキレンブロック共重合体の総質量に対して、25質量%以上であり、前記軟化剤の配合量が、前記ゴム成分100質量部に対して、10質量部以上である、ゴム組成物である。
 これにより、ドライハンドリング性と、WET性能と、低ロス性とを高度にバランスさせることができる。
 本発明に係るタイヤは、上記いずれかに記載のゴム組成物を用いた、タイヤである。
 これにより、ドライハンドリング性と、WET性能と、低ロス性とを高度にバランスさせることができる。
 本発明によれば、ドライハンドリング性と、WET性能と、低ロス性とを高度にバランスさせたゴム組成物を提供することができる。本発明によれば、ドライハンドリング性と、WET性能と、低ロス性とを高度にバランスさせたタイヤを提供することができる。
 以下、本発明の実施形態について説明する。これらの記載は、本発明の例示を目的とするものであり、本発明を何ら限定するものではない。
(ゴム組成物)
 本発明に係るゴム組成物は、ゴム成分とスチレン・アルキレンブロック共重合体と軟化剤とを含み、前記スチレン・アルキレンブロック共重合体の合計スチレン含量が、前記スチレン・アルキレンブロック共重合体の総質量に対して、25質量%以上であり、前記軟化剤の配合量が、前記ゴム成分100質量部に対して、10質量部以上である、ゴム組成物である。
 これにより、ドライハンドリング性と、WET性能と、低ロス性とを高度にバランスさせることができる。
 上記効果について、理論に拘束されることを望むものではないが、これは、軟化剤がゴム組成物に特定量配合されていることによってWET性能が向上することに加えて、スチレン・アルキレンブロック共重合体中のスチレンブロックがゴム組成物の加硫物において充填剤のような働きをする一方、スチレンブロック間にアルキレンブロックが存在し、スチレンブロック同士の擦れあいが低減されることによるものと推測される。
 <ゴム成分>
 ゴム成分としては、特に限定されず、公知のゴム組成物において用いられるゴム成分を用いることができる。ゴム成分としては、例えば、天然ゴム(NR)、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、アクリロニトリルブタジエンゴム、クロロプレンゴム、ポリイソプレンゴム、これらの変性体などが挙げられる。ゴム成分は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本発明に係るゴム組成物は、ゴム成分として天然ゴムを含むことが好ましい。
 これにより、ドライハンドリング性と、WET性能と、低ロス性と、耐寒性とをバランスさせることができる。
 本発明に係るゴム組成物は、ゴム成分として、未変性SBRおよび変性SBRからなる群より選択される1種以上を含むことが好ましい。
 本発明に係るゴム組成物は、ゴム成分として、変性SBRなどの変性共役ジエン系重合体を含むことが好ましい。
 上記変性共役ジエン系重合体としては、例えば、国際公開第2017/077712号のポリマー成分P2としての変性(共)重合体および実施例に記載の変性重合体C、変性重合体Dなどの変性SBRなどが挙げられる。
 <スチレン・アルキレンブロック共重合体>
 スチレン・アルキレンブロック共重合体は、スチレン系モノマー由来のブロックと、アルキレンブロックとを有する共重合体である。本発明に係るゴム組成物おけるスチレン・アルキレンブロック共重合体は、当該スチレン・アルキレンブロック共重合体の総質量に対して、当該スチレン・アルキレンブロック共重合体の合計スチレン含量が25質量%以上である。スチレン・アルキレンブロック共重合体は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 スチレン・アルキレンブロック共重合体の合計スチレン含量(スチレン系モノマー由来のブロックの合計含量)は、25質量%以上で適宜調節すればよいが、例えば、30質量%以上、35質量%以上または50質量%以上、60質量%以下である。
 本発明に係るゴム組成物は、前記合計スチレン含量が、前記スチレン・アルキレンブロック共重合体の総質量に対して、50質量%以上であることが好ましい。これにより、ドライハンドリング性をさらに高めることができる。
 本発明において、スチレン・アルキレンブロック共重合体のスチレン含量と、後述するアルキレン単位の含量は、1H-NMRの積分比により求める。
 スチレン・アルキレンブロック共重合体のスチレンブロックは、スチレン系モノマーに由来する(スチレン系モノマーを重合した)単位を有する。このようなスチレン系モノマーとしては、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、ビニルトルエンなどが挙げられる。この中でも、スチレン系モノマーとしては、スチレンが好ましい。
 スチレン・アルキレンブロック共重合体のアルキレンブロックは、アルキレン(二価の飽和炭化水素基)単位を有する。このようなアルキレン単位としては、例えば、炭素数1~20のアルキレン基が挙げられる。アルキレン単位は、直鎖構造でもよいし、分岐構造でもよいし、これらの組み合わせでもよい。直鎖構造のアルキレン単位としては、例えば、-(CH2-CH2)-単位(エチレン単位)、-(CH2-CH2-CH2-CH2)-単位(ブチレン単位)などが挙げられる。分岐構造のアルキレン単位としては、例えば、-(CH2-CH(C25))-単位(ブチレン単位)などが挙げられる。これらのうち、アルキレン単位としては、-(CH2-CH(C25))-単位を有することが好ましい。
 アルキレン単位の合計含量は適宜調節すればよいが、例えば、スチレン・アルキレンブロック共重合体の総質量に対して、40~75質量%である。
 本発明に係るゴム組成物は、前記スチレン・アルキレンブロック共重合体のアルキレンブロックが、-(CH2-CH(C25))-単位(A)と-(CH2-CH2)-単位(B)を有し、単位(A)の合計含量が、全アルキレンブロック(A単位+B単位)の総質量に対して、40質量%以上であることが好ましく、50質量%以上がより好ましく、65質量%以上であることがさらに好ましい。
 これにより、ドライハンドリング性に優れながら、WET性能と低ロス性を両立することができる。
 本発明に係るゴム組成物の一例では、前記スチレン・アルキレンブロック共重合体が、スチレン・エチレンブチレン・スチレンブロック共重合体(SEBS)、スチレン・エチレンプロピレン・スチレンブロック共重合体(SEPS)およびスチレン・エチレン-エチレンプロピレン・スチレンブロック共重合体(SEEPS)からなる群より選択される1種以上である。
 本発明に係るゴム組成物は、前記スチレン・アルキレンブロック共重合体が、スチレン・エチレンブチレン・スチレンブロック共重合体であることが好ましい。
 これにより、ドライハンドリング性に優れながら、WET性能と低ロス性を両立することができる。このスチレン・エチレンブチレン・スチレンブロック共重合体のエチレンブチレンブロックは、上述したエチレン単位とブチレン単位を有するブロックである。
 スチレン・アルキレンブロック共重合体は、上記スチレンブロックとアルキレンブロック以外のその他の構成単位を含んでいてもよい。このようなその他の構成単位としては、例えば、-(CH2-CH(CH=CH2))-単位などの不飽和結合を有する構成単位などが挙げられる。
 スチレン・アルキレンブロック共重合体の調製方法は特に限定されず、公知の方法を用いることができる。例えば、スチレンなどのスチレン系モノマーと、1,3-ブタジエンなどの共役ジエン化合物またはブテンなどのオレフィンとを共重合させ、前駆共重合体を得て、この前駆共重合体を水素添加することによって、スチレン・アルキレンブロック共重合体を得ることができる。
 スチレン・アルキレンブロック共重合体は、市販品を用いてもよい。このような市販品としては、例えば、JSR社のJSR DYNARON(登録商標)8903P、9901Pなどが挙げられる。
 ゴム組成物におけるスチレン・アルキレンブロック共重合体の配合量は、特に限定されず、適宜調節すればよい。例えば、スチレン・アルキレンブロック共重合体の配合量は、ゴム成分100質量部に対して、4~30質量部である。ドライハンドリング性に優れながら、WET性能と低ロス性を両立する観点から、スチレン・アルキレンブロック共重合体の配合量は、ゴム成分100質量部に対して、8.5~30質量部であることが好ましい。
 <軟化剤>
 本発明に係るゴム組成物は、前記ゴム成分100質量部に対して、軟化剤を10質量部以上含む。軟化剤としては、例えば、オイルおよび熱可塑性樹脂などが挙げられる。軟化剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。軟化剤は、オイルおよび熱可塑性樹脂からなる群より選択される1種以上であってもよい。
 本発明に係るゴム組成物は、前記軟化剤が、C5系樹脂、C9系樹脂、C5~C9系樹脂、フェノール樹脂およびオイルからなる群より選択される1種以上であることが好ましい。
 これにより、WET性能を向上することができる。
 軟化剤の配合量は、ゴム成分100質量部に対して、10質量部以上であればよく、例えば、50質量部以下とすればよい。軟化剤の配合量は、ゴム成分100質量部に対して、15~30質量部が好ましい。
 <オイル>
 オイルとしては、例えば、アロマオイル、パラフィンオイル、ナフテンオイル、処理留出物芳香族系抽出物(TDAE)オイル、SRAEオイルなどの石油系オイル、パーム油、ひまし油、綿実油、大豆油などの植物系オイル、オレイン酸オクチル、オレイン酸2-エチルヘキシル、フタル酸ビス[2-エチルヘキシル]、セバシン酸ビス[2-エチルヘキシル]などの有機酸エステル系オイルなどが挙げられる。本発明のオイルは、ゴム成分の油展成分としてのオイル、および配合剤としてのオイルのいずれも含む。
 <熱可塑性樹脂>
 熱可塑性樹脂としては、例えば、C5系樹脂、C5~C9系樹脂、C9系樹脂、テルペン系樹脂、テルペン-芳香族化合物系樹脂、ロジン系樹脂、ジシクロペンタジエン樹脂、アルキルフェノール系樹脂およびこれらを一部水素添加したものなどが挙げられる。
 熱可塑性樹脂の配合量としては、特に限定されず、目的に応じて適宜調節することができ、例えば、ゴム成分100質量部に対して、5~50質量部である。
-C5系樹脂-
 C5系樹脂は、C5系合成石油樹脂を指し、C5留分を、AlCl3やBF3などのフリーデルクラフツ型触媒を用いて重合して得られる樹脂を意味する。具体的には、イソプレン、シクロペンタジエン、1,3-ペンタジエン及び1-ペンテンなどを主成分とする共重合体、2-ペンテンとジシクロペンタジエンとの共重合体、1,3-ペンタジエンを主体とする重合体などが挙げられる。
-C5~C9系樹脂-
 C5~C9系樹脂は、C5~C9系合成石油樹脂を指し、C5~C11留分を、AlCl3やBF3などのフリーデルクラフツ型触媒を用いて重合して得られる樹脂を意味する。例えば、スチレン、ビニルトルエン、α-メチルスチレン、インデン等を主成分とする共重合体などが挙げられる。これらの中でも、C9以上の成分の少ないC5~C9系樹脂は、ゴム成分との相溶性が優れるため好ましい。具体的には、C5~C9系樹脂におけるC9以上の成分の割合が50質量%未満の樹脂が好ましく、40質量%以下の樹脂がより好ましい。また、これらを一部水添したもの(例えば、荒川化学工業社のアルコン(登録商標))なども挙げられる。
-C9系樹脂-
 C9系樹脂は、C9系合成石油樹脂を指し、C9留分をAlCl3やBF3などのフリーデルクラフツ型触媒を用いて重合して得られる樹脂を意味する。例えば、インデン、メチルインデン、α-メチルスチレン、ビニルトルエンなどを主成分とする共重合体などが挙げられる。また、これらを一部水添したもの(例えば、荒川化学工業社のアルコン(登録商標))なども挙げられる。
-テルペン系樹脂-
 テルペン系樹脂は、松属の木からロジンを得る際に同時に得られるテレビン油またはこれから分離した重合成分を配合し、フリーデルクラフツ型触媒を用いて重合して得ることができる。例えば、β-ピネン樹脂、α-ピネン樹脂などが挙げられる。
-テルペン-芳香族化合物系樹脂-
 テルペン-芳香族化合物系樹脂は、テルペン類と種々のフェノール類とを、フリーデルクラフツ型触媒を用いて反応させたり、あるいはさらにホルマリンで縮合することで得ることができる。例えば、テルペン-フェノール樹脂などが挙げられる。前記テルペン-フェノール樹脂のなかでも、テルペン-フェノール樹脂中のフェノール成分が50質量%未満の樹脂が好ましく、40質量%以下の樹脂がより好ましい。
 原料のテルペン類としては、特に限定されず、目的に応じて適宜選択することができ、例えば、α-ピネン、リモネンなどのモノテルペン炭化水素などが挙げられる。これらの中でも、α-ピネンを含むものが好ましく、α-ピネンがより好ましい。
-ロジン系樹脂-
 ロジン系樹脂としては、特に限定されず、目的に応じて適宜選択することができ、例えば、生松ヤニやトール油に含まれるガムロジン、トール油レジン、ウッドロジンなどの天然樹脂ロジン;変性ロジン;変性ロジン誘導体などが挙げられる。前記変性ロジン誘導体は、具体的には、重合ロジン、その部分水添ロジン;グリセリンエステルロジン、その部分水添ロジンや完全水添ロジン;ペンタエリスリトールエステルロジン、その部分水添ロジンや完全水添ロジンなどが挙げられる。
-ジシクロペンタジエン樹脂-
 ジシクロペンタジエン樹脂は、ジシクロペンタジエンを、AlCl3やBF3などのフリーデルクラフツ型触媒などを用いて重合して得ることができる。ジシクロペンタジエン樹脂の市販品の具体例としては、クイントン1920(日本ゼオン社製)、クイントン1105(日本ゼオン社製)、マルカレッツM-890A(丸善石油化学社製)などが挙げられる。
-アルキルフェノール系樹脂-
 アルキルフェノール系樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、p-tert-ブチルフェノール-アセチレン樹脂などのアルキルフェノール-アセチレン樹脂、低重合度のアルキルフェノール-ホルムアルデヒド樹脂などが挙げられる。
 本発明に係るゴム組成物は、ゴム成分とスチレン・アルキレンブロック共重合体と軟化剤に加えて、充填剤、加硫促進剤、シランカップリング剤、加硫剤およびグリセリン脂肪酸エステルからなる群より選択される1種以上をさらに含んでいてもよい。
 <充填剤>
 充填剤としては、例えば、シリカ、カーボンブラック、酸化アルミニウム、クレー、アルミナ、タルク、マイカ、カオリン、ガラスバルーン、ガラスビーズ、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、酸化マグネシウム、酸化チタン、チタン酸カリウム、硫酸バリウムなどが挙げられる。充填剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 補強性と低ロス性の観点から、充填剤はシリカを含むことが好ましい。
 シリカとしては、特に限定されず、目的に応じて適宜選択することができ、例えば、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウムなどが挙げられる。
 シリカのBET比表面積は、特に限定されず、例えば、40~350m2/gまたは80~300m2/gであり、150~280m2/gが好ましく、190~250m2/gがより好ましい。
 充填剤中のシリカの量は、特に限定されず、目的に応じて適宜調節することができるが、充填剤の総質量に対して、50~100質量%であることが好ましく、75~100質量%であることがより好ましく、85~100質量%であることが特に好ましく、90質量%以上100質量%未満がさらに好ましい。
 カーボンブラックとしては、特に限定されず、例えば高、中または低ストラクチャーのSAF、ISAF、ISAF-HS、IISAF、N339、HAF、FEF、GPF、SRFグレードなどのカーボンブラックが挙げられる。
 充填剤の配合量としては、特に限定されず、適宜調節すればよいが、例えば、ゴム成分100質量部に対して20~120質量部である。充填剤の配合量は、低ロス性とWET性能の観点から、ゴム成分100質量部に対して50~100質量部であることが好ましい。
 本発明に係るゴム組成物は、充填剤をさらに含み、
 前記充填剤が、シリカとカーボンブラックを含み、
 前記充填剤の配合量が、前記ゴム成分100質量部に対して、50質量部以上であり、
 前記充填剤中のシリカの量が、充填剤の総質量に対して、75質量%以上であることが好ましい。
 これにより、転がり抵抗の低減、WET性能向上、およびゴム成分の柔軟性を両立することができる。
<加硫促進剤>
 本発明に係るゴム組成物は、ゴム成分とスチレン・アルキレンブロック共重合体に加えて、加硫促進剤を含むことが好ましい。加硫促進剤は、例えば、グアニジン類、スルフェンアミド類、チアゾール類、チオウレアおよびジエチルチオウレアの中から選ばれる少なくとも1種である。これらは、それぞれ、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 加硫促進剤の配合量としては、特に限定されず、目的に応じて適宜調節することができ、例えば、ゴム成分100質量部に対して0.1~20質量部である。0.1質量部以上であると、加硫の効果が得られやすく、20質量部以下であると、加硫の過度の進行を抑制することができる。
-グアニジン類-
 グアニジン類としては、特に限定されず、目的に応じて適宜選択することができ、例えば、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジン、1-o-トリルビグアニド、ジカテコールボレートのジ-o-トリルグアニジン塩、1,3-ジ-o-クメニルグアニジン、1,3-ジ-o-ビフェニルグアニジン、1,3-ジ-o-クメニル-2-プロピオニルグアニジンなどが挙げられる。これらの中でも、反応性が高い点で、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジンおよび1-o-トリルビグアニドが好ましく、1,3-ジフェニルグアニジンがより好ましい。
-スルフェンアミド類-
 スルフェンアミド類としては、特に限定されず、目的に応じて適宜選択することができ、例えば、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N,N-ジシクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド、N-オキシジエチレン-2-ベンゾチアゾリルスルフェンアミド、N-メチル-2-ベンゾチアゾリルスルフェンアミド、N-エチル-2-ベンゾチアゾリルスルフェンアミド、N-プロピル-2-ベンゾチアゾリルスルフェンアミド、N-ブチル-2-ベンゾチアゾリルスルフェンアミド、N-ペンチル-2-ベンゾチアゾリルスルフェンアミド、N-ヘキシル-2-ベンゾチアゾリルスルフェンアミド、N-オクチル-2-ベンゾチアゾリルスルフェンアミド、N-2-エチルヘキシル-2-ベンゾチアゾリルスルフェンアミド、N-デシル-2-ベンゾチアゾリルスルフェンアミド、N-ドデシル-2-ベンゾチアゾリルスルフェンアミド、N-ステアリル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジメチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジエチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジプロピル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジブチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジペンチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジヘキシル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジオクチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジ-2-エチルヘキシルベンゾチアゾリルスルフェンアミド、N,N-ジドデシル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジステアリル-2-ベンゾチアゾリルスルフェンアミドなどが挙げられる。これらの中でも、反応性が高い点で、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミドおよびN-tert-ブチル-2-ベンゾチアゾリルスルフェンアミドが好ましい。
-チアゾール類-
 チアゾール類としては、特に限定されず、目的に応じて適宜選択することができ、例えば、2-メルカプトベンゾチアゾール、ジ-2-ベンゾチアゾリルジスルフィド、2-メルカプトベンゾチアゾールの亜鉛塩、2-メルカプトベンゾチアゾールのシクロヘキシルアミン塩、2-(N,N-ジエチルチオカルバモイルチオ)ベンゾチアゾール、2-(4´-モルホリノジチオ)ベンゾチアゾール、4-メチル-2-メルカプトベンゾチアゾール、ジ-(4-メチル-2-ベンゾチアゾリル)ジスルフィド、5-クロロ-2-メルカプトベンゾチアゾール、2-メルカプトベンゾチアゾールナトリウム、2-メルカプト-6-ニトロベンゾチアゾール、2-メルカプト-ナフト[1,2-d]チアゾール、2-メルカプト-5-メトキシベンゾチアゾール、6-アミノ-2-メルカプトベンゾチアゾールなどが挙げられる。これらの中でも、反応性が高い点で、2-メルカプトベンゾチアゾールおよびジ-2-ベンゾチアゾリルジスルフィドが好ましい。
-チオウレア-
 チオウレアは、NH2CSNH2で表される化合物である。
-ジエチルチオウレア-
 ジエチルチオウレアは、C25NHCSNHC25で表される化合物である。
<シランカップリング剤>
 シランカップリング剤を用いることによって、ゴム加工時の作業性が更に優れると共に、耐摩耗性がより良好なタイヤを得ることができる。シランカップリング剤は1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 シランカップリング剤としては、特に限定されず、目的に応じて適宜選択することができ、例えば、式(I):(R1O)3-p(R2pSi-R3-Sa-R3-Si(OR13-r(R2rで表わされる化合物、式(II):(R4O)3-s(R5sSi-R6-Sk-R7-Sk-R6-Si(OR43-t(R5tで表わされる化合物などが挙げられる。
 式(I)中、R1はそれぞれ独立して炭素数1~8の直鎖、環状もしくは分岐のアルキル基、炭素数2~8の直鎖もしくは分岐のアルコキシアルキル基または水素原子であり、R2はそれぞれ独立して炭素数1~8の直鎖、環状または分岐のアルキル基であり、R3はそれぞれ独立して炭素数1~8の直鎖または分岐のアルキレン基である。aは平均値として2~6であり、pおよびrは同一でも異なっていてもよく、各々平均値として0~3である。ただし、pおよびrの双方が3であることはない。
 式(II)中、R4はそれぞれ独立して炭素数1~8の直鎖、環状もしくは分岐のアルキル基、炭素数2~8の直鎖もしくは分岐のアルコキシアルキル基または水素原子であり、R5はそれぞれ独立して炭素数1~8の直鎖、環状もしくは分岐のアルキル基であり、R6はそれぞれ独立して炭素数1~8の直鎖もしくは分岐のアルキレン基である。R7は一般式(-S-R8-S-)、(-R9-Sm1-R10-)および(-R11-Sm2-R12-Sm3-R13-)のいずれかの二価の基(R8~R13は各々炭素数1~20の二価の炭化水素基、二価の芳香族基、または硫黄および酸素以外のヘテロ元素を含む二価の有機基であり、m1、m2およびm3は同一でも異なっていてもよく、各々平均値として1以上4未満である。)であり、kはそれぞれ独立して平均値として1~6であり、sおよびtは各々平均値として0~3である。ただし、sおよびtの双方が3であることはない。
 式(I)で表わされるシランカップリング剤としては、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(3-メチルジメトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、ビス(3-メチルジメトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)ジスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリメトキシシリルプロピル)トリスルフィド、ビス(3-メチルジメトキシシリルプロピル)トリスルフィド、ビス(2-トリエトキシシリルエチル)トリスルフィド、ビス(3-モノエトキシジメチルシリルプロピル)テトラスルフィド、ビス(3-モノエトキシジメチルシリルプロピル)トリスルフィド、ビス(3-モノエトキシジメチルシリルプロピル)ジスルフィド、ビス(3-モノメトキシジメチルシリルプロピル)テトラスルフィド、ビス(3-モノメトキシジメチルシリルプロピル)トリスルフィド、ビス(3-モノメトキシジメチルシリルプロピル)ジスルフィド、ビス(2-モノエトキシジメチルシリルエチル)テトラスルフィド、ビス(2-モノエトキシジメチルシリルエチル)トリスルフィド、ビス(2-モノエトキシジメチルシリルエチル)ジスルフィドなどが挙げられる。
 式(II)で表わされるシランカップリング剤としては、例えば、平均組成式(CH3CH2O)3Si-(CH23-S2-(CH26-S2-(CH23-Si(OCH2CH33、平均組成式(CH3CH2O)3Si-(CH23-S2-(CH210-S2-(CH23-Si(OCH2CH33、平均組成式(CH3CH2O)3Si-(CH23-S3-(CH26-S3-(CH23-Si(OCH2CH33、平均組成式(CH3CH2O)3Si-(CH23-S4-(CH26-S4-(CH23-Si(OCH2CH33、平均組成式(CH3CH2O)3Si-(CH23-S-(CH26-S2-(CH26-S-(CH23-Si(OCH2CH33、平均組成式(CH3CH2O)3Si-(CH23-S-(CH26-S2.5-(CH26-S-(CH23-Si(OCH2CH33、平均組成式(CH3CH2O)3Si-(CH23-S-(CH26-S3-(CH26-S-(CH23-Si(OCH2CH33、平均組成式(CH3CH2O)3Si-(CH23-S-(CH26-S4-(CH26-S-(CH23-Si(OCH2CH33、平均組成式(CH3CH2O)3Si-(CH23-S-(CH210-S2-(CH210-S-(CH23-Si(OCH2CH33、平均組成式(CH3CH2O)3Si-(CH23-S4-(CH26-S4-(CH26-S4-(CH23-Si(OCH2CH33、平均組成式(CH3CH2O)3Si-(CH23-S2-(CH26-S2-(CH26-S2-(CH23-Si(OCH2CH33、平均組成式(CH3CH2O)3Si-(CH23-S-(CH26-S2-(CH26-S2-(CH26-S-(CH23-Si(OCH2CH33を有するものなどが挙げられる。
 シランカップリング剤としては、例えば、エボニック・デグサ社製Si363(エトキシ(3-メルカプトプロピル)ビス(3,6,9,12,15-ペンタオキサオクタコサン-1-イルオキシ)シラン、[C1327O(CH2CH2O)52(CH3CH2O)Si(CH23SH)などが挙げられる。
 シランカップリング剤の配合量としては、適宜調節すればよいが、例えば、ゴム成分100質量部に対して2質量部以上である。シリカの反応性向上の観点から、ゴム成分100質量部に対して2~20質量部であることが好ましく、4~12質量部であることがより好ましい。
 シリカの配合量(質量)に対するシランカップリング剤の配合量(質量)の割合(シランカップリング剤の配合量/シリカの配合量)としては、特に限定されず、目的に応じて適宜調節することができるが、0.01~0.20が好ましく、0.03~0.20がより好ましく、0.04~0.10が特に好ましい。この割合が、0.01以上であると、ゴム組成物の発熱性の低減の効果を得られやすく、0.20以下であると、ゴム組成物の製造コストが低減し、経済性を向上させることができる。
<加硫剤>
 加硫剤としては、特に限定されず、目的に応じて適宜選択することができ、例えば、硫黄などが挙げられる。加硫剤は1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 加硫剤の配合量としては、特に限定されず、目的に応じて適宜調節することができ、例えば、ゴム成分100質量部に対して、0.1~2.0質量部であり、1.0~2.0質量部がより好ましく、1.2~1.8質量部が特に好ましい。
 本発明のゴム組成物は、充填剤としてシリカを含む場合、更に、グリセリン脂肪酸エステルからなり、該グリセリン脂肪酸エステルが、グリセリンと、2種以上の脂肪酸とのエステルであって、該グリセリン脂肪酸エステルを構成する2種以上の脂肪酸のうち、最も多い脂肪酸成分が全脂肪酸中に10~90質量%であり、さらにモノエステル成分をグリセリン脂肪酸エステル中に50~100質量%含むことを特徴とする、グリセリン脂肪酸エステル組成物を含むことが好ましい。該グリセリン脂肪酸エステル組成物を含む場合、ゴム組成物の加工性が向上し、また、ゴム組成物をタイヤに適用することで、タイヤの低ロス性を更に向上することができる。
 前記グリセリン脂肪酸エステルは、グリセリンと、2種以上の脂肪酸とのエステルである。なお、グリセリン脂肪酸エステルとは、グリセリンの3つのOH基の少なくとも1つと、脂肪酸のCOOH基とがエステル結合してなる化合物である。
 ここで、前記グリセリン脂肪酸エステルは、グリセリン1分子と脂肪酸1分子とがエステル化してなるグリセリン脂肪酸モノエステル(モノエステル成分)でも、グリセリン1分子と脂肪酸2分子とがエステル化してなるグリセリン脂肪酸ジエステル(ジエステル成分)でも、グリセリン1分子と脂肪酸3分子とがエステル化してなるグリセリン脂肪酸トリエステル(トリエステル成分)でもよいし、これらの混合物でもよいが、グリセリン脂肪酸モノエステルが好ましい。なお、グリセリン脂肪酸エステルがグリセリン脂肪酸モノエステル、グリセリン脂肪酸ジエステル、グリセリン脂肪酸トリエステルの混合物である場合、各エステルの含有率は、ゲルパーミエーションクロマトグラフィー(GPC)で測定することができる。また、グリセリン脂肪酸ジエステルを構成する2つの脂肪酸、並びに、グリセリン脂肪酸トリエステルを構成する3つの脂肪酸は、同一でも、異なってもよい。
 前記グリセリン脂肪酸エステルは、グリセリンと、2種以上の脂肪酸とのエステルであり、2種以上の脂肪酸がグリセリン1分子とエステル化してなるグリセリン脂肪酸ジエステルやグリセリン脂肪酸トリエステルでもよいが、グリセリン1分子と上記2種以上の脂肪酸のうち1種類の脂肪酸1分子とがエステル化してなるグリセリン脂肪酸モノエステルと、グリセリン1分子と他の種類の脂肪酸1分子とがエステル化してなるグリセリン脂肪酸モノエステルとの混合物であることが好ましい。
 前記グリセリン脂肪酸エステルの原料となる2種以上の脂肪酸(即ち、グリセリン脂肪酸エステルの構成脂肪酸)としては、ゴム組成物の加工性、低ロス性、破壊特性の観点から、炭素数が8~22である脂肪酸が好ましく、炭素数12~18である脂肪酸がより好ましく、炭素数が14~18である脂肪酸がさらに好ましく、炭素数が16の脂肪酸と炭素数が18の脂肪酸がよりさらに好ましい。また、前記グリセリン脂肪酸エステルの原料となる2種以上の脂肪酸のうち、最も多い脂肪酸成分と2番目に多い脂肪酸成分は、一方が炭素数16の脂肪酸で他方が炭素数18の脂肪酸であることがより好ましい。
 また、前記グリセリン脂肪酸エステルがグリセリンと炭素数が16の脂肪酸及び炭素数が18の脂肪酸とのエステルである場合、炭素数が16の脂肪酸と炭素数が18の脂肪酸との質量比(炭素数16の脂肪酸/炭素数18の脂肪酸)は、90/10~10/90の範囲が好ましく、80/20~20/80の範囲がより好ましく、75/25~25/75の範囲がより一層好ましい。炭素数が16の脂肪酸と炭素数が18の脂肪酸との質量比がこの範囲であれば、ゴム組成物の加工性、低ロス性、破壊特性を更に向上させることができる。
 前記グリセリン脂肪酸エステルの構成脂肪酸は、直鎖状でも、分岐状でもよいが、直鎖状であることが好ましく、また、飽和脂肪酸でも、不飽和脂肪酸でもよいが、飽和脂肪酸であることが好ましい。
 前記グリセリン脂肪酸エステルの構成脂肪酸として、具体的には、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、オレイン酸、リノール酸、リノレン酸、アラギン酸、アラキドン酸、ベヘン酸等が挙げられ、これらの中でも、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸が好ましく、パルミチン酸及びステアリン酸がより好ましい。
 また、前記グリセリン脂肪酸エステルとして、具体的には、ラウリン酸モノグリセリド、ミリスチン酸モノグリセリド、パルミチン酸モノグリセリド、ステアリン酸モノグリセリドが好ましく、パルミチン酸モノグリセリド及びステアリン酸モノグリセリドがより好ましい。
 本発明のゴム組成物において、前記グリセリン脂肪酸エステル組成物の配合量は、ゴム組成物の加工性の観点から、前記シリカ100質量部に対して、好ましくは0.5質量部以上、より好ましくは1質量部以上、より一層好ましくは1.5質量部以上であり、また、ゴム組成物の破壊特性の観点から、前記シリカ100質量部に対して、好ましくは20質量部以下、より好ましくは10質量部以下、より一層好ましくは5質量部以下である。
<その他の成分>
 本発明に係るゴム組成物は、上述した成分以外に、ゴム工業界で通常使用される成分、例えば、老化防止剤、加硫促進助剤、有機酸化合物などを、本発明の趣旨に反しない範囲で適宜選択して含有することができる。
 (ゴム組成物の調製方法)
 本発明に係るゴム組成物の調製方法は特に限定されず、公知の混練方法を用いて、ゴム成分、スチレン・アルキレンブロック共重合体、軟化剤や、充填剤などの成分を混練すればよい。
 (タイヤ)
 本発明に係るタイヤは、上記いずれかに記載のゴム組成物を用いた、タイヤである。
 これにより、ドライハンドリング性と、WET性能と、低ロス性とを高度にバランスさせることができる。
 ゴム組成物の適用部位は特に限定されないが、タイヤのトレッドゴムに用いることが好ましい。
 以下、実施例を挙げて本発明をさらに詳しく説明するが、これらの実施例は、本発明の例示を目的とするものであり、本発明を何ら限定するものではない。
 実施例で使用した材料の詳細は以下のとおりである。
天然ゴム(NR):RSS#4
スチレンブタジエンゴム(変性SBR):後述する方法で合成した
スチレンブタジエンゴム(未変性SBR):JSR社製のSBR#1500
ブタジエンゴム(BR):JSR社製のBR01
スチレン・アルキレンブロック共重合体(合計スチレン含量15質量%):JSR社製のDYNARON(登録商標)8600P、A単位のA+B単位に対する割合68質量%
スチレン・アルキレンブロック共重合体(合計スチレン含量32質量%):クラレ社製のSEPTON(登録商標)8007、A単位のA+B単位に対する割合41質量%
スチレン・アルキレンブロック共重合体(合計スチレン含量35質量%):JSR社製のDYNARON(登録商標)8903P、A単位のA+B単位に対する割合70質量%
スチレン・アルキレンブロック共重合体(合計スチレン含量53質量%):JSR社製のDYNARON(登録商標)9901P、A単位のA+B単位に対する割合70質量%
シリカ:東ソー・シリカ社製の商品名NipSil(登録商標) AQ
カーボンブラック:旭カーボン社製の商品名#80
5系樹脂:エクソンモービルケミカル社製、商品名ECR1102
5~C9系樹脂(表中、C5/C9樹脂と表記):エクソンモービルケミカル社製、商品名:ECR213
9系樹脂:新日本石油化学社製、商品名ネオポリマー140
オイル(表中、TDAEオイルと表記):Exxon Mobil社製のTyrex20
オイル(表中、SRAEオイルと表記):JX日鉱日石エネルギー社製のNC-140
ワックス:マイクロクリスタリンワックス、日本精蝋社製の商品名オゾエース0701
老化防止剤(6PPD):N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、大内新興化学工業社製の商品名ノクラック 6C
老化防止剤(TMDQ):2,2,4-トリメチル-1,2-ジヒドロキノリン重合体、大内新興化学工業社製の商品名ノクラック 224
加硫促進剤(DPG):1,3-ジフェニルグアニジン、大内新興化学工業社製の商品名ノクセラーD
加硫促進剤(MBTS):ジ-2-ベンゾチアゾリルジスルフィド、大内新興化学工業社製の商品名ノクセラーDM
加硫促進剤(CBS):N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、三新化学工業社製の商品名サンセラーCM-G
 変性SBRの合成
 乾燥し、窒素置換した800mLの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液およびスチレンのシクロヘキサン溶液を、1,3-ブタジエン70.2gおよびスチレン39.5gになるように加え、2,2-ジテトラヒドロフリルプロパン0.6mmolを加え、0.8mmolのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行う。この際の重合転化率がほぼ100%となった重合反応系に対し、変性剤としてN-(1,3-ジメチルブチリデン)-3-トリエトキシシリル-1-プロパンアミンを0.72mmol添加し、50℃で30分間変性反応を行う。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液2mLを加えて反応を停止させ、常法に従い乾燥して変性SBRを得る。その変性SBRのミクロ構造は、結合スチレン量が35質量%である。
<実施例1~7および比較例1~4>
 表1~2に示す配合処方に従って、ゴム組成物を調製する。そのゴム組成物をトレッドゴムに用いて、常法に従ってサイズ:195/65R15の乗用車用ラジアルタイヤを作製する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(性能評価)
<ドライハンドリング性>
 各供試タイヤにつき、乾燥路面での実車試験にて、テストドライバーによるフィーリングに基づき、ドライハンドリング性を予測評価する。比較例1のドライハンドリング性能を100として指数表示する。評価結果を表2に示す。指数値が大きいほどタイヤのドライハンドリング性に優れることを示す。
<WET性能>
 湿潤路のコース上において、テストドライバーが、様々な走行を行い、走行中のタイヤの走行性能についてフィーリング予測評価を行う。比較例1のWET性能を100として指数表示する。評価結果を表2に示す。指数値が大きいほどタイヤのWET性能に優れることを示す。
<低ロス性>
 各ゴム組成物を145℃で33分間加硫して得られた加硫ゴムについて、損失正接(tanδ)を、上島製作所製スペクトロメーター、温度50℃、初期歪2%、動歪1%、周波数52Hzの条件で予測する。比較例1のtanδを100として指数表示する。結果を表2に示す。指数値が小さいほど低ロス性に優れる。
 表2に示すように、スチレン・アルキレンブロック共重合体の合計スチレン含量が25質量%以上であり、軟化剤を所定量含むゴム組成物によって、ドライハンドリング性と、WET性能と、低ロス性とを高度にバランスさせることができる。
 本発明によれば、ドライハンドリング性と、WET性能と、低ロス性とを高度にバランスさせたゴム組成物を提供することができる。本発明によれば、ドライハンドリング性と、WET性能と、低ロス性とを高度にバランスさせたタイヤを提供することができる。

Claims (8)

  1.  ゴム成分とスチレン・アルキレンブロック共重合体と軟化剤とを含み、
     前記スチレン・アルキレンブロック共重合体の合計スチレン含量が、前記スチレン・アルキレンブロック共重合体の総質量に対して、25質量%以上であり、
     前記軟化剤の配合量が、前記ゴム成分100質量部に対して、10質量部以上である、ゴム組成物。
  2.  前記スチレン・アルキレンブロック共重合体のアルキレンブロックが、-(CH2-CH(C25))-単位(A)と-(CH2-CH2)-単位(B)を有し、単位(A)の合計含量が、全アルキレンブロック(A単位+B単位)の総質量に対して、40質量%以上である、請求項1に記載のゴム組成物。
  3.  前記スチレン・アルキレンブロック共重合体のアルキレンブロックが、-(CH2-CH(C25))-単位(A)と-(CH2-CH2)-単位(B)を有し、単位(A)の合計含量が、全アルキレンブロック(A単位+B単位)の総質量に対して、50質量%以上である、請求項1に記載のゴム組成物。
  4.  前記合計スチレン含量が、前記スチレン・アルキレンブロック共重合体の総質量に対して、50質量%以上である、請求項1~3のいずれか一項に記載のゴム組成物。
  5.  前記スチレン・アルキレンブロック共重合体が、スチレン・エチレンブチレン・スチレンブロック共重合体である、請求項1~4のいずれか一項に記載のゴム組成物。
  6.  前記軟化剤が、C5系樹脂、C9系樹脂、C5~C9系樹脂、フェノール樹脂およびオイルからなる群より選択される1種以上である、請求項1~5のいずれか一項に記載のゴム組成物。
  7.  充填剤をさらに含み、
     前記充填剤が、シリカとカーボンブラックを含み、
     前記充填剤の配合量が、前記ゴム成分100質量部に対して、50質量部以上であり、
     前記充填剤中のシリカの量が、充填剤の総質量に対して、75質量%以上である、請求項1~6のいずれか一項に記載のゴム組成物。
  8.  請求項1~7のいずれか一項に記載のゴム組成物を用いた、タイヤ。
PCT/JP2018/045764 2017-12-14 2018-12-12 ゴム組成物およびタイヤ WO2019117217A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019559183A JPWO2019117217A1 (ja) 2017-12-14 2018-12-12 ゴム組成物およびタイヤ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-240080 2017-12-14
JP2017240080 2017-12-14

Publications (1)

Publication Number Publication Date
WO2019117217A1 true WO2019117217A1 (ja) 2019-06-20

Family

ID=66819351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045764 WO2019117217A1 (ja) 2017-12-14 2018-12-12 ゴム組成物およびタイヤ

Country Status (2)

Country Link
JP (1) JPWO2019117217A1 (ja)
WO (1) WO2019117217A1 (ja)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0826340A (ja) * 1994-07-14 1996-01-30 Du Pont Mitsui Polychem Co Ltd エチレン共重合体組成物及びそれを用いた易開封性シール材料
JP2001192505A (ja) * 2000-01-12 2001-07-17 Jsr Corp ゴム組成物
JP2004269854A (ja) * 2003-01-15 2004-09-30 Sumitomo Rubber Ind Ltd 重合体型制電剤、制電性ポリマー組成物および、その製造方法
JP2005036169A (ja) * 2003-07-17 2005-02-10 Riken Technos Corp 熱可塑性エラストマー組成物
JP2006008770A (ja) * 2004-06-23 2006-01-12 Riken Technos Corp 熱可塑性エラストマー組成物
JP2010174231A (ja) * 2009-02-02 2010-08-12 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物
KR20100099517A (ko) * 2009-03-03 2010-09-13 금호타이어 주식회사 튜브 구조 나노 클레이를 포함하는 타이어 트레드 고무조성물
JP2011132321A (ja) * 2009-12-24 2011-07-07 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物
JP2011195711A (ja) * 2010-03-19 2011-10-06 Toyo Adl Corp ホットメルト型粘接着組成物及びそれを用いた積層体
JP2012006987A (ja) * 2010-06-22 2012-01-12 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物およびタイヤ
JP2012121223A (ja) * 2010-12-08 2012-06-28 Sumitomo Rubber Ind Ltd ストリップ、その製造方法および空気入りタイヤの製造方法
JP2012531486A (ja) * 2009-06-29 2012-12-10 コンパニー ゼネラール デ エタブリッスマン ミシュラン トレッドが飽和熱可塑性エラストマーを含むタイヤ
JP2013023538A (ja) * 2011-07-19 2013-02-04 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物
JP2015206038A (ja) * 2014-04-22 2015-11-19 ハンコック タイヤ カンパニー リミテッド ランフラットタイヤ用サイドウォールインサートゴム組成物及びそれを用いて製造したタイヤ
JP2016017162A (ja) * 2014-07-10 2016-02-01 三井化学株式会社 重合体組成物ならびに該重合体組成物からなるパッキン、シール材、キャップライナー
JP2016203621A (ja) * 2015-04-15 2016-12-08 三菱樹脂株式会社 積層多孔性フィルム、電池用セパレータ、及び電池
WO2017199806A1 (ja) * 2016-05-16 2017-11-23 Jxtgエネルギー株式会社 熱可塑性エラストマー組成物及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154132A (ja) * 2005-12-08 2007-06-21 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物
JP6953841B2 (ja) * 2017-07-05 2021-10-27 住友ゴム工業株式会社 空気入りタイヤ
JP6993190B2 (ja) * 2017-11-16 2022-01-13 Toyo Tire株式会社 タイヤ用ゴム組成物、及びそれを用いた空気入りタイヤ

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0826340A (ja) * 1994-07-14 1996-01-30 Du Pont Mitsui Polychem Co Ltd エチレン共重合体組成物及びそれを用いた易開封性シール材料
JP2001192505A (ja) * 2000-01-12 2001-07-17 Jsr Corp ゴム組成物
JP2004269854A (ja) * 2003-01-15 2004-09-30 Sumitomo Rubber Ind Ltd 重合体型制電剤、制電性ポリマー組成物および、その製造方法
JP2005036169A (ja) * 2003-07-17 2005-02-10 Riken Technos Corp 熱可塑性エラストマー組成物
JP2006008770A (ja) * 2004-06-23 2006-01-12 Riken Technos Corp 熱可塑性エラストマー組成物
JP2010174231A (ja) * 2009-02-02 2010-08-12 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物
KR20100099517A (ko) * 2009-03-03 2010-09-13 금호타이어 주식회사 튜브 구조 나노 클레이를 포함하는 타이어 트레드 고무조성물
JP2012531486A (ja) * 2009-06-29 2012-12-10 コンパニー ゼネラール デ エタブリッスマン ミシュラン トレッドが飽和熱可塑性エラストマーを含むタイヤ
JP2011132321A (ja) * 2009-12-24 2011-07-07 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物
JP2011195711A (ja) * 2010-03-19 2011-10-06 Toyo Adl Corp ホットメルト型粘接着組成物及びそれを用いた積層体
JP2012006987A (ja) * 2010-06-22 2012-01-12 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物およびタイヤ
JP2012121223A (ja) * 2010-12-08 2012-06-28 Sumitomo Rubber Ind Ltd ストリップ、その製造方法および空気入りタイヤの製造方法
JP2013023538A (ja) * 2011-07-19 2013-02-04 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物
JP2015206038A (ja) * 2014-04-22 2015-11-19 ハンコック タイヤ カンパニー リミテッド ランフラットタイヤ用サイドウォールインサートゴム組成物及びそれを用いて製造したタイヤ
JP2016017162A (ja) * 2014-07-10 2016-02-01 三井化学株式会社 重合体組成物ならびに該重合体組成物からなるパッキン、シール材、キャップライナー
JP2016203621A (ja) * 2015-04-15 2016-12-08 三菱樹脂株式会社 積層多孔性フィルム、電池用セパレータ、及び電池
WO2017199806A1 (ja) * 2016-05-16 2017-11-23 Jxtgエネルギー株式会社 熱可塑性エラストマー組成物及びその製造方法

Also Published As

Publication number Publication date
JPWO2019117217A1 (ja) 2020-12-03

Similar Documents

Publication Publication Date Title
JP5644838B2 (ja) タイヤトレッド用ゴム組成物
JP5900036B2 (ja) タイヤトレッド用ゴム組成物
JP5831300B2 (ja) タイヤトレッド用ゴム組成物
JP6799665B2 (ja) ゴムブレンド、硫黄架橋性ゴム混合物、および車両用タイヤ
JP6378466B1 (ja) ゴム混合物および車両タイヤ
JP2019524956A (ja) 硫黄架橋性ゴム混合物および車両用タイヤ
JP2019523328A (ja) ゴムブレンド、硫黄架橋性ゴム混合物、および車両用タイヤ
JP2013147581A (ja) ゴム組成物およびそれを用いたタイヤ
WO2019117218A1 (ja) ゴム組成物およびタイヤ
JP6799666B2 (ja) 硫黄架橋性ゴム混合物および車両用タイヤ
JP7256192B2 (ja) タイヤ
WO2019039614A1 (ja) ゴム組成物及びタイヤ
WO2019117214A1 (ja) ゴム組成物およびタイヤ
JP6823708B2 (ja) 硫黄架橋性ゴム混合物および車両用タイヤ
JP6521559B2 (ja) 高性能ウェットタイヤ用トレッドゴム組成物及び高性能ウェットタイヤ
JP2019524950A (ja) 硫黄架橋性ゴム混合物および車両用タイヤ
US11325988B2 (en) Sulfur-crosslinkable rubber mixture, vulcanizate of the rubber mixture, and vehicle tire
WO2019117263A1 (ja) ゴム組成物およびタイヤ
JP6799669B2 (ja) 硫黄架橋性ゴム混合物および車両用タイヤ
JP6799670B2 (ja) ゴムブレンド、硫黄架橋性ゴム混合物、および車両用タイヤ
JP2020094112A (ja) ゴム組成物およびタイヤ
JP2019104889A (ja) ゴム組成物およびタイヤ
WO2019117217A1 (ja) ゴム組成物およびタイヤ
WO2017187907A1 (ja) ゴム配合用フェノール樹脂、ゴム組成物及びタイヤ
CN116209712A (zh) 可交联橡胶混合物及充气车辆轮胎

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019559183

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18889670

Country of ref document: EP

Kind code of ref document: A1