WO2019114460A1 - 用于车辆电池换电的电力控制方法与系统 - Google Patents
用于车辆电池换电的电力控制方法与系统 Download PDFInfo
- Publication number
- WO2019114460A1 WO2019114460A1 PCT/CN2018/113919 CN2018113919W WO2019114460A1 WO 2019114460 A1 WO2019114460 A1 WO 2019114460A1 CN 2018113919 W CN2018113919 W CN 2018113919W WO 2019114460 A1 WO2019114460 A1 WO 2019114460A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- power
- battery
- high voltage
- controller
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 89
- 230000008859 change Effects 0.000 claims abstract description 19
- 238000012360 testing method Methods 0.000 claims description 49
- 230000006870 function Effects 0.000 claims description 33
- 230000008569 process Effects 0.000 claims description 27
- 238000004891 communication Methods 0.000 claims description 12
- 238000012790 confirmation Methods 0.000 claims description 11
- 238000010586 diagram Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000004590 computer program Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- HEZMWWAKWCSUCB-PHDIDXHHSA-N (3R,4R)-3,4-dihydroxycyclohexa-1,5-diene-1-carboxylic acid Chemical compound O[C@@H]1C=CC(C(O)=O)=C[C@H]1O HEZMWWAKWCSUCB-PHDIDXHHSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0046—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60S—SERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
- B60S5/00—Servicing, maintaining, repairing, or refitting of vehicles
- B60S5/06—Supplying batteries to, or removing batteries from, vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/30—Constructional details of charging stations
- B60L53/305—Communication interfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
- B60L53/65—Monitoring or controlling charging stations involving identification of vehicles or their battery types
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
- B60L53/66—Data transfer between charging stations and vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/80—Exchanging energy storage elements, e.g. removable batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
- Y02T90/167—Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S30/00—Systems supporting specific end-user applications in the sector of transportation
- Y04S30/10—Systems supporting the interoperability of electric or hybrid vehicles
- Y04S30/14—Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing
Definitions
- the invention belongs to the field of automobiles and, more particularly, relates to power control of vehicle battery replacement.
- Electric vehicles are the trend of green travel in the future. In terms of battery life, the main reason is to charge the battery.
- the power-changing function has been repeatedly mentioned and put into practice in the past year, and as everyone has noticed, changing the power is a powerful complement to charging.
- the present invention provides a power control method for vehicle battery replacement.
- the method includes: S1, the vehicle to be replaced sends a high voltage shutdown signal that turns off the high voltage; S2, after receiving the high voltage shutdown signal, the vehicle to be replaced stops supplying power to the high voltage demand device in the vehicle and enters the vehicle a safety mode in which the high voltage power supply of the vehicle is prohibited from being turned on (including both remote open and local open); and S3, after the vehicle enters the safe mode, performing a power exchange operation.
- step S1 occurs after determining that the to-be-returned vehicle is in a power-changing platform.
- the provided power control method for vehicle battery replacement which may further include confirming whether the to-be-returned vehicle is locked before the power to-be-switched vehicle stops supplying power to the high-voltage demanding device in the vehicle, and The power supply to the high voltage demanding device in the vehicle is stopped when the lock is applied.
- the provided power control method for vehicle battery replacement may further include confirming that the communication network of the to-be-returned vehicle enters a sleep mode before performing the power-changing operation.
- the provided power control method for vehicle battery replacement may further include determining, before step S1, whether the power-changing vehicle meets a preset condition for performing power-changing, the preset condition including at least a small size of the to-be-returned vehicle
- the battery has a power-changing condition sufficient to support the operation of each low-voltage electronic control unit in the vehicle during the power-changing process.
- a power control method for vehicle battery replacement provided, which may further include turning off remote high voltage power and/or remote software of the vehicle before the power to be replaced stops supplying power to the high voltage demand device within the vehicle Upgrade feature.
- a power control method for vehicle battery replacement which may further include turning off any one of the following functions of the vehicle before the power to be replaced stops supplying power to the high voltage demand device in the vehicle or Combination: creep torque of the vehicle, low battery charge low wakeup charging function, and request by the vehicle electrical control unit for high voltage.
- the provided power control method for vehicle battery replacement which may further include confirming whether the to-be-returned vehicle is to be exchanged in the reservation information before the vehicle to be replaced stops supplying power to the high voltage demand device in the vehicle The provided vehicle will continue to follow up only if it is confirmed.
- determining whether the vehicle to be exchanged is to be provided in the power-reservation reservation information comprises: acquiring preset identification information from the to-be-returned vehicle,
- the preset identification information is a vehicle identifier that needs to be provided when the power is exchanged; the identification information obtained from the to-be-returned vehicle is matched with the vehicle identification in the reservation information, and if the matching is passed, the waiting is confirmed.
- the changeover vehicle is the vehicle provided in the reservation information.
- the provided power control method for vehicle battery replacement may further include collecting power battery information of the to-be-returned vehicle before the to-be-returned vehicle stops supplying power to the high-voltage demand device in the vehicle, and The collected power battery information matches the power battery information that is planned to be exchanged for the vehicle's battery, and the subsequent steps are performed only if the matching is passed.
- a power control method for vehicle battery replacement is provided, wherein the power battery information includes a SOC of the battery, an SOH, and software version and hardware version information related to the power battery.
- the power control method for vehicle battery replacement wherein the method further includes: after performing the power-change operation and determining that the power-change is completed, confirming whether the battery information of the replaced new battery is to be exchanged with the vehicle for the power-changing plan
- the battery information of the battery is the same.
- the battery information includes a battery pack number, a battery management unit BMS number of the battery, a software number, a hardware number, an SOC, an SOH, or any combination thereof.
- the power control method for vehicle battery replacement wherein the method further includes performing self-test on the replaced new battery after performing the power-changing operation and determining that the power-change is completed, in the self-checking process,
- the controller related to the power battery control of the vehicle to be replaced is in a test mode, in which the high voltage power supply of the vehicle is temporarily allowed to be turned on to test whether the power battery is powered on and off, and on the power battery. In the case where the power and the power-down test pass, the high-voltage power supply of the vehicle is again prohibited from being turned on to return to the safe mode.
- a power control method for vehicle battery replacement may further include, after the self-test is successful, causing the vehicle to exit the safe mode and/or turn on the high voltage power supply function of the vehicle.
- the present invention also provides a power control system for vehicle battery replacement, which may include: a first controller associated with the power exchange, transmitting a high voltage shutdown signal that turns off the high voltage to the vehicle to be replaced; and a second control provided to the vehicle Receiving the high voltage shutdown signal, and thereby controlling the power battery of the vehicle to supply power to the high voltage demand device in the vehicle, and causing the vehicle to enter a safe mode in which the high voltage power supply of the vehicle is prohibited from being turned on for subsequent power exchange operating
- An electric power control system for replacing a battery of a vehicle wherein the first controller is configured to send a high-voltage shutdown signal that turns off the high voltage to the vehicle to be replaced, determine whether the vehicle to be replaced is in a power-changing platform, and is determined to be at In the case of a power exchange platform, the high voltage shutdown signal is sent.
- An electric power control system for replacing a battery of a vehicle wherein the second controller is configured to control whether the vehicle to be replaced is locked before the power battery of the vehicle supplies power to the high voltage demand device in the vehicle, and The power battery of the vehicle is controlled to supply power to the high voltage demanding device in the vehicle when the lock is applied.
- a power control system for vehicle battery replacement the second controller is further configured to cause the communication network of the to-be-returned vehicle to enter a sleep mode before the power-changing device performs a power-changing operation.
- a power control system for vehicle battery replacement the first controller and the second controller being respectively configured to: the second controller before the transmitting the high voltage shutdown signal, and the first control
- the device interacts to determine whether the power-changing vehicle meets a preset condition for performing power-changing, the preset condition including at least a small battery power of the to-be-returned vehicle sufficient to support operation of each low-voltage electronic control unit in the vehicle during the power-changing process.
- a power control system for vehicle battery switching the second controller being configured to turn off remote high voltage power and/or remote software of the vehicle before controlling the power battery of the vehicle to supply power to the high voltage demand device in the vehicle Upgrade feature.
- An electric power control system for vehicle battery replacement the second controller being further configured to turn off any one of the following functions of the vehicle before the to-be-returned vehicle stops supplying power to the high voltage demand device in the vehicle Or a combination thereof: a creep torque of the vehicle, a small battery low wake-up charging function, and a request by the vehicle ECU to request a high voltage.
- An electric power control system for vehicle battery replacement the first controller being further configured to confirm the to-be-returned vehicle before the second controller controls the power battery of the vehicle to stop supplying power to the high voltage demand device in the vehicle If the vehicle to be provided in the power-on reservation information is not confirmed, a signal indicating that the power is not to be changed is issued.
- a power control system for vehicle battery replacement the first controller and the second controller being configured to: before the second controller controls the power battery of the vehicle to stop supplying power to the high voltage demand device in the vehicle
- the first controller interacts with the second controller to enable the latter to collect power battery information of the to-be-returned vehicle, and send the collected power battery information to the first controller, which is the first
- the controller matches the power battery information of the battery that is scheduled to be switched to the vehicle, and if the match fails, a mismatch signal is issued.
- a power control system for replacing a battery of a vehicle the second control confirming whether the battery information of the replaced new battery and the battery of the battery of the vehicle are to be exchanged to the battery of the vehicle after performing the power-change operation and determining that the power-change is completed The information is consistent.
- the power control system for replacing the battery of the vehicle further includes a self-checking system configured to perform a self-test on the replaced new battery after performing the power-changing operation and determining that the power-change is completed, in the self-checking process,
- the controller related to the power battery control of the vehicle to be replaced is in a test mode, in which the high-voltage power supply of the vehicle is temporarily allowed to be turned on to test whether the power battery that is replaced by the vehicle is powered on and off, and is in the In the case where the power battery is powered on and the power-down test is passed, the high-voltage power supply of the vehicle is again prohibited from being turned on to return to the safe mode.
- a power control system for vehicle battery replacement the self-test system being configured to cause the vehicle to exit the safe mode and/or to activate the high voltage power supply function of the vehicle after the self-test is successful.
- the above mentioned methods can be implemented by software, and some steps or processes can be implemented as different software modules, which are set in different hardware. For example, some steps are implemented as control modules, implemented at the power station end, and some are in the car, and some may be in the third terminal, such as the terminal of the power-changing brother.
- Software modules regardless of where they are implemented, may be implemented as application apps.
- FIG. 1 is a flow chart of a power control method for vehicle battery switching in accordance with an example of the present invention.
- FIG. 2 is a schematic structural diagram of a power control system for vehicle battery replacement according to an example of the present invention.
- FIG. 3 exemplarily illustrates a process diagram of a power control method for vehicle power exchange according to a specific example of the present invention.
- the computer program instructions may be stored in a computer readable memory, which may instruct a computer or other programmable processor to perform functions in a particular manner such that the instructions stored in the computer readable memory comprise an implementation flow diagram and/or The production of the instruction part of the function/operation specified in one or more boxes of the block diagram.
- These computer program instructions can be loaded onto a computer or other programmable data processor to cause a series of operational steps to be performed on a computer or other programmable processor to form a computer-implemented process for the computer or other programmable data.
- the instructions executed on the processor provide steps for implementing the functions or operations specified in one or more of the blocks of the flowchart and/or block diagram. It should also be noted that in some alternative implementations, the functions/operations shown in the blocks may occur out of the order shown in the flowchart. For example, two blocks shown in succession may be executed substantially concurrently or the blocks may be executed in the reverse order, depending upon the function/operation involved.
- reference to the replacement or replacement of a vehicle battery refers to the replacement of the vehicle's power battery (ie, the battery that provides power to the vehicle).
- the reference to the vehicle to be replaced refers to the vehicle to be replaced with the power battery.
- the consistency of the context description although the vehicle has been replaced, is no longer the power to be replaced.
- the battery of the vehicle, but in the same context, is still referred to as the vehicle to be replaced.
- the vehicle is a pure electric vehicle in this example, but the solution of the present invention is applicable to a hybrid vehicle.
- FIG. 1 is a flow chart of a power control method according to an example of the present invention, which is mainly used in a process of replacing a power battery with a vehicle.
- the method includes:
- the vehicle to be replaced After receiving the high voltage shutdown signal, the vehicle to be replaced stops supplying power to the high voltage demand device in the vehicle and enters the safe mode. In the safety mode, the high voltage power supply of the vehicle is prohibited from being turned on ( Including remote open and local open);
- the high voltage shutdown signal is sent to the vehicle by the substation.
- the high voltage shutdown signal will cause the vehicle to stop supplying power to all of the high voltage demanding devices within the vehicle, such as an air conditioner.
- people will have a signal to turn off the high voltage after locking or locking the vehicle (ie, pulling the car key away), but this high-voltage signal usually leaves some time redundancy for some components. So that these components have some buffering time after receiving the signal to turn off the high voltage instead of immediately closing, for example, the originally opened air conditioner, after the lock is locked, the power supply will not be stopped immediately, but buffered for a while. This type of time redundancy is not provided by the high voltage shutdown referred to herein as entering the safe mode.
- step S1 occurs after determining that the vehicle to be replaced is in a power exchange platform.
- the vehicle On the power exchange platform, the vehicle is operated to change power, that is, the power battery is replaced.
- the power control method for vehicle battery replacement includes further confirming whether the to-be-returned vehicle is locked before the to-be-returned vehicle stops supplying power to the high-voltage demand device in the vehicle. And, when the lock is applied, the power supply to the high voltage demanding device in the vehicle is stopped.
- the power control method for vehicle battery switching includes further confirming that the communication network of the to-be-returned vehicle enters a sleep mode before performing the power-changing operation.
- the communication network is put into sleep mode to avoid wake-up of signals transmitted by the network during the power-changing process, and software upgrade initiated by the network can also be avoided.
- the power control method for vehicle battery power conversion further includes determining, before step S1, whether the power-changing vehicle meets a preset condition for performing power-on, the preset condition including at least the to-be-changed
- the small battery of the electric vehicle has a power-changing condition sufficient to support the operation of each low-voltage electronic control unit in the vehicle during the power-changing process.
- a small battery is a battery that supplies power to a low voltage device after the vehicle's power battery is powered off.
- the power of the power battery is converted to a low voltage device in the vehicle through a DCDC converter (DC to DC converter), and is usually powered by a small battery to the low voltage device only after the power battery is turned off, and Typically, when powered by a power battery, the small battery receives low voltage power from the output of the DCDC converter for charging.
- a DCDC converter DC to DC converter
- the power control method for vehicle battery power conversion further includes turning off remote high voltage power-on of the vehicle and/or before the power to-be-switched vehicle stops supplying power to the high voltage demand device in the vehicle.
- remote software upgrade feature This can be achieved, for example, by turning off the in-vehicle communication module.
- the power control method for vehicle battery power conversion further includes turning off any one of the following functions of the vehicle before the power to be replaced stops supplying power to the high voltage demand device in the vehicle Item or a combination thereof: a creep torque of the vehicle, a small battery low wake-up charging function, and a request by the vehicle ECU to request a high voltage.
- the power control method for vehicle battery replacement includes further confirming whether the to-be-returned vehicle is to be exchanged for power before the to-be-returned vehicle stops supplying power to the high-voltage demand device in the vehicle. The vehicle provided in the information will continue to follow up only if the confirmation is yes.
- the power control method for vehicle battery replacement wherein the confirmation of whether the to-be-returned vehicle is to be provided in the power-on reservation information includes the following steps: obtaining a pre-replacement from the to-be-returned vehicle
- the identification information, the preset identification information is a vehicle identification to be provided when the power is exchanged; and the identification information acquired from the to-be-returned vehicle is matched with the vehicle identification in the reservation information, and the matching is passed.
- the vehicle to be replaced is a vehicle provided in the reservation information.
- the power control method for vehicle battery replacement includes further collecting a battery of a power battery of the to-be-returned vehicle before the to-be-returned vehicle stops supplying power to a high voltage demand device in the vehicle Information, and the collected power battery information is matched with the power battery information of the battery that is planned to be exchanged to the vehicle, and the next step is performed if the matching is passed.
- the power control method for vehicle battery switching includes battery state of charge SOC, health state SOH, and software version and hardware version information associated with the power battery.
- the power control method for vehicle battery power conversion further includes confirming whether battery information of a new power battery replaced with a vehicle is related to a power plant plan after performing a power-change operation and determining that the power-change is completed The battery information of the battery switched to the vehicle is the same.
- the power control method for vehicle battery replacement may include a battery pack number, a battery management unit BMS number (if any), a software number, a hardware number Any one or any combination of SOC, SOH.
- the power control method for vehicle battery replacement includes further performing a self-test on the replaced new battery after performing the power-changing operation and determining that the power-change is completed.
- the controller related to the power battery control in the vehicle to be replaced (it should be understood that the vehicle has replaced the power battery at this time) is in the test mode, in which the temporary permission is allowed to be turned on. High-voltage power supply of the vehicle to test whether the power battery is powered on and off, and in the case that the power battery is powered on and the power-off test is passed, the high-voltage power supply prohibition function of the vehicle is turned on again to return to the safety. mode.
- the power control method for vehicle battery switching includes further causing the vehicle to exit the safe mode and/or turn on the high voltage power supply function of the vehicle after the mentioned self-test is successful.
- each step/process can be combined with each other according to the situation, and in the execution, each step and process can be changed without departing from each other and without affecting the power-changing operation.
- a power control system for vehicle battery replacement comprising: a first controller 10 associated with a power exchange unit that transmits a high voltage shutdown signal that turns off a high voltage to a vehicle to be replaced;
- the second controller 12 receives the high voltage shutdown signal and accordingly controls the power battery of the vehicle to supply power to the high voltage demand device in the vehicle and the safe mode in which the vehicle enters the high voltage power supply of the vehicle.
- the power-changing device After entering the safe mode, the power-changing device performs a power-changing operation.
- the first controller associated with the substation may be located in the control server of the substation or may be separate from the control server as an independent control device. 2 is a schematic structural view of the power control system.
- a power control system for vehicle battery replacement wherein the first controller 10 is configured to transmit a high voltage shutdown signal that turns off the high voltage to the vehicle to be exchanged, and determine whether the vehicle to be replaced is in a power exchange The platform and in the case of determining that it is in the power exchange platform, transmits the high voltage shutdown signal.
- the second controller 12 is configured to confirm the power to be exchanged before the power battery of the vehicle stops power supply to the high voltage demand device in the vehicle. Whether the lock has been locked, and the power battery of the vehicle is stopped from supplying power to the high voltage demanding device in the vehicle when the lock is locked.
- the second controller 12 may be a vehicle control unit VCU, or a control module implemented in the VCU.
- the second controller 12 is further configured to bring the communication network of the to-be-returned vehicle into sleep before the power-changing device performs the power-changing operation. mode.
- the communication network is thereby brought into a sleep mode to avoid wake-up of signals transmitted by the network during the power-changing process, and software upgrades initiated through the network can also be avoided.
- the first controller 10 and the second controller 12 are respectively disposed such that the second controller 12 is transmitting the high voltage Before the signal is turned off, interacting with the first controller 10 to determine whether the power-changing vehicle meets a preset condition for performing power-changing, the preset condition including at least the small battery power of the to-be-returned vehicle having a power-changing condition, that is, It is sufficient to support the operation of the various low voltage electronic control units within the vehicle during the power change process.
- the second controller 12 is configured to turn off the remote high voltage of the vehicle before controlling the power battery of the vehicle to supply power to the high voltage demanding device in the vehicle. Power up and / or remote software upgrades.
- the second controller 12 is further configured to turn off the vehicle before the power to be replaced stops supplying power to the high voltage demand device in the vehicle. Any one or combination of the following functions: a creep torque of the vehicle, a small battery low wake-up charging function, and a request by the vehicle ECU to request an upper voltage.
- the first controller 10 is further configured to control the power battery of the vehicle to stop the high voltage demand device in the vehicle at the second controller 12 Before the power supply, it is confirmed whether the vehicle to be exchanged is a vehicle to be provided in the power-on reservation information, and if the confirmation is not, a signal that the power is not exchanged is issued.
- the first controller 10 and the second controller 12 are configured to: control the power battery of the vehicle to stop at the second controller
- the first controller interacts with the second controller to cause the latter to collect power battery information of the to-be-returned vehicle and transmit the collected power battery information to the
- the first controller is matched by the first controller to the power battery information of the battery that is scheduled to be switched to the vehicle, and if the match fails, a mismatched signal is issued.
- the second controller 12 is further configured to confirm whether the battery information of the replaced new battery is after the power-change operation is performed and the power-change is completed.
- the battery information of the battery to be changed to the vehicle is the same. It should be noted that whether the battery information of the replaced new battery is consistent with the battery information of the battery that the power station plan to switch to the vehicle may be executed by the first controller 10. Regardless of which controller is executed, it is only necessary to transmit the battery information of the new battery that has been replaced and the battery information of the battery that the power station plan to switch to the vehicle to the controller.
- the power control system for vehicle battery replacement further includes a self-test system (not shown) configured to self-replace the replaced new battery after performing the power-change operation and determining that the power-change is completed
- the controller related to the power battery control of the to-be-returned vehicle is in a test mode, in which the high-voltage power supply of the vehicle is temporarily allowed to be turned on to test the power battery to be powered on. Whether the power-off is normal or not, and in the case where the power-on and power-off tests pass, the high-voltage power supply of the vehicle is again prohibited from being turned on to return to the safe mode.
- the self-test system can be implemented in the original battery management system BMS of the vehicle.
- An electric power control system for vehicle battery replacement exemplarily, wherein the self-test system is configured to cause the vehicle to exit the safe mode and/or to turn on the high voltage power supply function of the vehicle after the self-test is successful.
- the power exchange platform and the power changing device are mentioned as needed, but the focus of the application is on the power system management implemented by the power exchange, involving the high voltage power of the vehicle and before and after the replacement of the power battery.
- the confirmation of the information does not specifically refer to the mechanical equipment for replacing the power battery, so the description of the power exchange platform and the power exchange equipment is not described.
- the power control method for vehicle battery replacement described above can be performed in the power control system for vehicle battery replacement.
- the method performed is performed at the vehicle end by a controller for managing power changes at the vehicle end, such as the second controller described above in connection with FIG.
- the control components of the power station may be involved.
- the vehicle entering the substation is signed by the substation to determine if the vehicle is an appointment to change the vehicle.
- the user subscribes to the power exchange through the mobile phone APP, and after entering the power station, the user is authenticated according to the relevant reservation information. After the vehicle is authenticated and the vehicle is confirmed to be the vehicle to be replaced, the vehicle is ready to be replaced. Otherwise, the power station will not replace the battery. It should be understood that the execution of this step typically requires the substation to communicate with the vehicle.
- Step 34 entering the power exchange preparation, during the power preparation, first confirm whether the vehicle has entered the power exchange platform and whether the vehicle has been locked, etc.; in the determined case, for example, by the VCU (may be other controllers, only need This function can be performed to turn off the high voltage supply by issuing a high voltage shutdown signal that stops the high voltage shutdown.
- the VCU After the high voltage power supply is turned off in step 34, the VCU notifies the controller of the vehicle for managing the power exchange, and the power exchange preparation work is completed; instead, after the high voltage power supply is turned off in step 34, the controller for managing the power exchange may also be used by the vehicle end. After the preset time, check if the high voltage is off. It should be noted that the controller for managing the power exchange at the vehicle end may be a separate controller or may be implemented as part of the VCU.
- step 36 after the power exchange preparation is completed, the vehicle end sends a signal to the power station to notify it to start the power exchange operation.
- Step 38 After receiving the signal from the power exchange end of the power station, the vehicle end determines whether the replaced battery is a battery that matches the vehicle, for example, is detected by the battery management system BMS.
- step 40 if the step 38 detects that the match is confirmed, the self-test is entered. If the self-test is unsuccessful, the high voltage will not be turned on and the self-test abnormality of the power station will be notified.
- the power exchange process can be divided into the power exchange mode, the vehicle information confirmation, the power exchange preparation, the power battery replacement, and the new Battery information confirmation, new battery power-on self-test, and exit power-switching mode are all 7 parts.
- the vehicle entering the power-changing mode establishes a communication connection established between the vehicle and the power-changing station, and the vehicle has been confirmed to have a preset condition for power-changing.
- a small 12V battery is sufficient to support the operation of each low voltage electronic control unit during the power exchange process.
- a small 12V battery is sufficient to support the end of battery replacement. If the preset conditions of the power changing device are not met, for example, the small battery is insufficient, it may be necessary to charge the small battery.
- the above process is for the driver of the power-changing vehicle (the user or the power-changing brother who helps the user to change the power), the information of the appointment for power-changing, waiting for the power-on detection, and confirming whether the power-change is possible or not. It can be carried out through a central control panel of the vehicle or a mobile device such as a mobile phone. For example, if the detection result indicates that the vehicle does not satisfy the preset condition of the power exchange, the driver is informed of this information through the central control panel of the vehicle or the power exchange APP in the mobile phone.
- the high-voltage power supply After entering the power-changing mode, the high-voltage power supply will be stopped, which includes prohibiting remote high-voltage power-on requests (for example, remotely starting the vehicle) and also turning off the remote software upgrade function.
- the VCU After entering the power-changing mode, the VCU will turn off the creep torque (to achieve the effect of neutral without stepping on the throttle), turn off the small battery low to wake up the charging function, turn off the other electronic control unit to request the high voltage request .
- the above situation is also referred to as the VCU entering the pre-safe mode.
- a power station After entering the power exchange mode, there will be further communication interaction between the power station and the vehicle to confirm that the vehicle to be replaced is the correct vehicle. For example, a power station will send a request to the vehicle to obtain vehicle information. The vehicle will provide the software and hardware version information of the vehicle's VIN (vehicle ID number), power battery SOC, power battery SOH, and some important electronic control units (eg, vehicle control unit VCU, battery management system BMS) to the power station. . The power station will accordingly confirm whether the vehicle is consistent with the vehicle that is scheduled to be replaced, and whether the new battery to be replaced is compatible with the existing battery in the vehicle. If it is not compatible, the power station will notify the driver of the change of power and stop the subsequent process of power change.
- VIN vehicle ID number
- VCU vehicle control unit
- VCU battery management system BMS
- the power station communicates with the vehicle to confirm whether the vehicle can be replaced. In practical applications, it can be judged whether the vehicle is in the parking state, and whether the steering wheel is back (to ensure the battery positioning, the tire is not aligned with the screw). If the condition is met, the vehicle is requested to lock (lock enters the anti-theft state). If the lock is successful, the high voltage is requested from the VCU, that is, the high voltage is interrupted. Once the VCU is successfully powered down (after the high voltage is successful, the vehicle enters the safe mode), the vehicle end detects whether the network enters the sleep mode within a certain period of time. If the vehicle enters the sleep mode, the vehicle end informs the power station end that the battery can be replaced after the power is changed. Otherwise, the power supply to the power station cannot be changed.
- the power station uses physical equipment to replace the vehicle's power battery.
- the power station will communicate with the vehicle, so that the vehicle knows that the power change is complete.
- the car will confirm the new battery information. For example, the car end will collect the battery pack number of the new battery, the number of the new battery battery management unit BMS, software number, hardware number, SOC, SOH. If the collected information is inconsistent with the expected installation of the newly installed battery and the power station (this may be the wrong battery for the power station), a message will be sent to replace the battery.
- the new power battery After confirming that the new battery replaced in the car is the correct new battery, the new power battery will be self-tested, for example, by the VCU for new power battery self-test.
- the VCU will be in test mode.
- the test mode temporarily allows the high voltage to be tested for whether the power battery is powered up and down. When the test is over, it will return to safe mode, so that even if the self-test fails and the battery is replaced again, the vehicle is still in safe mode, ensuring safety.
- the VCU of the vehicle After confirming that the new battery has been successfully tested, the VCU of the vehicle exits the safe mode. In some cases, it can exit to the pre-safe mode described above, close the safety connection, and unlock the vehicle to facilitate the driver to enter the vehicle, reducing the unlocking operation. .
- the car will send a message to the power station that failed to exit the safe mode.
- the main control module of the vehicle end control power will exit the power exchange mode, and the VCU will return to the normal driving mode.
- the controller that controls the vehicle end change may confirm to exit the power change mode according to the wifi signal in the power station being disconnected from the vehicle.
- the power change mode can be manually exited.
- the entire execution process involves communication between the power exchange and the vehicle.
- a controller for replacing the power battery is provided in the power station, and a controller for performing the entire process described above is provided in the vehicle.
- the controller in the vehicle may be provided separately or in an original controller of the vehicle, such as a VCU, which can be associated with the VCU of the vehicle and other electrical systems, regardless of the implementation.
- the control unit communicates to obtain information.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
本发明提供用于车辆电池换电的电力控制方法,所述方法包括:S1,向待换电车辆发送关闭高压的高压关闭信号;S2,所述待换电车辆在接收到该高压关闭信号之后,即停止向车辆内的高压需求器件供电并使车辆进入到安全模式,所述安全模式下,该车辆的高压供电被禁止开启;S3,在车辆进入到所述安全模式后,执行换电操作。还提供相应的系统。
Description
本发明属于汽车领域,更为具体地,涉及车辆电池换电的电力控制。
电动汽车是未来绿色出行的趋势,就续航而言,目前主要是为电池充电。但是,换电功能近一年来被不断提及而且付诸实施,且如大家所注意到的,换电是充电的一种有力补充方式。
如此一来,换电过程中,如何确保换电的正确以及如何处理车内的高压电力,是业界关心且致力于解决的问题。
发明内容
本发明提供用于车辆电池换电的电力控制方法。该方法包括:S1,待换电车辆发送关闭高压的高压关闭信号;S2,所述待换电车辆在接收到该高压关闭信号之后,即停止向车辆内的高压需求器件供电并使车辆进入到安全模式,所述安全模式下,该车辆的高压供电被禁止开启(包括远端开启与本地开启两种形式);以及S3,在车辆进入到所述安全模式后,执行换电操作。
所提供的用于车辆电池换电的电力控制方法,可选地,步骤S1发生在确定所述待换电车辆处于换电平台后。
所提供的用于车辆电池换电的电力控制方法,其还可包括在所述待换电车辆停止向车辆内的高压需求器件供电前,确认所述待换电车辆是否已上锁,且在已上锁的情况下才停止向车辆内的高压需求器件供电。
所提供的用于车辆电池换电的电力控制方法,还可包括在执行换电操作之前,确认该待换电车辆的通信网络进入休眠模式。
所提供的用于车辆电池换电的电力控制方法,还可包括在步骤S1之前判断该换电车辆是否满足进行换电的预设条件,所述预设条件至 少包括该待换电车辆的小电池电量具备换电条件足以支持换电过程中该车辆内各低压电控单元的运行。
所提供的用于车辆电池换电的电力控制方法,其还可包括在所述待换电车辆停止向车辆内的高压需求器件供电之前,关闭所述车辆的远程高压上电和/或远程软件升级功能。
所提供的用于车辆电池换电的电力控制方法,其还可包括在所述待换电车辆停止向车辆内的高压需求器件供电之前,关闭所述车辆的以下功能中的任意一项或其组合:车辆的蠕变扭矩、小电池电量低唤醒充电功能、以及该车辆电控制单元请求上高压的请求。
所提供的用于车辆电池换电的电力控制方法,其还可包括在所述待换电车辆停止向车辆内的高压需求器件供电之前,确认该待换电车辆是否待换电预约信息中的提供的车辆,仅在确认是的情况下,会继续后续操作。
所提供的用于车辆电池换电的电力控制方法,其中,确认该待换电车辆是否待换电预约信息中的提供的车辆包括如下步骤:从该待换电车辆获取预设的标识信息,该预设的标识信息是预约换电时需提供的车辆标识;将从该待换电车辆获取的标识信息与该预约信息中的车辆标识进行匹配,在匹配通过的情况下,确认该该待换电车辆是预约信息中提供的车辆。
所提供的用于车辆电池换电的电力控制方法,其还可包括在所述待换电车辆停止向车辆内的高压需求器件供电之前,收集该待换电车辆的动力电池信息,并将所收集的动力电池信息与计划要换到该车辆的电池的动力电池信息匹配,并在匹配通过的情况下,才进行后后续步骤。
所提供的用于车辆电池换电的电力控制方法,其中,该动力电池信息包括电池的SOC,SOH以及与该动力电池相关的软件版本与硬件版本信息。
所提供的用于车辆电池换电的电力控制方法,其中,还可包括在执行换电操作且判断换电完成之后,确认更换的新电池的电池信息是否与换电站计划要换到该车辆的电池的电池信息一致。其中,该电池信息包括电池包编号,电池的电池管理单元BMS编号、软件编号、硬件编号、SOC、SOH中的任意一个或任何组合。
所提供的用于车辆电池换电的电力控制方法,其中,还可包括在执 行换电操作且判断换电完成之后,对更换的新电池进行自检,在该自检过程中,使所述待换电车辆的与动力电池控制有关的控制器处于测试模式,在该测试模式下,临时允许开启车辆的高压供电,以测试该动力电池上电与下电是否正常,且在该动力电池上电与下电测试通过的情况下,再次使该车辆的高压供电被禁止开启从而回到所述的安全模式。
所提供的用于车辆电池换电的电力控制方法,其还可包括在所述自检成功之后,使车辆退出安全模式和/或开启该车辆的高压供电功能。
本发明还提供用于车辆电池换电的电力控制系统,其可包括:与换电站关联的第一控制器,其向待换电车辆发送关闭高压的高压关闭信号;设置于车辆的第二控制器,其接收所述高压关闭信号,并据此控制该车辆的动力电池向车车辆内高压需求器件供电,以及使所述车辆进入到该车辆的高压供电被禁止开启的安全模式以便后续换电操作
用于车辆电池换电的电力控制系统,其中,所述第一控制器设置成向待换电车辆发送关闭高压的高压关闭信号,确定所述待换电车辆是否处于换电平台且在确定处于换电平台的情况下,发送该高压关闭信号。
用于车辆电池换电的电力控制系统,其中,所述第二控制器设置成控制该车辆的动力电池向车车辆内高压需求器件供电之前,确认所述待换电车辆是否已上锁,且在已上锁的情况下才控制该车辆的动力电池向车车辆内高压需求器件供电。
用于车辆电池换电的电力控制系统,所述第二控制器还设置成所述换电设备执行换电操作之前,使该待换电车辆的通信网络进入休眠模式。
用于车辆电池换电的电力控制系统,所述第一控制器与所述第二控制器分别被设置为:所述第二控制器在发送所述高压关闭信号之前,与所述第一控制器交互以确定换电车辆是否满足进行换电的预设条件,所述预设条件至少包括该待换电车辆的小电池电量足以支持换电过程中该车辆内各低压电控单元的运行。
用于车辆电池换电的电力控制系统,所述第二控制器被设置为控制该车辆的动力电池向车车辆内高压需求器件供电之前,关闭所述车辆的远程高压上电和/或远程软件升级功能。
用于车辆电池换电的电力控制系统,所述第二控制器还设置成在所述待换电车辆停止向车辆内的高压需求器件供电之前,关闭所述车 辆的以下功能中的任意一项或其组合:车辆的蠕变扭矩、小电池电量低唤醒充电功能、以及该车辆ECU请求上高压的请求。
用于车辆电池换电的电力控制系统,所述第一控制器还设置成在所述第二控制器控制该车辆的动力电池停止向车辆内的高压需求器件供电之前,确认该待换电车辆是否待换电预约信息中的提供的车辆,在确认不是的情况下,发出不予换电的信号。
用于车辆电池换电的电力控制系统,所述第一控制器与所述第二控制器设置成:在所述第二控制器控制该车辆的动力电池停止向车辆内的高压需求器件供电之前,所述第一控制器与所述第二控制器交互使得后者收集该待换电车辆的动力电池信息,并将所收集的动力电池信息发送至所述第一控制器,是该第一控制器与计划要换到该车辆的电池的动力电池信息匹配,在匹配不通过的情况下,发出不匹配的信号。
用于车辆电池换电的电力控制系统,所述第二控制在执行换电操作且判断换电完成之后,确认更换的新电池的电池信息是否与换电站计划要换到该车辆的电池的电池信息一致。
用于车辆电池换电的电力控制系统,还包括自检系统,设置成在执行换电操作且判断换电完成之后,对更换的新电池进行自检,在该自检过程中,使所述待换电车辆的与动力电池控制有关的控制器处于测试模式,在该测试模式下,临时允许开启车辆的高压供电,以测试更换到车上的动力电池上电与下电是否正常,且在该动力电池上电与下电测试通过的情况下,再次使该车辆的高压供电被禁止开启从而回到所述的安全模式。
用于车辆电池换电的电力控制系统,该自检系统设置成在所述自检成功之后,使车辆退出安全模式和/或开启该车辆的高压供电功能。
以上提到的方法,可由软件实现,而且某些步骤或过程可以实现为不同的软件模块,设置在不同的硬件中。比如,有些步骤实现为控制模块,实现在换电站端,而有些在车里,还有一些可能在第三终端中,该第三终端例如是换电小哥的终端等。不论是实现在哪里的软件模块,都可能被实现为应用APP。
从结合附图的以下详细说明中,将会使本发明的上述和其他目的 及优点更加完整清楚,其中,相同或相似的要素采用相同的标号表示。
图1是根据本发明示例的用于车辆电池换电的电力控制方法的流程图。
图2是根据本发明示例的用于车辆电池换电的电力控制系统的结构示意图。
图3示例性地阐述了根据本发明一个具体例子的车辆换电的电力控制方法的过程示意。
现在将参照附图更加完全地描述本发明,附图中示出了本发明的示例性实施例。但是,本发明可按照很多不同的形式实现,并且不应该被理解为限制于这里阐述的实施例。相反,提供这些实施例使得本公开变得彻底和完整,并将本发明的构思完全传递给本领域技术人员。附图中,相同的标号指代相同的元件或部件,因此,将省略对它们的描述。
附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现这些功能实体,或者在一个或多个硬件模块或集成电路中实现这些功能实体,或者在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
下文参考根据本发明实施例的方法、装置的流程图说明、框图和/或流程图来描述本发明。将理解这些流程图说明和/或框图的每个框、以及流程图说明和/或框图的组合可以由计算机程序指令来实现。可以将这些计算机程序指令提供给通用计算机、专用计算机或其他可编程数据处理设备的处理器以构成机器,以便由计算机或其他可编程数据处理设备的处理器执行的这些指令创建用于实施这些流程图和/或框和/或一个或多个流程框图中指定的功能/操作的部件。
可以将这些计算机程序指令存储在计算机可读存储器中,这些指令可以指示计算机或其他可编程处理器以特定方式实现功能,以便存储在计算机可读存储器中的这些指令构成包含实施流程图和/或框图的一个或多个框中指定的功能/操作的指令部件的制作产品。
可以将这些计算机程序指令加载到计算机或其他可编程数据处理器上以使一系列的操作步骤在计算机或其他可编程处理器上执行,以便构成计算机实现的进程,以使计算机或其他可编程数据处理器上执 行的这些指令提供用于实施此流程图和/或框图的一个或多个框中指定的功能或操作的步骤。还应该注意在一些备选实现中,框中所示的功能/操作可以不按流程图所示的次序来发生。例如,依次示出的两个框实际可以基本同时地执行或这些框有时可以按逆序执行,具体取决于所涉及的功能/操作。
在本发明的各示例中,提到车辆电池换电或者换电指的是更换车辆的动力电池(即,向车辆提供动力输出的电池)。在本发明的各示例中,提到待换电车辆指是要更换动力电池的车辆,在本发明的示例中,为上下文描述的一致性,尽管车辆已经更换完电池,不再是待更换动力电池的车辆,但是为上下文一致,还是将其称为待换电车辆。
车辆在本例中为纯电动车,但本发明的方案适用于混合动力汽车。
图1是按照本发明的示例的电力控制方法的流程图,该方法主要用于在车辆更换动力电池的过程中。该方法包括:
S1,向待换电车辆发送关闭高压的高压关闭信号;
S2,所述待换电车辆在接收到该高压关闭信号之后,即停止向车辆内的高压需求器件供电并使车辆进入到安全模式,所述安全模式下,该车辆的高压供电被禁止开启(包括远端开启与本地开启两种形式);
S3,在车辆进入到所述安全模式后,执行换电操作。
作为示例,该高压关闭信号由换电站发送给车辆。高压关闭信号将使得车辆停止向车内的所有高压电需求器件供电,例如空调。在通常的情况下,人们锁车或给车辆上锁之后(即,拔了车钥匙离开)也会有关闭高压的信号,但是这个关闭高压的信号通常对某些部件留有一些时间冗余,以便这些部件在接到该关闭高压的信号之后还有一些缓冲时间而不是立即关闭,例如原本开着的空调,在锁车之后,就不会立即停止供电,而是缓冲一会儿。本申请在此提到的高压关闭进入到安全模式则不提供这种时间冗余。
作为示例,步骤S1发生在确定所述待换电车辆处于换电平台后。在换电平台,操作车辆换电,即更换动力电池。
根据本发明的一些示例,该用于车辆电池换电的电力控制方法,还包括在所述待换电车辆停止向车辆内的高压需求器件供电前,确认所述待换电车辆是否已上锁,且在已上锁的情况下才停止向车辆内的高压需求器件供电。
根据本发明的一些示例,该用于车辆电池换电的电力控制方法,还包括在执行换电操作之前,确认该待换电车辆的通信网络进入休眠模式。使通信网络进入休眠模式从而避免在换电过程中车辆被通过网络传输来的信号唤醒,也可避免通过网络发起的软件升级。
根据本发明的一些示例,该用于车辆电池换电的电力控制方法,还包括在步骤S1之前判断该换电车辆是否满足进行换电的预设条件,所述预设条件至少包括该待换电车辆的小电池电量具备换电条件足以支持换电过程中该车辆内各低压电控单元的运行。小电池是电动车内,在车辆动力电池停止供电后,向低压器件供电的电池。通常,在动力电池工作时,动力电池的电力经由DCDC转换器(直流到直流转换器)转换后向车内的低压器件供电,通常仅在动力电池关闭之后,由小电池供电给低压器件,且通常,在动力电池供电时,小电池会从DCDC转换器的输出端接收低压电力以充电。
根据本发明的一些示例,该用于车辆电池换电的电力控制方法,还包括在所述待换电车辆停止向车辆内的高压需求器件供电之前,关闭所述车辆的远程高压上电和/或远程软件升级功能。这例如可通过关闭车载通信模块来达成。
根据本发明的一些示例,该用于车辆电池换电的电力控制方法,还包括在所述待换电车辆停止向车辆内的高压需求器件供电之前,关闭所述车辆的以下功能中的任意一项或其组合:车辆的蠕变扭矩(creep torque)、小电池电量低唤醒充电功能、以及该车辆ECU请求上高压的请求。
根据本发明的一些示例,该用于车辆电池换电的电力控制方法,还包括在所述待换电车辆停止向车辆内的高压需求器件供电之前,确认该待换电车辆是否待换电预约信息中的提供的车辆,仅在确认是的情况下,会继续后续操作。
根据本发明的一些示例,该用于车辆电池换电的电力控制方法,其中,确认该待换电车辆是否待换电预约信息中的提供的车辆包括如下步骤:从该待换电车辆获取预设的标识信息,该预设的标识信息是预约换电时需提供的车辆标识;以及将从该待换电车辆获取的标识信息与该预约信息中的车辆标识进行匹配,在匹配通过的情况下,确认该待换电车辆是预约信息中提供的车辆。
根据本发明的一些示例,该用于车辆电池换电的电力控制方法,还包括在所述待换电车辆停止向车辆内的高压需求器件供电之前,收集该待换电车辆的动力电池的电池信息,并将所收集的动力电池信息与计划要换到该车辆的电池的动力电池信息匹配,并在匹配通过的情况下,才进行后续步骤。
根据本发明的一些示例,该用于车辆电池换电的电力控制方法,该动力电池信息包括电池荷电状态SOC,健康状态SOH以及与该动力电池相关的软件版本与硬件版本信息。
根据本发明的一些示例,该用于车辆电池换电的电力控制方法,还包括在执行换电操作且确定换电完成之后,确认更换到车辆的新动力电池的电池信息是否与换电站计划要换到该车辆的电池的电池信息一致。
根据本发明的一些示例,该用于车辆电池换电的电力控制方法,所提到的电池信息可包括电池包编号,电池的电池管理单元BMS编号(如果有的话)、软件编号、硬件编号、SOC、SOH中的任意一个或任何组合。
根据本发明的一些示例,该用于车辆电池换电的电力控制方法,还包括在执行了换电操作并判断换电完成之后,对更换的新电池进行自检。在该自检过程中,使所述待换电车辆(应理解到,此时车辆已经更换了动力电池)中与动力电池控制有关的控制器处于测试模式,在该测试模式下,临时允许开启车辆的高压供电,以测试该动力电池上电与下电是否正常,且在该动力电池上电与下电测试通过的情况下,再次开启该车辆的高压供电禁止功能从而回到所述的安全模式。
根据本发明的一些示例,该用于车辆电池换电的电力控制方法,还包括在所提到的自检成功之后,使车辆退出安全模式和/或开启该车辆的高压供电功能。
以上各示例,各步骤/过程可根据情况相互组合,且执行中,在不背离且不影响换电操作的情况下,各步骤与过程是可调换的。
根据本发明,还提供用于车辆电池换电的电力控制系统,其包括:与换电站关联的第一控制器10,其向待换电车辆发送关闭高压的高压关闭信号;设置于车辆的第二控制器12,其接收所述高压关闭信号,并据此控制该车辆的动力电池向车车辆内高压需求器件供电,以及使所述车辆进入到该车辆的高压供电被禁止开启的安全模式。在进入到安全模式后,会有换电设备执行换电操作。与换电站关联的第一控制器可以是设置在换电站的控制服务器中,也可单独于该控制服务器而 是一个独立的控制设备。图2是该电力控制系统的结构示意图。
根据本发明的用于车辆电池换电的电力控制系统,其中,所述第一控制器10设置成向待换电车辆发送关闭高压的高压关闭信号,确定所述待换电车辆是否处于换电平台且在确定处于换电平台的情况下,发送该高压关闭信号。
根据本发明的用于车辆电池换电的电力控制系统,示例地,所述第二控制器12设置成控制该车辆的动力电池向车辆内高压需求器件停止供电之前,确认所述待换电车辆是否已上锁,且在已上锁的情况下才使该车辆的动力电池停止向车辆内高压需求器件供电。在下文的一些更为具体的例子中,该第二控制器12可能是整车控制单元VCU,或实现在VCU中的控制模块。
根据本发明的用于车辆电池换电的电力控制系统,示例地,所述第二控制器12还设置成在该换电设备执行换电操作之前,使该待换电车辆的通信网络进入休眠模式。如上文所述,由此使通信网络进入休眠模式从而避免在换电过程中车辆被通过网络传输来的信号唤醒,也可避免通过网络发起的软件升级。
根据本发明的用于车辆电池换电的电力控制系统,示例地,所述第一控制器10与所述第二控制器12分别被设置为:所述第二控制器12在发送所述高压关闭信号之前,与所述第一控制器10交互以确定换电车辆是否满足进行换电的预设条件,所述预设条件至少包括该待换电车辆的小电池电量具备换电条件,即它足以支持换电过程中该车辆内各低压电控单元的运行。
根据本发明的用于车辆电池换电的电力控制系统,示例地,所述第二控制器12被设置为控制该车辆的动力电池向车辆内高压需求器件供电之前,关闭所述车辆的远程高压上电和/或远程软件升级功能。
根据本发明的用于车辆电池换电的电力控制系统,示例地,所述第二控制器12还设置成在所述待换电车辆停止向车辆内的高压需求器件供电之前,关闭所述车辆的以下功能中的任意一项或其组合:车辆的蠕变扭矩(creep torque)、小电池电量低唤醒充电功能、以及该车辆ECU请求上高压的请求。
根据本发明的用于车辆电池换电的电力控制系统,示例地,所述第一控制器10还设置成在所述第二控制器12控制该车辆的动力电池停止向车辆内的高压需求器件供电之前,确认该待换电车辆是否待换 电预约信息中的提供的车辆,在确认不是的情况下,发出不予换电的信号。
根据本发明的用于车辆电池换电的电力控制系统,示例地,所述第一控制器10与所述第二控制器12设置成:在所述第二控制器控制该车辆的动力电池停止向车辆内的高压需求器件供电之前,所述第一控制器与所述第二控制器交互使得后者收集该待换电车辆的动力电池信息,并将所收集的动力电池信息发送至所述第一控制器,由该第一控制器将其与计划要换到该车辆的电池的动力电池信息匹配,在匹配不通过的情况下,发出不匹配的信号。
根据本发明的用于车辆电池换电的电力控制系统,示例地,所述第二控制器12还配置成在执行换电操作且判断换电完成之后,确认更换的新电池的电池信息是否与换电站计划要换到该车辆的电池的电池信息一致。需要说明的是,确认更换的新电池的电池信息是否与换电站计划要换到该车辆的电池的电池信息一致也可由第一控制器10来执行。无论由哪个控制器来执行,只需要将确认更换的新电池的电池信息以及换电站计划要换到该车辆的电池的电池信息都传送给该控制器即可。
根据本发明的用于车辆电池换电的电力控制系统,示例地,还包括自检系统(未图示),设置成在执行换电操作且判断换电完成之后,对更换的新电池进行自检,在该自检过程中,使所述待换电车辆的与动力电池控制有关的控制器处于测试模式,在该测试模式下,临时允许开启车辆的高压供电,以测试该动力电池上电与下电是否正常,且在该动力电池上电与下电测试通过的情况下,再次使该车辆的高压供电被禁止开启从而回到所述的安全模式。需要说明的是,示例而非限制地,自检系统可以实现在车辆原有的电池管理系统BMS中。
根据本发明的用于车辆电池换电的电力控制系统,示例地,其中,该自检系统设置成在所述自检成功之后,使车辆退出安全模式和/或开启该车辆的高压供电功能。
以上用于车辆电池换电的电力控制系统的示例中,各示例中的部件、元件是可相互组合的。
在本申请的各示例中,换电平台、换电设备因为需要会被提到,但本申请的重点在于因换电而实施的电力系统管理,涉及到车辆的高压电、动力电池更换前后的信息确认,并不具体涉及更换动力电池的机械设备,因此未对换电平台与换电设备做更多描述。
且上文描述的用于车辆电池换电的电力控制方法可执行在该用于车辆电池换电的电力控制系统中。在上述各示例中,所执行的方法在车端,由车辆端用于管理换电的控制器来执行,例如上文结合图2描述的第二控制器。在换电站端,可能涉及到换电站的控制部件。
在上文的示例描述中,提到判断车辆是否待换电预约信息中,以下将结合附图3,示例而非限制性阐述车辆换电的电力控制方法的过程。
参见图3,在步骤30,由换电站对于进入换电站内的车辆进行签权,以确定该车辆是不是预约换电车辆。示例地,用户通过手机APP预约了换电,进如换电站之后,依据相关预约信息,对其进行鉴权。在对车辆鉴权通过,确认车辆是待换电车辆后,即进入到换电准备,否则,换电站不会对其进行更换电池的操作。应理解到,该步骤的执行通常需要换电站与车辆通信。
步骤34,进入到换电准备,在换电准备期间,首先确认车辆是否已进入换电平台以及是否已经锁车等;在确定的情况下,例如由VCU(也可以是其它控制器,只需要能执行这一功能即可)发出停止高压关闭的高压关闭信号,从而关闭高压供电。
步骤34的关闭高压供电之后,VCU通知车辆端用于管理换电的控制器,换电准备工作完毕;作为替代,步骤34的关闭高压供电之后,也可由车辆端用于管理换电的控制器在预设时间之后,自行检查高压是否已关闭。需要说明的是,车辆端用于管理换电的控制器,可以是单独的控制器,也可以实现为VCU的一部分。
步骤36,换电准备完成之后,车辆端会发送信号给换电站,通知其开始换电操作。
步骤38,车辆端接收到来自换电站端换电完成的信号后,判断所更换的电池是不是与该车辆匹配的电池,例如通过电池管理系统BMS来检测等。
步骤40,步骤38检测确认匹配的情况下,进入自检环节,如自检不成功,将不会开启高压且同时会通知换电站自检异常。
以下将以更为具体的示例来阐述本申请,在下文的具体示例中,可能有些用语/术语或名称与上文描述的不尽相同,但只要其实现的功能或其被应用的目的与上文中的一些部件/步骤实质相同或类似,就可被理解为是等同于上文中的部件/步骤或者说是它们的具体实现。
根据本发明提供的车辆电池换电的电力控制方法,根据换电过程换电站和车的交互,可将换电过程分为进入换电模式、车辆信息确认、换电准备、动力电池更换、新电池信息确认、新电池上电自检、退出 换电模式共7部分。
进入换电模式
在这个具体的示例中,车辆进入换电模式是建立在车辆与换电站之间建立了通信连接,且已确认车辆具备换电的预设条件。例如,12V小电池电量足以支持换电过程各低压电控单元的运行,换句话说,12V小电池电量足以支撑到电池更换结束。如果不满足换电设备的预设条件,例如小电池电量不足,则可能需要对小电池充电等。
示例而非限制的,上述过程对于换电车辆的驾驶者(用户或帮助用户换电的换电小哥)而言,其预约换电、等待换电检测、以及确认换电是否可进行等信息,可通过车辆的中控屏或例如手机等移动设备来进行。例如,如果检测结果表明车辆不满足换电的预设条件,则通过车辆的中控屏或手机中的换电APP将这一信息告知该驾驶者。
在进入换电模式后,将会停止高压供电,这包括禁止远程高压上电请求(如,远程启动车辆),也会关闭远程软件升级功能。
在进入到换电模式后,VCU将关闭蠕变扭矩(以使在不踩油门的情况下达到空挡的效果),关闭小电池电量低唤醒充电的功能,关闭其他电控单元请求上高压的请求。在一些描述中,也将上述状况称为VCU进入预安全模式。
车辆信息确认
在进入换电模式后,换电站与车辆之间会进一步通信交互,以确认待换电的车辆是正确的车辆。举例来说,换电站会发送请求给车以获取车辆信息。而车辆会将车的VIN(车辆ID编号)、动力电池SOC、动力电池SOH,一些重要电控单元(例如:整车控制单元VCU,电池管理系统BMS)的软件、硬件版本信息提供给换电站。换电站将据此确认车辆与预定换电的车辆是否一致,要更换上去的新电池和车辆中的现有电池是否兼容。如果不兼容,换电站将通知换电的驾驶者,并停止换电后续流程。
换电准备
车辆到达换电台且请求开始换电后,换电站与车辆通信以确认车辆是否可更换电池。实际应用中,可判断车辆是否处于驻车状态,方向盘是否回正(确保电池定位,轮胎不正机械手臂无法对准螺丝)。如果条件满足,则请求车辆上锁(lock进入到防盗状态)。如果成功 上锁,则请求VCU下高压,即,断高压。一旦VCU下高压成功(下高压成功后,车辆即进入到安全模式),则车辆端在一定时间内检测网络是否进入休眠模式。如果车辆车辆进入休眠模式,则车辆端告知换电站端,换电准备完成可进行电池更换,否则,向换电站反馈无法进行换电。
动力电池更换
换电站使用物理设备更换车辆的动力电池。
新电池信息确认
更换结束,换电站会与车端通信,使得车端知道换电完成。车端将确认新电池信息。举例来说,车端将收集新电池的电池包编号,新电池电池管理单元BMS的编号、软件编号、硬件编号、SOC、SOH。将收集的这些信息与新安装的电池和换电站预期的不一致(这可能是换电站拿错电池),则发出提示信息,以便重新更换电池。
新电池上电自检测
在确认更换到车上的新电池为正确的新电池后,将对新动力电池自检测,例如通过VCU进行新动力电池自检测。
在进行新动力电池自检测过程中,VCU将处于测试模式。测试模式临时允许上高压,进行动力电池上下电是否正常的测试。当测试结束,将回到安全模式,这样即使自检测失败,重新更换电池,车辆仍然处于安全模式,保证了安全。
退出换电模式
在确认新电池自检测成功后,车辆的VCU退出安全模式,在一些情况下,可退出到上文所描述的预安全模式,关闭安全连接,并解锁车辆以方便驾驶人员进车,减少解锁操作。
如果VCU退出安全模式失败,车端将发送退出安全模式失败的信息给换电站。
换电完成,车辆离开换电站后,车端控制换电的主控模块将退出换电模式,VCU将退回到正常驾驶模式。在一些实施例中,车端控制换电的控制器可依据车辆断开了换电站内的wifi信号来确认退出换电模式的。在又一些实施例中,可手动退出换电模式。
以上描述的进入换电模式、车辆信息确认、换电准备、动力电池更换、新电池信息确认、新电池上电自检测的过程中,整个执行过程 中涉及到换电站与车辆的通信。在可能的实现方式中,换电站中设置有用于更换动力电池的控制器,车辆中设置有用于执行上述整个过程的控制器。车辆中的控制器可以是单独设置的,也可以是实现在车辆的原有控制器,例如VCU中,无论是哪一种实现方式,该控制器都能够与车辆的VCU及其它相关联的电控单元通信以获取信息。
需要说明的是,在一些备选实现中,框中所示的功能/操作可以不按流程图所示的次序来发生。例如,依次示出的两个框实际可以基本同时地执行或这些框有时可以按逆序执行,具体取决于所涉及的功能/操作。虽然示出、公开和要求了特定步骤顺序,但应了解步骤可以任何次序实施、分离或组合,除非另外指明,且仍将受益于本公开。
本说明书使用实例来公开本发明,包括最佳模式,并且也使本领域的任何技术人员能够实践本发明,包括制作和使用任何装置或系统以及执行任何所涵盖的方法。本发明的专利保护范围由权利要求书限定,并且可包括本领域的技术人员想出的其他实例。如果此类其他实例具有与权利要求书的字面语言并无不同的结构元件,或者如果它们包括与权利要求书的字面语言并无实质差别的等效结构元件,那么它们意图在权利要求书的范围内。
Claims (27)
- 一种用于车辆电池换电的电力控制方法,所述方法包括:S1,向待换电车辆发送关闭高压的高压关闭信号;S2,所述待换电车辆在接收到该高压关闭信号之后,即停止向车辆内的高压需求器件供电并使车辆进入到安全模式,所述安全模式下,该车辆的高压供电被禁止开启;S3,在车辆进入到所述安全模式后,执行换电操作。
- 如权利要求1所述的方法,其中,步骤S1发生在确定所述待换电车辆处于换电平台后。
- 如权利要求2所述的方法,还包括在所述待换电车辆停止向车辆内的高压需求器件供电前,确认所述待换电车辆是否已上锁,且在已上锁的情况下才停止向车辆内的高压需求器件供电。
- 如权利要求1所述的方法,还包括在执行换电操作之前,确认该待换电车辆的通信网络进入休眠模式。
- 如权利要求1所述的方法,还包括在步骤S1之前判断该换电车辆是否满足进行换电的预设条件,所述预设条件至少包括该待换电车辆的小电池电量足以支持换电过程中该车辆内各低压电控单元的运行。
- 如权利要求1所述的方法,还包括在所述待换电车辆停止向车辆内的高压需求器件供电之前,关闭所述车辆的远程高压上电和/或远程软件升级功能。
- 如权利要求1所述的方法,还包括在所述待换电车辆停止向车辆内的高压需求器件供电之前,关闭所述车辆的以下功能中的任意一项或其组合:车辆的蠕变扭矩、小电池电量低唤醒充电功能、以及该车辆电控制单元ECU请求上高压的请求。
- 如权利要求1所述的方法,还包括在所述待换电车辆停止向车 辆内的高压需求器件供电之前,确认该待换电车辆是否待换电预约信息中的提供的车辆。
- 如权利要求8所述的方法,其中,确认该待换电车辆是否待换电预约信息中的提供的车辆包括如下步骤:从该待换电车辆获取预设的标识信息,该预设的标识信息是预约换电时需提供的车辆标识;将从该待换电车辆获取的标识信息与该预约信息中的车辆标识进行匹配,在匹配通过的情况下,确认该该待换电车辆是预约信息中提供的车辆。
- 如权利要求1或8所述的方法,还包括在所述待换电车辆停止向车辆内的高压需求器件供电之前,收集该待换电车辆的动力电池信息,并将所收集的动力电池信息与计划要换到该车辆的电池的动力电池信息匹配,并在匹配通过的情况下,才进行后后续步骤。
- 如权利要求10所述的方法,其中,该动力电池信息包括电池的SOC,SOH以及与该动力电池相关的软件版本与硬件版本信息。
- 如权利要求1所述的方法,还包括在执行换电操作且确认换电完成之后,判断更换的新电池的电池信息是否与换电站计划要换到该车辆的电池的电池信息一致。
- 如权利要求12所述的方法,其中,该电池信息包括电池包编号,电池的电池管理单元BMS编号、软件编号、硬件编号、SOC、SOH中的任意一个或任何组合。
- 如权利要求1所述的方法,还包括在执行换电操作且判断换电完成之后,对更换的新电池进行自检,在该自检过程中,使车辆的与动力电池控制有关的控制器处于测试模式,在该测试模式下,临时允许开启车辆的高压供电,以测试该动力电池上电与下电是否正常,且在该动力电池上电与下电测试通过的情况下,再次使该车辆的高压供电被禁止开启从而回到所述的安全模式。
- 如权利要求14所述的方法,还包括在所述自检成功之后,使车辆退出安全模式和/或开启该车辆的高压供电功能。
- 一种用于车辆电池换电的电力控制系统,其包括:与换电站关联的第一控制器,其向待换电车辆发送关闭高压的高压关闭信号;设置于车辆的第二控制器,其接收所述高压关闭信号,并据此控制该车辆的动力电池停止向车车辆内高压需求器件供电,以使所述车辆进入到该车辆的高压供电被禁止开启的安全模式,以便后续换电操作。
- 如权利要求16所述的系统,其中,所述第一控制器设置成是在确定所述待换电车辆处于换电平台的情况下,向该待换电车辆发送该高压关闭信号。
- 如权利要求17所述的系统,其中,所述第二控制器设置成控制该车辆的动力电池向车车辆内高压需求器件供电之前,确认所述待换电车辆是否已上锁,且在已上锁的情况下才控制该车辆的动力电池停止向车车辆内高压需求器件供电。
- 如权利要求16所述的系统,所述第二控制器还设置成在所述执行换电操作之前,使该待换电车辆的通信网络进入休眠模式。
- 如权利要求16所述的系统,所述第一控制器与所述第二控制器分别被设置为:所述第一控制器在发送所述高压关闭信号之前,与所述第二控制器交互以确定该待换电车辆是否满足进行换电的预设条件,所述预设条件至少包括该待换电车辆的小电池电量足以支持换电过程中该待换电车辆内各低压电控单元的运行。
- 如权利要求16所述的系统,所述第二控制器被设置为控制该车辆的动力电池停止向车辆内高压需求器件供电之前,关闭所述车辆的远程高压上电和/或远程软件升级功能。
- 如权利要求16所述的方法,所述第二控制器还设置成在所述待换电车辆停止向车辆内的高压需求器件供电之前,关闭所述车辆的以下功能中的任意一项或其组合:车辆的蠕变扭矩、小电池电量低唤醒充电功能、以及该车辆ECU请求上高压的请求。
- 如权利要求16所述的系统,所述第一控制器还设置成在所述第二控制器控制该车辆的动力电池停止向车辆内的高压需求器件供电之前,确认该待换电车辆是否待换电预约信息中的提供的车辆,在确认不是的情况下,发出警示信号。
- 如权利要求16或23所述的系统,所述第一控制器与所述第二控制器设置成:在所述第二控制器控制该车辆的动力电池停止向车辆内的高压需求器件供电之前,所述第一控制器与所述第二控制器交互使得后者收集该待换电车辆的动力电池信息,并将所收集的动力电池信息发送至所述第一控制器,是该第一控制器与计划要换到该车辆的电池的动力电池信息匹配,在匹配不通过的情况下,发出不匹配的信号。
- 如权利要求16所述的系统,所述第二控制器配置成在判断换电完成之后,确认更换的新电池的电池信息是否与换电站计划要换到该车辆的电池的电池信息一致。
- 如权利要求16所述的系统,还包括自检系统,设置成在执行换电操作且判断换电完成之后,对更换的新电池进行自检,在该自检过程中,使所述待换电车辆的与动力电池控制有关的控制器处于测试模式,在该测试模式下,临时允许开启车辆的高压供电,以测试该动力电池上电与下电是否正常,且在该动力电池上电与下电测试通过的情况下,再次使该车辆的高压供电被禁止开启从而回到所述的安全模式。
- 如权利要求26所述的系统,其中,该自检系统设置成在所述自检成功之后,使车辆退出安全模式和/或开启该车辆的高压供电功能。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18887743.5A EP3725604A4 (en) | 2017-12-15 | 2018-11-05 | ELECTRICAL POWER CONTROL METHOD AND SYSTEM FOR USE WHEN CHANGING A VEHICLE BATTERY |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711353809.2 | 2017-12-15 | ||
CN201711353809 | 2017-12-15 | ||
CN201811260617.1A CN109552106A (zh) | 2017-12-15 | 2018-10-26 | 用于车辆电池换电的电力控制方法与系统 |
CN201811260617.1 | 2018-10-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019114460A1 true WO2019114460A1 (zh) | 2019-06-20 |
Family
ID=65865571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/113919 WO2019114460A1 (zh) | 2017-12-15 | 2018-11-05 | 用于车辆电池换电的电力控制方法与系统 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3725604A4 (zh) |
CN (1) | CN109552106A (zh) |
TW (1) | TWI689154B (zh) |
WO (1) | WO2019114460A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115782684A (zh) * | 2022-03-29 | 2023-03-14 | 中国第一汽车股份有限公司 | 一种换电电池状态判断方法、装置、终端及存储介质 |
WO2023193187A1 (zh) * | 2022-04-07 | 2023-10-12 | 时代电服科技有限公司 | 换电系统 |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111162328B (zh) * | 2019-07-24 | 2021-07-02 | 上海钧正网络科技有限公司 | 为车辆更换电池的方法和系统 |
CN112572222A (zh) * | 2019-09-12 | 2021-03-30 | 北京新能源汽车股份有限公司 | 车辆换电站及其控制方法和控制装置 |
CN111347922B (zh) * | 2019-12-25 | 2022-09-30 | 苏州索尔智行新能源科技有限公司 | 用于换电站的车辆换电控制系统及控制方法 |
CN113525153A (zh) * | 2020-04-22 | 2021-10-22 | 北京新能源汽车股份有限公司 | 一种电池换电控制方法及装置 |
CN112009251B (zh) * | 2020-06-24 | 2021-09-14 | 南京奥联新能源有限公司 | 电动车换电系统诊断方法 |
CN111923777A (zh) * | 2020-07-17 | 2020-11-13 | 蓝谷智慧(北京)能源科技有限公司 | 换电站的换电控制方法 |
CN111923758B (zh) * | 2020-07-17 | 2022-06-10 | 蓝谷智慧(北京)能源科技有限公司 | 换电站的电池管理方法 |
CN114103725A (zh) * | 2020-08-31 | 2022-03-01 | 帝亚一维新能源汽车有限公司 | 远程识别动力电池系统电池包更换状态的方法 |
CN114103727A (zh) * | 2020-08-31 | 2022-03-01 | 帝亚一维新能源汽车有限公司 | 动力电池系统电池包的更换检测方法及动力电池系统 |
CN114358967A (zh) * | 2020-09-27 | 2022-04-15 | 北京新能源汽车股份有限公司 | 一种电池安全性评估方法、装置、设备和介质 |
CN112659972B (zh) * | 2021-01-05 | 2022-07-05 | 东风商用车有限公司 | 一种动力电池与整车适配的信号处理系统及方法 |
CN112918257A (zh) * | 2021-02-07 | 2021-06-08 | 中国第一汽车股份有限公司 | 一种电动汽车换电控制系统及控制方法 |
CN112874376B (zh) * | 2021-04-02 | 2022-08-19 | 湖南行必达网联科技有限公司 | 换电控制系统及换电控制方法 |
CN113442781B (zh) * | 2021-06-25 | 2023-04-28 | 杭州海康机器人股份有限公司 | 电池更换方法、换电站及可读存储介质和电子设备 |
HUE066584T2 (hu) * | 2021-08-31 | 2024-08-28 | Contemporary Amperex Technology Co Ltd | Jármûvezérlési eljárás, modul és rendszer, valamint készülék és közeg |
CN115891756B (zh) * | 2021-09-30 | 2024-10-29 | 比亚迪股份有限公司 | 车辆换电控制方法、系统及车辆 |
CN113815440B (zh) * | 2021-10-27 | 2023-06-02 | 重庆长安新能源汽车科技有限公司 | 一种车对车充电系统及其控制方法 |
CN113968163B (zh) * | 2021-11-16 | 2024-10-11 | 诸暨协鑫科技发展有限公司 | 一种换电控制系统、方法及装置 |
CN114590159A (zh) * | 2022-03-09 | 2022-06-07 | 金茂智慧交通科技(天津)有限公司 | 电池更换系统、方法、装置、电子设备及存储介质 |
CN114347846B (zh) * | 2022-03-18 | 2023-01-03 | 蔚来汽车科技(安徽)有限公司 | 用于控制车辆换电的方法、计算机系统、介质及换电站 |
CN114714979A (zh) * | 2022-04-29 | 2022-07-08 | 阿波罗智能技术(北京)有限公司 | 车辆控制方法、装置、介质、电子设备和自动驾驶车辆 |
CN114987276A (zh) * | 2022-05-25 | 2022-09-02 | 湖南行必达网联科技有限公司 | 一种车辆换电及检测方法和系统 |
JP2024093575A (ja) * | 2022-12-27 | 2024-07-09 | トヨタ自動車株式会社 | 報知制御方法および報知制御装置 |
CN116901778A (zh) * | 2023-09-07 | 2023-10-20 | 北京玖行智研交通科技有限公司 | 一种新能源车辆开放换电方法及装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5350995A (en) * | 1992-07-17 | 1994-09-27 | Asahi Kogaku Kogyo Kabushiki Kaisha | Battery charger for charging both a frequently and infrequently used battery |
CN104723898A (zh) * | 2015-02-15 | 2015-06-24 | 北京新能源汽车股份有限公司 | 一种电动汽车换电控制系统及其方法 |
CN105235544A (zh) * | 2015-10-29 | 2016-01-13 | 北京新能源汽车股份有限公司 | 换电式电动汽车的上下电控制系统及方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2946305A1 (fr) * | 2009-06-05 | 2010-12-10 | Julien Armand Bouvard | Station service automatisee de changement de batteries pour vehicules a propulsion electrique |
JP5644322B2 (ja) * | 2010-09-28 | 2014-12-24 | 日産自動車株式会社 | 電動車両の不適切バッテリ交換時対策装置 |
TWI446684B (zh) * | 2011-11-17 | 2014-07-21 | Hon Hai Prec Ind Co Ltd | 電動車的充電控制系統及充電控制方法 |
CN102682371B (zh) * | 2012-05-25 | 2015-07-29 | 无锡职业技术学院 | 一种电动汽车电池管理系统及其管理方法 |
US8970341B2 (en) * | 2012-06-25 | 2015-03-03 | Kookmin University Industry Academy Cooperation Foundation | Electric vehicle, battery charging station, battery exchanging reservation system comprising the same and method thereof |
CN103507651B (zh) * | 2012-06-26 | 2017-09-26 | 国民大学校产学协力团 | 电动车辆、电池充电站、包括电动车辆和电池充电站的电池更换预约系统及其方法 |
CN107161020B (zh) * | 2017-05-15 | 2020-10-23 | 上海蔚来汽车有限公司 | 充换电站及充换电控制系统 |
-
2018
- 2018-10-26 CN CN201811260617.1A patent/CN109552106A/zh active Pending
- 2018-11-05 WO PCT/CN2018/113919 patent/WO2019114460A1/zh unknown
- 2018-11-05 EP EP18887743.5A patent/EP3725604A4/en not_active Withdrawn
- 2018-11-20 TW TW107141235A patent/TWI689154B/zh active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5350995A (en) * | 1992-07-17 | 1994-09-27 | Asahi Kogaku Kogyo Kabushiki Kaisha | Battery charger for charging both a frequently and infrequently used battery |
CN104723898A (zh) * | 2015-02-15 | 2015-06-24 | 北京新能源汽车股份有限公司 | 一种电动汽车换电控制系统及其方法 |
CN105235544A (zh) * | 2015-10-29 | 2016-01-13 | 北京新能源汽车股份有限公司 | 换电式电动汽车的上下电控制系统及方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3725604A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115782684A (zh) * | 2022-03-29 | 2023-03-14 | 中国第一汽车股份有限公司 | 一种换电电池状态判断方法、装置、终端及存储介质 |
WO2023193187A1 (zh) * | 2022-04-07 | 2023-10-12 | 时代电服科技有限公司 | 换电系统 |
Also Published As
Publication number | Publication date |
---|---|
EP3725604A4 (en) | 2021-09-01 |
EP3725604A1 (en) | 2020-10-21 |
CN109552106A (zh) | 2019-04-02 |
TW201933722A (zh) | 2019-08-16 |
TWI689154B (zh) | 2020-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019114460A1 (zh) | 用于车辆电池换电的电力控制方法与系统 | |
CN112406618B (zh) | 一种电动汽车自动换电方法 | |
CN113799644B (zh) | 一种新能源汽车自动更换动力电池方法及系统 | |
CN107264309B (zh) | 一种车辆充放电的控制方法、装置及汽车 | |
JP5660349B2 (ja) | 車両情報取得装置、車両情報供給装置、車両情報取得装置及び車両情報供給装置を備えた車両の情報通信システム | |
JP5126297B2 (ja) | 電力管理システム及び車載電力管理装置 | |
TWI711992B (zh) | 車輛遠距控制系統、車載器或通信模組、車輛、伺服器、車輛遠距控制方法、車輛遠距控制程式及記憶媒體 | |
WO2017166934A1 (zh) | 串联式公共自行车租赁系统及其方法 | |
JP2020009483A (ja) | リプログマスタ | |
WO2018049967A1 (zh) | 一种车载充电控制管理模块、系统和方法 | |
CN104354726A (zh) | 一种列车自动唤醒方法及系统 | |
US20100244560A1 (en) | Vehicle power supply system | |
CN111580505B (zh) | 无人驾驶矿车远程启动的方法、系统、电子设备及介质 | |
CN111071042B (zh) | 控制系统及车辆 | |
CN112559003B (zh) | 域控制器软件升级方法、装置及域控制器 | |
WO2022199706A1 (zh) | 站端系统、车端系统及其换电控制方法、装置、换电状态的监控方法、切换方法及系统 | |
CN109677356A (zh) | 远程锁车控制方法及系统 | |
KR101679155B1 (ko) | 자동차의 고전압 시스템의 비활성화 방법 | |
CN210309937U (zh) | 车载供电控制系统和电动车 | |
CN103625302B (zh) | 电动汽车对外供电系统及监控方法 | |
CN109263574B (zh) | 整车电源模式冗余控制系统及方法 | |
CN111376779B (zh) | 电池箱数据交互系统及方法 | |
US20170136967A1 (en) | Method for preventing discharge of battery at a time of re-programming of vehicle controllers | |
CN208766525U (zh) | 具备远程诊断功能的车载t-box及车辆远程诊断系统 | |
CN116853157A (zh) | 下电控制方法、自动驾驶系统、设备及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18887743 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018887743 Country of ref document: EP Effective date: 20200715 |