WO2019111804A1 - 光半導体素子の駆動方法、及び光半導体素子 - Google Patents

光半導体素子の駆動方法、及び光半導体素子 Download PDF

Info

Publication number
WO2019111804A1
WO2019111804A1 PCT/JP2018/044053 JP2018044053W WO2019111804A1 WO 2019111804 A1 WO2019111804 A1 WO 2019111804A1 JP 2018044053 W JP2018044053 W JP 2018044053W WO 2019111804 A1 WO2019111804 A1 WO 2019111804A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
electrode
cladding layer
semiconductor device
optical semiconductor
Prior art date
Application number
PCT/JP2018/044053
Other languages
English (en)
French (fr)
Inventor
正道 山西
徹 廣畑
田中 和典
和上 藤田
彰 樋口
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to JP2019558179A priority Critical patent/JPWO2019111804A1/ja
Publication of WO2019111804A1 publication Critical patent/WO2019111804A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating

Definitions

  • One aspect of the present disclosure relates to a method of driving an optical semiconductor device, and an optical semiconductor device.
  • SLDs Super luminescent diodes
  • Patent Document 1 describes an end face light emitting diode in which a double hetero structure optical waveguide body is electrically separated into a light emitting area and a light loss area by an ion implantation area.
  • the intensity of the output light increases as the injection current increases, but when a current larger than a predetermined amount is injected, the light is oscillated in the optical waveguide and a good output is obtained. I can not get light.
  • the semiconductor element as described above a further increase in output is desired.
  • One aspect of the present disclosure is to provide a driving method of an optical semiconductor device capable of achieving high output of the optical semiconductor device, and an optical semiconductor device suitable for such a driving method.
  • the optical semiconductor device includes an active layer, and an optical waveguide body configured as a double hetero structure including a first cladding layer and a second cladding layer sandwiching the active layer.
  • a first electrode provided on the second cladding layer, a second electrode provided on the second cladding layer on one side of the first electrode in the light guiding direction of the optical waveguide body, and At least one of the third electrode provided on the second cladding layer on the other side of the first electrode in the optical waveguide direction and the first electrode, the second electrode, and the third electrode with the optical waveguide interposed therebetween.
  • a fourth electrode wherein the optical waveguide body extends from the surface of the second cladding layer to the first cladding layer, and provides optics between the first region under the first electrode and the second region under the second electrode. Connecting the first area and the second area Optical connection is made between the first separation region which is separated mechanically and the surface of the second cladding layer to the first cladding layer, and the first region under the first electrode and the third region under the third electrode While the second separation region electrically separating the first region and the third region from each other is provided, and the method of driving the optical semiconductor device includes: the first electrode and the at least one fourth electrode The first region and the second region function as a gain region by applying a forward bias to each of the first and second electrodes and the at least one fourth electrode, and the third electrode and the at least one fourth region The step of causing the third region to function as a loss region by applying a reverse bias between the electrodes and the first region and the second region to function as a gain region and the third region to function as a loss region Light
  • the first region and the second region function as a gain region and the third region functions as a loss region
  • light is acquired while traveling a unit distance in the second region.
  • the product of the value corresponding to the gain and the length of the second region in the light guiding direction corresponds to the gain acquired while light travels the unit distance in the first region It is larger than the product of the value and the length of the first region in the light guiding direction (hereinafter referred to as the amount of gain of the first region).
  • the active layer may have a multiple quantum well structure. In this case, it is possible to further increase the output of the optical semiconductor device.
  • Light in a state in which the first region and the second region function as a gain region and the third region functions as a loss region, Light may be generated by the transition from the order to the ground level. In this case, high output of the optical semiconductor device can be suitably achieved.
  • the light guiding direction may be a direction extending straight. In this case, it is facilitated to drive the optical semiconductor device such that the amount of gain in the second region is larger than the amount of gain in the first region. Further, since the light guiding direction is a straight extending direction, output light having a good beam pattern can be obtained.
  • the end face of the second area opposite to the first area may be a plane perpendicular to the light guiding direction.
  • the end face of the second area opposite to the first area may be a plane perpendicular to the light guiding direction.
  • a low reflection layer may be provided on the end surface of the second region opposite to the first region.
  • the first isolation region is formed of an ion implantation region or an impurity diffusion region
  • the second isolation region is an ion implantation region, an impurity diffusion region, or
  • the two cladding layers may be formed of semiconductor regions different in conductivity type.
  • optical connection and electrical separation between the first area and the second area can be suitably realized by the first separation area.
  • optical connection and electrical separation between the first area and the third area can be suitably realized by the second separation area.
  • the length of the second region in the light guiding direction may be longer than the length of the first region in the light guiding direction. In this case, it is further easier to drive the optical semiconductor device such that the gain amount in the second region is larger than the gain amount in the first region.
  • the second region has a flare shape in which the width increases with distance from the first region when viewed from the direction perpendicular to the second cladding layer. It is also good. In this case, output light having a wide beam pattern can be obtained. Furthermore, since the second region has a flare shape, the density of the injected current can be reduced to suppress the occurrence of gain saturation, and the influence of heat can be reduced. The output of the element can be further increased.
  • the optical semiconductor device includes an active layer, and an optical waveguide body configured as a double hetero structure including a first cladding layer and a second cladding layer sandwiching the active layer.
  • a first electrode provided on the second cladding layer, a second electrode provided on the second cladding layer on one side of the first electrode in the light guiding direction of the optical waveguide body, and At least one of the third electrode provided on the second cladding layer on the other side of the first electrode in the optical waveguide direction and the first electrode, the second electrode, and the third electrode with the optical waveguide interposed therebetween.
  • a fourth electrode wherein the optical waveguide body extends from the surface of the second cladding layer to the first cladding layer, and provides optics between the first region under the first electrode and the second region under the second electrode. Connecting the first area and the second area Optical connection is made between the first separation region which is separated mechanically and the surface of the second cladding layer to the first cladding layer, and the first region under the first electrode and the third region under the third electrode While the second separation region electrically separating the first region and the third region from each other is provided, and the method of driving the optical semiconductor device includes: the first electrode and the at least one fourth electrode The first region and the second region function as a gain region by applying a forward bias to each of the first and second electrodes and the at least one fourth electrode, and the third electrode and the at least one fourth region The step of causing the third region to function as a loss region by applying a reverse bias between the electrodes and the first region and the second region to function as a gain region and the third region to function as a loss region In
  • An optical semiconductor device includes an active layer, and an optical waveguide configured as a double hetero structure including a first cladding layer and a second cladding layer sandwiching the active layer, and a second cladding layer.
  • a first electrode provided, a second electrode provided on the second cladding layer on one side of the first electrode in the optical waveguide direction of the optical waveguide body, and a first electrode in the optical waveguide direction of the optical waveguide body
  • a third electrode provided on the second cladding layer on the other side, and at least one fourth electrode facing the first electrode, the second electrode, and the third electrode with the optical waveguide interposed therebetween;
  • the first cladding layer is extended from the surface of the second cladding layer, and the first region under the first electrode and the second region under the second electrode are optically connected,
  • a first separation area electrically separating the area and the second area from each other The first region and the third region while optically connecting the first region under the first electrode and the third region under the third electrode, from the surface of the
  • the first region and the second region are forward-biased between the first electrode and the at least one fourth electrode, and between the second electrode and the at least one fourth electrode, respectively.
  • the third region By functioning as a gain region and applying reverse bias between the third electrode and at least one fourth electrode to cause the third region to function as a loss region, an output light having excellent light collection performance and a wide spectrum is obtained. Can be generated.
  • the amount of gain in the second region is larger than the amount of gain in the first region.
  • the length of the second region in the light guiding direction is longer than the length of the first region in the light guiding direction, so the amount of gain in the second region is larger than the amount of gain in the first region.
  • driving the optical semiconductor device is facilitated.
  • the active layer may have a multiple quantum well structure. In this case, it is possible to further increase the output of the optical semiconductor device.
  • the light guiding direction may be a direction extending straight. In this case, since the light guiding direction is a direction extending straight, output light having a good beam pattern can be obtained.
  • the end face of the second area opposite to the first area may be a plane perpendicular to the light guiding direction.
  • the end face since the end face is a plane perpendicular to the light guiding direction, output light having a better beam pattern can be obtained.
  • a low reflection layer may be provided on the end surface of the second region opposite to the first region. In this case, it is possible to suppress the occurrence of an optical loss by reflecting a part of the output light at the end face which is the output surface of the output light.
  • the first separation region is constituted by the ion implantation region or the impurity diffusion region
  • the second separation region is the ion implantation region, the impurity diffusion region, or the second cladding layer And may be constituted by semiconductor regions different in conductivity type.
  • optical connection and electrical separation between the first area and the second area can be suitably realized by the first separation area.
  • optical connection and electrical separation between the first area and the third area can be suitably realized by the second separation area.
  • An optical semiconductor device includes an active layer, and an optical waveguide configured as a double hetero structure including a first cladding layer and a second cladding layer sandwiching the active layer, and a second cladding layer.
  • a first electrode provided, a second electrode provided on the second cladding layer on one side of the first electrode in the optical waveguide direction of the optical waveguide body, and a first electrode in the optical waveguide direction of the optical waveguide body
  • a third electrode provided on the second cladding layer on the other side, and at least one fourth electrode facing the first electrode, the second electrode, and the third electrode with the optical waveguide interposed therebetween;
  • the first cladding layer is extended from the surface of the second cladding layer, and the first region under the first electrode and the second region under the second electrode are optically connected,
  • a first separation area electrically separating the area and the second area from each other The first region and the third region while optically connecting the first region under the first electrode and the third region under the third electrode, from the surface of the
  • the first region and the second region are forward-biased between the first electrode and the at least one fourth electrode, and between the second electrode and the at least one fourth electrode, respectively.
  • the third region By functioning as a gain region and applying reverse bias between the third electrode and at least one fourth electrode to cause the third region to function as a loss region, an output light having excellent light collection performance and a wide spectrum is obtained. Can be generated.
  • the amount of gain in the second region is larger than the amount of gain in the first region.
  • the second region has a flare shape, and light is amplified while being spread in the second region, so that output light having a wide beam pattern can be obtained. Furthermore, since the density of the injected current can be reduced to suppress the occurrence of gain saturation, and the influence of heat can be reduced, the output of the optical semiconductor device can be further increased.
  • FIG. 2 is a cross-sectional view taken along the line II-II shown in FIG. (A)
  • (b) is a conceptual diagram for demonstrating the effect of the drive method of the optical semiconductor element which concerns on embodiment. It is a conceptual diagram which shows the relationship between the number of wells of an active layer, an electric current, and gain.
  • It is a perspective view of the optical-semiconductor element of a 1st modification. It is a perspective view of the optical semiconductor element of the 2nd modification. It is a perspective view of the optical semiconductor element of the 3rd modification. It is a perspective view of the optical semiconductor element of the 4th modification.
  • the optical semiconductor device 1 includes a substrate 2 and an optical waveguide body 10.
  • the optical waveguide body 10 is provided on the surface 2 a of the substrate 2 via the buffer layer 3.
  • the substrate 2 and the buffer layer 3 are each made of, for example, n ⁇ -type GaAs.
  • the substrate 2 has, for example, a rectangular plate shape having a length of about 1.5 to 6.0 mm, a width of about 300 to 1000 ⁇ m, and a thickness of about 100 to 600 ⁇ m.
  • the length direction of the substrate 2 is referred to as the X axis direction
  • the width direction of the substrate 2 as the Y axis direction
  • the thickness direction of the substrate 2 as the Z axis direction.
  • the first cladding layer 11, the first guide layer 12, the active layer 13, the second guide layer 14, the second cladding layer 15, and the contact layer 16 are stacked on the buffer layer 3 in this order. It is composed of
  • the optical waveguide body 10 is configured as an active layer 13 and a double hetero structure including a first cladding layer 11 and a second cladding layer 15 sandwiching the active layer 13.
  • the first cladding layer 11 is made of, for example, n ⁇ -type Al 0.3 Ga 0.7 As.
  • the first guide layer 12 is made of, for example, non-doped Al 0.25 Ga 0.75 As.
  • the active layer 13 has, for example, a GaAs / Al 0.2 Ga 0.8 As multiple quantum well structure.
  • the second guide layer 14 is made of, for example, non-doped Al 0.25 Ga 0.75 As.
  • the second cladding layer 15 is made of, for example, p ⁇ -type Al 0.3 Ga 0.7 As.
  • the contact layer 16 is made of, for example, p + -type GaAs.
  • the optical waveguide body 10 is configured as a ridge structure on the substrate 2.
  • the light guiding direction A of the optical waveguide body 10 is a direction extending straight in parallel with the X-axis direction.
  • the width of the optical waveguide body 10 is smaller than the widths of the substrate 2 and the buffer layer 3 except for the portion on the buffer layer 3 side of the first cladding layer 11.
  • the optical waveguide body 10 has, for example, a rectangular plate shape (layered) having a length of about 1.5 to 6.0 mm, a width of about 2 to 50 ⁇ m, and a thickness of about 1 to 2 ⁇ m. ing.
  • the light guiding direction A is a direction along the center line of a cylindrical region for confining light (in the ridge structure, a region formed by the first cladding layer 11, the second cladding layer 15, and the air layer). In other words, it is the direction in which the active layer 13 surrounded by the cylindrical region extends.
  • the optical semiconductor device 1 further includes a first electrode 5, a second electrode 6, a third electrode 7, and a fourth electrode 8.
  • the first electrode 5, the second electrode 6, and the third electrode 7 are provided on the second cladding layer 15 via the contact layer 16, respectively, and the second cladding layer immediately below via the contact layer 16 is provided. It is electrically connected to 15.
  • the fourth electrode 8 is provided on the back surface 2 b of the substrate 2 and is electrically connected to the substrate 2.
  • Each of the first electrode 5, the second electrode 6, the third electrode 7, and the fourth electrode 8 is made of, for example, an Au-based metal.
  • the first electrode 5, the second electrode 6 and the third electrode 7 are aligned along the light guiding direction A.
  • the second electrode 6 is located on one side of the first electrode 5 in the light guiding direction A.
  • the third electrode 7 is located on the other side of the first electrode 5 in the light guiding direction A.
  • the fourth electrode 8 faces the first electrode 5, the second electrode 6 and the third electrode 7 with the substrate 2, the buffer layer 3 and the optical waveguide body 10 interposed therebetween.
  • a gap S1 extending in the Y-axis direction is formed between the first electrode 5 and the second electrode 6, and the contact layer 16 is physically separated along the gap S1.
  • a gap S2 extending in the Y-axis direction is formed between the first electrode 5 and the third electrode 7, and the contact layer 16 is physically separated along the gap S2. That is, in the first electrode 5, the second electrode 6, and the third electrode 7, the metal layer formed so as to cover the entire upper surface (the surface opposite to the fourth electrode 8) of the optical waveguide 10 has a gap S1. And by being separated through each of the gaps S2. In other words, the first electrode 5, the second electrode 6, and the third electrode 7 are formed on the upper surface of the optical waveguide body 10 so as to extend over the entire region excluding the gap S1 and the gap S2. In addition, the contact layer 16 is separated from each other directly below the first electrode 5, the second electrode 6, and the third electrode 7 via the gaps S 1 and S 2.
  • the optical waveguide body 10 is provided with a first separation region 17 and a second separation region 18.
  • the first separation region 17 optically connects between the first region 101 below the first electrode 5 and the second region 102 below the second electrode 6 in the optical waveguide body 10, while The second regions 102 are electrically separated from one another. That is, light traveling in the active layer 13 can move between the first area 101 and the second area 102 through the first separation area 17.
  • the second separation region 18 optically connects between the first region 101 below the first electrode 5 and the third region 103 below the third electrode 7 in the optical waveguide body 10, while The third regions 103 are electrically separated from one another. That is, light traveling in the active layer 13 can move between the first area 101 and the third area 103 via the second separation area 18.
  • the first region 101 is a region overlapping with the first electrode 5 in the optical waveguide body 10 when viewed from the Z-axis direction, and is sandwiched between the first electrode 5 and the fourth electrode 8 in the optical waveguide body 10 It is an area.
  • the second region 102 is a region overlapping with the second electrode 6 in the optical waveguide body 10 when viewed in the Z-axis direction, and is sandwiched between the second electrode 6 and the fourth electrode 8 in the optical waveguide body 10 It is an area.
  • the third region 103 is a region overlapping with the third electrode 7 in the optical waveguide body 10 when viewed in the Z-axis direction, and is sandwiched between the third electrode 7 and the fourth electrode 8 in the optical waveguide body 10 It is an area.
  • the first separation region 17 is formed in the optical waveguide body 10 along a plane perpendicular to the light guiding direction A at a position corresponding to the gap S1 (a position in the light guiding direction A).
  • the second separation region 18 is formed in the optical waveguide body 10 along a plane perpendicular to the light guiding direction A at a position corresponding to the gap S2 (a position in the light guiding direction A).
  • the first separation region 17 extends from the surface 15a of the second cladding layer 15 to the first cladding layer 11 in the Z-axis direction, and extends to both side surfaces of the optical waveguide body 10 in the Y-axis direction.
  • the second separation region 18 extends from the surface 15a of the second cladding layer 15 to the first cladding layer 11 in the Z-axis direction, and extends to both side surfaces of the optical waveguide body 10 in the Y-axis direction.
  • each of the first separation region 17 and the second separation region 18 is constituted by an ion implantation region.
  • the ion implantation region is formed, for example, by adding protons, boron, carbon ions, oxygen ions, nitrogen ions or the like to the optical waveguide body 10 by ion implantation.
  • Each of the first isolation region 17 and the second isolation region 18 may be constituted by an impurity diffusion region. Deep levels are formed in the impurity diffusion region by impurity doping.
  • the impurity diffusion region is formed, for example, by doping the optical waveguide body 10 with iron, oxygen, chromium or the like by thermal diffusion or ion implantation.
  • the second separation region 18 may be formed of a semiconductor region having a conductivity type different from that of the second cladding layer 15.
  • the second isolation region 18 may be formed of an n-type semiconductor region.
  • the first separation area 17 and the second separation area 18 may be configured by areas of different types.
  • one of the first separation region 17 and the second separation region 18 may be formed by an ion implantation region, and the other may be formed by an impurity diffusion region.
  • the first separation region 17 and the second separation region 18 are not voids, but are constituted by physical regions made of solid.
  • the thickness (the width in the light guiding direction A) of each of the first separation region 17 and the second separation region 18 is about 10 to 50 ⁇ m.
  • the length of the first region 101 in the light guiding direction A is longer than the length of each of the second region 102 and the third region 103 in the light guiding direction A.
  • the length of the second region 102 in the light guiding direction A is longer than the length of the third region 103 in the light guiding direction A.
  • the length L1 of the first region 101 in the light guiding direction A is, for example, about 0.5 to 3.0 mm.
  • the length L2 of the second region 102 in the light guiding direction A is, for example, about 0.2 to 0.5 mm.
  • the length L3 of the third region 103 in the light guiding direction A is, for example, about 0.8 to 2.0 mm.
  • the length L1 is 1 mm
  • the length L2 is 0.5 mm
  • the length L3 is 0.3 mm.
  • the widths (lengths in the Y-axis direction) of the first region 101, the second region 102, and the third region 103 are equal to one another, and are, for example, about 2 to 50 ⁇ m.
  • a low reflection layer 9 is provided on the end face 102 a of the second area 102 opposite to the first area 101.
  • the end face 102 a is an exit surface of the output light L, and is a surface perpendicular to the light guiding direction A.
  • the low reflection layer 9 suppresses that a part of the output light L is reflected at the end face 102 a and returns to the inside of the optical waveguide body 10.
  • the low reflection layer 9 is, for example, a dielectric multilayer film called an AR coating. In FIG. 1, the low reflection layer 9 is not shown.
  • a forward bias is applied between the first electrode 5 and the fourth electrode 8 and between the second electrode 6 and the fourth electrode 8 to thereby
  • the step of causing the third region 103 to function as a loss region by causing the first region 101 and the second region 102 to function as a gain region and applying a reverse bias between the third electrode 7 and the fourth electrode 8 is included.
  • a positive voltage for example, +1.5 to +2 V
  • the first area 101 functions as a gain area, and the gain area tries to oscillate light as a laser diode.
  • a positive voltage for example, +1.5 to +3 V
  • the second electrode 6 with the fourth electrode 8 as the ground potential.
  • the second area 102 functions as a gain area, and the gain area tries to oscillate light as a laser diode.
  • a negative voltage for example, -5 V is applied to the third electrode 7 with the fourth electrode 8 as the ground potential.
  • the second region 102 functions as a loss region, and the loss region tries to stop light oscillation as a laser diode. Therefore, the first area 101, the second area 102, and the third area 103 function as an SLD, and generate output light L having excellent light collection performance and a wide spectrum.
  • the active layer 13 in a state in which the active layer 13 has a multiple quantum well structure and causes the first region 101 and the second region 102 to function as a gain region and the third region 103 to function as a loss region, The transition from the first level to the ground level in the active layer 13 generates light.
  • a value corresponding to a gain acquired while a unit distance travels in a certain area is referred to as a gain coefficient g
  • a gain amount gL a product of the gain factor g and the length of the corresponding area in the light guiding direction A.
  • the gain coefficient g can be regarded as a value obtained by multiplying the absorption coefficient of the region by -1.
  • the gain amount gL corresponds to the gain obtained by the light when the light passes through the region along the light guiding direction A.
  • the light passing through the second area 102 along the light guiding direction A The gain obtained is greater than the gain obtained by the light passing through the first region 101 along the light guiding direction A.
  • Tables 1, 2 and 3 below show the measurement results of the intensity of the output light L when the injection current to the first region 101 and the second region 102 is changed.
  • the current density is used as an amount for replacing the gain coefficient g
  • the amount of gain (A / cm) is used as an amount for replacing the amount of gain gL. This is because the gain factor g increases as the current density increases.
  • the gain coefficient g is proportional to the carrier density of the upper level. That is, the gain coefficient g and the current density can be regarded as proportional.
  • the current density of a certain area is a value obtained by dividing the injection current to the relevant area by the area of the relevant area as viewed from the Z-axis direction.
  • the length L1 of the first region 101 in the light guiding direction A is 1 mm
  • the length L2 of the second region 102 in the light guiding direction A is 0.5 mm
  • the width of the first area 101 and the second area 102 is 0.02 mm.
  • the gain amount gL of the second region 102 is the gain of the first region 101. It can be seen that the intensity of the output light L is higher when the gain amount gL of the second region 102 is smaller than the gain amount gL of the first region 101 when the amount is larger than the amount gL.
  • the injection current to the second region 102 is 200 mA
  • the current to the first region 101 is If the injection current is 100 mA, the amount of gain gL in the second region 102 is 100 A / cm, and the amount of gain gL in the first region 101 is 50 A / cm, the intensity of the output light L is -41 dB.
  • the injection current to the second region 102 is 100 mA
  • the injection current to the first region 101 is 200 mA
  • the gain amount gL in the second region 102 is 50 A / cm
  • the gain amount in the first region 101 is When gL is 100 A / cm, the intensity of the output light L is -53 dB.
  • the second area 102 is acquired while the light travels a unit distance.
  • the product of the value corresponding to the gain (gain coefficient g) and the length L2 of the second region 102 in the light guiding direction A (gain amount gL) is the gain obtained while the light travels the first region 101 per unit distance
  • Light generated in the first region 101 and the second region 102 by being larger than the product of the value (gain coefficient g) corresponding to the length L1 of the first region 101 in the light guiding direction A (gain amount gL) Can be effectively multiplied and taken out, and the output of the optical semiconductor device 1 can be increased.
  • FIG. 3A shows a case where the gain amount gL in the second region 102 is smaller than the gain amount gL in the first region 101, unlike the driving method of the optical semiconductor device according to the present embodiment.
  • FIG. 3B shows the case where the gain amount gL in the second region 102 is larger than the gain amount gL in the first region 101 as in the method of driving the optical semiconductor device according to this embodiment.
  • the light that can be extracted from the optical semiconductor device 1 is only the light that travels to the emission surface side, and the light that travels to the opposite side to the emission surface is a loss region It is absorbed by the functioning third region 103.
  • the region where the gain amount gL is relatively large is disposed on the emission surface side. The light generated in both the 101 and the second region 102 can be effectively multiplied and extracted.
  • the active layer 13 has a multiple quantum well structure. Thereby, the output of the optical semiconductor device 1 can be further increased.
  • FIG. 4 shows the relationship between the current and the gain when the number of wells n is 1, 2, 3 and 10, respectively.
  • the larger the number of wells n the wider the absorption region R, and a larger current is required to generate a gain.
  • the rising amount C at the time of gain generation increases. Therefore, the utilization efficiency of the absorption region R can be improved and the rising amount C can be improved by the active layer 13 having the multiple quantum well structure as in the method of driving the optical semiconductor device according to the present embodiment.
  • the light emission efficiency can be improved by increasing it. As a result, the output of the optical semiconductor device 1 can be further increased.
  • the first region 101 and the second region 102 function as a gain region and the third region 103 functions as a loss region.
  • the transition from the level to the ground level generates light. Thereby, high output of the optical semiconductor device 1 can be suitably achieved.
  • the light guiding direction A is a direction extending straight. This facilitates driving the optical semiconductor device 1 so that the gain amount of the second region 102 becomes larger than the gain amount of the first region 101. That is, if the light guiding direction A is not a direction extending straight, the size (width) of the optical semiconductor device 1 in the Y-axis direction tends to be large.
  • the optical semiconductor device 1 is soldered to a material having a different thermal expansion coefficient, such as a submount, for example. However, when the size of the optical semiconductor device 1 increases, the junction area becomes large. Stress is increased.
  • the polarization ratio TE / TM of the light emitting component decreases, that is, the TM mode component ratio increases.
  • the QCSE effect Quantum Confined Stark Effect
  • the TM mode component transmitted through the loss area receives positive feedback by reflection at the end face, and leads to laser oscillation.
  • the SLD operation is likely to be brought to the oscillation state, and thus the optical semiconductor device 1 is driven such that the gain amount of the second region 102 becomes larger than the gain amount of the first region 101 It will be difficult to do.
  • the light guiding direction A is a direction extending straight, an increase in the size of the optical semiconductor device 1 can be suppressed. It is facilitated to drive the optical semiconductor device 1 so that the gain amount of the second region 102 becomes larger than the gain amount of the first region 101.
  • the light guiding direction A is a direction extending straight, it is possible to obtain the output light L having a good beam pattern.
  • the end face 102 a of the second area 102 opposite to the first area 101 is a plane perpendicular to the light guiding direction A.
  • the increase in the size of the optical semiconductor device 1 can be further suppressed, and as a result, the optical semiconductor device 1 is driven such that the gain amount of the second region 102 becomes larger than the gain amount of the first region 101. Is further facilitated.
  • the end face 102 a is a plane perpendicular to the light guiding direction A, the output light L having a better beam pattern can be obtained.
  • the low reflection layer 9 is provided on the end face 102 a.
  • the low reflective layer 9 by suppressing reflection on the end face 102 a by the low reflective layer 9, it is possible to make it difficult to reach the oscillation state, and as a result, the gain amount of the second region 102 becomes larger than the gain amount of the first region 101.
  • driving the optical semiconductor device 1 is further facilitated.
  • the first isolation region 17 is formed of an ion implantation region or an impurity diffusion region
  • the second isolation region 18 is an ion implantation region, an impurity diffusion region, or
  • the second cladding layer 15 is formed of a semiconductor region different in conductivity type. Therefore, optical connection and electrical separation between the first area 101 and the second area 102 can be suitably realized by the first separation area 17. In addition, optical connection and electrical separation between the first area 101 and the third area can be suitably realized by the second separation area 18.
  • the present disclosure is not limited to the above embodiment.
  • the length L2 of the second region 102 in the light guiding direction A and the length L1 of the first region 101 in the light guiding direction A may be equal to each other.
  • the lengths L1 and L2 are, for example, 0.75 mm.
  • the length L 2 of the second region 102 may be longer than the length L 1 of the first region 101.
  • the length L2 is 1 mm
  • the length L1 is 0.5 mm.
  • the first area 101 and the second area 102 function as a gain area and the third area 103 functions as a loss area.
  • the optical semiconductor device 1 By driving the optical semiconductor device 1 so that the gain amount gL of the second region 102 becomes larger than the gain amount gL of the first region 101 in the state, the light generated in the first region 101 and the second region 102 is effective. Thus, it is possible to multiply and take out, and the output of the optical semiconductor device 1 can be increased.
  • the second modification since the length L2 of the second region 102 is longer than the length L1 of the first region 101, the gain amount gL of the second region 102 is larger than the gain amount gL of the first region 101. It is easy to drive the optical semiconductor device 1 to
  • the optical waveguide body 10 is divided into three areas of the first area 101, the second area 102, and the third area 103.
  • the fourth region 104 is a region below the fifth electrode 21 provided in the same manner as the first electrode 5, the second electrode 6, and the third electrode 7.
  • the fifth electrode 21 is disposed on the side opposite to the first electrode 5 with respect to the second electrode 6 in the light guiding direction A.
  • a gap S3 extending in the Y-axis direction is formed between the fifth electrode 21 and the second electrode 6, and a third separation region 19 is formed between the fifth electrode 21 and the second electrode 6. , Optically connected and electrically separated.
  • the third separation area 19 is configured similarly to the first separation area 17 and the second separation area 18.
  • the length L1 of the first region 101 in the light guiding direction A, the length L2 of the second region 102 in the light guiding direction A, and the length L4 of the fourth region 104 in the light guiding direction A are They are equal to each other.
  • the lengths L1, L2 and L4 are 0.5 mm, for example.
  • a forward bias is applied between the first electrode 5 and the fourth electrode 8, between the second electrode 6 and the fourth electrode 8, and between the fifth electrode 21 and the fourth electrode 8, respectively.
  • the first region 101, the second region 102, and the fourth region 104 function as a gain region
  • a reverse bias is applied between the third electrode 7 and the fourth electrode 8 to form a third region 103. Function as a loss area.
  • the gain amount gL of the fourth area 104 is equal to that of the second area 102.
  • the optical semiconductor device 1 is driven such that the gain amount gL is larger than the gain amount gL of the first region 101 and the gain amount gL of the second region 102 is larger than the gain amount gL of the first region 101. .
  • the light generated in the first region 101, the second region 102, and the fourth region 104 can be effectively multiplied and extracted, and the output of the optical semiconductor device 1 can be further increased.
  • the width of the second region 102 increases with distance from the first region 101 when viewed from the Z-axis direction (direction perpendicular to the second cladding layer 15). It may have a flared shape. In this example, the width of the second region 102 linearly increases as the distance from the first region 101 increases. Also in such a fourth modification, as in the above embodiment, in the state in which the first area 101 and the second area 102 function as a gain area and the third area 103 functions as a loss area, By driving the optical semiconductor device 1 so that the gain amount gL of the region 102 becomes larger than the gain amount gL of the first region 101, the light generated in the first region 101 and the second region 102 is effectively multiplied.
  • the second region 102 has a flare shape and light is amplified while being spread in the second region 102, output light L having a wide beam pattern can be obtained. Further, the current density can be reduced to suppress the occurrence of gain saturation, and the influence of heat can be reduced, so that the output of the optical semiconductor device 1 can be further increased.
  • one fourth electrode 8 is opposed to the first electrode 5, the second electrode 6 and the third electrode 7 as a common electrode, but the plurality of fourth electrodes 8 are the first electrode 5, the fourth electrode 8.
  • the second electrode 6 and the third electrode 7 may be opposed to each other.
  • the optical waveguide body 10 is configured as a ridge structure, but the optical waveguide body 10 may be configured as a buried structure. Also in that case, the direction along the center line of the cylindrical region for confining light, in other words, the direction in which the active layer 13 surrounded by the cylindrical region extends is the light guiding direction A. .
  • the light guiding direction A may be a curved extending direction, or may be a direction including both a straight extending portion and a curved extending portion.
  • the light guiding direction A may extend obliquely with respect to the end face 102 a of the second region 102.
  • the material and shape of each configuration are not limited to the above-described materials and shapes, and various materials and shapes can be adopted.
  • SYMBOLS 1 Optical semiconductor element, 5 ... 1st electrode, 6 ... 2nd electrode, 7 ... 3rd electrode, 8 ... 4th electrode, 9 ... Low reflection layer, 10 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

光半導体素子の駆動方法は、第1電極と第4電極との間、及び第2電極と第4電極との間のそれぞれに順バイアスをかけることにより、第1領域及び第2領域を利得領域として機能させる共に、第3電極と第4電極との間に逆バイアスをかけることにより、第3領域を損失領域として機能させる工程を含む。第1領域及び第2領域を利得領域として機能させると共に第3領域を損失領域として機能させている状態において、第2領域を光が単位距離進行する間に獲得する利得に対応する値と光導波方向における第2領域の長さとの積は、第1領域を光が単位距離進行する間に獲得する利得に対応する値と光導波方向における第1領域の長さとの積よりも大きい。

Description

光半導体素子の駆動方法、及び光半導体素子
 本開示の一側面は、光半導体素子の駆動方法、及び光半導体素子に関する。
 集光性に優れ且つ広いスペクトルを有する出力光を発生させ得る光源として、スーパールミネッセントダイオード(以下、SLDという)が注目されている。SLDとして、例えば特許文献1には、ダブルヘテロ構造の光導波路体がイオン注入領域によって発光領域と光損失領域とに電気的に分離された端面発光ダイオードが記載されている。
特開平4-259262号公報
 上述したような光半導体素子では、注入電流が増加するほど出力光の強度が大きくなるが、所定量よりも大きな電流が注入されると、光導波路体内で光が発振してしまい、良好な出力光を得ることができない。一方で、上述したような半導体素子には、更なる高出力化が望まれている。
 本開示の一側面は、光半導体素子の高出力化を図ることができる光半導体素子の駆動方法、及びそのような駆動方法に適した光半導体素子を提供することを目的とする。
 本開示の一側面に係る光半導体素子の駆動方法では、光半導体素子は、活性層、並びに、活性層を挟む第1クラッド層及び第2クラッド層を含むダブルヘテロ構造として構成された光導波路体と、第2クラッド層上に設けられた第1電極と、光導波路体の光導波方向における第1電極の一方の側において第2クラッド層上に設けられた第2電極と、光導波路体の光導波方向における第1電極の他方の側において第2クラッド層上に設けられた第3電極と、光導波路体を挟んで、第1電極、第2電極及び第3電極と対向する少なくとも1つの第4電極と、を備え、光導波路体には、第2クラッド層の表面から第1クラッド層に至り、第1電極下の第1領域と第2電極下の第2領域との間を光学的に接続しつつ、第1領域と第2領域とを互いに電気的に分離する第1分離領域と、第2クラッド層の表面から第1クラッド層に至り、第1電極下の第1領域と第3電極下の第3領域との間を光学的に接続しつつ、第1領域と第3領域とを互いに電気的に分離する第2分離領域と、が設けられており、光半導体素子の駆動方法は、第1電極と少なくとも1つの第4電極との間、及び第2電極と少なくとも1つの第4電極との間のそれぞれに順バイアスをかけることにより、第1領域及び第2領域を利得領域として機能させる共に、第3電極と少なくとも1つの第4電極との間に逆バイアスをかけることにより、第3領域を損失領域として機能させる工程を含み、第1領域及び第2領域を利得領域として機能させると共に第3領域を損失領域として機能させている状態において、第2領域を光が単位距離進行する間に獲得する利得に対応する値と光導波方向における第2領域の長さとの積は、第1領域を光が単位距離進行する間に獲得する利得に対応する値と光導波方向における第1領域の長さとの積よりも大きい。
 この光半導体素子の駆動方法では、第1領域及び第2領域を利得領域として機能させると共に第3領域を損失領域として機能させている状態において、第2領域を光が単位距離進行する間に獲得する利得に対応する値と光導波方向における第2領域の長さとの積(以下、第2領域の利得量という)が、第1領域を光が単位距離進行する間に獲得する利得に対応する値と光導波方向における第1領域の長さとの積(以下、第1領域の利得量という)よりも大きい。これにより、第1領域及び第2領域で発生した光を効果的に増倍させて取り出すことができ、光半導体素子の高出力化を図ることができる。
 本開示の一側面に係る光半導体素子の駆動方法では、活性層は、多重量子井戸構造を有していてもよい。この場合、光半導体素子の一層の高出力化を図ることができる。
 本開示の一側面に係る光半導体素子の駆動方法において、第1領域及び前記第2領域を利得領域として機能させると共に第3領域を損失領域として機能させている状態では、活性層における第1準位から基底準位への遷移によって光が発生してもよい。この場合、光半導体素子の高出力化が好適に図られる。
 本開示の一側面に係る光半導体素子の駆動方法では、光導波方向は、真っ直ぐに延在する方向であってもよい。この場合、第2領域の利得量が第1領域の利得量よりも大きくなるように光半導体素子を駆動することが容易化される。更に、光導波方向が真っ直ぐに延在する方向であるため、良好なビームパターンを有する出力光を得ることができる。
 本開示の一側面に係る光半導体素子の駆動方法では、第2領域における第1領域とは反対側の端面は、光導波方向に垂直な面であってもよい。この場合、第2領域の利得量が第1領域の利得量よりも大きくなるように光半導体素子を駆動することが一層容易化される。更に、当該端面が光導波方向に垂直な面であるため、一層良好なビームパターンを有する出力光を得ることができる。
 本開示の一側面に係る光半導体素子の駆動方法では、第2領域における第1領域とは反対側の端面には、低反射層が設けられていてもよい。この場合、第2領域の利得量が第1領域の利得量よりも大きくなるように光半導体素子を駆動することがより一層容易化される。更に、出力光の出射面となる当該端面で出力光の一部が反射されることにより光学的なロスが生じるのを抑制することができる。
 本開示の一側面に係る光半導体素子の駆動方法では、第1分離領域は、イオン注入領域又は不純物拡散領域によって構成されており、第2分離領域は、イオン注入領域、不純物拡散領域、又は第2クラッド層とは伝導型が異なる半導体領域によって構成されていてもよい。この場合、第1分離領域により、第1領域と第2領域との間の光学的な接続及び電気的な分離を好適に実現することができる。また、第2分離領域により、第1領域と第3領域との間の光学的な接続及び電気的な分離を好適に実現することができる。
 本開示の一側面に係る光半導体素子の駆動方法では、光導波方向における第2領域の長さは、光導波方向における第1領域の長さよりも長くてもよい。この場合、第2領域の利得量が第1領域の利得量よりも大きくなるように光半導体素子を駆動することがより一層容易化される。
 本開示の一側面に係る光半導体素子の駆動方法では、第2領域は、第2クラッド層に垂直な方向から見た場合に、第1領域から遠ざかるほど幅が広くなるフレア形状をなしていてもよい。この場合、広いビームパターンを有する出力光を得ることができる。更に、第2領域がフレア形状をなしていることにより、注入される電流の密度を低減して利得飽和の発生を抑制することができると共に、熱の影響を低減することができるため、光半導体素子の一層の高出力化を図ることができる。
 本開示の一側面に係る光半導体素子の駆動方法では、光半導体素子は、活性層、並びに、活性層を挟む第1クラッド層及び第2クラッド層を含むダブルヘテロ構造として構成された光導波路体と、第2クラッド層上に設けられた第1電極と、光導波路体の光導波方向における第1電極の一方の側において第2クラッド層上に設けられた第2電極と、光導波路体の光導波方向における第1電極の他方の側において第2クラッド層上に設けられた第3電極と、光導波路体を挟んで、第1電極、第2電極及び第3電極と対向する少なくとも1つの第4電極と、を備え、光導波路体には、第2クラッド層の表面から第1クラッド層に至り、第1電極下の第1領域と第2電極下の第2領域との間を光学的に接続しつつ、第1領域と第2領域とを互いに電気的に分離する第1分離領域と、第2クラッド層の表面から第1クラッド層に至り、第1電極下の第1領域と第3電極下の第3領域との間を光学的に接続しつつ、第1領域と第3領域とを互いに電気的に分離する第2分離領域と、が設けられており、光半導体素子の駆動方法は、第1電極と少なくとも1つの第4電極との間、及び第2電極と少なくとも1つの第4電極との間のそれぞれに順バイアスをかけることにより、第1領域及び第2領域を利得領域として機能させる共に、第3電極と少なくとも1つの第4電極との間に逆バイアスをかけることにより、第3領域を損失領域として機能させる工程を含み、第1領域及び第2領域を利得領域として機能させると共に第3領域を損失領域として機能させている状態において、光導波方向に沿って第2領域を通過した光が獲得する利得は、光導波方向に沿って第1領域を通過した光が獲得する利得よりも大きい。
 この光半導体素子の駆動方法では、第1領域及び第2領域を利得領域として機能させると共に第3領域を損失領域として機能させている状態において、光導波方向に沿って第2領域を通過した光が獲得する利得が、光導波方向に沿って第1領域を通過した光が獲得する利得よりも大きい。これにより、第1領域及び第2領域で発生した光を効果的に増倍させて取り出すことができ、光半導体素子の高出力化を図ることができる。
 本開示の一側面に係る光半導体素子は、活性層、並びに、活性層を挟む第1クラッド層及び第2クラッド層を含むダブルヘテロ構造として構成された光導波路体と、第2クラッド層上に設けられた第1電極と、光導波路体の光導波方向における第1電極の一方の側において第2クラッド層上に設けられた第2電極と、光導波路体の光導波方向における第1電極の他方の側において第2クラッド層上に設けられた第3電極と、光導波路体を挟んで、第1電極、第2電極及び第3電極と対向する少なくとも1つの第4電極と、を備え、光導波路体には、第2クラッド層の表面から第1クラッド層に至り、第1電極下の第1領域と第2電極下の第2領域との間を光学的に接続しつつ、第1領域と第2領域とを互いに電気的に分離する第1分離領域と、第2クラッド層の表面から第1クラッド層に至り、第1電極下の第1領域と第3電極下の第3領域との間を光学的に接続しつつ、第1領域と第3領域とを互いに電気的に分離する第2分離領域と、が設けられており、光導波方向における第2領域の長さは、光導波方向における第1領域の長さよりも長い。
 この光半導体素子では、第1電極と少なくとも1つの第4電極との間、及び第2電極と少なくとも1つの第4電極との間のそれぞれに順バイアスをかけて第1領域及び第2領域を利得領域として機能させると共に第3電極と少なくとも1つの第4電極との間に逆バイアスをかけて第3領域を損失領域として機能させることにより、集光性に優れ且つ広いスペクトルを有する出力光を発生させることができる。更に、第1領域及び第2領域を利得領域として機能させると共に第3領域を損失領域として機能させている状態において第2領域の利得量が第1領域の利得量よりも大きくなるように光半導体素子を駆動することで、第1領域及び第2領域で発生した光を効果的に増倍させて取り出すことができ、光半導体素子の高出力化を図ることができる。また、この光半導体素子では、光導波方向における第2領域の長さが光導波方向における第1領域の長さよりも長いため、第2領域の利得量が第1領域の利得量よりも大きくなるように光半導体素子を駆動することが容易化されている。
 本開示の一側面に係る光半導体素子では、活性層は、多重量子井戸構造を有していてもよい。この場合、光半導体素子の一層の高出力化を図ることができる。
 本開示の一側面に係る光半導体素子では、光導波方向は、真っ直ぐに延在する方向であってもよい。この場合、光導波方向が真っ直ぐに延在する方向であるため、良好なビームパターンを有する出力光を得ることができる。
 本開示の一側面に係る光半導体素子では、第2領域における第1領域とは反対側の端面は、光導波方向に垂直な面であってもよい。この場合、当該端面が光導波方向に垂直な面であるため、一層良好なビームパターンを有する出力光を得ることができる。
 本開示の一側面に係る光半導体素子では、第2領域における第1領域とは反対側の端面には、低反射層が設けられていてもよい。この場合、出力光の出射面となる当該端面で出力光の一部が反射されることにより光学的なロスが生じるのを抑制することができる。
 本開示の一側面に係る光半導体素子では、第1分離領域は、イオン注入領域又は不純物拡散領域によって構成されており、第2分離領域は、イオン注入領域、不純物拡散領域、又は第2クラッド層とは伝導型が異なる半導体領域によって構成されていてもよい。この場合、第1分離領域により、第1領域と第2領域との間の光学的な接続及び電気的な分離を好適に実現することができる。また、第2分離領域により、第1領域と第3領域との間の光学的な接続及び電気的な分離を好適に実現することができる。
 本開示の一側面に係る光半導体素子は、活性層、並びに、活性層を挟む第1クラッド層及び第2クラッド層を含むダブルヘテロ構造として構成された光導波路体と、第2クラッド層上に設けられた第1電極と、光導波路体の光導波方向における第1電極の一方の側において第2クラッド層上に設けられた第2電極と、光導波路体の光導波方向における第1電極の他方の側において第2クラッド層上に設けられた第3電極と、光導波路体を挟んで、第1電極、第2電極及び第3電極と対向する少なくとも1つの第4電極と、を備え、光導波路体には、第2クラッド層の表面から第1クラッド層に至り、第1電極下の第1領域と第2電極下の第2領域との間を光学的に接続しつつ、第1領域と第2領域とを互いに電気的に分離する第1分離領域と、第2クラッド層の表面から第1クラッド層に至り、第1電極下の第1領域と第3電極下の第3領域との間を光学的に接続しつつ、第1領域と第3領域とを互いに電気的に分離する第2分離領域と、が設けられており、第2領域は、第2クラッド層に垂直な方向から見た場合に、第1領域から遠ざかるほど幅が広くなるフレア形状をなしている。
 この光半導体素子では、第1電極と少なくとも1つの第4電極との間、及び第2電極と少なくとも1つの第4電極との間のそれぞれに順バイアスをかけて第1領域及び第2領域を利得領域として機能させると共に第3電極と少なくとも1つの第4電極との間に逆バイアスをかけて第3領域を損失領域として機能させることにより、集光性に優れ且つ広いスペクトルを有する出力光を発生させることができる。更に、第1領域及び第2領域を利得領域として機能させると共に第3領域を損失領域として機能させている状態において第2領域の利得量が第1領域の利得量よりも大きくなるように光半導体素子を駆動することで、第1領域及び第2領域で発生した光を効果的に増倍させて取り出すことができ、光半導体素子の高出力化を図ることができる。また、この光半導体素子では、第2領域がフレア形状をなしており、第2領域において光が広がりながら増幅されるため、広いビームパターンを有する出力光を得ることができる。更に、注入される電流の密度を低減して利得飽和の発生を抑制することができると共に、熱の影響を低減することができるため、光半導体素子の一層の高出力化を図ることができる。
 本開示の一側面によれば、光半導体素子の高出力化を図ることができる光半導体素子の駆動方法、及びそのような駆動方法に適した光半導体素子を提供することできる。
実施形態に係る光半導体素子を示す斜視図である。 図1に示されるII-II線に沿っての断面図である。 (a)及び(b)は、実施形態に係る光半導体素子の駆動方法の作用効果を説明するための概念図である。 活性層の井戸数と電流及び利得との関係を示す概念図である。 第1変形例の光半導体素子の斜視図である。 第2変形例の光半導体素子の斜視図である。 第3変形例の光半導体素子の斜視図である。 第4変形例の光半導体素子の斜視図である。
 以下、本開示の実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する部分を省略する。
[光半導体素子の構成]
 図1及び図2に示されるように、光半導体素子1は、基板2と、光導波路体10と、を備えている。光導波路体10は、基板2の表面2aにバッファ層3を介して設けられている。基板2及びバッファ層3は、それぞれ、例えばn型GaAsからなる。基板2は、例えば、1.5~6.0mm程度の長さ、300~1000μm程度の幅、及び100~600μm程度の厚さを有する長方形板状を呈している。以下、基板2の長さ方向をX軸方向、基板2の幅方向をY軸方向、基板2の厚さ方向をZ軸方向という。
 光導波路体10は、第1クラッド層11、第1ガイド層12、活性層13、第2ガイド層14、第2クラッド層15及びコンタクト層16がこの順序でバッファ層3上に積層されることにより構成されている。光導波路体10は、活性層13、並びに、活性層13を挟む第1クラッド層11及び第2クラッド層15を含むダブルヘテロ構造として構成されている。第1クラッド層11は、例えばn型Al0.3Ga0.7Asからなる。第1ガイド層12は、例えばノンドープAl0.25Ga0.75Asからなる。活性層13は、例えばGaAs/Al0.2Ga0.8As多重量子井戸構造を有している。第2ガイド層14は、例えばノンドープAl0.25Ga0.75Asからなる。第2クラッド層15は、例えばp型Al0.3Ga0.7Asからなる。コンタクト層16は、例えばp型GaAsからなる。
 光導波路体10は、基板2上においてリッジ構造として構成されている。光導波路体10の光導波方向Aは、X軸方向と平行に真っ直ぐに延在する方向である。一例として、光導波路体10の幅は、第1クラッド層11におけるバッファ層3側の部分を除いて、基板2及びバッファ層3の幅よりも小さくされている。リッジ構造部分において、光導波路体10は、例えば、1.5~6.0mm程度の長さ、2~50μm程度の幅、及び1~2μm程度の厚さを有する長方形板状(層状)を呈している。なお、光導波方向Aとは、光を閉じ込めるための筒状の領域(リッジ構造では、第1クラッド層11、第2クラッド層15及び空気層によって形成される領域)の中心線に沿った方向、換言すれば、当該筒状の領域によって囲まれた活性層13が延在する方向である。
 光半導体素子1は、第1電極5と、第2電極6と、第3電極7と、第4電極8と、を更に備えている。第1電極5、第2電極6及び第3電極7は、それぞれ、コンタクト層16を介して第2クラッド層15上に設けられており、それぞれ、コンタクト層16を介して直下の第2クラッド層15と電気的に接続されている。第4電極8は、基板2の裏面2bに設けられており、基板2と電気的に接続されている。第1電極5、第2電極6、第3電極7及び第4電極8は、それぞれ、例えばAu系の金属からなる。
 第1電極5、第2電極6及び第3電極7は、光導波方向Aに沿って並んでいる。第2電極6は、光導波方向Aにおける第1電極5の一方の側に位置している。第3電極7は、光導波方向Aにおける第1電極5の他方の側に位置している。第4電極8は、基板2、バッファ層3及び光導波路体10を挟んで、第1電極5、第2電極6及び第3電極7と対向している。
 第1電極5と第2電極6との間には、Y軸方向に延在する隙間S1が形成されており、コンタクト層16は、隙間S1に沿って物理的に分離されている。第1電極5と第3電極7との間には、Y軸方向に延在する隙間S2が形成されており、コンタクト層16は、隙間S2に沿って物理的に分離されている。つまり、第1電極5、第2電極6及び第3電極7は、光導波路体10の上面(第4電極8とは反対側の表面)の全体を覆うように形成された金属層が隙間S1及び隙間S2のそれぞれを介して分離されることにより、形成されている。換言すれば、第1電極5、第2電極6及び第3電極7は、光導波路体10の上面のうち隙間S1及び隙間S2を除く領域の全体に渡るように、形成されている。また、コンタクト層16は、第1電極5、第2電極6及び第3電極7のそれぞれの直下の部分ごとに、各隙間S1,S2を介して分離されている。
 光導波路体10には、第1分離領域17と、第2分離領域18と、が設けられている。第1分離領域17は、光導波路体10において、第1電極5下の第1領域101と第2電極6下の第2領域102との間を光学的に接続しつつ、第1領域101と第2領域102とを互いに電気的に分離している。つまり、活性層13内を進行する光は、第1分離領域17を介して第1領域101と第2領域102との間を移動することができる。第2分離領域18は、光導波路体10において、第1電極5下の第1領域101と第3電極7下の第3領域103との間を光学的に接続しつつ、第1領域101と第3領域103とを互いに電気的に分離している。つまり、活性層13内を進行する光は、第2分離領域18を介して第1領域101と第3領域103との間を移動することができる。
 第1領域101は、Z軸方向から見た場合に光導波路体10において第1電極5と重なる領域であって、光導波路体10のうち第1電極5と第4電極8とで挟まれた領域である。第2領域102は、Z軸方向から見た場合に光導波路体10において第2電極6と重なる領域であって、光導波路体10のうち第2電極6と第4電極8とで挟まれた領域である。第3領域103は、Z軸方向から見た場合に光導波路体10において第3電極7と重なる領域であって、光導波路体10のうち第3電極7と第4電極8とで挟まれた領域である。
 第1分離領域17は、隙間S1に対応する位置(光導波方向Aにおける位置)において、光導波方向Aに垂直な面に沿うように、光導波路体10に形成されている。第2分離領域18は、隙間S2に対応する位置(光導波方向Aにおける位置)において、光導波方向Aに垂直な面に沿うように、光導波路体10に形成されている。第1分離領域17は、Z軸方向においては、第2クラッド層15の表面15aから第1クラッド層11に至っており、Y軸方向においては、光導波路体10の両側面に至っている。第2分離領域18は、Z軸方向においては、第2クラッド層15の表面15aから第1クラッド層11に至っており、Y軸方向においては、光導波路体10の両側面に至っている。
 本実施形態では、第1分離領域17及び第2分離領域18のそれぞれは、イオン注入領域によって構成されている。イオン注入領域は、例えば、イオン注入により、プロトン、ボロン、炭素イオン、酸素イオン、窒素イオン等が光導波路体10に添加されることによって形成されている。第1分離領域17及び第2分離領域18のそれぞれは、不純物拡散領域によって構成されてもよい。不純物拡散領域には、不純物ドーピングによって深い準位が形成される。不純物拡散領域は、例えば、熱拡散又はイオン注入により、鉄、酸素、クロム等が光導波路体10にドープされることによって形成される。第2分離領域18は、第2クラッド層15とは伝導型が異なる半導体領域によって構成されてもよい。例えば、この例では第2クラッド層15がp型の半導体であるので、第2分離領域18は、n型の半導体領域によって構成されてもよい。第1分離領域17及び第2分離領域18は、互いに異なる種類の領域によって構成されてもよい。例えば、第1分離領域17及び第2分離領域18の一方がイオン注入領域によって構成され、他方が不純物拡散領域によって構成されてもよい。いずれの場合においても、第1分離領域17及び第2分離領域18は、空隙ではなく、固体からなる物理的な領域によって構成される。
 第1分離領域17及び第2分離領域18のそれぞれの厚さ(光導波方向Aにおける幅)は、10~50μm程度である。光導波方向Aにおける第1領域101の長さは、光導波方向Aにおける第2領域102及び第3領域103のそれぞれの長さよりも長い。光導波方向Aにおける第2領域102の長さは、光導波方向Aにおける第3領域103の長さよりも長い。光導波方向Aにおける第1領域101の長さL1は、例えば0.5~3.0mm程度である。光導波方向Aにおける第2領域102の長さL2は、例えば0.2~0.5mm程度である。光導波方向Aにおける第3領域103の長さL3は、例えば0.8~2.0mm程度である。本実施形態では、一例として、長さL1は1mmであり、長さL2は0.5mmであり、長さL3は0.3mmである。第1領域101、第2領域102及び第3領域103の幅(Y軸方向における長さ)は、互いに同一であり、例えば2~50μm程度である。
 第2領域102における第1領域101とは反対側の端面102aには、低反射層9が設けられている。端面102aは、出力光Lの出射面であり、光導波方向Aに垂直な面である。低反射層9は、端面102aで出力光Lの一部が反射されて光導波路体10内に戻ることを抑制する。低反射層9は、例えば、ARコーティングと称される誘電体多層膜である。なお、図1では、低反射層9の図示が省略されている。
[光半導体素子の駆動方法]
 本実施形態に係る光半導体素子の駆動方法は、第1電極5と第4電極8との間、及び第2電極6と第4電極8との間のそれぞれに順バイアスをかけることにより、第1領域101及び第2領域102を利得領域として機能させる共に、第3電極7と第4電極8との間に逆バイアスをかけることにより、第3領域103を損失領域として機能させる工程を含む。
 具体的には、第4電極8を接地電位として第1電極5に正電圧(例えば+1.5~+2V)が印加される。これにより、第1領域101が利得領域として機能し、当該利得領域がレーザダイオードとして光を発振させようとする。また、第4電極8を接地電位として第2電極6に正電圧(例えば+1.5~+3V)が印加される。これにより、第2領域102が利得領域として機能し、当該利得領域がレーザダイオードとして光を発振させようとする。更に、第4電極8を接地電位として第3電極7に負電圧(例えば-5V)が印加される。これにより、第2領域102が損失領域として機能し、当該損失領域がレーザダイオードとしての光発振を止めようとする。したがって、第1領域101、第2領域102及び第3領域103は、SLDとして機能し、集光性に優れ且つ広いスペクトルを有する出力光Lを発生させる。本実施形態では、活性層13が多重量子井戸構造を有しており、第1領域101及び第2領域102を利得領域として機能させると共に第3領域103を損失領域として機能させている状態では、活性層13における第1準位から基底準位への遷移によって光が発生する。
 本実施形態に係る光半導体素子の駆動方法では、第1領域101及び第2領域102を利得領域として機能させると共に第3領域103を損失領域として機能させている状態において、第2領域102を光が単位距離進行する間に獲得する利得に対応する値と、光導波方向Aにおける第2領域102の長さL2との積が、第1領域101を光が単位距離進行する間に獲得する利得に対応する値と、光導波方向Aにおける第1領域101の長さL1との積よりも大きい。以下、或る領域を光が単位距離進行する間に獲得する利得に対応する値を利得係数gといい、利得係数gと光導波方向Aにおける当該領域の長さとの積を利得量gLという。活性層13における閉じ込め係数をΓとすると、光導波方向Aに沿って当該領域を通過した光が獲得する利得Gは、式G=exp(ΓgL)により求められる。利得係数gは、当該領域の吸収係数に-1を乗じた値とみなすことができる。利得量gLは、光導波方向Aに沿って当該領域を光が通過した場合に当該光が獲得する利得に対応する。つまり、第1領域101及び第2領域102を利得領域として機能させると共に第3領域103を損失領域として機能させている状態においては、光導波方向Aに沿って第2領域102を通過した光が獲得する利得が、光導波方向Aに沿って第1領域101を通過した光が獲得する利得よりも大きい。
 下記表1、表2及び表3には、第1領域101及び第2領域102への注入電流を変化させた場合における出力光Lの強度の測定結果が示されている。表1~表3に示される例では、利得係数gに代わる量として電流密度が用いられ、利得量gLに代わる量として利得量(A/cm)が用いられている。これは、利得係数gが電流密度の増加に従って増加するためである。利得係数gは上位準位のキャリア密度に比例する。すなわち、利得係数gと電流密度とは、比例するとみなすことができる。或る領域の電流密度は、当該領域への注入電流をZ軸方向から見た場合の当該領域の面積で除した値である。上述したとおり、光導波方向Aにおける第1領域101の長さL1は1mmであり、光導波方向Aにおける第2領域102の長さL2は0.5mmである。第1領域101及び第2領域102の幅は、0.02mmである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~表3から、第1領域101への注入電流と第2領域102への注入電流との和が等しい場合同士を比較すると、第2領域102の利得量gLが第1領域101の利得量gLよりも大きい場合の方が、第2領域102の利得量gLが第1領域101の利得量gLよりも小さい場合よりも、出力光Lの強度が高かったことが分かる。例えば、第1領域101への注入電流と第2領域102への注入電流との和が300mAである場合を比較すると、第2領域102への注入電流が200mAであり、第1領域101への注入電流が100mAであり、第2領域102における利得量gLが100A/cmであり、第1領域101における利得量gLが50A/cmである場合、出力光Lの強度が-41dBであるのに対し、第2領域102への注入電流が100mAであり、第1領域101への注入電流が200mAであり、第2領域102における利得量gLが50A/cmであり、第1領域101における利得量gLが100A/cmである場合には、出力光Lの強度は-53dBである。
 このように、第1領域101及び第2領域102を利得領域として機能させると共に第3領域103を損失領域として機能させている状態において、第2領域102を光が単位距離進行する間に獲得する利得に対応する値(利得係数g)と光導波方向Aにおける第2領域102の長さL2との積(利得量gL)が、第1領域101を光が単位距離進行する間に獲得する利得に対応する値(利得係数g)と光導波方向Aにおける第1領域101の長さL1との積(利得量gL)よりも大きいことにより、第1領域101及び第2領域102で発生した光を効果的に増倍させて取り出すことができ、光半導体素子1の高出力化を図ることができる。
 この点について、図3(a)及び図3(b)を参照しつつ更に説明する。図3(a)は、本実施形態に係る光半導体素子の駆動方法とは異なり、第2領域102における利得量gLが第1領域101における利得量gLよりも小さい場合を示している。図3(b)は、本実施形態に係る光半導体素子の駆動方法のように、第2領域102における利得量gLが第1領域101における利得量gLよりも大きい場合を示している。図3(a)及び図3(b)に示されるように、光半導体素子1から取り出せる光は、出射面側に向かう光のみであり、出射面とは反対側に向かう光は、損失領域として機能する第3領域103により吸収される。
 図3(a)に示されるように、出射端側に利得量gLが比較的小さい領域が配置されている場合、第2領域102で発生した光を効果的に増倍することができず、出力光Lの強度を高めることは難しい。これに対し、図3(b)に示されるように、本実施形態に係る光半導体素子の駆動方法では、出射面側に利得量gLが比較的大きい領域が配置されているため、第1領域101及び第2領域102の双方で発生した光を効果的に増倍させて取り出すことができる。
 本実施形態に係る光半導体素子の駆動方法では、活性層13が、多重量子井戸構造を有している。これにより、光半導体素子1の一層の高出力化を図ることができる。
 この点について、図4を参照しつつ更に説明する。図4は、井戸数nが1,2,3,10のそれぞれの場合における電流と利得との関係を示している。図4に示されるように、井戸数nが多くなるほど、吸収域Rが広くなり、利得を発生させるのに大きな電流が必要となる。一方、井戸数nが多くなるほど、利得発生時の立ち上がり量Cが大きくなる。したがって、本実施形態に係る光半導体素子の駆動方法のように活性層13が多重量子井戸構造を有していることにより、吸収域Rの利用効率を向上することができると共に、立ち上がり量Cを増加させて発光効率を向上することができる。その結果、光半導体素子1の一層の高出力化を図ることができる。
 本実施形態に係る光半導体素子の駆動方法において、第1領域101及び第2領域102を利得領域として機能させると共に第3領域103を損失領域として機能させている状態では、活性層13における第1準位から基底準位への遷移によって光が発生する。これにより、光半導体素子1の高出力化が好適に図られる。
 本実施形態に係る光半導体素子の駆動方法では、光導波方向Aが、真っ直ぐに延在する方向である。これにより、第2領域102の利得量が第1領域101の利得量よりも大きくなるように光半導体素子1を駆動することが容易化される。すなわち、仮に、光導波方向Aが真っ直ぐに延在する方向ではない場合、Y軸方向における光半導体素子1のサイズ(幅)が大きくなり易い。光半導体素子1は、例えばサブマウント等の熱膨張係数が異なる材料に半田で接合されるが、光半導体素子1のサイズが大きくなると、接合面積が大きくなるため、光半導体素子1に蓄えられる内部応力が大きくなる。この場合、発光成分の偏光比TE/TMが低下する、すなわちTMモード成分比率が増加することが考えられる。損失領域におけるQCSE効果(Quantum Confined Stark Effect)は主にTEモード成分に寄与し、TMモード成分への寄与は小さい。すなわち、TMモード成分に対して損失領域は透明体のように機能する。損失領域を透過したTMモード成分は端面における反射により正帰還を受け、レーザ発振に至る。したがって、光半導体素子1のサイズが大きくなると、SLD動作から発振状態に至り易くなるため、第2領域102の利得量が第1領域101の利得量よりも大きくなるように光半導体素子1を駆動することが難しくなる。これに対し、本実施形態に係る光半導体素子の駆動方法では、光導波方向Aが真っ直ぐに延在する方向であるため、光半導体素子1のサイズの増加を抑制することができ、その結果、第2領域102の利得量が第1領域101の利得量よりも大きくなるように光半導体素子1を駆動することが容易化される。更に、光導波方向Aが真っ直ぐに延在する方向であるため、良好なビームパターンを有する出力光Lを得ることができる。
 本実施形態に係る光半導体素子の駆動方法では、第2領域102における第1領域101とは反対側の端面102aが、光導波方向Aに垂直な面である。これにより、光半導体素子1のサイズの増加を一層抑制することができ、その結果、第2領域102の利得量が第1領域101の利得量よりも大きくなるように光半導体素子1を駆動することが一層容易化される。更に、端面102aが光導波方向Aに垂直な面であるため、一層良好なビームパターンを有する出力光Lを得ることができる。
 本実施形態に係る光半導体素子の駆動方法では、端面102aには低反射層9が設けられている。これにより、低反射層9によって端面102aにおける反射を抑制することで、発振状態に至り難くすることができ、その結果、第2領域102の利得量が第1領域101の利得量よりも大きくなるように光半導体素子1を駆動することがより一層容易化される。更に、出力光Lの出射面となる端面102aで出力光Lの一部が反射されることにより光学的なロスが生じるのを抑制することができる。
 本実施形態に係る光半導体素子の駆動方法では、第1分離領域17が、イオン注入領域又は不純物拡散領域によって構成されており、第2分離領域18が、イオン注入領域、不純物拡散領域、又は第2クラッド層15とは伝導型が異なる半導体領域によって構成されている。このため、第1分離領域17により、第1領域101と第2領域102との間の光学的な接続及び電気的な分離を好適に実現することができる。また、第2分離領域18により、第1領域101と第3領域との間の光学的な接続及び電気的な分離を好適に実現することができる。
 本開示は、上記実施形態に限られない。例えば、図5に示される第1変形例のように、光導波方向Aにおける第2領域102の長さL2と光導波方向Aにおける第1領域101の長さL1とが互いに等しくてもよい。第1変形例では、長さL1,L2は例えば0.75mmである。図6に示される第2変形例のように、第2領域102の長さL2が第1領域101の長さL1よりも長くてもよい。第2変形例では、例えば、長さL2は1mmであり、長さL1は0.5mmである。
 このような第1変形例及び第2変形例においても、上記実施形態と同様に、第1領域101及び第2領域102を利得領域として機能させると共に第3領域103を損失領域として機能させている状態において第2領域102の利得量gLが第1領域101の利得量gLよりも大きくなるように光半導体素子1を駆動することで、第1領域101及び第2領域102で発生した光を効果的に増倍させて取り出すことができ、光半導体素子1の高出力化を図ることができる。更に、第2変形例では、第2領域102の長さL2が第1領域101の長さL1よりも長いため、第2領域102の利得量gLが第1領域101の利得量gLよりも大きくなるように光半導体素子1を駆動することが容易化されている。
 上記実施形態では光導波路体10が第1領域101、第2領域102及び第3領域103の3つの領域に分割されていたが、図7に示される第3変形例のように、光導波路体10が第1領域101、第2領域102、第3領域103及び第4領域104の4つの領域に分割されていてもよい。第4領域104は、第1電極5、第2電極6及び第3電極7と同様に設けられた第5電極21の下方の領域である。第5電極21は、光導波方向Aにおいて第2電極6に対して第1電極5とは反対側に配置されている。第5電極21と第2電極6との間には、Y軸方向に延在する隙間S3が形成されており、第5電極21と第2電極6との間は、第3分離領域19により、光学的に接続され且つ電気的に分離されている。第3分離領域19は、第1分離領域17及び第2分離領域18と同様に構成されている。
 第3変形例では、光導波方向Aにおける第1領域101の長さL1、光導波方向Aにおける第2領域102の長さL2、及び光導波方向Aにおける第4領域104の長さL4は、互いに等しい。長さL1,L2,L4は例えば0.5mmである。第3変形例では、第1電極5と第4電極8との間、第2電極6と第4電極8との間、及び第5電極21と第4電極8と間のそれぞれに順バイアスをかけることにより、第1領域101、第2領域102及び第4領域104を利得領域として機能させる共に、第3電極7と第4電極8との間に逆バイアスをかけることにより、第3領域103を損失領域として機能させる。第1領域101、第2領域102及び第4領域104を利得領域として機能させると共に第3領域103を損失領域として機能させている状態において、第4領域104の利得量gLが第2領域102の利得量gL及び第1領域101の利得量gLよりも大きくなり、且つ、第2領域102の利得量gLが第1領域101の利得量gLよりも大きくなるように、光半導体素子1を駆動する。これにより、第1領域101、第2領域102及び第4領域104で発生した光を効果的に増倍させて取り出すことができ、光半導体素子1の一層の高出力化を図ることができる。
 図8に示される第4変形例のように、第2領域102が、Z軸方向(第2クラッド層15に垂直な方向)から見た場合に、第1領域101から遠ざかるほど幅が広くなるフレア形状をなしていてもよい。この例では、第2領域102の幅は、第1領域101から遠ざかるほど直線的に広くなっている。このような第4変形例においても、上記実施形態と同様に、第1領域101及び第2領域102を利得領域として機能させると共に第3領域103を損失領域として機能させている状態において、第2領域102の利得量gLが第1領域101の利得量gLよりも大きくなるように光半導体素子1を駆動することで、第1領域101及び第2領域102で発生した光を効果的に増倍させて取り出すことができ、光半導体素子1の高出力化を図ることができる。更に、第4変形例では、第2領域102がフレア形状をなしており、第2領域102において光が広がりながら増幅されるため、広いビームパターンを有する出力光Lを得ることができる。また、電流密度を低減して利得飽和の発生を抑制することができると共に、熱の影響を低減することができるため、光半導体素子1の一層の高出力化を図ることもできる。
 上述した実施形態では、1つの第4電極8が共通電極として第1電極5、第2電極6及び第3電極7と対向していたが、複数の第4電極8が第1電極5、第2電極6及び第3電極7とそれぞれ対向していてもよい。上述した実施形態では、光導波路体10がリッジ構造として構成されていたが、光導波路体10が埋め込み構造として構成されていてもよい。その場合にも、光を閉じ込めるための筒状の領域の中心線に沿った方向、換言すれば、当該筒状の領域によって囲まれた活性層13が延在する方向が光導波方向Aとなる。光導波方向Aは、湾曲して延在する方向であってもよく、真っ直ぐに延在する部分及び湾曲して延在する部分の双方を含む方向であってもよい。光導波方向Aは、第2領域102の端面102aに対して傾斜して延在する方向であってもよい。各構成の材料及び形状には、上述した材料及び形状に限らず、様々な材料及び形状を採用することができる。
 1…光半導体素子、5…第1電極、6…第2電極、7…第3電極、8…第4電極、9…低反射層、10…光導波路体、11…第1クラッド層、13…活性層、15…第2クラッド層、15a…表面、17…第1分離領域、18…第2分離領域、101…第1領域、102…第2領域、102a…端面、103…第3領域、A…光導波方向。

Claims (17)

  1.  光半導体素子の駆動方法であって、
     前記光半導体素子は、
     活性層、並びに、前記活性層を挟む第1クラッド層及び第2クラッド層を含むダブルヘテロ構造として構成された光導波路体と、
     前記第2クラッド層上に設けられた第1電極と、
     前記光導波路体の光導波方向における前記第1電極の一方の側において前記第2クラッド層上に設けられた第2電極と、
     前記光導波路体の前記光導波方向における前記第1電極の他方の側において前記第2クラッド層上に設けられた第3電極と、
     前記光導波路体を挟んで、前記第1電極、前記第2電極及び前記第3電極と対向する少なくとも1つの第4電極と、を備え、
     前記光導波路体には、
     前記第2クラッド層の表面から前記第1クラッド層に至り、前記第1電極下の第1領域と前記第2電極下の第2領域との間を光学的に接続しつつ、前記第1領域と前記第2領域とを互いに電気的に分離する第1分離領域と、
     前記第2クラッド層の表面から前記第1クラッド層に至り、前記第1電極下の前記第1領域と前記第3電極下の第3領域との間を光学的に接続しつつ、前記第1領域と前記第3領域とを互いに電気的に分離する第2分離領域と、が設けられており、
     前記光半導体素子の駆動方法は、
     前記第1電極と前記少なくとも1つの第4電極との間、及び前記第2電極と前記少なくとも1つの第4電極との間のそれぞれに順バイアスをかけることにより、前記第1領域及び前記第2領域を利得領域として機能させる共に、前記第3電極と前記少なくとも1つの第4電極との間に逆バイアスをかけることにより、前記第3領域を損失領域として機能させる工程を含み、
     前記第1領域及び前記第2領域を利得領域として機能させると共に前記第3領域を損失領域として機能させている状態において、前記第2領域を光が単位距離進行する間に獲得する利得に対応する値と前記光導波方向における前記第2領域の長さとの積は、前記第1領域を光が単位距離進行する間に獲得する利得に対応する値と前記光導波方向における前記第1領域の長さとの積よりも大きい、光半導体素子の駆動方法。
  2.  前記活性層は、多重量子井戸構造を有する、請求項1に記載の光半導体素子の駆動方法。
  3.  前記第1領域及び前記第2領域を利得領域として機能させると共に、前記第3領域を損失領域として機能させている状態では、前記活性層における第1準位から基底準位への遷移によって光が発生する、請求項1又は2に記載の光半導体素子の駆動方法。
  4.  前記光導波方向は、真っ直ぐに延在する方向である、請求項1~3のいずれか一項に記載の光半導体素子の駆動方法。
  5.  前記第2領域における前記第1領域とは反対側の端面は、前記光導波方向に垂直な面である、請求項1~4のいずれか一項に記載の光半導体素子の駆動方法。
  6.  前記第2領域における前記第1領域とは反対側の端面には、低反射層が設けられている、請求項1~5のいずれか一項に記載の光半導体素子の駆動方法。
  7.  前記第1分離領域は、イオン注入領域又は不純物拡散領域によって構成されており、
     前記第2分離領域は、イオン注入領域、不純物拡散領域、又は前記第2クラッド層とは伝導型が異なる半導体領域によって構成されている、請求項1~6のいずれか一項に記載の光半導体素子の駆動方法。
  8.  前記光導波方向における前記第2領域の長さは、前記光導波方向における前記第1領域の長さよりも長い、請求項1~7のいずれか一項に記載の光半導体素子の駆動方法。
  9.  前記第2領域は、前記第2クラッド層に垂直な方向から見た場合に、前記第1領域から遠ざかるほど幅が広くなるフレア形状をなしている、請求項1~8のいずれか一項に記載の光半導体素子の駆動方法。
  10.  光半導体素子の駆動方法であって、
     前記光半導体素子は、
     活性層、並びに、前記活性層を挟む第1クラッド層及び第2クラッド層を含むダブルヘテロ構造として構成された光導波路体と、
     前記第2クラッド層上に設けられた第1電極と、
     前記光導波路体の光導波方向における前記第1電極の一方の側において前記第2クラッド層上に設けられた第2電極と、
     前記光導波路体の前記光導波方向における前記第1電極の他方の側において前記第2クラッド層上に設けられた第3電極と、
     前記光導波路体を挟んで、前記第1電極、前記第2電極及び前記第3電極と対向する少なくとも1つの第4電極と、を備え、
     前記光導波路体には、
     前記第2クラッド層の表面から前記第1クラッド層に至り、前記第1電極下の第1領域と前記第2電極下の第2領域との間を光学的に接続しつつ、前記第1領域と前記第2領域とを互いに電気的に分離する第1分離領域と、
     前記第2クラッド層の表面から前記第1クラッド層に至り、前記第1電極下の前記第1領域と前記第3電極下の第3領域との間を光学的に接続しつつ、前記第1領域と前記第3領域とを互いに電気的に分離する第2分離領域と、が設けられており、
     前記光半導体素子の駆動方法は、
     前記第1電極と前記少なくとも1つの第4電極との間、及び前記第2電極と前記少なくとも1つの第4電極との間のそれぞれに順バイアスをかけることにより、前記第1領域及び前記第2領域を利得領域として機能させる共に、前記第3電極と前記少なくとも1つの第4電極との間に逆バイアスをかけることにより、前記第3領域を損失領域として機能させる工程を含み、
     前記第1領域及び前記第2領域を利得領域として機能させると共に、前記第3領域を損失領域として機能させている状態において、前記光導波方向に沿って前記第2領域を通過した光が獲得する利得は、前記光導波方向に沿って前記第1領域を通過した光が獲得する利得よりも大きい、光半導体素子の駆動方法。
  11.  活性層、並びに、前記活性層を挟む第1クラッド層及び第2クラッド層を含むダブルヘテロ構造として構成された光導波路体と、
     前記第2クラッド層上に設けられた第1電極と、
     前記光導波路体の光導波方向における前記第1電極の一方の側において前記第2クラッド層上に設けられた第2電極と、
     前記光導波路体の前記光導波方向における前記第1電極の他方の側において前記第2クラッド層上に設けられた第3電極と、
     前記光導波路体を挟んで、前記第1電極、前記第2電極及び前記第3電極と対向する少なくとも1つの第4電極と、を備え、
     前記光導波路体には、
     前記第2クラッド層の表面から前記第1クラッド層に至り、前記第1電極下の第1領域と前記第2電極下の第2領域との間を光学的に接続しつつ、前記第1領域と前記第2領域とを互いに電気的に分離する第1分離領域と、
     前記第2クラッド層の表面から前記第1クラッド層に至り、前記第1電極下の前記第1領域と前記第3電極下の第3領域との間を光学的に接続しつつ、前記第1領域と前記第3領域とを互いに電気的に分離する第2分離領域と、が設けられており、
     前記光導波方向における前記第2領域の長さは、前記光導波方向における前記第1領域の長さよりも長い、光半導体素子。
  12.  前記活性層は、多重量子井戸構造を有する、請求項11に記載の光半導体素子。
  13.  前記光導波方向は、真っ直ぐに延在する方向である、請求項11又は12に記載の光半導体素子。
  14.  前記第2領域における前記第1領域とは反対側の端面は、前記光導波方向に垂直な面である、請求項11~13のいずれか一項に記載の光半導体素子。
  15.  前記第2領域における前記第1領域とは反対側の端面には、低反射層が設けられている、請求項11~14のいずれか一項に記載の光半導体素子。
  16.  前記第1分離領域は、イオン注入領域又は不純物拡散領域によって構成されており、
     前記第2分離領域は、イオン注入領域、不純物拡散領域、又は前記第2クラッド層とは伝導型が異なる半導体領域によって構成されている、請求項11~15のいずれか一項に記載の光半導体素子の駆動方法。
  17.  活性層、並びに、前記活性層を挟む第1クラッド層及び第2クラッド層を含むダブルヘテロ構造として構成された光導波路体と、
     前記第2クラッド層上に設けられた第1電極と、
     前記光導波路体の光導波方向における前記第1電極の一方の側において前記第2クラッド層上に設けられた第2電極と、
     前記光導波路体の前記光導波方向における前記第1電極の他方の側において前記第2クラッド層上に設けられた第3電極と、
     前記光導波路体を挟んで、前記第1電極、前記第2電極及び前記第3電極と対向する少なくとも1つの第4電極と、を備え、
     前記光導波路体には、
     前記第2クラッド層の表面から前記第1クラッド層に至り、前記第1電極下の第1領域と前記第2電極下の第2領域との間を光学的に接続しつつ、前記第1領域と前記第2領域とを互いに電気的に分離する第1分離領域と、
     前記第2クラッド層の表面から前記第1クラッド層に至り、前記第1電極下の前記第1領域と前記第3電極下の第3領域との間を光学的に接続しつつ、前記第1領域と前記第3領域とを互いに電気的に分離する第2分離領域と、が設けられており、
     前記第2領域は、前記第2クラッド層に垂直な方向から見た場合に、前記第1領域から遠ざかるほど幅が広くなるフレア形状をなしている、光半導体素子。
PCT/JP2018/044053 2017-12-05 2018-11-29 光半導体素子の駆動方法、及び光半導体素子 WO2019111804A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019558179A JPWO2019111804A1 (ja) 2017-12-05 2018-11-29 光半導体素子の駆動方法、及び光半導体素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017233300 2017-12-05
JP2017-233300 2017-12-05

Publications (1)

Publication Number Publication Date
WO2019111804A1 true WO2019111804A1 (ja) 2019-06-13

Family

ID=66750940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044053 WO2019111804A1 (ja) 2017-12-05 2018-11-29 光半導体素子の駆動方法、及び光半導体素子

Country Status (2)

Country Link
JP (1) JPWO2019111804A1 (ja)
WO (1) WO2019111804A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180301591A1 (en) * 2017-04-17 2018-10-18 Hamamatsu Photonics K.K. Optical semiconductor element and method of driving optical semiconductor element
JP2021089966A (ja) * 2019-12-04 2021-06-10 浜松ホトニクス株式会社 半導体発光素子

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4843611A (en) * 1987-07-27 1989-06-27 Ortel Corporation Superluminescent diode and single mode laser
JPH01238082A (ja) * 1988-03-18 1989-09-22 Nippon Telegr & Teleph Corp <Ntt> 半導体レーザ
JPH0653547A (ja) * 1992-06-10 1994-02-25 Hewlett Packard Co <Hp> 超高輝度発光ダイオード
JP2007158063A (ja) * 2005-12-06 2007-06-21 Oki Electric Ind Co Ltd 半導体光通信素子
JP2009152605A (ja) * 2007-12-18 2009-07-09 Korea Electronics Telecommun 光増幅器が集積されたスーパーミネッセンスダイオード及びこれを利用した外部共振レーザー
JP2014082485A (ja) * 2012-09-28 2014-05-08 Canon Inc 光源及び前記光源を用いた光干渉断層撮像装置
WO2015163057A1 (ja) * 2014-04-25 2015-10-29 ソニー株式会社 半導体光デバイス及び表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4843611A (en) * 1987-07-27 1989-06-27 Ortel Corporation Superluminescent diode and single mode laser
JPH01238082A (ja) * 1988-03-18 1989-09-22 Nippon Telegr & Teleph Corp <Ntt> 半導体レーザ
JPH0653547A (ja) * 1992-06-10 1994-02-25 Hewlett Packard Co <Hp> 超高輝度発光ダイオード
JP2007158063A (ja) * 2005-12-06 2007-06-21 Oki Electric Ind Co Ltd 半導体光通信素子
JP2009152605A (ja) * 2007-12-18 2009-07-09 Korea Electronics Telecommun 光増幅器が集積されたスーパーミネッセンスダイオード及びこれを利用した外部共振レーザー
JP2014082485A (ja) * 2012-09-28 2014-05-08 Canon Inc 光源及び前記光源を用いた光干渉断層撮像装置
WO2015163057A1 (ja) * 2014-04-25 2015-10-29 ソニー株式会社 半導体光デバイス及び表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIN, YC ET AL.: "1. 3-micrometer Quantum-Dot Multi section Superluminescent Diodes With Extremely Broad Bandwidth", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 19, no. 7, 1 April 2007 (2007-04-01), pages 501 - 503 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180301591A1 (en) * 2017-04-17 2018-10-18 Hamamatsu Photonics K.K. Optical semiconductor element and method of driving optical semiconductor element
US10840406B2 (en) * 2017-04-17 2020-11-17 Hamamatsu Photonics K.K. Optical semiconductor element and method of driving optical semiconductor element
JP2021089966A (ja) * 2019-12-04 2021-06-10 浜松ホトニクス株式会社 半導体発光素子
JP7314037B2 (ja) 2019-12-04 2023-07-25 浜松ホトニクス株式会社 半導体発光素子

Also Published As

Publication number Publication date
JPWO2019111804A1 (ja) 2020-11-26

Similar Documents

Publication Publication Date Title
US6175582B1 (en) Semiconductor laser device
JP2008135786A (ja) 高出力半導体レーザダイオード
US20220131343A1 (en) Two-dimensional photonic-crystal surface-emitting laser
WO2021200168A1 (ja) 2次元フォトニック結晶レーザ
US6813296B2 (en) GaSb-clad mid-infrared semiconductor laser
WO2019111804A1 (ja) 光半導体素子の駆動方法、及び光半導体素子
JP2018182306A (ja) 光半導体素子、及び光半導体素子の駆動方法
US4280108A (en) Transverse junction array laser
WO2019111805A1 (ja) スーパールミネッセントダイオード
JPH04296067A (ja) スーパー・ルミネッセント・ダイオード
JPS59165480A (ja) 半導体発光素子
JP2008198942A (ja) 半導体光素子
US7269195B2 (en) Laser diode with an amplification section that has a varying index of refraction
JPH04781A (ja) 半導体レーザの構造
JPS5948975A (ja) 半導体発光素子
RU2587097C1 (ru) Инжекционный лазер
JPS62291987A (ja) 光集積化素子
JPS6184891A (ja) 半導体レ−ザ素子
JP2001024211A (ja) 半導体受光素子
JPS6155276B2 (ja)
JP2719669B2 (ja) 半導体発光ダイオード
JPH07106694A (ja) 半導体レーザー
JPS6058689A (ja) 半導体レ−ザ
JPH02159086A (ja) 半導体発光装置
JP2009198979A (ja) 光偏向器および光偏向機能付半導体レーザ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886302

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558179

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18886302

Country of ref document: EP

Kind code of ref document: A1