WO2019111665A1 - レジストパターン形成方法及びレジスト膜形成用組成物 - Google Patents

レジストパターン形成方法及びレジスト膜形成用組成物 Download PDF

Info

Publication number
WO2019111665A1
WO2019111665A1 PCT/JP2018/042192 JP2018042192W WO2019111665A1 WO 2019111665 A1 WO2019111665 A1 WO 2019111665A1 JP 2018042192 W JP2018042192 W JP 2018042192W WO 2019111665 A1 WO2019111665 A1 WO 2019111665A1
Authority
WO
WIPO (PCT)
Prior art keywords
resist film
composition
forming
group
atom
Prior art date
Application number
PCT/JP2018/042192
Other languages
English (en)
French (fr)
Inventor
信也 峯岸
岳彦 成岡
永井 智樹
恭志 中川
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2019111665A1 publication Critical patent/WO2019111665A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers

Definitions

  • the present invention relates to a method for forming a resist pattern and a composition for forming a resist film.
  • Radiation-sensitive compositions used for fine processing by lithography include electromagnetic waves such as far ultraviolet rays (ArF excimer laser light, KrF excimer laser light etc.), extreme ultraviolet rays (EUV: Extreme Ultraviolet rays), etc., and charged particle rays such as electron beams
  • electromagnetic waves such as far ultraviolet rays (ArF excimer laser light, KrF excimer laser light etc.), extreme ultraviolet rays (EUV: Extreme Ultraviolet rays), etc.
  • charged particle rays such as electron beams
  • Such radiation sensitive compositions are required to improve the resist performance as the processing technology is miniaturized.
  • the types and molecular structures of polymers, acid generators and other components used in the composition are studied, and further, the combination thereof is also examined in detail (JP-A-11-125907, See JP-A-8-146610 and JP-A-2000-298347).
  • the radiation sensitive composition is required to further improve various resist performances.
  • the composition for forming a resist film containing a metal atom-containing compound is coated with the composition for forming a resist film, in addition to being able to exhibit high sensitivity even when exposed to an electron beam or irradiated with EUV or the like.
  • these conventional resist film forming compositions have not been able to satisfy these requirements.
  • the present invention has been made based on the above circumstances, and an object thereof is to provide a method for forming a resist pattern and a composition for forming a resist film, which are excellent in both sensitivity and ease of removal.
  • the invention made to solve the above problems comprises the steps of applying a composition for forming a resist film on a substrate, and irradiating the resist film formed in the applying step with an extreme ultraviolet ray or an electron beam, Developing the irradiated resist film with an organic solvent-containing liquid, wherein the composition for forming a resist film comprises a polygermanoxane having a structural unit represented by the following formula (1), and a solvent: It is a resist pattern formation method to contain.
  • R 1 is a C 1-30 monovalent organic group bonded to a Ge atom by a carbon atom).
  • composition for forming a resist film which contains a polygermanoxane having a structural unit represented by the following formula (1), and a solvent.
  • R 1 is a C 1-30 monovalent organic group bonded to a Ge atom by a carbon atom).
  • polygermanoxane refers to a polynuclear compound having a Ge—O bond.
  • Organic group refers to a group comprising at least one carbon atom.
  • the method for forming a resist pattern and the composition for forming a resist film of the present invention it is possible to form a good resist pattern with high sensitivity and excellent ease of removal. Therefore, these can be suitably used for semiconductor device manufacture whose miniaturization is expected to further progress in the future.
  • the said resist pattern formation method is the process of applying the composition for resist film formation on a board
  • R 1 is a C 1-30 monovalent organic group bonded to a Ge atom by a carbon atom.
  • the said resist pattern formation method uses the said composition for resist film formation, it is highly sensitive and can form a favorable resist pattern, reducing contamination of a wafer. Each step will be described below.
  • the composition for resist film formation used by the said resist pattern formation method is mentioned later.
  • the composition for forming a resist film is coated on a substrate.
  • the solvent and the like of the composition for forming a resist film are volatilized by prebaking (PB) as necessary.
  • the resist film is formed by Examples of the coating method include spin coating, cast coating, and roll coating.
  • the substrate include a silicon wafer, a wafer coated with aluminum, and the like.
  • an organic or inorganic antireflective film may be formed on the substrate.
  • the lower limit of the average thickness of the resist film to be formed is preferably 1 nm, more preferably 5 nm, still more preferably 10 nm, and particularly preferably 20 nm.
  • an upper limit of the above-mentioned average thickness 1,000 nm is preferable, 200 nm is more preferable, 100 nm is more preferable, and 70 nm is particularly preferable.
  • PB temperature 60 ° C is preferred and 80 ° C is more preferred.
  • PB temperature 140 ° C is preferred and 120 ° C is more preferred.
  • PB time 5 seconds are preferred and 10 seconds are more preferred.
  • 600 seconds 600 seconds are preferred and 300 seconds are more preferred.
  • the resist film formed in the coating process is exposed. Specifically, for example, the film is irradiated with radiation through a mask having a predetermined pattern. In this step, if necessary, irradiation of radiation via an immersion medium such as water, that is, immersion exposure may be adopted.
  • radiation to be irradiated include visible light, ultraviolet light, far ultraviolet light, EUV (wavelength 13.5 nm), electromagnetic waves such as X-rays and ⁇ -rays; charged particle beams such as electron beams and ⁇ -rays. Among these, EUV or electron beam is preferred.
  • PEB Post exposure bake
  • 50 ° C is preferred and 80 ° C is more preferred.
  • 200 ° C is preferred and 180 ° C is more preferred.
  • PEB time 5 seconds are preferred and 10 seconds are more preferred.
  • 600 seconds are preferred and 300 seconds are more preferred.
  • the exposed resist film is developed by a conventionally known method. Thereby, a predetermined resist pattern is formed.
  • a developing solution alkaline aqueous solution, the organic solvent containing liquid etc. are mentioned, for example.
  • an organic solvent-containing liquid is preferable from the viewpoint of developability and the like.
  • Examples of the organic solvent in the organic solvent-containing liquid include the same organic solvents as exemplified as the solvent [B] of the composition for forming a resist film used in the method for forming a resist pattern.
  • the organic solvent in the organic solvent-containing liquid include the same organic solvents as exemplified as the solvent [B] of the composition for forming a resist film used in the method for forming a resist pattern.
  • one or two solvents selected from the group consisting of ketone solvents and ester solvents are preferable, and one or two solvents selected from the group consisting of 2-heptanone and butyl acetate are preferable. More preferable.
  • the lower limit of the content of the organic solvent in the organic solvent-containing liquid is preferably 80% by mass, more preferably 90% by mass, still more preferably 95% by mass, and particularly preferably 99% by mass.
  • surfactant for example, an ionic or nonionic fluorine-based surfactant, a silicone-based surfactant or the like can be used.
  • a negative resist pattern is obtained by drying.
  • composition for resist film formation used by the said resist pattern formation method contains [A] polygermanoxane and [B] solvent.
  • the composition for forming a resist film may contain optional components as long as the effects of the present invention are not impaired.
  • composition for resist film formation is excellent in both sensitivity and ease of removal by containing [A] polygermanoxane.
  • [A] polygermanoxane has high cleavability of the Ge-R 1 bond and a solvent. It is conceivable that the solubility in water is good.
  • Polygermanoxane has the above structural unit (I).
  • the polygermanoxane may have other structural units other than the structural unit (I).
  • Structural unit (I) Structural unit (I) is a structural unit represented by the said Formula (1).
  • the R 1 group is bonded by a carbon atom, and three oxygen atoms are bonded.
  • the monovalent organic group having 1 to 30 carbon atoms represented by R 1 includes, for example, a monovalent hydrocarbon group having 1 to 30 carbon atoms, and a divalent hetero atom containing carbon-carbon of the hydrocarbon group. Examples thereof include groups ( ⁇ ) containing a group, and groups obtained by substituting a part or all of hydrogen atoms of the above-mentioned hydrocarbon group and group ( ⁇ ) with a monovalent hetero atom-containing group.
  • hydrocarbon group includes a chain hydrocarbon group, an alicyclic hydrocarbon group and an aromatic hydrocarbon group.
  • the “hydrocarbon group” may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • Chain hydrocarbon group refers to a hydrocarbon group that does not contain a cyclic structure and is composed only of a chain structure, and includes both a linear hydrocarbon group and a branched hydrocarbon group.
  • Alicyclic hydrocarbon group means a hydrocarbon group containing only an alicyclic structure as a ring structure and not containing an aromatic ring structure, and a monocyclic alicyclic hydrocarbon group and a polycyclic alicyclic group Includes both hydrocarbon groups.
  • the alicyclic hydrocarbon group does not have to be composed only of an alicyclic structure, and part of the alicyclic hydrocarbon group may contain a chain structure.
  • the "aromatic hydrocarbon group” refers to a hydrocarbon group containing an aromatic ring structure as a ring structure.
  • the aromatic hydrocarbon group does not have to be composed of only an aromatic ring structure, and may have a chain structure or an alicyclic structure in part thereof.
  • the monovalent hydrocarbon group having 1 to 30 carbon atoms includes a monovalent chain hydrocarbon group having 1 to 30 carbon atoms, a monovalent alicyclic hydrocarbon group having 3 to 30 carbon atoms, and 6 to 6 carbon atoms. Thirty monovalent aromatic hydrocarbon groups and the like can be mentioned.
  • Examples of the monovalent chain hydrocarbon group having 1 to 30 carbon atoms include a chain such as alkyl group such as methyl group, ethyl group, n-propyl group, i-propyl group, sec-butyl group, t-butyl group, etc. Saturated hydrocarbon group; And alkenyl groups such as ethenyl group, 1-propenyl group, allyl group and butenyl group, and chain unsaturated hydrocarbon groups such as alkynyl group such as ethynyl group, propynyl group and butynyl group.
  • Examples of the monovalent alicyclic hydrocarbon group having 3 to 30 carbon atoms include monocyclic alicyclic saturated hydrocarbon groups such as cyclopentyl and cyclohexyl, norbornyl, adamantyl, tricyclodecyl and the like.
  • Alicyclic saturated hydrocarbon groups such as cyclic alicyclic saturated hydrocarbon groups; Alicyclic unsaturated such as monocyclic alicyclic unsaturated hydrocarbon group such as cyclopentenyl group and cyclohexenyl group, and polycyclic alicyclic unsaturated hydrocarbon group such as norbornenyl group and tricyclodecenyl group A hydrocarbon group etc. are mentioned.
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 30 carbon atoms include aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group and anthryl group; And aralkyl groups such as benzyl, phenethyl, naphthylmethyl and anthrylmethyl.
  • hetero atom which comprises monovalent
  • an oxygen atom a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, a halogen atom etc.
  • the halogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • divalent hetero atom-containing group examples include -O-, -CO-, -S-, -CS-, -NR'-, a group obtained by combining two or more of these, and the like.
  • R ' is a hydrogen atom or a monovalent hydrocarbon group. Among these, -O- is preferred.
  • Examples of the monovalent hetero atom-containing group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, hydroxy group, carboxy group, cyano group, amino group and sulfanyl group (-SH). Of these, fluorine is preferred.
  • the carbon atom bonded to the Ge atom in the organic group of R 1 is preferably a secondary carbon atom or a tertiary carbon atom.
  • the carbon atom bonded to the Ge atom secondary or tertiary By making the carbon atom bonded to the Ge atom secondary or tertiary, the cleavability of the Ge—R 1 bond is further enhanced, and the sensitivity of the composition for forming a resist film can be further improved.
  • Examples of the group having a secondary carbon atom bonded to a Ge atom include sec-alkyl groups such as i-propyl group and sec-butyl group.
  • Examples of the group having a tertiary carbon atom bonded to a Ge atom include t-alkyl groups such as t-butyl and t-pentyl groups.
  • a carbon-carbon double bond or a carbon atom adjacent to an aromatic ring is also preferable.
  • the cleavage of the Ge-R 1 bond is further enhanced by the carbon atom bonded to the Ge atom being adjacent to the carbon-carbon double bond or the aromatic ring, and the sensitivity of the composition for resist film formation is further improved. it can.
  • the group having a carbon atom bonded to a Ge atom and adjacent to a carbon-carbon double bond include, for example, an allyl group and a 2-buten-1-yl group.
  • Examples of the group having a carbon atom bonded to a Ge atom and adjacent to an aromatic ring include, for example, a benzyl group and a diphenylmethyl group.
  • R 1 a substituted or unsubstituted hydrocarbon group is preferable, an unsubstituted hydrocarbon group is more preferable, an unsubstituted chain hydrocarbon group or an unsubstituted aralkyl group is more preferable, and an unsubstituted saturated hydrocarbon is more preferable.
  • Groups are particularly preferred, and unsubstituted linear saturated hydrocarbon groups or unsubstituted alicyclic saturated hydrocarbon groups are even more particularly preferred.
  • R 1 an i-propyl group, a t-butyl group, an allyl group or a benzyl group is preferable, and an i-propyl group or a t-butyl group is more preferable.
  • the lower limit of the content ratio of the structural unit (I) is preferably 50 mol%, more preferably 70 mol%, still more preferably 90 mol%, based on all structural units constituting the [A] polygermanoxane. 100 mol% is particularly preferred.
  • [Other structural unit] As another structural unit, for example, a structural unit represented by (RR′GeO 2/2 ) (R and R ′ each independently represents a monovalent organic group having 1 to 30 carbon atoms bonded to a Ge atom) A structural unit represented by (GeO 4/2 ), a structural unit containing another metal atom other than germanium, and the like.
  • the upper limit of the content ratio of the other structural unit is preferably 30 mol% with respect to all the structural units constituting the [A] polygermanoxane. 10 mol% is more preferable.
  • [A] Polygermanoxane can be obtained, for example, using a compound such as trihalide, trialkoxide or triamide of Ge giving the structural unit (I) and adding water in a solvent such as tetrahydrofuran to carry out a hydrolysis condensation reaction. It can be synthesized.
  • This hydrolytic condensation reaction may be carried out, for example, in the presence of a base such as sodium hydroxide or in the presence of an acid such as hydrochloric acid or oxalic acid.
  • an extraction operation is carried out, and preferably, the solution obtained is filtered with a membrane filter having a pore diameter of about 0.2 ⁇ m to obtain a solution containing [A] polygermanoxane. .
  • the lower limit of the molecular weight of the polygermanoxane is preferably 200, more preferably 300, still more preferably 400, and particularly preferably 500.
  • the upper limit of the molecular weight is preferably 10,000, more preferably 3,000, still more preferably 2,000, and particularly preferably 1,000.
  • the lower limit of the content of the polygermanoxane is preferably 50% by mass, more preferably 70% by mass, still more preferably 80% by mass, with respect to the total solid content of the composition for forming a resist film. % By weight is particularly preferred.
  • the upper limit of the content is, for example, 100% by mass.
  • Total solid content of the composition for resist film formation means all components other than the [B] solvent in the composition for resist film formation.
  • the composition for forming a resist film may contain one or more kinds of [A] polygermanoxane.
  • the solvent is not particularly limited as long as it is a solvent capable of dissolving or dispersing at least [A] polygermanoxane and optionally contained optional components.
  • Examples of the solvent (B) include alcohol solvents, ether solvents, ketone solvents, amide solvents, ester solvents, hydrocarbon solvents, water and the like.
  • alcohol solvents include aliphatic monoalcohol solvents having 1 to 18 carbon atoms such as 4-methyl-2-pentanol and n-hexanol; Alicyclic monoalcohol solvents having 3 to 18 carbon atoms such as cyclohexanol; C 2-18 polyhydric alcohol solvents such as propylene glycol; Examples thereof include C3-C19 polyhydric alcohol partial ether solvents such as propylene glycol monomethyl ether.
  • ether solvent for example, a dialkyl ether solvent having 4 to 14 carbon atoms such as diethyl ether; Cyclic ether solvents such as tetrahydrofuran and tetrahydropyran; And aromatic ring-containing ether solvents such as diphenyl ether and anisole.
  • ketone solvents examples include linear ketone solvents having 3 to 12 carbon atoms such as acetone, methyl ethyl ketone, methyl-iso-butyl ketone, 2-heptanone and the like; Cyclic ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, methylcyclohexanone; 2,4-pentanedione, acetonylacetone, acetophenone and the like can be mentioned.
  • amide solvents examples include cyclic amide solvents such as N, N′-dimethylimidazolidinone, N-methylpyrrolidone and the like; Examples thereof include chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropionamide and the like.
  • ester solvents include: acetic acid ester solvents such as n-butyl acetate and amyl acetate; and monocarboxylic acid ester solvents such as propionate ester solvents such as ethyl propionate; Hydroxycarboxylic acid ester solvents such as ethyl lactate, n-butyl glycolate; Polyhydric alcohol carboxylate solvents such as propylene glycol acetate; Polyhydric alcohol partial ether carboxylate solvents such as propylene glycol monomethyl ether; Polyvalent carboxylic acid diester solvents such as diethyl oxalate; Lactone solvents such as ⁇ -butyrolactone and ⁇ -valerolactone; Carbonate solvents such as dimethyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate and the like can be mentioned.
  • acetic acid ester solvents such as n-butyl acetate and amyl acetate
  • hydrocarbon solvents examples include aliphatic hydrocarbon solvents having 5 to 12 carbon atoms, such as n-pentane and n-hexane; Aromatic hydrocarbon solvents having 6 to 16 carbon atoms, such as toluene and xylene, may, for example, be mentioned.
  • the said resin composition for resist film formation may contain 1 type, or 2 or more types of [B] solvent.
  • the optional component examples include a radiation sensitive acid generator, an acid scavenger, a surfactant, a sensitizer, a fluorine atom-containing polymer and the like.
  • a radiation sensitive acid generator an acid scavenger
  • a surfactant an acid scavenger
  • a sensitizer an organic radical-containing polymer
  • a fluorine atom-containing polymer an organic radical-containing polymer
  • the optional component include a radiation sensitive acid generator, an acid scavenger, a surfactant, a sensitizer, a fluorine atom-containing polymer and the like.
  • 10 mass parts is preferable with respect to 100 mass parts of [A] polygermanoxanes as an upper limit of each content, and 5 mass parts is more preferable.
  • the lower limit of the content is, for example, 0.1 parts by mass, and preferably 0.5 parts by mass.
  • the optional components may be used alone or in combination of two or more.
  • the radiation sensitive acid generator is a component that generates an acid upon exposure.
  • the radiation-sensitive acid generator include onium salt compounds such as sulfonium salts, tetrahydrothiophenium salts and iodonium salts, N-sulfonyloxyimide compounds, halogen-containing compounds and diazoketone compounds.
  • the radiation sensitive acid generator is preferably an onium salt compound or an N-sulfonyloxyimide compound, and more preferably a triphenylsulfonium salt or an N-sulfonyloxyimide compound.
  • a radiation sensitive acid generator for example, triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium nonafluoro-n-butanesulfonate, triphenylsulfonium 2-bicyclo [2.2.1] hept-2-yl- 1,1,2,2-tetrafluoroethanesulfonate, triphenylsulfonium camphorsulfonate, triphenylsulfonium 1,1,2,2-tetrafluoro-6- (1-adamantanecarbonyloxy) -hexane-1-sulfonate, Triphenylsulfonium 2- (1-adamantyl) -1,1-difluoroethanesulfonate or triphenylsulfonium 2- (adamantan-1-ylcarbonyloxy) -1,1,3,3,3-pentafluoropropane-1-sulfone Sulfonates
  • the composition for forming a resist film is prepared, for example, by mixing [A] polygermanoxane, [B] solvent and optional components according to need in a predetermined ratio, and preferably, the obtained mixture has a pore diameter of about 0.2 ⁇ m. It can be prepared by filtration through a membrane filter of
  • the lower limit of the concentration of the total solid content of the composition for forming a resist film is preferably 0.1% by mass, more preferably 0.5% by mass, still more preferably 1% by mass, and particularly preferably 2% by mass.
  • the upper limit of the concentration of the total solid content is preferably 50% by mass, more preferably 30% by mass, still more preferably 10% by mass, and particularly preferably 5% by mass.
  • Synthesis Example 2 In 50 g of tetrahydrofuran was dissolved 2.0 g of t-butyl germanium trichloride, to which 0.05 g of sodium hydroxide and 1.0 g of water were added, and stirring was performed at room temperature for 12 hours. After the addition of 50 g of diethyl ether, 50 g of water was added to carry out an extraction operation to remove the aqueous phase. A further 50 g of water addition, extraction operation and aqueous phase removal were repeated twice.
  • Synthesis Example 4 In 50 g of tetrahydrofuran was dissolved 2.0 g of allylgermanium triethoxide, to which 0.05 g of sodium hydroxide and 1.0 g of water were added, and stirring was carried out at room temperature for 12 hours. After the addition of 50 g of diethyl ether, 50 g of water was added to carry out an extraction operation to remove the aqueous phase. A further 50 g of water addition, extraction operation and aqueous phase removal were repeated twice.
  • Example 1 A solution having a solid content concentration of 2.5 mass% by mixing a solution containing (A-1) as the above synthesized [A] polygermanoxane and 4-methyl-2-pentanol as the [B] solvent The resulting solution was filtered through a membrane filter with a pore size of 0.20 ⁇ m to obtain a composition (R-1) for forming a resist film.
  • Examples 2 to 4 and Comparative Examples 1 to 3 A liquid having a solid content concentration of 2.5% by mass was prepared by mixing a liquid containing the component [A] of the type shown in Table 1 below and 4-methyl-2-pentanol as a solvent [B]. The solution was filtered through a membrane filter with a pore size of 0.20 ⁇ m to obtain resist film-forming compositions (R-2) to (R-7).
  • R-2 represents a group corresponding to R 1 in Formula (1) (group bonded to the metal atom).
  • “-” In Table 1 does not have a group corresponding to R 1 in polygermanoxane (A-7) (a monovalent organic group having 1 to 30 carbon atoms bonded to a Ge atom by a carbon atom) Indicates that.
  • PB was performed under conditions of 100 ° C. and 60 seconds to form a resist film having an average thickness of 35 nm.
  • this resist film is formed using a vacuum ultraviolet light exposure apparatus (NA: 0.3, dipole illumination, wavelength 13.5 nm) to form a line portion with a line width of 30 nm and an adjacent line portion with a distance of 30 nm. It exposed through the mask of the line and space pattern (1L1S) which consists of a space part, and patterning was performed. Thereafter, PEB was performed under conditions of 170 ° C. and 180 seconds, then developed and patterned by a paddle method using 2-heptanone at 23 ° C. for 1 minute, and then dried to form a negative resist pattern.
  • NA vacuum ultraviolet light exposure apparatus
  • the composition for forming a resist film prepared above was coated at 1,500 rpm using a spin coater on a substrate on which a resist underlayer film (“NFC HM8005” manufactured by JSR Corporation) was formed (200 nm).
  • the substrate was dispensed with an excess amount of cyclohexanone as it was without passing through a baking step to remove the applied composition for forming a resist film.
  • the resist underlayer film was etched using a dry etching apparatus (“Telius SCCM” of Tokyo Electron Ltd.). After that, the contamination amount of the metal element on the substrate was evaluated by ICP-MS analysis.
  • the “contamination amount” obtained by this evaluation corresponds to the amount of the metal element derived from the composition for forming a resist film, which is not removed but remains on the substrate. Ease of removal is “AA (very good)” when the contamination amount is less than 0.5 ⁇ 10 11 Atom / cm 2 and 0.5 ⁇ 10 11 Atom / cm 2 or more 1.0 ⁇ 10 11 is less than Atom / cm 2 the "a (good)", when it is 1.0 ⁇ 10 11 Atom / cm 2 or more was evaluated as "B (bad)”.
  • Example 5 A composition for forming a resist film in the same manner as in Example 1 except that triphenylsulfonium nonafluoro-n-butanesulfonate was further added as a radiation sensitive acid generator in the preparation of a composition for forming a resist film of Example 1.
  • the thing (R-8) was obtained.
  • triphenylsulfonium nonafluoro-n-butanesulfonate was added so as to be 5% by mass with respect to (A-1) as [A] polygermanoxane. Accordingly, the solid content concentration of the composition for forming a resist film (R-8) is about 2.6% by mass.
  • the evaluation was carried out in the same manner as in Example 1. As a result, the sensitivity was “AA” and the ease of removal was also “AA”.
  • the composition for forming a resist film of the example is excellent in both sensitivity and ease of removal.
  • the composition for resist film formation of a comparative example was not able to make sensitivity and ease of removal compatible.
  • a good resist pattern can be formed while reducing the contamination of the wafer with high sensitivity. Therefore, these can be suitably used for semiconductor device manufacture whose miniaturization is expected to further progress in the future.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials For Photolithography (AREA)

Abstract

感度及び除去容易性に共に優れるレジストパターン形成方法及びレジスト膜形成用組成物の提供を目的とする。本発明は、レジスト膜形成用組成物を基板上に塗工する工程と、上記塗工工程により形成されたレジスト膜に極端紫外線又は電子線を照射する工程と、上記照射されたレジスト膜を有機溶媒含有液で現像する工程とを備え、上記レジスト膜形成用組成物が、下記式(1)で表される構造単位を有するポリゲルマノキサンと、溶媒とを含有するレジストパターン形成方法である。下記式(1)中、R1は、Ge原子に炭素原子で結合する炭素数1~30の1価の有機基である。上記R1の有機基は、非置換の鎖状炭化水素基であることが好ましい。上記R1の有機基は、非置換の飽和炭化水素基であることが好ましい。上記R1の有機基におけるGe原子に結合する炭素原子は、2級炭素原子又は3級炭素原子であることが好ましい。

Description

レジストパターン形成方法及びレジスト膜形成用組成物
 本発明は、レジストパターン形成方法及びレジスト膜形成用組成物に関する。
 リソグラフィーによる微細加工に用いられる感放射線性組成物は、遠紫外線(ArFエキシマレーザー光、KrFエキシマレーザー光等)、極端紫外線(EUV:Extreme Ultraviolet rays)等の電磁波や、電子線等の荷電粒子線などで露光されることにより露光部で酸やラジカルが発生し、この酸を触媒とする化学反応や、このラジカルが関与するラジカル反応により露光部及び未露光部で現像液に対する溶解速度に差が生じるため、基板上にレジストパターンを形成できる。
 かかる感放射線性組成物には、加工技術の微細化に伴ってレジスト性能を向上させることが要求されている。この要求に対し、組成物に用いられる重合体、酸発生剤、その他の成分の種類や分子構造等が検討され、さらにその組み合わせについても詳細に検討されている(特開平11-125907号公報、特開平8-146610号公報及び特開2000-298347号公報参照)。
特開平11-125907号公報 特開平8-146610号公報 特開2000-298347号公報
 現状、パターンの微細化が線幅40nm以下のレベルまで進展したことにより、感放射線性組成物には種々のレジスト性能のさらなる向上が求められている。金属原子含有化合物を含有するレジスト膜形成用組成物においては、電子線を照射、又はEUV等で露光した場合にも高い感度を発揮できることに加えて、当該レジスト膜形成用組成物を塗工した際、これがウエハの不要な部分に付着しても溶媒で洗浄することにより容易に除去することも要求されている。しかし、上記従来のレジスト膜形成用組成物では、これらの要求を満たすことはできていない。
 本発明は以上のような事情に基づいてなされたものであり、その目的は、感度及び除去容易性に共に優れるレジストパターン形成方法及びレジスト膜形成用組成物を提供することにある。
 上記課題を解決するためになされた発明は、レジスト膜形成用組成物を基板上に塗工する工程と、上記塗工工程により形成されたレジスト膜に極端紫外線又は電子線を照射する工程と、上記照射されたレジスト膜を有機溶媒含有液で現像する工程とを備え、上記レジスト膜形成用組成物が、下記式(1)で表される構造単位を有するポリゲルマノキサンと、溶媒とを含有するレジストパターン形成方法である。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、Rは、Ge原子に炭素原子で結合する炭素数1~30の1価の有機基である。)
 上記課題を解決するためになされた別の発明は、下記式(1)で表される構造単位を有するポリゲルマノキサンと、溶媒とを含有するレジスト膜形成用組成物である。
Figure JPOXMLDOC01-appb-C000004
(式(1)中、Rは、Ge原子に炭素原子で結合する炭素数1~30の1価の有機基である。)
 ここで、「ポリゲルマノキサン」とは、Ge-O結合を有する多核化合物をいう。「有機基」とは、少なくとも1個の炭素原子を含む基をいう。
 本発明のレジストパターン形成方法及びレジスト膜形成用組成物によれば、高い感度で除去容易性に優れ、良好なレジストパターンを形成することができる。従って、これらは今後さらに微細化が進行すると予想される半導体デバイス製造用に好適に用いることができる。
<レジストパターン形成方法>
 当該レジストパターン形成方法は、レジスト膜形成用組成物を基板上に塗工する工程(以下、「塗工工程」ともいう)と、上記塗工工程により形成されたレジスト膜を露光する工程(以下、「露光工程」ともいう)と、上記露光されたレジスト膜を現像する工程(以下、「現像工程」ともいう)とを備え、上記レジスト膜形成用組成物が、下記式(1)で表される構造単位(以下、「構造単位(I)」ともいう)を有するポリゲルマノキサン(以下、「[A]ポリゲルマノキサン」ともいう)と、溶媒(以下、「[B]溶媒」ともいう)とを含有する。
Figure JPOXMLDOC01-appb-C000005
 上記式(1)中、Rは、Ge原子に炭素原子で結合する炭素数1~30の1価の有機基である。
 当該レジストパターン形成方法は、上記レジスト膜形成用組成物を用いるので、高い感度で、ウエハの汚染を減らしつつ良好なレジストパターンを形成することができる。以下、各工程について説明する。当該レジストパターン形成方法で用いるレジスト膜形成用組成物については後述する。
[塗工工程]
 本工程では、レジスト膜形成用組成物を基板上に塗工する。具体的には、得られる塗膜が所望の厚みとなるようにレジスト膜形成用組成物を塗工した後、必要に応じてプレベーク(PB)によってこのレジスト膜形成用組成物の溶媒等を揮発させることでレジスト膜を形成する。塗工方法としては、例えば回転塗工、流延塗工、ロール塗工等が挙げられる。基板としては、例えばシリコンウエハ、アルミニウムで被覆されたウエハ等が挙げられる。なお、レジスト膜形成用組成物の潜在能力を最大限に引き出すため、有機系又は無機系の反射防止膜を基板上に形成してもよい。
 形成されるレジスト膜の平均厚みの下限としては、1nmが好ましく、5nmがより好ましく、10nmがさらに好ましく、20nmが特に好ましい。一方、上記平均厚みの上限としては、1,000nmが好ましく、200nmがより好ましく、100nmがさらに好ましく、70nmが特に好ましい。
 PB温度の下限としては、60℃が好ましく、80℃がより好ましい。PB温度の上限としては、140℃が好ましく、120℃がより好ましい。PB時間の下限としては、5秒が好ましく、10秒がより好ましい。PB時間の上限としては、600秒が好ましく、300秒がより好ましい。
[露光工程]
 本工程では、塗工工程により形成されたレジスト膜を露光する。具体的には、例えば所定のパターンを有するマスクを介して上記膜に放射線を照射する。本工程では、必要に応じ、水等の液浸媒体を介した放射線の照射、つまり液浸露光を採用してもよい。照射する放射線としては、例えば可視光線、紫外線、遠紫外線、EUV(波長13.5nm)、X線、γ線等の電磁波;電子線、α線等の荷電粒子線などが挙げられる。これらの中で、EUV又は電子線が好ましい。
 露光後に、ポストエクスポージャーベーク(PEB)を行うことが好ましい。PEB温度の下限としては、50℃が好ましく、80℃がより好ましい。PEB温度の上限としては、200℃が好ましく、180℃がより好ましい。PEB時間の下限としては、5秒が好ましく、10秒がより好ましい。PEB時間の上限としては、600秒が好ましく、300秒がより好ましい。
[現像工程]
 本工程では、露光されたレジスト膜を従来公知の方法で現像する。これにより、所定のレジストパターンが形成される。上記現像液としては、例えばアルカリ水溶液、有機溶媒含有液等が挙げられる。上記現像液としては、現像性等の観点から、有機溶媒含有液が好ましい。
 上記有機溶媒含有液中の有機溶媒としては、例えば当該レジストパターン形成方法で用いられるレジスト膜形成用組成物の[B]溶媒として例示される有機溶媒と同様のもの等が挙げられる。これらの中で、ケトン系溶媒及びエステル系からなる群から選択される1種又は2種の溶媒が好ましく、2-へプタノン及び酢酸ブチルからなる群から選択される1種又は2種の溶媒がより好ましい。
 上記有機溶媒含有液における有機溶媒の含有量の下限としては、80質量%が好ましく、90質量%がより好ましく、95質量%がさらに好ましく、99質量%が特に好ましい。上記有機溶媒の含有量を上記範囲とすることで、露光部及び未露光部での現像液に対する溶解速度のコントラストをより向上できる。なお、上記有機溶媒含有液の有機溶媒以外の成分としては、例えば水、シリコーンオイル等が挙げられる。
 上記現像液には、必要に応じて界面活性剤を適当量添加してもよい。上記界面活性剤としては例えばイオン性又は非イオン性のフッ素系界面活性剤、シリコーン系の界面活性剤等を用いることができる。
 上記現像後、好ましくは乾燥させることにより、ネガ型レジストパターンが得られる。
<レジスト膜形成用組成物>
 当該レジストパターン形成方法で用いられるレジスト膜形成用組成物は、[A]ポリゲルマノキサンと、[B]溶媒とを含有する。当該レジスト膜形成用組成物は、本発明の効果を損なわない範囲において、任意成分を含有していてもよい。
 当該レジスト膜形成用組成物は、[A]ポリゲルマノキサンを含有することで、感度及び除去容易性に共に優れる。当該レジスト膜形成用組成物が上記構成を備えることで上記効果を奏する理由については必ずしも明確ではないが、例えば[A]ポリゲルマノキサンが、Ge-R結合の開裂性が高く、かつ溶媒への溶解性が良好であること等が考えられる。以下、各成分について説明する。
[[A]ポリゲルマノキサン]
 [A]ポリゲルマノキサンは、上記構造単位(I)を有する。[A]ポリゲルマノキサンは、構造単位(I)以外の他の構造単位を有していてもよい。
(構造単位(I))
 構造単位(I)は、上記式(1)で表される構造単位である。構造単位(I)において、ゲルマニウム原子には、R基が炭素原子で結合し、かつ3個の酸素原子が結合している。
 Rで表される炭素数1~30の1価の有機基としては、例えば炭素数1~30の1価の炭化水素基、この炭化水素基の炭素-炭素間に2価のヘテロ原子含有基を含む基(α)、上記炭化水素基及び基(α)の水素原子の一部又は全部を1価のヘテロ原子含有基で置換した基などが挙げられる。
 ここで「炭化水素基」には、鎖状炭化水素基、脂環式炭化水素基及び芳香族炭化水素基が含まれる。この「炭化水素基」は、飽和炭化水素基でも不飽和炭化水素基でもよい。「鎖状炭化水素基」とは、環状構造を含まず、鎖状構造のみで構成された炭化水素基をいい、直鎖状炭化水素基及び分岐状炭化水素基の両方を含む。「脂環式炭化水素基」とは、環構造としては脂環構造のみを含み、芳香環構造を含まない炭化水素基をいい、単環の脂環式炭化水素基及び多環の脂環式炭化水素基の両方を含む。但し、脂環式炭化水素基は、脂環構造のみで構成されている必要はなく、その一部に鎖状構造を含んでいてもよい。「芳香族炭化水素基」とは、環構造として芳香環構造を含む炭化水素基をいう。但し、芳香族炭化水素基は、芳香環構造のみで構成されている必要はなく、その一部に鎖状構造や脂環構造を含んでいてもよい。
 炭素数1~30の1価の炭化水素基としては、炭素数1~30の1価の鎖状炭化水素基、炭素数3~30の1価の脂環式炭化水素基、炭素数6~30の1価の芳香族炭化水素基等が挙げられる。
 炭素数1~30の1価の鎖状炭化水素基としては、例えば
 メチル基、エチル基、n-プロピル基、i-プロピル基、sec-ブチル基、t-ブチル基等のアルキル基などの鎖状飽和炭化水素基;
 エテニル基、1-プロペニル基、アリル基、ブテニル基等のアルケニル基、エチニル基、プロピニル基、ブチニル基等のアルキニル基などの鎖状不飽和炭化水素基などが挙げられる。
 炭素数3~30の1価の脂環式炭化水素基としては、例えば
 シクロペンチル基、シクロヘキシル基等の単環の脂環式飽和炭化水素基、ノルボルニル基、アダマンチル基、トリシクロデシル基等の多環の脂環式飽和炭化水素基などの脂環式飽和炭化水素基;
 シクロペンテニル基、シクロヘキセニル基等の単環の脂環式不飽和炭化水素基、ノルボルネニル基、トリシクロデセニル基等の多環の脂環式不飽和炭化水素基などの脂環式不飽和炭化水素基などが挙げられる。
 炭素数6~30の1価の芳香族炭化水素基としては、例えば
 フェニル基、トリル基、キシリル基、ナフチル基、アントリル基等のアリール基;
 ベンジル基、フェネチル基、ナフチルメチル基、アントリルメチル基等のアラルキル基などが挙げられる。
 1価又は2価のヘテロ原子含有基を構成するヘテロ原子としては、例えば酸素原子、窒素原子、硫黄原子、リン原子、ケイ素原子、ハロゲン原子等が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 2価のヘテロ原子含有基としては、例えば-O-、-CO-、-S-、-CS-、-NR’-、これらのうちの2つ以上を組み合わせた基等が挙げられる。R’は、水素原子又は1価の炭化水素基である。これらの中で、-O-が好ましい。
 1価のヘテロ原子含有基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、アミノ基、スルファニル基(-SH)等が挙げられる。これらの中で、フッ素原子が好ましい。
 Rの有機基におけるGe原子に結合する炭素原子としては、2級炭素原子又は3級炭素原子が好ましい。Ge原子に結合する炭素原子を2級又は3級とすることで、Ge-R結合の開裂性がより高まり、当該レジスト膜形成用組成物の感度をより向上させることができる。Ge原子に結合する2級炭素原子を有する基としては、例えばi-プロピル基、sec-ブチル基等のsec-アルキル基などが挙げられる。Ge原子に結合する3級炭素原子を有する基としては、例えばt-ブチル基、t-ペンチル基等のt-アルキル基などが挙げられる。
 また、Rの有機基におけるGe原子に結合する炭素原子としては、炭素-炭素二重結合又は芳香環に隣接する炭素原子も好ましい。Ge原子に結合する炭素原子が炭素-炭素二重結合又は芳香環に隣接することで、Ge-R結合の開裂性がより高まり、当該レジスト膜形成用組成物の感度をより向上させることができる。Ge原子に結合し炭素-炭素二重結合に隣接する炭素原子を有する基としては、例えばアリル基、2-ブテン-1-イル基等が挙げられる。Ge原子に結合し芳香環に隣接する炭素原子を有する基としては、例えばベンジル基、ジフェニルメチル基等が挙げられる。
 Rとしては、置換又は非置換の炭化水素基が好ましく、非置換の炭化水素基がより好ましく、非置換の鎖状炭化水素基又は非置換のアラルキル基がさらに好ましく、非置換の飽和炭化水素基が特に好ましく、非置換の鎖状飽和炭化水素基又は非置換の脂環式飽和炭化水素基がさらに特に好ましい。Rを上記基とすることで、当該レジスト膜形成用組成物の感度及び除去容易性をより向上させることができる。
 Rとしては、i-プロピル基、t-ブチル基、アリル基又はベンジル基が好ましく、i-プロピル基又はt-ブチル基がより好ましい。Rを上記基とすることで、当該レジスト膜形成用組成物の感度及び除去容易性をさらに向上させることができる。
 構造単位(I)の含有割合の下限としては、[A]ポリゲルマノキサンを構成する全構造単位に対して、50モル%が好ましく、70モル%がより好ましく、90モル%がさらに好ましく、100モル%が特に好ましい。構造単位(I)の含有割合を上記範囲とすることで、当該レジスト膜形成用組成物の感度及び除去容易性をさらに向上させることができる。
[他の構造単位]
 他の構造単位としては、例えば(RR’GeO2/2)で表される構造単位(R及びR’は、それぞれ独立して、Ge原子に結合する炭素数1~30の1価の有機基である)、(GeO4/2)で表される構造単位、ゲルマニウム以外の他の金属原子を含む構造単位等が挙げられる。
 [A]ポリゲルマノキサンが他の構造単位を有する場合、他の構造単位の含有割合の上限としては、[A]ポリゲルマノキサンを構成する全構造単位に対して、30モル%が好ましく、10モル%がより好ましい。
 [A]ポリゲルマノキサンは、例えば構造単位(I)を与えるGeのトリハライド、トリアルコキシド、トリアミド等の化合物を用い、テトラヒドロフラン等の溶媒中で水を添加し、加水分解縮合反応を行うことにより合成することができる。この加水分解縮合反応は、例えば水酸化ナトリウム等の塩基存在下又は塩酸、シュウ酸等の酸存在下で行ってもよい。上記加水分解縮合反応の後、抽出操作を行い、好ましくは、得られた液を孔径0.2μm程度のメンブランフィルターでろ過することにより、[A]ポリゲルマノキサンを含む溶液を得ることができる。
 [A]ポリゲルマノキサンの分子量の下限としては、200が好ましく、300がより好ましく、400がさらに好ましく、500が特に好ましい。上記分子量の上限としては、10,000が好ましく、3,000がより好ましく、2,000がさらに好ましく、1,000が特に好ましい。[A]ポリゲルマノキサンの分子量を上記範囲とすることで、感度及び除去容易性をより向上させることができる。
 [A]ポリゲルマノキサンの含有量の下限としては、レジスト膜形成用組成物の全固形分に対して、50質量%が好ましく、70質量%がより好ましく、80質量%がさらに好ましく、85質量%が特に好ましい。上記含有量の上限としては、例えば100質量%である。[A]ポリゲルマノキサンの含有量を上記範囲とすることで、当該レジスト膜形成用組成物の感度及び除去容易性をより向上させることができる。「レジスト膜形成用組成物の全固形分」とは、レジスト膜形成用組成物における[B]溶媒以外の全成分をいう。レジスト膜形成用組成物は、[A]ポリゲルマノキサンを1種又は2種以上含有していてもよい。
<[B]溶媒>
 [B]溶媒は、少なくとも[A]ポリゲルマノキサン及び必要に応じて含有される任意成分を溶解又は分散可能な溶媒であれば特に限定されない。
 [B]溶媒としては、例えばアルコール系溶媒、エーテル系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒、炭化水素系溶媒、水等が挙げられる。
 アルコール系溶媒としては、例えば
 4-メチル-2-ペンタノール、n-ヘキサノール等の炭素数1~18の脂肪族モノアルコール系溶媒;
 シクロヘキサノール等の炭素数3~18の脂環式モノアルコール系溶媒;
 プロピレングリコール等の炭素数2~18の多価アルコール系溶媒;
 プロピレングリコールモノメチルエーテル等の炭素数3~19の多価アルコール部分エーテル系溶媒などが挙げられる。
 エーテル系溶媒としては、例えば
 ジエチルエーテル等の炭素数4~14のジアルキルエーテル系溶媒;
 テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶媒;
 ジフェニルエーテル、アニソール等の芳香環含有エーテル系溶媒などが挙げられる。
 ケトン系溶媒としては、例えば
 アセトン、メチルエチルケトン、メチル-iso-ブチルケトン、2-ヘプタノン等の炭素数3~12の鎖状ケトン系溶媒;
 シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン等の環状ケトン系溶媒;
 2,4-ペンタンジオン、アセトニルアセトン、アセトフェノン等が挙げられる。
 アミド系溶媒としては、例えば
 N,N’-ジメチルイミダゾリジノン、N-メチルピロリドン等の環状アミド系溶媒;
 N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド等の鎖状アミド系溶媒などが挙げられる。
 エステル系溶媒としては、例えば
 酢酸n-ブチル、酢酸アミル等の酢酸エステル系溶媒、プロピオン酸エチル等のプロピオン酸エステル系溶媒などのモノカルボン酸エステル系溶媒;
 エチルラクテート、グリコール酸n-ブチル等のヒドロキシカルボン酸エステル系溶媒;
 酢酸プロピレングリコール等の多価アルコールカルボキシレート系溶媒;
 酢酸プロピレングリコールモノメチルエーテル等の多価アルコール部分エーテルカルボキシレート系溶媒;
 シュウ酸ジエチル等の多価カルボン酸ジエステル系溶媒;
 γ-ブチロラクトン、δ-バレロラクトン等のラクトン系溶媒;
 ジメチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒などが挙げられる。
 炭化水素系溶媒としては、例えば
 n-ペンタン、n-ヘキサン等の炭素数5~12の脂肪族炭化水素系溶媒;
 トルエン、キシレン等の炭素数6~16の芳香族炭化水素系溶媒等が挙げられる。
 [B]溶媒としては、アルコール系溶媒が好ましく、脂肪族モノアルコール系溶媒がより好ましく、4-メチル-2-ペンタノールがさらに好ましい。当該レジスト膜形成用樹脂組成物は、[B]溶媒を1種又は2種以上含有していてもよい。
<任意成分>
 任意成分としては、例えば感放射線性酸発生体、酸捕捉体、界面活性剤、増感剤、フッ素原子含有重合体等が挙げられる。当該レジスト膜形成用組成物が任意成分を含有する場合、それぞれの含有量の上限としては、[A]ポリゲルマノキサン100質量部に対して、10質量部が好ましく、5質量部がより好ましい。上記含有量の下限としては、例えば0.1質量部であり、0.5質量部が好ましい。任意成分はそれぞれ1種又は2種以上を用いることができる。
 感放射線性酸発生体は、露光により酸を発生する成分である。感放射線性酸発生体としては、例えばスルホニウム塩、テトラヒドロチオフェニウム塩、ヨードニウム塩等のオニウム塩化合物、N-スルホニルオキシイミド化合物、ハロゲン含有化合物、ジアゾケトン化合物等が挙げられる。感放射線性酸発生体としては、オニウム塩化合物又はN-スルホニルオキシイミド化合物が好ましく、トリフェニルスルホニウム塩又はN-スルホニルオキシイミド化合物がさらに好ましい。このような感放射線性酸発生体としては、例えばトリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、トリフェニルスルホニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、トリフェニルスルホニウムカンファースルホネート、トリフェニルスルホニウム1,1,2,2-テトラフルオロ-6-(1-アダマンタンカルボニロキシ)-ヘキサン-1-スルホネート、トリフェニルスルホニウム2-(1-アダマンチル)-1,1-ジフルオロエタンスルホネート又はトリフェニルスルホニウム2-(アダマンタン-1-イルカルボニルオキシ)-1,1,3,3,3-ペンタフルオロプロパン-1-スルホネート等が挙げられる。
<レジスト膜形成用組成物の調製>
 当該レジスト膜形成用組成物は、例えば[A]ポリゲルマノキサン、[B]溶媒及び必要に応じて任意成分を所定の割合で混合し、好ましくは、得られた混合物を孔径0.2μm程度のメンブランフィルターでろ過することにより調製できる。当該レジスト膜形成用組成物の全固形分の濃度の下限としては、0.1質量%が好ましく、0.5質量%がより好ましく、1質量%がさらに好ましく、2質量%が特に好ましい。上記全固形分の濃度の上限としては、50質量%が好ましく、30質量%がより好ましく、10質量%がさらに好ましく、5質量%が特に好ましい。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。各物性値は下記方法により測定した。
[[A]ポリゲルマノキサンを含む液の固形分濃度]
 [A]ポリゲルマノキサンを含む液の固形分濃度は、[A]ポリゲルマノキサンを含む液の質量(M1)と、この液を乾固させた後の質量(M2)とから、M2×100/M1(質量%)により算出した。
<[A]ポリゲルマノキサンの合成>
[合成例1]
 イソプロピルゲルマニウムトリクロリド2.0gを50gのテトラヒドロフラン中で溶解し、ここに水1.0gを添加して、室温で48時間撹拌を行った。ここに4-メチル-2-ペンタノール40gを加えた後、ロータリーエバポレーターで減圧濃縮してから、得られた濃縮液を孔径0.20μmのPTFEメンブランフィルターでろ過し、ポリゲルマノキサン(A-1)を含む液を得た。この液の固形分濃度は3.5質量%であった。
[合成例2]
 t-ブチルゲルマニウムトリクロリド2.0gを50gのテトラヒドロフラン中で溶解し、ここに水酸化ナトリウム0.05gと水1.0gとを添加して、室温で12時間撹拌を行った。ジエチルエーテル50gを追加添加後、水50gを添加して抽出操作を行い、水相を除去した。さらに50gの水添加、抽出操作及び水相除去を2回繰り返した。次に、有機相に4-メチル-2-ペンタノール40gを加えた後、ロータリーエバポレーターで減圧濃縮してから、得られた濃縮液を孔径0.20μmのPTFEメンブランフィルターでろ過し、ポリゲルマノキサン(A-2)を含む液を得た。この液の固形分濃度は4.2質量%であった。
[合成例3]
 ベンジルゲルマニウムトリクロリド2.0gを50gのテトラヒドロフラン中で溶解し、ここに水1.0gを添加して、室温で48時間撹拌を行った。ここに4-メチル-2-ペンタノール40gを加えた後、ロータリーエバポレーターで減圧濃縮してから、得られた濃縮液を孔径0.20μmのPTFEメンブランフィルターでろ過し、ポリゲルマノキサン(A-3)を含む液を得た。この液の固形分濃度は3.6質量%であった。
[合成例4]
 アリルゲルマニウムトリエトキシド2.0gを50gのテトラヒドロフラン中で溶解し、ここに水酸化ナトリウム0.05gと水1.0gとを添加して、室温で12時間撹拌を行った。ジエチルエーテル50gを追加添加後、水50gを添加して抽出操作を行い、水相を除去した。さらに50gの水添加、抽出操作及び水相除去を2回繰り返した。次に、有機相に4-メチル-2-ペンタノール40gを加えた後、ロータリーエバポレーターで減圧濃縮してから、得られた濃縮液を孔径0.20μmのPTFEメンブランフィルターでろ過し、ポリゲルマノキサン(A-4)を含む液を得た。この液の固形分濃度は4.3質量%であった。
[比較合成例1]
 イソプロピルスズトリクロリド2.0gを50gのテトラヒドロフラン中で溶解し、ここに水1.0gを添加して、室温で48時間撹拌を行った。ここに4-メチル-2-ペンタノール40gを加えた後、ロータリーエバポレーターで減圧濃縮してから、得られた濃縮液を孔径0.20μmのPTFEメンブランフィルターでろ過し、スズ含有化合物(A-5)を含む液を得た。この液の固形分濃度は4.0質量%であった。
[比較合成例2]
 t-ブチルシリルトリエトキシド2.0gを50gのテトラヒドロフラン中で溶解し、ここに水酸化ナトリウム0.05gと水1.0gを添加して、室温で12時間撹拌を行った。ジエチルエーテル50gを追加添加後、水50gを添加して抽出操作をおこない、水相を除去した。さらに50gの水添加、抽出操作及び水相除去を2回繰り返した。次に、有機相に4-メチル-2-ペンタノール40gを加えた後、ロータリーエバポレーターで減圧濃縮した後に、濃縮液を孔径0.20μmのPTFEメンブランフィルターでろ過し、ケイ素含有化合物(A-6)を含む液を得た。この液の固形分濃度は3.9質量%であった。
[比較合成例3]
 ゲルマニウムテトラクロリド2.0gを50gのテトラヒドロフラン中で溶解し、ここに水1.0gを添加して、室温で48時間撹拌を行った。4-メチル-2-ペンタノール40gを加えた後、ロータリーエバポレーターで減圧濃縮してから、得られた濃縮液を孔径0.20μmのPTFEメンブランフィルターでろ過し、ポリゲルマノキサン(A-7)を含む液を得た。この液の固形分濃度は3.5質量%であった。
<レジスト膜形成用組成物の調製>
[実施例1]
 上記合成した[A]ポリゲルマノキサンとしての(A-1)を含む溶液と[B]溶媒としての4-メチル-2-ペンタノールとを混合して固形分濃度2.5質量%の液を調製し、得られた液を孔径0.20μmのメンブランフィルターでろ過して、レジスト膜形成用組成物(R-1)を得た。
[実施例2~4及び比較例1~3]
 下記表1に示す種類の[A]成分を含む液と[B]溶媒としての4-メチル-2-ペンタノールとを混合して固形分濃度2.5質量%の液を調製し、得られた液を孔径0.20μmのメンブランフィルターでろ過して、レジスト膜形成用組成物(R-2)~(R-7)を得た。表1中の「R」は、式(1)におけるRに対応する基(金属原子に結合する基)を示す。表1中の「-」は、ポリゲルマノキサン(A-7)がRに対応する基(Ge原子に炭素原子で結合する炭素数1~30の1価の有機基)を有さないことを示す。
Figure JPOXMLDOC01-appb-T000006
<レジストパターンの形成>
 シリコンウエハ上に、上記調製した各レジスト膜形成用組成物をスピンコートした後、100℃、60秒の条件でPBを行い、平均厚み35nmのレジスト膜を形成した。次に、このレジスト膜を、真空紫外光露光装置(NA:0.3、ダイポール照明、波長13.5nm)を用いて線幅30nmのライン部と、隣り合うライン部によって形成される間隔が30nmのスペース部とからなるライン・アンド・スペースパターン(1L1S)のマスクを介して露光し、パターニングを行った。その後、170℃、180秒の条件でPEBを行い、次いで、2-ヘプタノンを用い、23℃で1分間、パドル法により現像してパターニングした後、乾燥して、ネガ型レジストパターンを形成した。
<評価>
 上記調製したレジスト膜形成用組成物及び上記形成したレジストパターンについて、感度及び除去容易性を下記方法に従い評価した。評価結果を下記表2に示す。
[感度]
 真空紫外線(波長13.5nm)によるパターニングで、幅30nmの直線状のライン部(凸部)と、幅30nmの直線状のスペース部(凹部)とが交互に平行配置されたライン・アンド・スペースパターン(1L1S)を形成する露光量を最適露光量とし、この最適露光量を感度(mJ/cm)とした。感度は、30mJ/cm以下である場合は「AA(非常に良好)」、30mJ/cmを超えて50mJ/cm以下である場合は「A(良好)」と、50mJ/cmを超える場合は「B(不良)」と評価した。
[除去容易性]
 レジスト下層膜(JSR(株)の「NFC HM8005」)を成膜(200nm)した基板上に、上記調製したレジスト膜形成用組成物をスピンコーターを用いて1,500rpmで塗工した。この基板を、ベーク工程を経ずにそのままシクロヘキサノンを過剰量ディスペンスして、塗工したレジスト膜形成用組成物を除去した。次いで、上記レジスト下層膜をドライエッチング装置(東京エレクトロン(株)の「Telius SCCM」)を用いてエッチングした。その後、基板上の金属元素のコンタミネーション量をICP-MS分析で評価した。この評価で求められる「コンタミネーション量」は、除去されずに基板上に残った、レジスト膜形成用組成物に由来する金属元素の量に相当する。除去容易性は、コンタミネーション量が0.5×1011Atom/cm未満である場合は「AA(非常に良好)」と、0.5×1011Atom/cm以上1.0×1011Atom/cm未満である場合は「A(良好)」と、1.0×1011Atom/cm以上である場合は「B(不良)」と評価した。
Figure JPOXMLDOC01-appb-T000007
[実施例5]
 実施例1のレジスト膜形成用組成物の調製において、さらに感放射線性酸発生体としてトリフェニルスルホニウムノナフルオロ-n-ブタンスルホネートを加えた以外は実施例1と同様にして、レジスト膜形成用組成物(R-8)を得た。ここで、トリフェニルスルホニウムノナフルオロ-n-ブタンスルホネートは[A]ポリゲルマノキサンとしての(A-1)に対して5質量%となるように加えた。従ってレジスト膜形成用組成物(R-8)の固形分濃度は約2.6質量%である。次いで、実施例1と同様にして評価を行ったところ、感度は「AA」、除去容易性も「AA」であった。
 表2及び実施例5の結果から明らかなように、実施例のレジスト膜形成用組成物は、感度及び除去容易性に共に優れている。比較例のレジスト膜形成用組成物は、感度及び除去容易性を両立することができなかった。
 本発明のレジストパターン形成方法及びレジスト膜形成用組成物によれば、高い感度でウエハの汚染を減らしつつ良好なレジストパターンを形成することができる。従って、これらは今後さらに微細化が進行すると予想される半導体デバイス製造用に好適に用いることができる。

Claims (12)

  1.  レジスト膜形成用組成物を基板上に塗工する工程と、
     上記塗工工程により形成されたレジスト膜に極端紫外線又は電子線を照射する工程と、
     上記照射されたレジスト膜を有機溶媒含有液で現像する工程と
     を備え、
     上記レジスト膜形成用組成物が、
     下記式(1)で表される構造単位を有するポリゲルマノキサンと、
     溶媒と
     を含有するレジストパターン形成方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは、Ge原子に炭素原子で結合する炭素数1~30の1価の有機基である。)
  2.  上記Rの有機基が、非置換の鎖状炭化水素基である請求項1に記載のレジストパターン形成方法。
  3.  上記Rの有機基が、非置換の飽和炭化水素基である請求項2に記載のレジストパターン形成方法。
  4.  上記Rの有機基におけるGe原子に結合する炭素原子が、2級炭素原子又は3級炭素原子である請求項1、請求項2又は請求項3に記載のレジストパターン形成方法。
  5.  上記ポリゲルマノキサンの含有量が、上記レジスト膜形成用組成物の全固形分に対して50質量%以上である請求項1から請求項4のいずれか1項に記載のレジストパターン形成方法。
  6.  上記レジスト膜形成用組成物が、さらに感放射線性酸発生体を含む請求項1から請求項5のいずれか1項に記載のレジストパターン形成方法。
  7.  下記式(1)で表される構造単位を有するポリゲルマノキサンと、
     溶媒と
     を含有するレジスト膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式(1)中、Rは、Ge原子に炭素原子で結合する炭素数1~30の1価の有機基である。)
  8.  上記Rの有機基が、非置換の鎖状炭化水素基である請求項7に記載のレジスト膜形成用組成物。
  9.  上記Rの有機基が、非置換の飽和炭化水素基である請求項8に記載のレジスト膜形成用組成物。
  10.  上記Rの有機基におけるGe原子に結合する炭素原子が、2級炭素原子又は3級炭素原子である請求項7、請求項8又は請求項9に記載のレジスト膜形成用組成物。
  11.  上記ポリゲルマノキサンの含有量が、全固形分に対して50質量%以上である請求項7から請求項10のいずれか1項に記載のレジスト膜形成用組成物。
  12.  さらに感放射線性酸発生体を含む請求項7から請求項11のいずれか1項に記載のレジスト膜形成用組成物。
PCT/JP2018/042192 2017-12-05 2018-11-14 レジストパターン形成方法及びレジスト膜形成用組成物 WO2019111665A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-233208 2017-12-05
JP2017233208 2017-12-05

Publications (1)

Publication Number Publication Date
WO2019111665A1 true WO2019111665A1 (ja) 2019-06-13

Family

ID=66750209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042192 WO2019111665A1 (ja) 2017-12-05 2018-11-14 レジストパターン形成方法及びレジスト膜形成用組成物

Country Status (1)

Country Link
WO (1) WO2019111665A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021027097A1 (zh) * 2019-08-12 2021-02-18 武汉华星光电半导体显示技术有限公司 硬化层聚合物薄膜和制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338304A (ja) * 2001-02-28 2002-11-27 Nippon Sheet Glass Co Ltd 所定表面形状を有する物品の製造方法
JP2003172802A (ja) * 2001-12-06 2003-06-20 Nippon Sheet Glass Co Ltd 光学材料組成物およびそれを用いて作製される光学素子
JP2003215792A (ja) * 2002-01-18 2003-07-30 Jsr Corp 放射線硬化性組成物およびそれを用いた光導波路ならびに光導波路の製造方法
JP2014182201A (ja) * 2013-03-18 2014-09-29 Fujitsu Ltd レジスト組成物及びパターン形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338304A (ja) * 2001-02-28 2002-11-27 Nippon Sheet Glass Co Ltd 所定表面形状を有する物品の製造方法
JP2003172802A (ja) * 2001-12-06 2003-06-20 Nippon Sheet Glass Co Ltd 光学材料組成物およびそれを用いて作製される光学素子
JP2003215792A (ja) * 2002-01-18 2003-07-30 Jsr Corp 放射線硬化性組成物およびそれを用いた光導波路ならびに光導波路の製造方法
JP2014182201A (ja) * 2013-03-18 2014-09-29 Fujitsu Ltd レジスト組成物及びパターン形成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021027097A1 (zh) * 2019-08-12 2021-02-18 武汉华星光电半导体显示技术有限公司 硬化层聚合物薄膜和制备方法

Similar Documents

Publication Publication Date Title
US8614047B2 (en) Photodecomposable bases and photoresist compositions
WO2018123388A1 (ja) 感放射線性組成物、パターン形成方法並びに金属含有樹脂及びその製造方法
TWI610130B (zh) 感光化射線性或感放射線性樹脂組成物、感光化射線性或感放射線性膜及圖案形成方法
JP2018205752A (ja) 酸発生剤化合物及びそれを含むフォトレジスト
JP6892864B2 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
JP7400818B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び化合物
KR20130032854A (ko) 칼릭스아렌 및 이를 포함하는 포토레지스트 조성물
US11506976B2 (en) Radiation-sensitive composition and resist pattern-forming method
WO2019093145A1 (ja) レジスト膜形成用組成物及びレジストパターン形成方法
TWI493283B (zh) 無氟稠芳香雜環光酸生成劑、含此光酸生成劑的光阻組成物及其使用方法
WO2019111665A1 (ja) レジストパターン形成方法及びレジスト膜形成用組成物
KR102556781B1 (ko) Euv 리소그래피용 규소 함유 막 형성 조성물, euv 리소그래피용 규소 함유 막 및 패턴 형성 방법
WO2019187632A1 (ja) 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法、電子デバイスの製造方法、及びポリエステル
JP7342941B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
WO2023182094A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、レジストパターン形成方法、電子デバイスの製造方法、電子デバイス
WO2024106020A1 (ja) 感放射線性樹脂組成物及びパターン形成方法
WO2023153059A1 (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び重合体
KR20240025955A (ko) 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
WO2022196024A1 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
WO2020250639A1 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
WO2023181856A1 (ja) 化合物、感光性組成物及びパターン形成方法
KR20240040480A (ko) 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
TW202413457A (zh) 感光化射線性或感放射線性樹脂組成物、光阻膜、圖案形成方法、及電子器件之製造方法
WO2024034438A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、及び電子デバイスの製造方法
TW202115005A (zh) 感放射線性樹脂組成物、抗蝕劑圖案的形成方法、基板的加工方法、金屬膜圖案的製造方法、鋶鹽化合物及光酸產生劑

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18885560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP