WO2019111834A1 - 部分拡散合金鋼粉 - Google Patents

部分拡散合金鋼粉 Download PDF

Info

Publication number
WO2019111834A1
WO2019111834A1 PCT/JP2018/044316 JP2018044316W WO2019111834A1 WO 2019111834 A1 WO2019111834 A1 WO 2019111834A1 JP 2018044316 W JP2018044316 W JP 2018044316W WO 2019111834 A1 WO2019111834 A1 WO 2019111834A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
steel powder
alloy steel
partial diffusion
iron
Prior art date
Application number
PCT/JP2018/044316
Other languages
English (en)
French (fr)
Inventor
拓也 高下
小林 聡雄
中村 尚道
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020207018383A priority Critical patent/KR102325463B1/ko
Priority to US16/768,692 priority patent/US11364541B2/en
Priority to EP18886309.6A priority patent/EP3722021B1/en
Priority to CA3084618A priority patent/CA3084618C/en
Priority to CN201880078233.XA priority patent/CN111432958B/zh
Priority to JP2019515563A priority patent/JP6741153B2/ja
Publication of WO2019111834A1 publication Critical patent/WO2019111834A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/002Making metallic powder or suspensions thereof amorphous or microcrystalline
    • B22F9/004Making metallic powder or suspensions thereof amorphous or microcrystalline by diffusion, e.g. solid state reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0264Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to a partial diffusion alloyed steel powder, and more particularly to a partial diffusion alloyed steel powder having excellent flowability, formability and compressibility without containing Ni, Cr and Si.
  • powder metallurgy technology components with complicated shapes can be manufactured with a shape very close to the product shape (so-called near net shape) and with high dimensional accuracy. Therefore, it is possible to significantly reduce the cutting cost by producing the parts using powder metallurgy technology. Therefore, powder metallurgy products manufactured by powder metallurgy technology are widely used as various machine parts. Furthermore, in recent years, the demand for powder metallurgy technology has further increased in order to cope with the miniaturization, weight reduction and complexity of parts.
  • alloy steel powder used in powder metallurgy is also advanced.
  • alloy steel powder is required to be excellent in fluidity.
  • alloyed steel powder is required to be able to be manufactured by the current powder manufacturing process without requiring additional steps.
  • alloy steel powder for powder metallurgy contains an element for improving hardenability as an alloy component
  • alloy steel powder which does not contain Ni, which has the highest alloy cost is required. There is.
  • an alloyed steel powder not containing Ni one to which at least one of Mo, Cr, Si and Cu is added is widely used.
  • Cr and Si have a problem that they are oxidized in an RX gas (endothermic modified gas) atmosphere generally used as an atmosphere gas for sintering in a manufacturing process of sintered parts. Therefore, when sintering a compact produced using alloy steel powder containing Cr or Si, it is necessary to carry out the sintering process under a high degree of atmosphere control using N 2 or H 2 is there. As a result, even if the raw material cost can be reduced by not using Ni, there is a problem that the part manufacturing cost increases, and as a result, the total cost can not be reduced.
  • Mo-based alloy steel powders using Mo as a hardenability improving element have no fear of oxidation as seen in Cr and Si described above, and the decrease in the compressibility due to the addition of elements is small. Therefore, it is suitable for highly compressible, complex shaped parts. Moreover, since Mo is superior to Ni in hardenability, it exhibits excellent hardenability even with a small amount of addition. From the above reasons, the Mo-based alloy steel powder is considered to be the most suitable alloy system to meet the above requirements (1) to (4).
  • Patent Document 1 As a technique relating to Mo-based alloy steel powder, for example, in Patent Document 1, excellent compressibility, in which 0.2 to 10.0 mass% of Mo is diffused and attached to the surface of iron-based powder containing Mn, Alloy steel powder having cold forgeability has been proposed.
  • Patent Document 2 discloses a technique relating to an Fe—Si—Mn—C alloy steel powder from which a sintered body suitable for a quench strength member or the like can be obtained.
  • the rattler value which is an index of formability, is a very good value as low as 0.31% when formed at a forming pressure of 6 t / cm 2 .
  • Patent Document 3 discloses a technology relating to an alloy steel powder in which Ni is partially diffused in an iron-based powder, and a rattler value at a forming of 6 t / cm 2 shows a good value of 0.4%.
  • Patent Document 4 discloses a technology relating to Fe-Mn-Cr alloy steel powder subjected to vacuum reduction, and shows a good value of 0.35% rattler value at 6 t / cm 2 forming.
  • Patent Document 5 discloses a technique in which the surface of iron powder is plated with copper to make the rattler value extremely low, about 0.2 to 0.3%.
  • Patent Documents 1 to 5 have the following problems.
  • Patent Document 1 has excellent compressibility and cold forgeability.
  • Patent Document 1 only defines the composition of the alloyed steel powder, and although there is a mention of compressibility, the formability is not considered, and the alloyed steel powder proposed in Patent Document 1 is It did not meet the requirement (3) above.
  • the alloy steel powder disclosed in Patent Document 2 is excellent in formability, it contains Si, so it is necessary to sinter in a specially controlled atmosphere to prevent the oxidation of Si described above. Yes, does not meet the requirement of (4) above. Further, the alloyed steel powder described in Patent Document 2 has poor compressibility, and the density of the green compact obtained by forming the alloyed steel powder is as extremely low as 6.77 g / cm 3 at 6 t / cm 2 . If the green density is low as described above, there is a concern in terms of fatigue strength. Therefore, the alloyed steel powder disclosed in Patent Document 2 did not satisfy the above requirements (2) and (4).
  • the alloyed steel powder disclosed in Patent Document 3 needs to contain Ni in a large amount of 30% by mass, and therefore does not satisfy the requirement (4).
  • the alloyed steel powder disclosed in Patent Document 4 also needs to contain Cr, so that it is necessary to control the atmosphere during sintering, and also does not satisfy the above requirement (4).
  • the alloyed steel powder disclosed in Patent Document 5 requires an additional raw material powder production process of plating on the powder.
  • the amount of Cu to be plated is also 20 mass% or more, which is very large compared to the Cu content (about 2 to 3 mass%) in ordinary sintered steel, and as a result, the cost of alloyed steel powder increases. Accompany. Therefore, the alloyed steel powder disclosed in Patent Document 5 does not satisfy the above requirement (4).
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a partial diffusion alloy steel powder having excellent flowability, formability and compressibility without containing Ni, Cr and Si. I assume.
  • the present inventors found out that the said objective would be achieved by the following structure, and completed this invention. That is, the gist configuration of the present invention is as follows.
  • Partial diffusion alloy steel powder in which Mo is diffused and attached to the surface of iron-based powder, Mo content is 0.2 to 2.0% by mass, The median diameter D50 on a weight basis is 40 ⁇ m or more, Among particles contained in the partial diffusion alloy steel powder, for particles having a circle equivalent diameter of 50 to 200 ⁇ m, the number average value of the area envelope degree defined as (particle cross-sectional area / area within envelope) is 0.70 to Partial diffusion alloy steel powder, which is 0.86.
  • the partial diffusion alloy steel powder of the present invention has excellent flowability, formability, and compressibility without containing Ni, Cr, and Si.
  • the partial diffusion alloy of the present invention does not need to contain Ni, which has a high alloy cost, or Cr and Si that require annealing in a special atmosphere, and does not require additional manufacturing processes such as plating.
  • Steel powder is low cost and can be manufactured with current powder manufacturing processes.
  • the partial diffusion alloy steel powder of the present invention is a partial diffusion alloy steel powder in which Mo is diffusion-deposited on the surface of iron-based powder.
  • the partial diffusion alloy steel powder of the present invention is a powder comprising an iron-based powder and Mo diffused and adhered to the surface of the iron-based powder.
  • iron-based powder refers to metal powder containing 50% by mass or more of Fe.
  • the partial diffusion alloy steel powder of the present invention contains, as an essential component, Mo diffused and attached to the surface of iron-based powder. Sintering diffusion can be promoted by containing Mo, which is an ⁇ -phase forming element. Also, if a large amount of Mo is contained in the iron-based powder as a pre-alloy, the compressibility of the particles is reduced due to solid solution strengthening, and it becomes difficult to achieve high density. Even in the case of addition, the decrease in the compressibility can be avoided. In addition, diffusion adhesion of Mo has an effect of stabilizing secondary particles generated by heat treatment by ⁇ -phase sintering. In order to acquire the said effect, Mo content in the partial diffusion alloy steel powder whole shall be 0.2 mass% or more.
  • the Mo content is preferably 0.3% by mass or more, and more preferably 0.4% by mass or more.
  • the Mo content exceeds 2.0% by mass, the sintering promoting effect saturates, and rather, the compressibility decreases. Therefore, the amount of Mo in the entire partial diffusion alloy steel powder is set to 2.0 mass% or less.
  • the Mo content is preferably 1.5% by mass or less, and more preferably 1.0% by mass or less.
  • the component composition of the partial diffusion alloy steel powder of the present invention is not particularly limited except for the above-mentioned Mo content, and can be any composition.
  • Fe is diffused and attached to iron-based powder
  • the upper limit of the Fe content is not particularly limited.
  • the entire partial diffusion alloy steel powder may have a component composition including Mo, Fe, and the remaining unavoidable impurities.
  • Examples of the unavoidable impurities include C, O, N, S, and P.
  • C content into 0.02 mass% or less.
  • the O content is preferably 0.3% by mass or less, and more preferably 0.25% by mass or less.
  • N content into 0.004 mass% or less.
  • S content into 0.03 mass% or less.
  • the P content is preferably 0.1% by mass or less.
  • the partial diffusion alloyed steel powder can optionally contain additional alloying elements.
  • the additional alloying element is preferably contained in the iron-based powder.
  • pre-alloyed steel powder containing the additional alloying element can be used as the iron-based powder.
  • the additional alloying element for example, one or more elements selected from the group consisting of Cu, Mo, and Mn can be used.
  • the partial diffusion alloy steel powder of the present invention may be an alloy steel powder (hybrid alloy steel powder) in which Mo is further diffused and attached to iron-based powder in which Mo is pre-alloyed, but also in that case The amount of Mo in the whole of the partial diffusion alloy steel powder (hybrid alloy steel powder) is in the above range.
  • Mn is oxidized at the same time as Si and Cr at the time of sintering to deteriorate the characteristics of the sintered body. Therefore, the Mn content in the iron-based powder is preferably 0.5 mass% or less.
  • iron powder can be used as the iron-based powder.
  • iron powder refers to a powder consisting of Fe and unavoidable impurities (generally referred to in the art as “pure iron powder”).
  • the partial diffusion alloy steel powder of the present invention does not have to contain Ni, Cr, and Si, which have been conventionally used. Since Ni causes an increase in alloy cost, it is preferable to suppress the content of Ni in the entire partial diffusion alloy steel powder to 0.1 mass% or less, and it is more preferable to substantially not contain Ni. Further, as described above, Cr is susceptible to oxidation and requires annealing atmosphere control, so it is preferable to suppress the Cr content in the entire partial diffusion alloy steel powder to 0.1 mass% or less, substantially It is more preferable not to contain it. Also for Si, for the same reason as Cr, it is preferable to suppress the Si content in the entire partial diffusion alloy steel powder to 0.1 mass% or less, and it is more preferable to substantially not contain Si. In addition, "does not substantially contain” here means that it does not contain except as an unavoidable impurity, and therefore containing as an unavoidable impurity is accept
  • the partial diffusion alloy steel powder in one embodiment of the present invention is, by mass%, Mo: 0.2 to 2.0%, Ni: 0 to 0.1%, Cr: 0 to 0.1%, and Si: 0 to 0.1%, It may have a component composition in which the balance is Fe and unavoidable impurities.
  • D50 40 ⁇ m or more
  • D50 median diameter D50
  • the ratio of fine particles in the entire alloy steel powder becomes too high, As a result, the compressibility is reduced. Therefore, D50 is 40 ⁇ m or more. It is preferable that D50 be 65 ⁇ m or more.
  • the upper limit of D50 is not particularly limited, but if it is excessively large, the mechanical properties after sintering will be reduced. Therefore, in consideration of the characteristics after sintering, it is preferable to set D50 to 120 ⁇ m or less.
  • the maximum particle size of the partial diffusion alloy steel powder is not particularly limited, but is preferably 212 ⁇ m or less.
  • the maximum particle diameter of 212 ⁇ m or less means that the partial diffusion alloy steel powder is a powder which passes through a sieve with an opening of 212 ⁇ m.
  • Area envelope degree 0.70 to 0.86
  • an area defined as (particle cross sectional area / area within envelope) for particles having a circle equivalent diameter of 50 to 200 ⁇ m It is important to set the number average value of the envelope degree to 0.70 or more and 0.86 or less.
  • area envelope degree the number average value of the area envelope degree defined as (particle cross sectional area / area within the envelope) is simply referred to as “area envelope degree”.
  • the area envelopment degree is an index indicating the degree of unevenness of the particle surface, and indicates that as the area envelopment degree is lower, the unevenness of the particle surface is more.
  • the area envelope degree is preferably 0.85 or less, more preferably 0.83 or less.
  • the area envelope degree is 0.70 or more.
  • particle circularity decreases not only when the unevenness of the particle surface is increased but also when the particles are elongated like needles. Since the expanded particles do not contribute to the improvement of the formability, the degree of particle circularity is not suitable as an index of the formability.
  • the area envelope degree can be determined by image analysis of the projection image of the particle.
  • Examples of devices capable of calculating the area envelope degree include Morphologi G3 manufactured by Malvern Co., and CAMSIZER X2 manufactured by Virde Scientific Technology Co., and any of them can be used. Further, in the measurement of the area envelope degree, at least 10,000 particles, preferably 20,000 or more particles are measured, and the area envelope degree is calculated as the number average value of those particles.
  • the partial diffusion alloy steel powder of the present invention can be produced by mixing iron base powder as a raw material and Mo raw material powder, and holding the mixture at a high temperature to diffuse and adhere Mo to the surface of the iron base powder.
  • iron-based powder any metal powder containing 50% or more of Fe can be used.
  • pre-alloyed steel powder containing an alloying element can be used, but pure iron powder can also be used.
  • iron-based powder any may be used such as a reduced iron-based powder produced by reducing iron oxide, an atomized iron-based powder produced by atomization, etc. Since relatively large amounts of impurities such as Si are contained, it is preferable to use atomized iron-based powder.
  • the average particle size of the iron-based powder is not particularly limited, but the average particle size of the partial diffusion alloyed steel powder after partial alloying is almost equal to the average particle size of the iron-based powder as a raw material. From the viewpoint of suppressing the decrease in yield in the dividing step and the like, it is preferable to use one close to the partially alloyed steel powder.
  • the number frequency of particles having a particle diameter of 20 ⁇ m or less occupied in the whole of the iron-based powder is set to 60% or more.
  • the number frequency is set to 60% or more.
  • the D50 of partial diffusion alloy steel powder after finishing reduction decreases if the number ratio of the fine powder having a particle diameter of 20 ⁇ m or less is too high, the number frequency is 90% or less.
  • the measurement method of the number frequency includes a laser diffraction method, an image analysis method, and the like, and any method may be used.
  • the iron-based powder which satisfies the above-mentioned number frequency can be obtained, for example, by adjusting the spraying conditions at the time of atomization.
  • particles having a particle size of more than 20 ⁇ m and particles having a particle size of 20 ⁇ m or less may be mixed.
  • the maximum particle size of the iron-based powder is not particularly limited, but is preferably 212 ⁇ m or less.
  • the maximum particle diameter of 212 ⁇ m or less means that the iron-based powder as the raw material is a powder which passes through a sieve with an opening of 212 ⁇ m.
  • Mo material powder The said Mo raw material powder is a powder which functions as Mo source in the diffusion adhesion process mentioned later.
  • Mo raw material powder any powder can be used as long as it is a powder containing Mo as an element. Therefore, as the Mo raw material powder, metal Mo powder (powder consisting only of Mo), Mo alloy powder And Mo compound powder can be used.
  • Mo alloy powder for example, Fe-Mo (ferro-molybdenum) powder can be used.
  • Mo compound powder for example, at least one selected from the group consisting of Mo oxide, Mo carbide, Mo sulfide, and Mo nitride can be used. These Mo raw material powders may be used alone or in combination of two or more.
  • the iron-based powder and the Mo raw material powder are mixed to form a mixed powder.
  • the blending amount of the iron-based powder and the Mo-containing powder is adjusted so that the Mo content in the entire partial diffusion alloy steel powder finally obtained is 0.2 to 2.0 mass%.
  • the mixing method There is no restriction
  • a reducing atmosphere is preferable, and a hydrogen atmosphere is particularly suitable.
  • heat treatment may be performed under vacuum.
  • a suitable heat treatment temperature is in the range of 800 to 1100.degree. If the temperature is less than 800 ° C., the decomposition of the Mo compound is insufficient, Mo does not diffuse into the iron powder, and adhesion of Mo becomes difficult. If the temperature is higher than 1100 ° C., sintering of the powders during heat treatment proceeds excessively, and the area envelope degree is increased.
  • a preferable heat treatment temperature is in the range of 600 to 1100.degree.
  • the temperature is less than 600 ° C., the diffusion of Mo to the iron-based powder is insufficient, and the adhesion of Mo becomes difficult.
  • the temperature is higher than 1100 ° C., sintering of powders during heat treatment proceeds excessively, and the area envelope degree is increased.
  • the iron-based powder and the Mo-containing powder are usually sintered and solidified, so pulverization / classification to a desired particle size is performed. . That is, removal of coarse powder by additional grinding or classification with a sieve having a predetermined opening is performed as necessary to achieve a desired particle size.
  • the partially alloyed steel powder of the present invention can be produced by the current powder production process without any additional process such as plating.
  • the partial diffusion alloy steel powder of the present invention can be made into a sintered body by pressure forming and sintering as in the conventional powder for powder metallurgy.
  • auxiliary materials can be optionally added to the partial diffusion alloy steel powder.
  • auxiliary material for example, one or both of copper powder and graphite powder can be used.
  • a powdery lubricant can be further mixed with the partial diffusion alloy steel powder.
  • a lubricant can be applied to or adhered to a mold used for pressure molding for molding.
  • any lubricant can be used as the lubricant, such as metal soaps such as zinc stearate and lithium stearate, and amide-based waxes such as ethylenebisstearic acid amide.
  • the lubricant be about 0.1 to 1.2 parts by mass with respect to 100 parts by mass of partially alloyed steel powder.
  • the method of the above pressure molding is not particularly limited, and any method can be used as long as it can form the mixed powder for powder metallurgy.
  • the pressure in the pressure molding is less than 400 MPa, the density of the obtained compact (green compact) may be lowered, and as a result, the properties of the finally obtained sintered body may be lowered.
  • the pressure is preferably 400 to 1000 MPa.
  • the temperature at the time of pressure molding is preferably from normal temperature (20 ° C.) to 160 ° C.
  • the molded product obtained as described above has a high density and is excellent in moldability. Further, since the partial diffusion alloy steel powder of the present invention does not require an element such as Cr or Si which is required to control the sintering atmosphere, it can be sintered by a conventional inexpensive process.
  • Example 1 An Fe-based partial diffusion alloy steel powder was manufactured by mixing iron base powder as a raw material and Mo raw material powder and then heat treating.
  • the iron-based powder atomized iron powder was used.
  • the atomized iron powder is a so-called atomized powder which is produced by the atomization method and is not heat-treated, and is a powder (pure iron powder) composed of Fe and unavoidable impurities.
  • the iron-based powder did not contain Ni, Cr and Si except for unavoidable impurities, and thus the contents of Ni, Cr and Si were each not more than 0.1% by mass.
  • the number frequency of particles having a particle diameter of 20 ⁇ m or less contained in the pure iron powder used is shown in Table 1.
  • the number frequency was measured by image analysis using Morphologi G3 manufactured by Malvern.
  • an oxidized Mo powder having an average particle diameter of 10 ⁇ m was used as the Mo raw material powder.
  • the Mo oxide powder is added to the pure iron powder at a ratio such that the Mo content in the finally obtained partial diffusion alloy steel powder has the value shown in Table 1, and the V-type mixer is used for 15 minutes. Mixed. Thereafter, heat treatment (holding temperature: 880 ° C., holding time: 1 h) was performed in a hydrogen atmosphere at a dew point of 30 ° C. to obtain a partially alloyed steel powder to which Mo was diffused and attached.
  • Image analysis was performed on each of the obtained partial diffusion alloy steel powder, and the number average value of the area envelopment degree of particles having a circle-equivalent diameter of 50 to 200 ⁇ m was measured.
  • Morphellog G3 manufactured by Malvern Co., Ltd. was used as in the image analysis of the raw material iron powder.
  • D50 of partial diffusion alloy steel powder was measured by sieving.
  • the compact was compacted to ⁇ 11 mm ⁇ height 11 mm at a compacting pressure of 686 MPa to obtain a green compact.
  • the density was calculated from the dimensions and weight of the obtained green compact.
  • the density of the green compact can be regarded as an indicator of the compressibility of the partial diffusion alloy steel powder. From the viewpoint of compressibility, a density: 7.20 Mg / m 3 or more is regarded as a pass.
  • the partial diffusion alloy steel powder satisfying the conditions of the present invention has excellent flowability, compressibility, and formability.
  • the partial diffusion alloy steel powder of the present invention does not need to contain Ni, which has a high alloy cost, or Cr and Si that require annealing in a special atmosphere, and does not require additional manufacturing processes such as plating. Because it is low cost, it can be manufactured by the current powder manufacturing process.
  • Example 2 An iron-based powder (pre-alloy steel powder) containing one or more elements selected from the group consisting of Cu, Mo, and Mn instead of the pure iron powder, the balance being Fe and unavoidable impurities
  • a partial diffusion alloy steel powder was produced under the same conditions as in Example 1 except for the point of use.
  • the iron-based powder is an atomized iron-based powder produced by an atomizing method.
  • the contents of Cu, Mo and Mn in the iron-based powder used are shown in Table 2.
  • the number frequency of particles having a particle diameter of 20 ⁇ m or less contained in the iron-based powder used is also described in Table 2.
  • the number frequency was measured by the same method as in Example 1.
  • the oxidized Mo powder is added to the iron-based powder at a ratio such that the Mo content in the finally obtained partial diffusion alloy steel powder becomes the value shown in Table 2, and the V-type mixer is used for 15 minutes. Mixed. Thereafter, heat treatment (holding temperature: 880 ° C., holding time: 1 h) was performed in a hydrogen atmosphere at a dew point of 30 ° C. to obtain a partially alloyed steel powder to which Mo was diffused and attached.
  • Image analysis was performed on each of the obtained partial diffusion alloy steel powder, and the number average value of the area envelopment degree of particles having a circle-equivalent diameter of 50 to 200 ⁇ m was measured.
  • the image analysis was performed in the same manner as in Example 1. Moreover, D50 of partial diffusion alloy steel powder was measured by sieving.
  • the compact was compacted to ⁇ 11 mm ⁇ height 11 mm at a compacting pressure of 686 MPa to obtain a green compact.
  • the density was calculated from the dimensions and weight of the obtained green compact.
  • the density of the green compact can be regarded as an indicator of the compressibility of the partial diffusion alloy steel powder. From the viewpoint of compressibility, a density: 7.20 Mg / m 3 or more is regarded as a pass.
  • the rattler test was carried out in the same manner as in Example 1, and the rattler value of the green compact was measured. For the rattle value, 0.4% or less is considered as a pass.
  • the measurement results are as shown in Table 2. From this result, even when the iron-based powder contains one or more elements selected from the group consisting of Cu, Mo, and Mn in a pre-alloyed state, the partial diffusion alloy steel powder satisfying the conditions of the present invention It can be seen that it has excellent flowability, compressibility, and moldability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

Ni、Cr、Siを含有せずとも、優れた流動性、成形性および圧縮性を備える部分拡散合金鋼粉を提供する。 鉄基粉末の表面にMoを拡散付着させた部分拡散合金鋼粉であって、Mo含有量が0.2~2.0質量%であり、重量基準のメジアン径D50が40μm以上であり、前記部分拡散合金鋼粉に含まれる粒子のうち、円相当径が50~200μmの粒子に関して、(粒子断面積/包絡線内面積)として定義される面積包絡度の個数平均値が0.70~0.86である、流動性、成形性および圧縮性に優れる部分拡散合金鋼粉。

Description

部分拡散合金鋼粉
 本発明は、部分拡散合金鋼粉に関し、特に、Ni、Cr、Siを含有せずとも、優れた流動性、成形性および圧縮性を備える部分拡散合金鋼粉に関する。
 粉末冶金技術では、複雑な形状の部品を、製品形状に極めて近い形状(いわゆるニアネット形状)で、しかも高い寸法精度で製造することができる。よって、粉末冶金技術を用いて部品を作製することにより、大幅な切削コストの低減が可能となる。そのため、粉末冶金技術によって製造された粉末冶金製品は、各種の機械用部品として、多方面に利用されている。さらに、最近では、部品の小型化、軽量化および複雑化に対応するため、粉末冶金技術に対する要求が一段と高まってきている。
 上記のような背景から、粉末冶金に用いられる合金鋼粉に対する要求も高度化している。例えば、粉末冶金用合金鋼粉を金型に充填して成形する際の作業性確保のために、合金鋼粉には流動性に優れることが求められる。
 また、合金鋼粉を焼結して得られる焼結部品の機械的特性が優れることが求められており、そのため、疲労強度を確保する為に圧縮性の向上が、そして複雑形状部品の欠け防止の為に成形性の向上が、それぞれ求められている。
 さらに、部品製造コスト削減に対する要求も強く、そのような観点から、合金鋼粉に対しては、追加の工程を要することなく、現行の粉末製造プロセスで製造し得ることが求められる。また、粉末冶金用合金鋼粉には、合金成分として焼入れ性を向上させる元素を含有させることが一般的に行われているが、最も合金コストが高いNiを含有しない合金鋼粉が求められている。
 Niを含有しない合金鋼粉としては、Mo、Cr、Si、およびCuの少なくとも1つを添加したものが広く用いられている。しかしながら、これらの元素のうちCrおよびSiには、焼結部品製造プロセスにおいて焼結の雰囲気ガスとして一般に用いられるRXガス(吸熱型変成ガス)雰囲気下において酸化してしまうという問題がある。そのため、CrやSiを含有する合金鋼粉を用いて製造された成形体を焼結する際には、NまたはHを使用した高度な雰囲気制御のもとで焼結処理を行う必要がある。その結果、Niを用いないことで原料コストを削減できたとしても、部品製造コストが増加してしまい、結果的にトータルのコストを削減することができないという問題がある。
 以上をまとめると、近年の合金鋼粉に対する要求は以下の(1)~(4)のようになる。
(1)流動性に優れること。
(2)圧縮性が良好であること。
(3)成形性が高いこと。
(4)低コストであること。
 粉末冶金用合金鋼粉のうち、焼入れ性向上元素としてMoを使用したMo系合金鋼粉は、上述したCrおよびSiに見られるような酸化のおそれが無く、元素添加による圧縮性の低下も小さいため、高圧縮性、複雑形状部品に適している。また、MoはNiよりも焼入れ性に優れるため、少量の添加であっても優れた焼入れ性を発揮する。以上の理由から、Mo系合金鋼粉は上記(1)~(4)の要求を満たすために最も適した合金系であると考えられる。
 Mo系合金鋼粉に関する技術としては、例えば、特許文献1では、Mnを含有する鉄基粉末の表面に、0.2~10.0質量%のMoを拡散付着させた、優れた圧縮性と冷間鍛造性を有する合金鋼粉が提案されている。
 一方、成形性の向上に関しては、非Mo系合金鋼粉に関して以下の様な種々の取り組みが行われている。
 特許文献2では、焼入強度部材などに適した焼結体が得られるFe-Si-Mn-C系合金鋼粉に関する技術が開示されている。前記合金鋼粉は、成形性の指標であるラトラ値が、6t/cmの成形圧で成形した場合で0.31%という極めて低く良好な値となっている。
 特許文献3には、鉄基粉末にNiを部分拡散させた合金鋼粉に関する技術が開示されており、6t/cm成形でのラトラ値が0.4%と良好な値を示している。
 特許文献4には、真空還元を実施したFe-Mn-Cr系合金鋼粉に関する技術が開示されており、6t/cm成形でのラトラ値が0.35%と良好な値を示している
 また、特許文献5には、鉄粉の表面に銅めっきを施すことで、ラトラ値が0.2~0.3%程度と極めて低い値とする技術が開示されている。
特開2002-146403号公報 特開平05-009501号公報 特開平02-047202号公報 特開昭59-129753号公報 特開2002-348601号公報
 しかしながら、上記特許文献1~5に記載されているような従来の技術には、以下に述べる問題があった。
 特許文献1で提案されている合金鋼粉は、優れた圧縮性と冷間鍛造性を有する。しかしながら、特許文献1では合金鋼粉の組成のみを規定しており、また、圧縮性に関する言及はあるものの、成形性については考慮されておらず、特許文献1で提案されている合金鋼粉は上記(3)の要件を満たしていなかった。
 一方、特許文献2に開示されている合金鋼粉は、成形性には優れるものの、Siを含んでいるため、上述したSiの酸化を防ぐために特別に制御された雰囲気で焼結を行う必要があり、上記(4)の要件を満たさない。また、特許文献2に記載の合金鋼粉は圧縮性が悪く、該合金鋼粉を成形して得た圧粉体の密度は、6t/cmで6.77g/cmと極めて低くい。このように圧粉体密度が低いと、疲労強度の面で懸念がある。したがって、特許文献2に開示されている合金鋼粉は上記(2)、(4)の要件を満たさなかった。
 また、特許文献3に開示された合金鋼粉は、Niを30質量%と多量に含有する必要があるため、上記(4)の要求を満たさない。
 同様に、特許文献4に開示された合金鋼粉も、Crを含む必要があるため、焼結の際の雰囲気制御が必要であり、やはり上記(4)の要求を満たさない。
 特許文献5に開示された合金鋼粉は、粉末へのめっきという追加的な原料粉製造プロセスを必要とする。また、めっきするCu量も20質量%以上と、通常の焼結鋼におけるCu含有量(2~3質量%程度)と比較して非常に多量であり、その結果、合金鋼粉のコスト上昇を伴う。したがって、特許文献5に開示された合金鋼粉は上記(4)の要件を満たさない。
 このように、特許文献1~5に記載されているような従来技術においては、上記(1)~(4)の要求を全て満足する合金鋼粉は得られていないというのが実状であった。
 本発明は、上記事情に鑑みてなされたものであり、Ni、Cr、およびSiを含有せずとも、優れた流動性、成形性および圧縮性を備える部分拡散合金鋼粉を提供することを目的とする。
 本発明者らは、鋭意検討した結果、下記構成により上記目的が達成されることを見出し、本発明を完成させた。すなわち、本発明の要旨構成は次のとおりである。
1.鉄基粉末の表面にMoを拡散付着させた部分拡散合金鋼粉であって、
  Mo含有量が0.2~2.0質量%であり、
  重量基準のメジアン径D50が40μm以上であり、
 前記部分拡散合金鋼粉に含まれる粒子のうち、円相当径が50~200μmの粒子に関して、(粒子断面積/包絡線内面積)として定義される面積包絡度の個数平均値が0.70~0.86である、部分拡散合金鋼粉。
2.Ni、Cr、およびSiの含有量が、それぞれ0.1質量%以下である、上記1に記載の部分拡散合金鋼粉。
3.前記鉄基粉末が、Cu、Mo、およびMnからなる群より選択される1または2以上の元素を予合金化して含有する、上記1または2に記載の部分拡散合金鋼粉。
 本発明の部分拡散合金鋼粉は、Ni、Cr、Siを含有せずとも、優れた流動性、成形性、および圧縮性を兼ね備えている。また、合金コストが高いNiや、特殊な雰囲気での焼鈍が必要となるCr、Siを含有させる必要がなく、めっきなどの追加的な製造工程も不要であることから、本発明の部分拡散合金鋼粉は低コストであるとともに、現行の粉末製造プロセスで製造することができる。
 次に、本発明を実施する方法について具体的に説明する。なお、以下の説明は、本発明の好適な実施態様を示すものであり、本発明は以下の説明によって何ら限定されるものではない。
[部分拡散合金鋼粉]
 本発明の部分拡散合金鋼粉は、鉄基粉末の表面にMoを拡散付着させた部分拡散合金鋼粉である。言い換えると、本発明の部分拡散合金鋼粉は、鉄基粉末と、前記鉄基粉末の表面に拡散付着したMoとからなる粉末である。ここで、「鉄基粉末」とは、Feを50質量%以上含有する金属粉末を指すものとする。
 本発明においては、Mo含有量、メジアン径、および面積包絡度の個数平均値を特定の範囲に制御することが重要である。以下、各項目の限定理由について説明する。
Mo含有量:0.2~2.0質量%
 本発明の部分拡散合金鋼粉は、鉄基粉末の表面に拡散付着させたMoを必須成分として含有する。α相生成元素であるMoを含有させることにより、焼結拡散を促進することができる。また、鉄基粉末中にMoを予合金として多量に含有させると、固溶強化によって粒子の圧縮性が低下し、高密度化が困難となるが、Moを拡散付着させることにより、Moを多量添加する場合であっても圧縮性の低下を回避することができる。また、Moの拡散付着には、熱処理によって生成した2次粒子をα相焼結によって安定化させる効果がある。前記効果を得るために、部分拡散合金鋼粉全体におけるMo含有量を0.2質量%以上とする。Mo含有量は0.3質量%以上とすることが好ましく、0.4質量%以上とすることがより好ましい。一方、Mo含有量が2.0質量%を超えると、焼結促進効果が飽和し、むしろ圧縮性の低下を招く。そのため、部分拡散合金鋼粉全体におけるMo量を2.0質量%以下とする。Mo含有量は1.5質量%以下とすることが好ましく、1.0質量%以下とすることがより好ましい。
 本発明の部分拡散合金鋼粉の成分組成は、上記Mo含有量を除いて特に限定されず、任意の組成とすることができる。しかし、鉄基粉末にMoを拡散付着させたものであることから、通常は、部分拡散合金鋼粉全体におけるFe含有量を50質量%以上とすることが好ましく、80%以上とすることが好ましく、90%以上とすることがより好ましく、95%以上とすることがさらに好ましい。一方、Fe含有量の上限は特に限定されず、例えば、部分拡散合金鋼粉全体が、Mo、Fe、および残部の不可避不純物からなる成分組成を有するものであってもよい。
 前記不可避不純物としては、例えば、C、O、N、S、およびPなどが挙げられる。なお、不可避不純物の量を低減することにより、粉末の圧縮性をさらに向上させ、一層高い成形密度を得ることができる。そのため、C含有量は0.02質量%以下とすることが好ましい。O含有量は0.3質量%以下とすることが好ましく、0.25質量%以下とすることがより好ましい。N含有量は0.004質量%以下とすることが好ましい。S含有量は0.03質量%以下とすることが好ましい。P含有量は0.1質量%以下とすることが好ましい。
 前記部分拡散合金鋼粉は、任意に追加の合金元素を含有することができる。前記追加の合金元素を使用する場合、該追加の合金元素は前記鉄基粉末に含有されることが好ましい。言い換えると、前記追加の合金元素を含有する予合金鋼粉を前記鉄基粉末として使用することができる。前記追加の合金元素としては、例えば、Cu、Mo、およびMnからなる群より選択される1または2以上の元素を用いることができる。なお、本発明の部分拡散合金鋼粉は、Moを予合金化した鉄基粉末に、さらにMoを拡散付着させた合金鋼粉(ハイブリッド合金鋼粉)とすることもできるが、その場合にも、該部分拡散合金鋼粉(ハイブリッド合金鋼粉)全体におけるMo量を上記範囲とする。また、Mnは、Si、Crと同様に焼結時に酸化して焼結体の特性を劣化させるため、鉄基粉末におけるMn含有量は0.5質量%以下とすることが好ましい。
 なお、前記追加の合金元素を使用しない場合には、前記鉄基粉末として、鉄粉を用いることができる。ここで「鉄粉」とは、Feおよび不可避不純物からなる粉末(本技術分野においては一般的に「純鉄粉」と称される)を指す。
 本発明の部分拡散合金鋼粉は、従来用いられていたNi、Cr、およびSiを含有する必要が無い。Niは合金コスト増加の原因となるため、部分拡散合金鋼粉全体におけるNi含有量は0.1質量%以下に抑制することが好ましく、実質的に含有しないことがより好ましい。また、Crは、先に述べたように酸化を受けやすく、焼鈍雰囲気制御を必要とするため、部分拡散合金鋼粉全体におけるCr含有量を0.1質量%以下に抑制することが好ましく、実質的に含有しないことがより好ましい。Siについても、Crと同様の理由から、部分拡散合金鋼粉全体におけるSi含有量を0.1質量%以下に抑制することが好ましく、実質的に含有しないことがより好ましい。なお、ここで「実質的に含有しない」とは、不可避不純物として以外含有しないことを意味し、したがって不可避不純物として含有することは許容される。
 言い換えると、本発明の一実施形態における部分拡散合金鋼粉は、質量%で、
 Mo:0.2~2.0%、
 Ni:0~0.1%、
 Cr:0~0.1%、および
 Si:0~0.1%を含み、
 残部がFeおよび不可避的不純物からなる成分組成を有することができる。
D50:40μm以上
 上記部分拡散合金鋼粉の重量基準のメジアン径D50(以下、単に「D50」という)が40μm未満であると、該合金鋼粉全体に占める微細な粒子の比率が高くなりすぎ、その結果、圧縮性が低下する。そのため、D50は40μm以上とする。D50は65μm以上とすることが好ましい。一方、D50の上限値は特に限定されないが、過度に大きいと焼結後の機械的特性が低下する。そのため、焼結後の特性まで考慮すると、D50を120μm以下とすることが好ましい。
 前記部分拡散合金鋼粉の最大粒径は、特に限定されないが、212μm以下とすることが好ましい。ここで、最大粒径が212μm以下とは、前記部分拡散合金鋼粉が、目開き212μmの篩を通過する粉末であることを意味する。
面積包絡度:0.70~0.86
 本発明の部分拡散合金鋼粉においては、前記部分拡散合金鋼粉に含まれる粒子のうち、円相当径が50~200μmの粒子に関して、(粒子断面積/包絡線内面積)として定義される面積包絡度の個数平均値を0.70以上0.86以下とすることが重要である。なお、以下の説明において、円相当径が50~200μmの粒子についての、(粒子断面積/包絡線内面積)として定義される面積包絡度の個数平均値を、単に「面積包絡度」と記す。
 面積包絡度は、粒子表面の凹凸の多寡を示す指標であり、面積包絡度が低いほど粒子表面の凹凸が多いことを示している。面積包絡度を0.86以下とすることにより、成形時の粒子同士の絡み合いが促進され、その結果、成形性が向上する。面積包絡度は0.85以下とすることが好ましく、0.83以下とすることがより好ましい。一方、過度に面積包絡度が低いと、粉末の流動性が低下してしまう。そのため、面積包絡度は0.70以上とする。
 なお、類似の指標として粒子円形度があるが、粒子円形度は、粒子表面の凹凸の増加だけでなく、粒子が針状に伸長した場合であっても低下する。伸長した粒子は成形性向上には寄与しないため、粒子円形度は成形性の指標として適当ではない。
 面積包絡度は、粒子の投射像を画像解析することによって求めることが出来る。面積包絡度の算出が可能な装置としては、マルバーン社製 Morphologi G3、ヴァーダー・サイエンティフィックテクノロジー社製 CAMSIZER X2等があり、いずれも用いることができる。また、面積包絡度の測定においては、少なくとも1万個、好ましくは2万個以上の粒子を測定し、それらの粒子の個数平均値として面積包絡度を算出する。
[製造方法]
 次に、本発明の部分拡散合金鋼粉を製造する方法について説明する。本発明の部分拡散合金鋼粉は、原料となる鉄基粉末とMo原料粉末とを混合した後、高温で保持して鉄基粉末の表面にMoを拡散付着させることによって製造することができる。
[鉄基粉末]
 前記鉄基粉末としては、Feを50%以上含有する金属粉末であれば任意のものを用いることができる。前記鉄基粉末としては、上述したように、合金元素を含有する予合金鋼粉を用いることもできるが、純鉄粉を用いることもできる。
 前記鉄基粉末としては、酸化鉄を還元して製造される還元鉄基粉末や、アトマイズ法によって製造されるアトマイズ鉄基粉末など、任意のものを用いることができるが、還元鉄基粉末にはSi等の不純物が比較的多く含まれているため、アトマイズ鉄基粉末を用いることが好ましい。
 前記鉄基粉末の平均粒径は特に限定されないが、部分合金化後の部分拡散合金鋼粉の平均粒子径は、原料としての鉄基粉末の平均粒径とほぼ同等となるため、のちの篩分け工程等における歩留まり低下を抑制する観点から、部分合金化鋼粉に近いものを用いるのが好ましい。
 さらに、前記鉄基粉末の全体に占める、粒径20μm以下の粒子の個数頻度を60%以上とする。前記個数頻度を60%以上とすることにより、粒径20μm以下の微細な鉄基粉末が他の鉄基粉末の表面に付着した2次粒子が形成され、その結果、面積包絡度を0.86以下とすることができる。一方、粒径20μm以下の微粉の個数比率が高すぎると、仕上還元後における部分拡散合金鋼粉のD50が低下するため、前記個数頻度は90%以下とする。
 前記個数頻度の測定方法にはレーザー回折法、画像解析法等があり、いずれを用いても構わない。上記個数頻度の条件を満たす鉄基粉末は、例えば、アトマイズ時の噴霧条件を調整することによって得ることができる。また、粒径20μm超の粒子と粒径20μm以下の粒子を混合して得ることもできる。
 前記鉄基粉末の最大粒径は、特に限定されないが、212μm以下とすることが好ましい。ここで、最大粒径が212μm以下とは、前記原料としての鉄基粉末が、目開き212μmの篩を通過する粉末であることを意味する。
[Mo原料粉末]
 前記Mo原料粉末は、後述する拡散付着工程においてMo源として機能する粉末である。前記Mo原料粉末としては、元素としてのMoを含有する粉末であれば任意の粉末を用いることができ、したがって、前記Mo原料粉末としては、金属Mo粉末(Moのみからなる粉末)、Mo合金粉末、およびMo化合物粉末のいずれをも用いることができる。前記Mo合金粉末としては、例えば、Fe-Mo(フェロモリブデン)粉末を用いることができる。前記Mo化合物粉末としては、例えば、Mo酸化物、Mo炭化物、Mo硫化物、およびMo窒化物からなる群より選択される少なくとも1つを用いることができる。これらのMo原料粉末は、単独で使用しても、複数を混合して使用してもよい。
[混合]
 上記鉄基粉末とMo原料粉末とを混合して混合粉とする。前記混合の際には、最終的に得られる部分拡散合金鋼粉全体におけるMo含有量が0.2~2.0質量%となるように、鉄基粉末とMo含有粉末の配合量を調整する。混合方法については、特に制限はなく、例えば、ヘンシェルミキサーやコーン型ミキサーなどを用いて、常法に従い行うことができる。
 次いで、上記混合粉を高温で保持する熱処理を行う。前記熱処理により、鉄基粉末とMo原料粉末との接触面において、Moが鉄基粉末中へ部分的に拡散し、鉄基粉末の表面にMoが拡散付着した部分拡散合金鋼粉が得られる。
 上記熱処理の雰囲気としては、還元性雰囲気が好適であり、とりわけ水素雰囲気が適している。なお、真空下で熱処理を加えても良い。例えば、前記Mo原料粉末として酸化Mo粉末等のMo化合物を用いる場合、好適な熱処理の温度は800~1100℃の範囲である。前記温度が800℃未満であると、Mo化合物の分解が不十分でMoが鉄粉中へ拡散せず、Moの付着が困難となる。また、前記温度が1100℃より高いと、熱処理中の粉末同士の焼結が過度に進み、面積包絡度が上昇してしまう。一方、金属Mo粉末やFe-MoなどのMo合金を用いる場合、好適な熱処理温度は600~1100℃の範囲である。前記温度が600℃未満であると、鉄基粉末へのMoの拡散が不十分となりMoの付着が困難となる。一方、前記温度が1100℃より高いと、熱処理中の粉末同士の焼結が過度に進み、面積包絡度が上昇してしまう。
 上述のようにして、熱処理すなわち拡散付着処理を行った場合、通常は、鉄基粉末とMo含有粉末が焼結して固まった状態となっているので、所望の粒径に粉砕・分級を行う。すなわち、所望の粒径になるように、必要に応じて追加の粉砕、あるいは、所定の目開きの篩での分級による粗粉の除去を行う。
 このように、本発明の部分合金化鋼粉は、めっきなどの追加プロセスを施すことなく、現行の粉末製造プロセスで製造することができる。
 本発明の部分拡散合金鋼粉は、従来の粉末冶金用粉末と同様に、加圧成形した後、焼結することによって焼結体とすることができる。
 加圧成形に供する際には、前記部分拡散合金鋼粉に任意に副原料を添加することができる。前記副原料としては、例えば、銅粉、黒鉛粉の一方または両方を用いることができる。
 前記加圧成形に際しては、さらに、前記部分拡散合金鋼粉に粉末状の潤滑剤を混合することができる。また、加圧成形に用いる金型に潤滑剤を塗布あるいは付着させて成形することもできる。いずれの場合であっても、前記潤滑剤として、ステアリン酸亜鉛やステアリン酸リチウムなどの金属石鹸、エチレンビスステアリン酸アミドなどのアミド系ワックスなど、任意の潤滑剤を用いることができる。なお、潤滑剤を混合する場合は、部分合金化鋼粉:100質量部に対して、潤滑剤を0.1~1.2質量部程度とすることが好ましい。
 上記加圧成形の方法は特に限定されず、粉末冶金用混合粉末を成形できる方法であれば任意の方法を用いることができる。その際、加圧成形における加圧力が400MPa未満であると、得られる成形体(圧粉体)の密度が低くなり、その結果、最終的に得られる焼結体の特性が低下する場合がある。一方、前記加圧力が1000MPaを超えると、加圧成形に用いる金型の寿命が短くなって、経済的に不利となる。そのため、前記加圧力は400~1000MPaとすることが好ましい。また、加圧成形を行う際の温度は、常温(20℃)~160℃とすることが好ましい。
 上記の様にして得られた成形体は密度が高く、成形性に優れるものとなっている。また、本発明の部分拡散合金鋼粉は、CrやSiといった焼結雰囲気制御の必要な元素を必要としないため、従来の安価なプロセスで焼結を行うことができる。
 以下、実施例により本発明をさらに詳細に説明するが、本発明は、以下の例だけに限定されるものではない。
(実施例1)
 原料としての鉄基粉末とMo原料粉末とを混合し、次いで熱処理することによってMo系部分拡散合金鋼粉を製造した。
 前記鉄基粉末としては、アトマイズ鉄粉を使用した。前記アトマイズ鉄粉は、アトマイズ法によって製造された後、熱処理を施していない、いわゆるアトマイズ生粉(as-atomized powder)であり、Feおよび不可避的不純物からなる粉末(純鉄粉)である。前記鉄基粉末は、不可避不純物を除いて、Ni、Cr、およびSiを含有しておらず、したがって、Ni、Cr、およびSiの含有量は、それぞれ0.1質量%以下であった。
 用いた純鉄粉に含まれる、粒子径20μm以下の粒子の個数頻度を表1に示す。前記個数頻度は、マルバーン社製 Morphologi G3を使用して、画像解析により測定した。
 また、前記Mo原料粉末としては、平均粒径:10μmの酸化Mo粉末を使用した。
 最終的に得られる部分拡散合金鋼粉におけるMo含有量が表1に示した値となるような比率で、前記純鉄粉に対して前記酸化Mo粉末を添加し、V型混合機で15分間混合した。その後、露点:30℃の水素雰囲気中で熱処理(保持温度:880℃、保持時間:1h)して、Moを拡散付着させた部分合金鋼粉を得た。
 得られた部分拡散合金鋼粉のそれぞれについて、画像解析を行って、円相当径が50~200μmの粒子の面積包絡度の個数平均値を測定した。前記画像解析には、原料鉄粉の画像解析時と同様に、マルバーン社製 Morphologi G3を使用した。また、篩分けにより部分拡散合金鋼粉のD50を測定した。
 さらに、得られた部分拡散合金鋼粉の流動性を評価した。前記流動性の評価は、部分拡散合金鋼粉100gを径:5mmのノズルを通して落下させ、停止することなく全量流れきったものを合格(○)、全量あるいは一部が停止して流れなかったものを不合格(×)と判定した。
 前記部分拡散合金鋼粉100質量部に対して、潤滑剤としてのステアリン酸亜鉛1質量部を添加した後、686MPaの成形圧でφ11mm×高さ11mmに成形し、圧粉体を得た。得られた圧粉体の寸法と重量から密度を算出した。前記圧粉体の密度は、部分拡散合金鋼粉の圧縮性の指標とみなすことができる。圧縮性の観点からは、密度:7.20Mg/m以上を合格とみなす。
 その後、成形性を評価するために、JPMA(日本粉末冶金工業会) P 11-1992に規定されているラトラ試験を実施し、前記圧粉体のラトラ値を測定した。ラトラ値については0.4%以下を合格とみなす。
 測定結果は表1に示したとおりであった。この結果から、本発明の条件を満たす部分拡散合金鋼粉は、優れた流動性、圧縮性、および成形性を兼ね備えていることが分かる。また、本発明の部分拡散合金鋼粉は、合金コストが高いNiや、特殊な雰囲気での焼鈍が必要となるCr、Siを含有する必要がなく、めっきなどの追加的な製造工程も不要であることから、低コストであるとともに、現行の粉末製造プロセスで製造することができる。
Figure JPOXMLDOC01-appb-T000001
(実施例2)
 前記純鉄粉に代えて、Cu、Mo、およびMnからなる群より選択される1または2以上の元素を含有し、残部がFeおよび不可避的不純物からなる鉄基粉末(予合金鋼粉)を使用した点以外は実施例1と同様の条件で、部分拡散合金鋼粉を製造した。前記鉄基粉末は、アトマイズ法により製造したアトマイズ鉄基粉末とした。使用した鉄基粉末におけるCu、Mo、およびMnの含有量を表2に示す。
 用いた鉄基粉末に含まれる、粒子径20μm以下の粒子の個数頻度を表2に併記する。前記個数頻度は、実施例1と同様の方法により測定した。
 最終的に得られる部分拡散合金鋼粉におけるMo含有量が表2に示した値となるような比率で、前記鉄基粉末に対して前記酸化Mo粉末を添加し、V型混合機で15分間混合した。その後、露点:30℃の水素雰囲気中で熱処理(保持温度:880℃、保持時間:1h)して、Moを拡散付着させた部分合金鋼粉を得た。
 得られた部分拡散合金鋼粉のそれぞれについて、画像解析を行って、円相当径が50~200μmの粒子の面積包絡度の個数平均値を測定した。前記画像解析は、実施例1と同様の方法で行った。また、篩分けにより部分拡散合金鋼粉のD50を測定した。
 さらに、得られた部分拡散合金鋼粉の流動性を評価した。前記流動性の評価は、実施例1と同様の方法で行った。
 前記部分拡散合金鋼粉100質量部に対して、潤滑剤としてのステアリン酸亜鉛1質量部を添加した後、686MPaの成形圧でφ11mm×高さ11mmに成形し、圧粉体を得た。得られた圧粉体の寸法と重量から密度を算出した。前記圧粉体の密度は、部分拡散合金鋼粉の圧縮性の指標とみなすことができる。圧縮性の観点からは、密度:7.20Mg/m以上を合格とみなす。
 その後、成形性を評価するために、実施例1と同様の方法でラトラ試験を実施し、前記圧粉体のラトラ値を測定した。ラトラ値については0.4%以下を合格とみなす。
 測定結果は表2に示したとおりであった。この結果から、鉄基粉末が、Cu、Mo、およびMnからなる群より選択される1または2以上の元素を予合金化して含有する場合にも、本発明の条件を満たす部分拡散合金鋼粉は、優れた流動性、圧縮性、および成形性を兼ね備えていることが分かる。
Figure JPOXMLDOC01-appb-T000002

Claims (3)

  1.  鉄基粉末の表面にMoを拡散付着させた部分拡散合金鋼粉であって、
      Mo含有量が0.2~2.0質量%であり、
      重量基準のメジアン径D50が40μm以上であり、
     前記部分拡散合金鋼粉に含まれる粒子のうち、円相当径が50~200μmの粒子に関して、(粒子断面積/包絡線内面積)として定義される面積包絡度の個数平均値が0.70~0.86である、部分拡散合金鋼粉。
  2.  Ni、Cr、およびSiの含有量が、それぞれ0.1質量%以下である、請求項1に記載の部分拡散合金鋼粉。
  3.  前記鉄基粉末が、Cu、Mo、およびMnからなる群より選択される1または2以上の元素を予合金化して含有する、請求項1または2に記載の部分拡散合金鋼粉。
     
PCT/JP2018/044316 2017-12-05 2018-11-30 部分拡散合金鋼粉 WO2019111834A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020207018383A KR102325463B1 (ko) 2017-12-05 2018-11-30 부분 확산 합금강 분말
US16/768,692 US11364541B2 (en) 2017-12-05 2018-11-30 Partially diffusion-alloyed steel powder
EP18886309.6A EP3722021B1 (en) 2017-12-05 2018-11-30 Partially diffusion-alloyed steel powder
CA3084618A CA3084618C (en) 2017-12-05 2018-11-30 Partially diffusion-alloyed steel powder
CN201880078233.XA CN111432958B (zh) 2017-12-05 2018-11-30 部分扩散合金钢粉
JP2019515563A JP6741153B2 (ja) 2017-12-05 2018-11-30 部分拡散合金鋼粉

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017233204 2017-12-05
JP2017-233204 2017-12-05

Publications (1)

Publication Number Publication Date
WO2019111834A1 true WO2019111834A1 (ja) 2019-06-13

Family

ID=66751539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044316 WO2019111834A1 (ja) 2017-12-05 2018-11-30 部分拡散合金鋼粉

Country Status (7)

Country Link
US (1) US11364541B2 (ja)
EP (1) EP3722021B1 (ja)
JP (1) JP6741153B2 (ja)
KR (1) KR102325463B1 (ja)
CN (1) CN111432958B (ja)
CA (1) CA3084618C (ja)
WO (1) WO2019111834A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111432957B (zh) * 2017-12-05 2022-03-29 杰富意钢铁株式会社 合金钢粉
KR102325463B1 (ko) 2017-12-05 2021-11-11 제이에프이 스틸 가부시키가이샤 부분 확산 합금강 분말

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129753A (ja) 1983-01-13 1984-07-26 Kawasaki Steel Corp 高強度焼結材料用合金鋼粉
JPH0247202A (ja) 1988-08-10 1990-02-16 Hitachi Powdered Metals Co Ltd 耐熱耐摩耗性焼結合金用鋼粉
JPH059501A (ja) 1991-07-04 1993-01-19 Mitsubishi Steel Mfg Co Ltd 焼結用鉄系粉末およびその製造方法
JP2002146403A (ja) 2000-08-31 2002-05-22 Kawasaki Steel Corp 粉末冶金用合金鋼粉
JP2002348601A (ja) 2001-05-21 2002-12-04 Tsurumi Soda Co Ltd 粉末冶金法及び焼結金属体
JP2005330573A (ja) * 2003-08-18 2005-12-02 Jfe Steel Kk 粉末冶金用合金鋼粉
JP2014237878A (ja) * 2013-06-07 2014-12-18 Jfeスチール株式会社 粉末冶金用合金鋼粉および鉄基焼結体の製造方法
WO2015045273A1 (ja) * 2013-09-26 2015-04-02 Jfeスチール株式会社 粉末冶金用合金鋼粉および鉄基焼結体の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55161002A (en) 1979-06-01 1980-12-15 Kobe Steel Ltd Steel powder for powder metallurgy
JPS60165301A (ja) 1984-02-09 1985-08-28 Kawasaki Steel Corp 粉末冶金用鋼粉とその製造方法
JPH0689361B2 (ja) * 1987-11-04 1994-11-09 トヨタ自動車株式会社 被削性に優れた高強度鉄系粉末およびその製造方法
JPH07188714A (ja) 1993-12-28 1995-07-25 Kobe Steel Ltd 成形性の優れた鉄系粉末
JP4060092B2 (ja) * 2002-02-20 2008-03-12 Jfeスチール株式会社 粉末冶金用合金鋼粉およびその焼結体
CA2476836C (en) 2003-08-18 2009-01-13 Jfe Steel Corporation Alloy steel powder for powder metallurgy
CN100515613C (zh) 2004-04-22 2009-07-22 杰富意钢铁株式会社 粉末冶金用混合粉体
US7384446B2 (en) 2004-04-22 2008-06-10 Jfe Steel Corporation Mixed powder for powder metallurgy
JP6222189B2 (ja) 2014-12-05 2017-11-01 Jfeスチール株式会社 粉末冶金用合金鋼粉および焼結体
WO2016088333A1 (ja) * 2014-12-05 2016-06-09 Jfeスチール株式会社 粉末冶金用合金鋼粉および焼結体
WO2017043094A1 (ja) * 2015-09-11 2017-03-16 Jfeスチール株式会社 粉末冶金用混合粉末の製造方法、焼結体の製造方法、および焼結体
SE542547C2 (en) 2015-09-18 2020-06-02 Jfe Steel Corp Iron-based sintered body and method of manufacturing the same
KR102325463B1 (ko) 2017-12-05 2021-11-11 제이에프이 스틸 가부시키가이샤 부분 확산 합금강 분말

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129753A (ja) 1983-01-13 1984-07-26 Kawasaki Steel Corp 高強度焼結材料用合金鋼粉
JPH0247202A (ja) 1988-08-10 1990-02-16 Hitachi Powdered Metals Co Ltd 耐熱耐摩耗性焼結合金用鋼粉
JPH059501A (ja) 1991-07-04 1993-01-19 Mitsubishi Steel Mfg Co Ltd 焼結用鉄系粉末およびその製造方法
JP2002146403A (ja) 2000-08-31 2002-05-22 Kawasaki Steel Corp 粉末冶金用合金鋼粉
JP2002348601A (ja) 2001-05-21 2002-12-04 Tsurumi Soda Co Ltd 粉末冶金法及び焼結金属体
JP2005330573A (ja) * 2003-08-18 2005-12-02 Jfe Steel Kk 粉末冶金用合金鋼粉
JP2014237878A (ja) * 2013-06-07 2014-12-18 Jfeスチール株式会社 粉末冶金用合金鋼粉および鉄基焼結体の製造方法
WO2015045273A1 (ja) * 2013-09-26 2015-04-02 Jfeスチール株式会社 粉末冶金用合金鋼粉および鉄基焼結体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3722021A4

Also Published As

Publication number Publication date
KR20200088467A (ko) 2020-07-22
US20210138547A1 (en) 2021-05-13
EP3722021A4 (en) 2020-10-14
CA3084618A1 (en) 2019-06-13
JPWO2019111834A1 (ja) 2020-01-16
US11364541B2 (en) 2022-06-21
EP3722021A1 (en) 2020-10-14
JP6741153B2 (ja) 2020-08-19
CN111432958A (zh) 2020-07-17
CN111432958B (zh) 2022-03-29
EP3722021B1 (en) 2022-09-28
KR102325463B1 (ko) 2021-11-11
CA3084618C (en) 2023-03-07

Similar Documents

Publication Publication Date Title
JP6227903B2 (ja) 粉末冶金用合金鋼粉および鉄基焼結体の製造方法
TW201244852A (en) Iron-based powder mixture and method of manufacturing iron-based compacted body and iron-based sintered body
JP5929967B2 (ja) 粉末冶金用合金鋼粉
CA2969511C (en) Iron-based alloy powder for powder metallurgy, and sinter-forged member
KR20160045825A (ko) 분말 야금용 합금 강분 및 철기 소결체의 제조 방법
JP6741153B2 (ja) 部分拡散合金鋼粉
JP6690781B2 (ja) 合金鋼粉
JP2018016881A (ja) 粉末冶金用混合粉末および鉄基焼結体の製造方法
JP6528899B2 (ja) 粉末冶金用混合粉および焼結体の製造方法
JP4715358B2 (ja) 粉末冶金用合金鋼粉
JP2007169736A (ja) 粉末冶金用合金鋼粉
JP6760495B2 (ja) 粉末冶金用混合粉
JPH0751721B2 (ja) 焼結用低合金鉄粉末
JPWO2019188833A1 (ja) 粉末冶金用合金鋼粉および粉末冶金用鉄基混合粉末
KR20200128158A (ko) 분말 야금용 합금 강분 및 분말 야금용 철기 혼합 분말
JP2007100115A (ja) 粉末冶金用合金鋼粉
JP2020132902A (ja) 焼結部材用予合金鋼粉、焼結部材用粉末、および焼結部材
JP2021001381A (ja) 焼結部材用合金鋼粉、焼結部材用鉄基混合粉末、および焼結部材
WO2023157386A1 (ja) 粉末冶金用鉄基混合粉および鉄基焼結体
JP2007126695A (ja) 粉末冶金用合金鋼

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019515563

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886309

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3084618

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207018383

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018886309

Country of ref document: EP

Effective date: 20200706