WO2019102557A1 - 窒化物半導体発光素子 - Google Patents

窒化物半導体発光素子 Download PDF

Info

Publication number
WO2019102557A1
WO2019102557A1 PCT/JP2017/042063 JP2017042063W WO2019102557A1 WO 2019102557 A1 WO2019102557 A1 WO 2019102557A1 JP 2017042063 W JP2017042063 W JP 2017042063W WO 2019102557 A1 WO2019102557 A1 WO 2019102557A1
Authority
WO
WIPO (PCT)
Prior art keywords
peak
layer
light emitting
nitride semiconductor
emitting device
Prior art date
Application number
PCT/JP2017/042063
Other languages
English (en)
French (fr)
Inventor
平野 光
長澤 陽祐
Original Assignee
創光科学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 創光科学株式会社 filed Critical 創光科学株式会社
Priority to US16/761,090 priority Critical patent/US11152543B2/en
Priority to JP2018551480A priority patent/JP6686172B2/ja
Priority to CN201780097121.4A priority patent/CN111373552B/zh
Priority to PCT/JP2017/042063 priority patent/WO2019102557A1/ja
Priority to TW107135169A priority patent/TWI707482B/zh
Publication of WO2019102557A1 publication Critical patent/WO2019102557A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the present invention relates to a nitride semiconductor light emitting device having a light emitting layer formed of a GaN-based semiconductor.
  • nitride semiconductor light emitting devices in which a light emitting layer which emits light by recombination of carriers (electrons and holes) is made of an InGaN-based semiconductor are widely used.
  • a nitride semiconductor light emitting device in which the light emitting layer is formed of a GaN-based semiconductor and a nitride semiconductor light emitting device in which the light emitting layer is formed of an AlGaN-based semiconductor have problems of low light emission efficiency. It has become.
  • the luminous efficiency of a semiconductor light emitting element is expressed as quantum efficiency which is a rate at which injected electrons are converted into photons, and a ratio focusing on photons generated inside the light emitting element is called internal quantum efficiency, outside the light emitting element.
  • the ratio focusing on emitted photons is called external quantum efficiency.
  • FIG. 8 is a graph showing the relationship between the peak emission wavelength of the nitride semiconductor light emitting device and the external quantum efficiency.
  • FIG. 8 is a graph described in Non-Patent Document 1, which is a collection of data reported by various companies and research institutes in academic papers and the like.
  • the horizontal axis of the graph in FIG. 8 is the peak emission wavelength, and the vertical axis is the external quantum efficiency.
  • a curve that is not a strictly approximate curve but represents the tendency of the entire point is added to the graph described in Non-Patent Document 1 and displayed.
  • the external quantum efficiency is locally low compared to the surrounding peak emission wavelength.
  • the external quantum efficiency sharply decreases as the peak emission wavelength decreases.
  • a nitride semiconductor light emitting device having a peak light emission wavelength of 300 nm to 350 nm is a nitride semiconductor light emitting device whose light emitting layer is formed of an AlGaN semiconductor or a GaN semiconductor and has a peak light emission wavelength of 285 nm or less
  • the nitride semiconductor light emitting device is a nitride semiconductor light emitting device in which the light emitting layer is made of an AlGaN based semiconductor.
  • a nitride semiconductor light emitting device in which the light emitting layer is formed of an AlGaN-based semiconductor, it is possible to enhance the light emission intensity and improve the external quantum efficiency by utilizing segregation of Ga by intensive studies of the present inventors.
  • the segregation of Ga means that, in AlGaN which is a Group III-V semiconductor, both Al and Ga are placed in a Group III site in the crystal structure and arranged in a plane perpendicular to the growth direction of the semiconductor layer. And locally forming a region where the proportion of Ga is large (the proportion of Al is small).
  • Patent No. 6194138 gazette
  • the nitride semiconductor light emitting device in which the light emitting layer is formed of a GaN-based semiconductor is different from the nitride semiconductor light emitting device in which the light emitting layer is formed of an AlGaN-based semiconductor and segregation occurs because only Ga is disposed at the group III site This is a problem because external quantum efficiency can not be improved using the same principle as that of Patent Document 1.
  • the present invention provides a nitride semiconductor light emitting device having a light emitting layer composed of a GaN-based semiconductor with improved external quantum efficiency.
  • the light emitting device structure portion includes a plurality of nitride semiconductor layers including at least an n-type layer, an active layer, and a p-type layer, and the active layer disposed between the n-type layer and the p-type layer is a GaN-based It has a quantum well structure including at least one well layer formed of a semiconductor, and the well layer has a shortest distance between the first surface on the n-type layer side and the second surface on the p-type layer side
  • a nitride semiconductor characterized in that it fluctuates in a plane perpendicular to the stacking direction of the nitride semiconductor layer, and a peak emission wavelength of light emitted from the light emitting element structure is shorter than 354 nm.
  • a light emitting device Provided is a light emitting device.
  • a portion capable of efficiently emitting light can be produced in a plane perpendicular to the stacking direction of the nitride semiconductor layer, and light can be emitted in the portion.
  • 354 nm means that the well layer of the quantum well structure is formed of a GaN-based semiconductor, and the thickness (the shortest distance) of the well layer is not varied in a plane perpendicular to the stacking direction of the nitride semiconductor layers. Peak emission wavelength of If the peak emission wavelength is shorter than 354 nm (if it is shifted to the short wavelength side), the quantum confinement effect by varying the thickness of the well layer in the plane perpendicular to the stacking direction of the nitride semiconductor layer Fluctuation is effectively working.
  • the emission spectrum of the light emitted from the light emitting device structure has a first peak of 339 nm to less than 343 nm, a second peak of 343 nm to less than 349 nm, and 349 nm to 353 nm
  • the full width at half maximum of the combined peak may be 10 nm or less.
  • the emission spectrum has the combined peak formed by integrating the first peak and the second peak, and the peak emission wavelength is 343 nm or more and less than 349 nm. It is also good.
  • the emission intensity of the peak emission wavelength can be improved.
  • the light emission spectrum of the light emitted from the light emitting device structure portion has a first peak of 339 nm to less than 343 nm and a second peak of 343 nm to less than 349 nm. And at least two of a third peak of 349 nm or more and 353 nm or less.
  • the base portion further includes a sapphire substrate, and the sapphire substrate has a main surface inclined by a predetermined angle with respect to the (0001) plane, and the main surface
  • the light emitting element structure portion is formed above, and each layer from at least the main surface of the sapphire substrate to the surface of the active layer is an epitaxial growth layer having a surface on which multistage terraces are formed Good.
  • the thickness of the well layer in the horizontal plane can be easily varied.
  • the thickness of the well layer can be varied in a plane perpendicular to the stacking direction of the nitride semiconductor layers in a cycle of several nm to several tens of nm shorter than or equal to the carrier diffusion length. The carrier can be reliably fed to the efficient light emitting portion in the well layer.
  • a portion capable of efficiently emitting light in the well layer, a portion capable of efficiently emitting light can be formed in a plane perpendicular to the stacking direction of the nitride semiconductor layer, and light can be emitted in the portion. , External quantum efficiency can be improved.
  • FIG. 2 is a plan view schematically showing an example of the structure when the nitride semiconductor light emitting device shown in FIG. 1 is viewed from the upper side of FIG. 1.
  • the perspective view which showed typically the state of the surface of the off board
  • Principal part sectional drawing which showed an example of the structure of an active layer typically.
  • FIG. 5 is a spectrum diagram showing an emission spectrum of the nitride semiconductor light emitting device having the active layer shown in FIG. 4.
  • FIG. 6 is an enlarged spectrum view of the vicinity of the wavelength where the emission intensity is large in FIG.
  • FIG. 7 is a spectrum diagram selectively showing the main emission spectrum in FIG. 6; The graph showing the relationship between the peak luminescence wavelength of a nitride semiconductor light-emitting device and external quantum efficiency.
  • a light emitting diode including a base portion including a sapphire substrate, and a light emitting element structure portion including a plurality of nitride semiconductor layers stacked on the base portion.
  • a nitride semiconductor light emitting device is illustrated.
  • the AlGaN-based semiconductor means AlGaN, AlN, or GaN, or a semiconductor in which a trace amount of impurities (for example, Si, Mg, In, etc.) is contained therein, and Al and Ga as needed.
  • a trace amount of impurities for example, Si, Mg, In, etc.
  • a GaN-based semiconductor means a semiconductor in which GaN or GaN contains a trace amount of impurities (eg, Si, Mg, In, etc.), and although Al is not included in principle, Al at the impurity level In the case where GaN is included in GaN, it is included in the GaN-based semiconductor.
  • a semiconductor layer not describing both p-type and n-type means an undoped semiconductor layer, but even an undoped semiconductor layer contains a trace amount of impurities to such an extent that they are inevitably mixed. obtain.
  • FIG. 1 is a cross-sectional view of an essential part schematically showing an example of the structure of a nitride semiconductor light emitting device according to an embodiment of the present invention.
  • FIG. 2 is a plan view schematically showing an example of the structure when the nitride semiconductor light emitting device shown in FIG. 1 is viewed from the upper side of FIG.
  • the thickness of the substrate, the nitride semiconductor layer, and the electrode is schematically shown for convenience of illustration, so the actual dimensional ratio does not necessarily match. .
  • the nitride semiconductor light emitting device 1 includes a base portion 10 including a sapphire substrate 11, a plurality of nitride semiconductor layers 21 to 24 and electrodes 25 and 26. And a light emitting element structure unit 20.
  • the nitride semiconductor light emitting element 1 is mounted (flip chip mounted) with the light emitting element structure 20 side (upper side in FIG. 1) facing the mounting base. The removal direction is on the base portion 10 side (lower side in the drawing in FIG. 1).
  • the base portion 10 includes a sapphire substrate 11 whose main surface is a surface inclined by a predetermined angle (off angle) with respect to the (0001) plane, and an AlN layer 12 directly formed on the main surface 11 a of the sapphire substrate 11. Prepare.
  • FIG. 3 is a perspective view schematically showing the state of the main surface of the sapphire substrate expanded to the atomic level.
  • the dimensional ratio of each part has become necessarily the same dimensional ratio as an actual element. Absent.
  • multistage terraces T are formed on the main surface of the sapphire substrate 11. This is because when the bulk single crystal of sapphire is cut at an angle slightly inclined to the (0001) plane (that is, the off angle ⁇ ), the (0001) plane is exposed along the cutting direction. .
  • the magnitude of the off angle ⁇ and the direction in which the off angle is provided are desired in each layer on the sapphire substrate 11 It may be determined arbitrarily as long as the growth of.
  • the AlN layer 12 is made of AlN crystal epitaxially grown from the main surface of the sapphire substrate 11, and the AlN crystal has an epitaxial crystal orientation relationship with the main surface 11 a of the sapphire substrate 11. Specifically, for example, the AlN crystal grows so that the C-axis direction ( ⁇ 0001> direction) of the sapphire substrate 11 and the C-axis direction of the AlN crystal are aligned.
  • the AlN crystal constituting the AlN layer 12 may contain a slight amount of Ga and other impurities.
  • a layer composed of an Al ⁇ Ga 1 - ⁇ N (1> ⁇ > 0) -based semiconductor may be further formed on the top surface of the AlN layer 12.
  • the light emitting element structure portion 20 includes, in order from the base portion 10 side, an n-type cladding layer 21 (n-type layer), an active layer 22, an electron block layer 23 (p-type layer) and a p-type contact layer (p-type layer) 24.
  • the structure is epitaxially grown and laminated in order.
  • the n-type cladding layer 21 is composed of an n-type Al x Ga 1 -xN (1 ⁇ x> 0) based semiconductor.
  • the active layer 22 includes at least one well layer 22 b (light emitting layer) made of a GaN-based semiconductor and at least one barrier layer 22 a made of an Al Y Ga Y N (X ⁇ Y> 0) -based semiconductor. It is a single or multiple quantum well structure stacked alternately.
  • Electron blocking layer 23 is composed of p-type Al Z Ga 1-Z N ( 1 ⁇ Z> Y) based semiconductor.
  • the p-type contact layer 24 is made of a p-type Al Q Ga 1 -Q N (Z> Q ⁇ 0) based semiconductor.
  • the light emitting element structure portion 20 is made of, for example, Ni / Au and is formed on the upper surface of the p-type contact layer 24, and is made of, for example, Ti / Al / Ti / Au and is made of an n-type cladding layer 21. And an n electrode 26 formed on the upper surface of the n-type cladding layer 21 in a part of the exposed region.
  • electricity is supplied so that holes are supplied from the p electrode 25 and electrons are supplied from the n electrode 26, each of the supplied holes and electrons reaches the active layer 22 and is recombined to emit light. .
  • the nitride semiconductor layer contained in the AlN layer 11 and the light emitting element structure part 20 contained in the base part 10 by a well-known epitaxial growth method such as an organic metal compound vapor phase growth (MOVPE) method or a molecular beam epitaxy (MBE) method.
  • 21 to 24 are sequentially epitaxially grown on the sapphire substrate 11 and stacked.
  • the n-type layer is doped with, for example, Si as a donor impurity
  • the p-type layer is doped with, for example, Mg as an acceptor impurity.
  • each layer AlN layer 11 and nitride semiconductor layers 21 and 22 at least from main surface 11a of sapphire substrate 11 to the surface of active layer 22
  • multistage terraces originating from main surface 11a of sapphire substrate 11 are Epitaxial growth is carried out so that the terrace will not be filled and the surface will be flat.
  • epitaxial growth is performed on the surfaces of the AlN layer 11 and the nitride semiconductor layers 21 and 22 such that a step having an average height of 1 nm or more and 20 nm or less is generated.
  • epitaxial growth is performed such that the arithmetic average roughness Ra on the surface of the active layer 22 is 3 nm or more and 10 nm or less.
  • the sapphire substrate 11 has a large off-angle within a certain range (for example, from 0 ° to several degrees), and a growth rate at which the terrace is easily exposed (specifically, for example)
  • the growth rate is achieved by appropriately setting various conditions such as the growth temperature, the supply amounts of the raw material and the carrier gas, and the flow rate. Note that these conditions may differ depending on the type and structure of the film forming apparatus, so it is sufficient to actually manufacture several samples in the film forming apparatus and specify these conditions.
  • a partial region of the semiconductor layer stacked as described above is selectively etched by a known etching method such as reactive ion etching to expose the n-type cladding layer 21 in the region.
  • the p electrode 25 is formed on the p-type contact layer 24 in the non-etched region by a known film forming method such as electron beam evaporation, and on the n-type cladding layer 21 in the etched region.
  • the n electrode 26 is formed.
  • heat treatment may be performed by a known heat treatment method such as RTA (instant thermal annealing).
  • the nitride semiconductor light emitting element 1 is used in a state of being sealed by a predetermined resin (for example, a lens-shaped resin) such as a silicone resin or an amorphous fluorine resin after being flip-chip mounted on a submount. obtain.
  • a predetermined resin for example, a lens-shaped resin
  • silicone resin such as silicone resin or an amorphous fluorine resin
  • FIG. 4 is a cross-sectional view of an essential part schematically showing an example of the structure of the active layer.
  • the surfaces of the barrier layer 22 a and the well layer 22 b are multistaged. Furthermore, as described above, when epitaxially growing at least the AlN layer 11 and the nitride semiconductor layers 21 and 22 so that the multistage terraces derived from the main surface 11a of the sapphire substrate 11 are exposed, the side surfaces of the terraces take priority To grow. Then, in the well layer 22b, the shortest distance between the first surface 22b1 on the n-type cladding layer 21 side and the second surface 22b2 on the opposite side of the p-type contact layer 24 is the nitride semiconductor layers 21, 22.
  • the thickness of the well layer 22b fluctuates in the horizontal plane.
  • the shortest distance (thickness) L1 in the side part of a terrace becomes larger than the shortest distance (thickness) L2 in a terrace part.
  • the quantum confinement effect may fluctuate in accordance with the thickness fluctuation in the horizontal plane. Therefore, in the well layer 22b, it is possible to form a portion capable of emitting light efficiently in the horizontal plane to emit light in the portion, and it is possible to improve the external quantum efficiency. For example, in the nitride semiconductor light emitting device 1 according to the embodiment of the present invention, it is possible to improve the external quantum efficiency to 3% or more in a state before resin sealing.
  • FIG. 5 is a spectrum diagram showing an emission spectrum of the nitride semiconductor light emitting device having the active layer shown in FIG.
  • FIG. 6 is a spectrum diagram in which the vicinity of the wavelength where the emission intensity in FIG. 5 is large is enlarged.
  • FIG. 7 is a spectrum diagram selectively showing the main emission spectrum in FIG.
  • the spectrum diagrams shown in FIG. 5 to FIG. 7 are displayed by superimposing the emission spectra of a plurality of nitride semiconductor light emitting devices obtained from one wafer, and one line represents one nitride semiconductor light emission. It shows the emission spectrum of the device.
  • the emission spectra shown in FIGS. 5 to 7 are emission spectra of the nitride semiconductor light emitting device 1 in a state before resin sealing.
  • the emission spectrum of the nitride semiconductor light emitting device having the active layer shown in FIG. 4 includes a plurality of peaks according to the magnitude of the quantum confinement effect. These peaks may coexist separately or may be integrated to constitute a synthetic peak.
  • the synthetic peak is a peak that appears to be one in appearance, and is, for example, a peak that does not have a distinct maximum value other than the wavelength at which the emission intensity is maximum (peak emission wavelength).
  • the emission spectra shown in FIGS. 5 to 7 are largely divided into a pattern having a plurality of separated peaks (for example, emission spectrum S1 in FIG. 7) and a pattern having one combined peak (for example, emission spectra S2 to S4 in FIG. 7). It can be different.
  • many of the patterns having a plurality of separated peaks include a peak around 350 nm to 352 nm and a peak around 340 nm to 342 nm.
  • the peaks included in the emission spectra shown in FIGS. 5 to 7 are generally included in the first peak included in the first wavelength range A1 of 339 nm to less than 343 nm and in the second wavelength range A2 of 343 nm to less than 349 nm. It can be classified into the second peak and the third peak included in the third wavelength range A3 of 349 nm or more and 353 nm or less.
  • the emission spectrum of a pattern having a plurality of separated peaks has a variation in emission wavelength, so the maximum value of the emission intensity tends to be smaller as compared to the emission spectrum having a combined peak. Therefore, in the nitride semiconductor light emitting device 1 in which the external quantum efficiency is improved by changing the thickness of the well layer 22b in the horizontal plane, the emission spectrum of the emitted light is configured to have a synthetic peak. The emission intensity of the peak emission wavelength can be improved. However, even the nitride semiconductor light emitting element 1 that emits light of an emission spectrum having a plurality of separated peaks can efficiently emit light itself, and therefore can be used according to the application. is there.
  • the emission intensity can be improved by enhancing the integrity of the plurality of peaks forming the synthesis peak.
  • the emission intensity of the peak emission wavelength can be improved by enhancing the integrity of the plurality of peaks until the full width at half maximum (FWHM) of the synthetic peak becomes 10 nm or less.
  • the emission spectra S2 and S4 shown in FIG. 7 have a combined peak in which the first peak and the second peak are integrated.
  • the emission spectrum S2 has a large shoulder derived from the first peak, and the full width at half maximum is 11.8 nm.
  • the emission spectrum S4 has a smaller shoulder than the emission spectrum S2, and the full width at half maximum is 9.1 nm.
  • the combined peak of the emission spectrum S4 has a full width at half maximum of 10 nm or less, and has high integration and a large emission intensity at the peak emission wavelength as compared with the combined peak of the emission spectrum S2.
  • the emission spectrum having a synthesis peak has a synthesis peak in which the first peak and the second peak are integrated, and the peak emission wavelength is included in the second wavelength range A2 (343 nm or more and less than 349 nm).
  • the emission intensity of the peak emission wavelength can be improved.
  • the emission spectra S3 and S4 shown in FIG. 7 both have a combined peak formed by integrating the first peak and the second peak
  • the peak emission wavelength of the emission spectrum S3 is in the first wavelength range A1
  • the peak emission wavelength of the emission spectrum S4 is included in the second wavelength range A2 (343 nm or more and less than 349 nm).
  • the combined peak of the emission spectrum S4 has a large emission intensity at the peak emission wavelength as compared to the combined peak of the emission spectrum S2.
  • the emission spectrum of the light emitted from the nitride semiconductor light emitting element 1 has a combined peak depends on how the quantum confinement effect is dispersed. That is, it depends on the surface state (the number of steps, the density, the height, etc.) of the active layer 22. Therefore, the nitride semiconductor light emitting device 1 is selectively manufactured in which the emission spectrum of the emitted light has a synthetic peak by controlling the surface state of the active layer 22 by appropriately setting the conditions of epitaxial growth in the film forming apparatus to be used. can do. In addition, it is possible to obtain as many nitride semiconductor light emitting elements 1 having emission peaks of synthetic light from emitted light as possible from one wafer.
  • the peak light emission wavelength increases as the degree of segregation of Ga increases. Shifts to the long wavelength side.
  • the nitride semiconductor light emitting device 1 according to the embodiment of the present invention segregation of Ga can not occur because the well layer 22 b is formed of a GaN-based semiconductor.
  • the peak emission wavelength is about 354 nm (see FIG. 17 of Patent Document 1). As shown in the above, the peak emission wavelength of the nitride semiconductor light emitting device 1 according to the embodiment of the present invention is shorter than 354 nm and shifted to the short wavelength side.
  • the principle of improvement of the external quantum efficiency (the variation in the quantum confinement effect in the horizontal plane) in the nitride semiconductor light emitting device 1 according to the embodiment of the present invention is a nitride semiconductor as proposed in Patent Document 1 It is clearly different from the principle (segregation of Ga) in the light emitting element. And, if the well layer 22b is composed of a GaN-based semiconductor and the peak emission wavelength is shorter than 354 nm (if it is shifted to the short wavelength side), the thickness of the well layer 22b is varied in the horizontal plane It can be said that the fluctuation of the quantum confinement effect by.
  • the thickness of the well layer in the horizontal plane is varied.
  • a mask of SiO 2 or the like is formed by patterning by nanoimprint, interference fringe exposure, electron beam exposure, stepper or the like, or etching is performed by a known etching method such as reactive ion etching. It is possible to do.
  • the method of utilizing the multistage terrace derived from the main surface 11a of the sapphire substrate 11 like the above-mentioned embodiment using the sapphire substrate 11 which has an off angle, the AlN layer 11 and the nitride semiconductor
  • the thickness of the well layer 22b in the horizontal plane can be easily varied simply by performing epitaxial growth so that multistage terraces are exposed on the surfaces of the layers 21 and 22. Further, since the thickness of the well layer 22b in the horizontal plane can be varied in a cycle of several nm to several tens of nm shorter than or equal to the carrier diffusion length, efficient light emission in the well layer 22b can be achieved.
  • the carrier can be reliably fed into the part.
  • the nitride semiconductor light emitting device 1 including the base portion 10 including the sapphire substrate 11 is exemplified, but the sapphire substrate 11 (further, part or all of the layers included in the base portion 10) You may lift off.
  • the nitride semiconductor light emitting device 1 is illustrated as a state (bare chip) without resin sealing, and the emission spectrum (FIG. 5 to FIG. 7) in that state is shown.
  • a state sealed with a resin that does not significantly affect the shape of the emission spectrum may be included in the nitride semiconductor light emitting device of the present invention.
  • the present invention is applicable to a nitride semiconductor light emitting device having a light emitting layer formed of a GaN-based semiconductor.
  • Reference Signs List 1 nitride semiconductor light emitting device 10 base portion 11 sapphire substrate 11a main surface 12 AlN layer 20 light emitting element structure portion 21 n-type cladding layer (n-type layer) 22 active layer 22a barrier layer 22b well layer 22b1 first surface 22b2 second surface 23 electron blocking layer (p-type layer) 24 p-type contact layer (p-type layer) 25 p electrode 26 n electrode A1 to A3 first to third wavelength range S1 to S4 emission spectrum T terrace

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

窒化物半導体発光素子は、少なくともn型層、活性層及びp型層を含む複数の窒化物半導体層を有する発光素子構造部を備える。活性層は、GaN系半導体で構成された井戸層を少なくとも1つ含む量子井戸構造を有し、井戸層は、n型層側の第1面とp型層側の第2面との間の最短距離が、前記窒化物半導体層の積層方向に対して垂直な平面内において変動しており、発光素子構造部から出射される光のピーク発光波長が354nmよりも短い。

Description

窒化物半導体発光素子
 本発明は、GaN系半導体で構成された発光層を有する窒化物半導体発光素子に関する。
 従来、キャリア(電子及び正孔)の再結合によって発光が生じる発光層がInGaN系半導体で構成されている窒化物半導体発光素子が、広く普及している。
 しかし、発光層がGaN系半導体で構成されている窒化物半導体発光素子や、発光層がAlGaN系半導体で構成されている窒化物半導体発光素子は、発光効率が低いという問題があり、普及の障害になっている。なお、半導体発光素子の発光効率は、注入した電子が光子に変換される割合である量子効率として表現され、発光素子の内部で発生した光子に着目した割合を内部量子効率、発光素子の外部に放出された光子に着目した割合を外部量子効率という。
 上記の問題について具体的に説明する。図8は、窒化物半導体発光素子のピーク発光波長と外部量子効率との関係を表したグラフである。なお、図8は、非特許文献1に記載されているグラフであり、様々な企業や研究機関が学術論文等で報告したデータを集積したものである。また、図8のグラフの横軸はピーク発光波長であり、縦軸は外部量子効率である。また、図8では、図面の説明の便宜上、非特許文献1に記載されているグラフに対して、厳密な近似曲線ではないが点全体の傾向を表す曲線を加筆して表示している。
 図8に示すように、ピーク発光波長が300nm以上350nm以下の窒化物半導体発光素子は、周囲のピーク発光波長と比較して外部量子効率が局所的に低くなっている。また、ピーク発光波長が285nm以下の窒化物半導体発光素子は、ピーク発光波長が短くなるにつれて外部量子効率が急峻に低くなる。一般的に、ピーク発光波長が300nm以上350nm以下の窒化物半導体発光素子は、発光層がAlGaN系半導体やGaN系半導体で構成されている窒化物半導体発光素子であり、ピーク発光波長が285nm以下の窒化物半導体発光素子は、発光層がAlGaN系半導体で構成されている窒化物半導体発光素子である。
 発光層がAlGaN系半導体で構成されている窒化物半導体発光素子については、本願発明者らの鋭意検討によって、Gaの偏析を利用することで発光強度を高めて外部量子効率を向上させることが可能であることが分かっている(特許文献1参照)。このGaの偏析とは、III-V属半導体であるAlGaNでは、AlとGaが共に結晶構造中のIII族サイトに入って配置されるところ、半導体層の成長方向に対して垂直な平面内において、局所的にGaの割合が大きい(Alの割合が少ない)領域を形成することである。
特許第6194138号公報
Michael Kneissl,"A Brief Review of III-Nitride UV Emitter Technologies and Their Applications",III-Nitride Ultraviolet Emitters,Chapter 1,2016
 しかし、発光層がGaN系半導体で構成されている窒化物半導体発光素子は、発光層がAlGaN系半導体で構成されている窒化物半導体発光素子とは異なり、III族サイトにGaしか配置されないため偏析が生じ得ず、特許文献1と同様の原理を利用して外部量子効率を向上させることはできないため、問題となる。
 そこで、本発明は、外部量子効率が向上した、GaN系半導体で構成された発光層を有する窒化物半導体発光素子を提供する。
  少なくともn型層、活性層及びp型層を含む複数の窒化物半導体層を有する発光素子構造部を備え、前記n型層及び前記p型層の間に配置される前記活性層は、GaN系半導体で構成された井戸層を少なくとも1つ含む量子井戸構造を有し、前記井戸層は、前記n型層側の第1面と前記p型層側の第2面との間の最短距離が、前記窒化物半導体層の積層方向に対して垂直な平面内において変動しており、前記発光素子構造部から出射される光のピーク発光波長が、354nmよりも短いことを特徴とする窒化物半導体発光素子を提供する。
 この窒化物半導体発光素子によれば、井戸層において、窒化物半導体層の積層方向に対して垂直な平面内に効率良く発光可能な部分を生じさせて、当該部分で発光させることができる。
 なお、354nmとは、量子井戸構造の井戸層をGaN系半導体で構成して、窒化物半導体層の積層方向に対して垂直な平面内において井戸層の厚さ(上記最短距離)を変動させない場合のピーク発光波長である。ピーク発光波長が354nmよりも短ければ(短波長側にシフトしていれば)、窒化物半導体層の積層方向に対して垂直な平面内において井戸層の厚さを変動させたことによる量子閉じ込め効果の変動が、有効に作用していると言える。
 例えば、上記特徴の窒化物半導体発光素子において、前記発光素子構造部から出射される光の発光スペクトルが、339nm以上343nm未満の第1ピークと、343nm以上349nm未満の第2ピークと、349nm以上353nm以下の第3ピークと、の少なくとも2つが一体化されて成る合成ピークを有していてもよい。
 特に、上記特徴の窒化物半導体発光素子において、前記合成ピークの半値全幅が10nm以下であってもよい。また、上記特徴の窒化物半導体発光素子において、前記発光スペクトルが、前記第1ピーク及び前記第2ピークが一体化されて成る前記合成ピークを有し、ピーク発光波長が343nm以上349nm未満であってもよい。
 これらの窒化物半導体発光素子によれば、ピーク発光波長の発光強度を向上させることができる。
 また、上記特徴の窒化物半導体発光素子において、前記発光スペクトルが、前記発光素子構造部から出射される光の発光スペクトルが、339nm以上343nm未満の第1ピークと、343nm以上349nm未満の第2ピークと、349nm以上353nm以下の第3ピークと、の少なくとも2つを有していてもよい。
 また、上記特徴の窒化物半導体発光素子において、サファイア基板を含む下地部を、さらに備え、前記サファイア基板は、(0001)面に対して所定の角度だけ傾斜した主面を有し、当該主面の上方に前記発光素子構造部が形成されており、少なくとも前記サファイア基板の前記主面から前記活性層の表面までの各層が、多段状のテラスが形成された表面を有するエピタキシャル成長層であってもよい。
 この窒化物半導体発光素子によれば、オフ角を有するサファイア基板を用いて、サファイア基板の主面から活性層の表面までの各層の表面に多段状のテラスが表出するようにエピタキシャル成長を行うだけで、容易に井戸層の水平面内における厚さを変動させることができる。さらに、キャリア拡散長と同程度かそれよりも短い数nm~数十nmの周期で、井戸層の厚さを窒化物半導体層の積層方向に対して垂直な平面内で変動させることができるため、井戸層内の効率良く発光可能な部分にキャリアを確実に送り込むことができる。
 上記特徴の窒化物半導体発光素子によれば、井戸層において、窒化物半導体層の積層方向に対して垂直な平面内に効率良く発光可能な部分を生じさせて当該部分で発光させることができるため、外部量子効率を向上させることができる。
本発明の実施形態に係る窒化物半導体発光素子の構造の一例を模式的に示した要部断面図。 図1に示す窒化物半導体発光素子を図1の上側から見た場合の構造の一例を模式的に示した平面図。 原子レベルまで拡大したオフ基板の表面の状態を模式的に示した斜視図。 活性層の構造の一例を模式的に示した要部断面図。 図4に示す活性層を有する窒化物半導体発光素子の発光スペクトルを示すスペクトル図。 図5の発光強度が大きい波長付近を拡大したスペクトル図。 図6における主要な発光スペクトルを選択的に示したスペクトル図。 窒化物半導体発光素子のピーク発光波長と外部量子効率との関係を表したグラフ。
 以下、本発明の実施形態を説明するにあたり、サファイア基板を含む下地部と、当該下地部上に積層された複数の複数の窒化物半導体層を有する発光素子構造部とを備えた発光ダイオードである窒化物半導体発光素子を例示する。
 なお、本願において、AlGaN系半導体とは、AlGaN、AlNまたはGaN、あるいは、これらに微量の不純物(例えば、SiやMg、Inなど)が含まれた半導体を意味し、必要に応じてAl及びGaに対して添字を用いることでAl及びGaの相対的な組成比を表す(例えば、AlGa1-XN)。また、本願において、GaN系半導体とは、GaNまたはGaNに微量の不純物(例えば、SiやMg、Inなど)が含まれた半導体を意味し、原則としてAlは含まれないが、不純物レベルでAlがGaNに含まれる場合もGaN系半導体に含まれるものとする。また、本願において、p型及びn型の両方を記載していない半導体層はアンドープの半導体層を意味するが、アンドープの半導体層であっても不可避的に混入する程度の微量の不純物は含まれ得る。
<窒化物半導体発光素子>
 最初に、本発明の実施形態に係る窒化物半導体発光素子の構造の一例について、図面を参照して説明する。図1は、本発明の実施形態に係る窒化物半導体発光素子の構造の一例を模式的に示した要部断面図である。図2は、図1に示す窒化物半導体発光素子を図1の上側から見た場合の構造の一例を模式的に示した平面図である。なお、図1では、図示の都合上、基板、窒化物半導体層及び電極の厚さ(図中の上下方向の長さ)を模式的に示しているため、必ずしも実際の寸法比とは一致しない。
 図1及び図2に示すように、本発明の実施形態に係る窒化物半導体発光素子1は、サファイア基板11を含む下地部10と、複数の窒化物半導体層21~24及び電極25,26を含む発光素子構造部20とを備える。この窒化物半導体発光素子1は、実装用の基台に対して発光素子構造部20側(図1における図中上側)を向けて実装される(フリップチップ実装される)ものであり、光の取出方向は下地部10側(図1における図中下側)である。
 下地部10は、(0001)面に対して所定の角度(オフ角)だけ傾斜した面を主面とするサファイア基板11と、サファイア基板11の主面11aに直接形成されたAlN層12とを備える。
 ここで、サファイア基板11の主面11aの状態について、図面を参照して説明する。図3は、原子レベルまで拡大したサファイア基板の主面の状態を模式的に示した斜視図である。なお、図3では、説明の理解を容易にするために、要部を強調して発明内容を模式的に示しているため、各部の寸法比は必ずしも実際の素子と同じ寸法比とはなっていない。
 図3に示すように、サファイア基板11の主面には多段状のテラスTが形成される。これは、サファイアのバルク単結晶を、(0001)面に対して微小に傾斜した角度(即ち、オフ角θ)で切り出した場合、切り出し方向に沿って(0001)面が表出するからである。なお、オフ角θの大きさや、オフ角を設ける方向(具体的には、(0001)面を傾ける方向であり、例えばm軸方向やa軸方向など)は、サファイア基板11上の各層において所望の成長が実現される限りにおいて、任意に決定してもよい。
 AlN層12は、サファイア基板11の主面からエピタキシャル成長したAlN結晶で構成され、このAlN結晶はサファイア基板11の主面11aに対してエピタキシャルな結晶方位関係を有している。具体的に例えば、サファイア基板11のC軸方向(<0001>方向)とAlN結晶のC軸方向が揃うように、AlN結晶が成長する。なお、AlN層12を構成するAlN結晶が、微量のGaやその他の不純物を含んでいてもよい。また、AlN層12の上面に、AlαGa1-αN(1>α>0)系半導体で構成された層がさらに形成されていてもよい。
 発光素子構造部20は、下地部10側から順に、n型クラッド層21(n型層)、活性層22、電子ブロック層23(p型層)及びp型コンタクト層(p型層)24を順にエピタキシャル成長させて積層した構造を備えている。
 n型クラッド層21は、n型のAlGa1-XN(1≧X>0)系半導体で構成される。活性層22は、GaN系半導体で構成された井戸層22b(発光層)と、AlGaN(X≧Y>0)系半導体で構成された障壁層22aとのそれぞれを、1層以上交互に積層した単一または多重量子井戸構造である。電子ブロック層23は、p型のAlGa1-ZN(1≧Z>Y)系半導体で構成される。p型コンタクト層24は、p型のAlGa1-QN(Z>Q≧0)系半導体で構成される。
 さらに、発光素子構造部20は、例えばNi/Auで構成されてp型コンタクト層24の上面に形成されるp電極25と、例えばTi/Al/Ti/Auで構成されてn型クラッド層21が露出している一部の領域においてn型クラッド層21の上面に形成されるn電極26とを備えている。このp電極25から正孔が供給されるとともにn電極26から電子が供給されるように通電すると、供給された正孔及び電子のそれぞれが活性層22に到達して再結合することで発光する。
 次に、図1に例示した窒化物半導体紫外線発光装置1の製造方法の一例について説明する。
 まず、有機金属化合物気相成長(MOVPE)法や分子線エピタキシ(MBE)法等の周知のエピタキシャル成長法により、下地部10に含まれるAlN層11及び発光素子構造部20に含まれる窒化物半導体層21~24を、サファイア基板11上に順番にエピタキシャル成長させて積層する。このとき、n型の層にはドナー不純物として例えばSiをドープし、p型の層にはアクセプタ不純物として例えばMgをドープする。
 ただし、少なくともサファイア基板11の主面11aから活性層22の表面までの各層(AlN層11及び窒化物半導体層21,22)は、サファイア基板11の主面11aに由来する多段状のテラスが表出するように(テラスが埋め尽くされて表面が平坦になることがないように)、エピタキシャル成長を行う。例えば、AlN層11及び窒化物半導体層21,22の表面に、高さの平均値が1nm以上20nm以下である段差が生じるように、エピタキシャル成長を行う。また例えば、活性層22の表面における算術平均粗さRaが、3nm以上10nm以下になるように、エピタキシャル成長を行う。
 このようなエピタキシャル成長の条件として、例えば、サファイア基板11のオフ角が一定の範囲内(例えば、0°から数度程度まで)で大きいことや、テラスが表出し易い成長速度(具体的に例えば、成長温度、原料やキャリアガスの供給量や流速などの諸条件を適宜設定することで、当該成長速度を達成する)などが挙げられる。なお、これらの条件は、成膜装置の種類や構造によって異なり得るため、成膜装置において実際にいくつかの試料を作製して、これらの条件を特定すればよい。
 次に、反応性イオンエッチング等の周知のエッチング法により、上記のように積層した半導体層の一部の領域を選択的にエッチングして、当該領域のn型クラッド層21を露出させる。そして、電子ビーム蒸着法などの周知の成膜法により、エッチングされていない領域内のp型コンタクト層24上にp電極25を形成するとともに、エッチングされた領域内のn型クラッド層21上にn電極26を形成する。なお、p電極25及びn電極26の一方または両方の形成後に、RTA(瞬間熱アニール)などの周知の熱処理方法により熱処理を行ってもよい。
 なお、窒化物半導体発光素子1は、サブマウントにフリップチップ実装された後、シリコーン樹脂や非晶質フッ素樹脂などの所定の樹脂(例えば、レンズ形状の樹脂)によって封止された状態で使用され得る。
<活性層の構造及び発光スペクトル>
 次に、上述した活性層22について図面を参照して説明する。図4は、活性層の構造の一例を模式的に示した要部断面図である。
 図4に示すように、本発明の実施形態に係る窒化物半導体発光素子1が備える活性層は、障壁層22a及び井戸層22bのそれぞれの表面が多段状になっている。さらに、上述のように、少なくともAlN層11及び窒化物半導体層21,22を、サファイア基板11の主面11aに由来する多段状のテラスが表出するようにエピタキシャル成長させると、テラスの側面が優先的に成長する。すると、井戸層22bにおいて、n型クラッド層21側の第1面22b1とその反対側であるp型コンタクト層24側の第2面22b2との間の最短距離が、窒化物半導体層21,22の積層方向に対して垂直な平面内(以下、「水平面内」という)において変動する。換言すると、井戸層22bの厚さが、水平面内において変動する。具体的に、テラスの側面部分における最短距離(厚さ)L1は、テラス部分における最短距離(厚さ)L2よりも大きくなる。
 図4に示すような構造の井戸層22bの場合、水平面内における厚さの変動に応じて量子閉じ込め効果が変動し得る。そのため、井戸層22bにおいて、水平面内に効率良く発光可能な部分を生じさせて当該部分で発光させることが可能になり、外部量子効率を向上させることができる。例えば、本発明の実施形態に係る窒化物半導体発光素子1では、樹脂封止する前の状態で外部量子効率を3%以上に向上させることが可能である。
 ここで、図4に示す活性層を有する窒化物半導体発光素子の発光スペクトルについて、図面を参照して説明する。図5は、図4に示す活性層を有する窒化物半導体発光素子の発光スペクトルを示すスペクトル図である。また、図6は、図5の発光強度が大きい波長付近を拡大したスペクトル図である。また、図7は、図6における主要な発光スペクトルを選択的に示したスペクトル図である。なお、図5~図7に示すスペクトル図は、1つのウエハから得られる複数の窒化物半導体発光素子の発光スペクトルを重畳して表示したものであり、1本の線が1つの窒化物半導体発光素子の発光スペクトルを表している。また、図5~図7に示す発光スペクトルは、樹脂封止する前の状態である窒化物半導体発光素子1の発光スペクトルである。
 図5~図7に示すように、図4に示す活性層を有する窒化物半導体発光素子の発光スペクトルには、量子閉じ込め効果の大小に応じた複数のピークが含まれている。これらのピークは、離れて併存していたり、一体化して合成ピークを構成していたりする。合成ピークとは、見かけ上は1つに見えるピークであり、例えば発光強度が最大となる波長(ピーク発光波長)の他に明確な極大値を有しないピークである。
 図5~図7に示す発光スペクトルは、分離した複数のピークを有するパターン(例えば図7の発光スペクトルS1)と、1つの合成ピークを有するパターン(例えば図7の発光スペクトルS2~S4)に大別することができる。このうち、分離した複数のピークを有するパターンの多くには、350nm~352nm付近のピークと、340nm~342nm付近のピークが含まれている。また、1つの合成ピークを有するパターンには、340nm~342nm付近に最大のピークを有するとともに344nm付近にピークの名残である肩が見られるもの(例えば図7の発光スペクトルS3)や、344nm~348nm付近に最大のピークを有するとともに342nm付近にピークの名残である肩が見られるもの(例えば図7の発光スペクトルS2,S4)がある。
 したがって、図5~図7に示す発光スペクトルに含まれるピークは、概ね、339nm以上343nm未満の第1波長範囲A1に含まれる第1ピークと、343nm以上349nm未満の第2波長範囲A2に含まれる第2ピークと、349nm以上353nm以下の第3波長範囲A3に含まれる第3ピークに分類することができる。
 分離した複数のピークを有するパターンの発光スペクトルは、発光波長がばらついているため、合成ピークを有する発光スペクトルと比較して、発光強度の最大値が小さくなる傾向がある。したがって、井戸層22bの厚さを水平面内において変動させることで外部量子効率の向上を図った窒化物半導体発光素子1において、出射する光の発光スペクトルが合成ピークを有するように構成することで、ピーク発光波長の発光強度を向上させることができる。だだし、分離した複数のピークを有する発光スペクトルの光を出射する窒化物半導体発光素子1であっても、効率良く発光すること自体は可能であるため、用途に応じて使用することは可能である。
 また、合成ピークを有する発光スペクトルにおいて、当該合成ピークを形成する複数のピークの一体性を高くすることで、発光強度を向上させることができる。特に、合成ピークの半値全幅(FWHM:Full Width at Half Maximum)が10nm以下になるまで複数のピークの一体性を高めることで、ピーク発光波長の発光強度を向上させることができる。
 例えば、図7に示す発光スペクトルS2,S4は、共に第1ピーク及び第2ピークが一体化されて成る合成ピークを有している。発光スペクトルS2は、第1ピークに由来する肩が大きく、半値全幅は11.8nmである。発光スペクトルS4は、発光スペクトルS2よりも肩が小さく、半値全幅は9.1nmである。この発光スペクトルS4が有する合成ピークは、半値全幅が10nm以下であり、発光スペクトルS2の合成ピークと比較して一体性が高くピーク発光波長の発光強度が大きい。
 また、合成ピークを有する発光スペクトルにおいて、第1ピーク及び第2ピークが一体化されて成る合成ピークを有し、ピーク発光波長が第2波長範囲A2(343nm以上349nm未満)に含まれるようにすることで、ピーク発光波長の発光強度を向上させることができる。
 例えば、図7に示す発光スペクトルS3,S4は、共に第1ピーク及び第2ピークが一体化されて成る合成ピークを有しているが、発光スペクトルS3のピーク発光波長は第1波長範囲A1(339nm以上343nm未満)に含まれており、発光スペクトルS4のピーク発光波長は第2波長範囲A2(343nm以上349nm未満)に含まれている。この発光スペクトルS4が有する合成ピークは、発光スペクトルS2の合成ピークと比較して、ピーク発光波長の発光強度が大きい。
 なお、窒化物半導体発光素子1が出射する光の発光スペクトルが合成ピークを有するか否かは、量子閉じ込め効果のばらつきの仕方によって決まる。即ち、活性層22の表面状態(段差の数、密度、高さなど)によって決まる。そのため、使用する成膜装置におけるエピタキシャル成長の条件を適宜設定して活性層22の表面状態を制御することで、出射する光の発光スペクトルが合成ピークを有する窒化物半導体発光素子1を選択的に製造することができる。また、出射する光の発光スペクトルが合成ピークを有する窒化物半導体発光素子1を、1枚のウエハからできるだけ多く得ることができる。
 ところで、特許文献1で提案されている窒化物半導体発光素子のように、AlGaN系半導体で構成された発光層においてGaの偏析を生じさせた場合、Gaの偏析の程度が大きくなるほど、ピーク発光波長が長波長側にシフトする。これに対して、本発明の実施形態に係る窒化物半導体発光素子1は、井戸層22bがGaN系半導体で構成されているため、Gaの偏析は生じ得ない。さらに、量子井戸構造の井戸層をGaN系半導体で構成して水平面内における厚さを変動させない場合、ピーク発光波長は354nm程度になるが(特許文献1の図17参照)、図5~図7に示したように本発明の実施形態に係る窒化物半導体発光素子1のピーク発光波長は354nmよりも短くなっており、短波長側にシフトしている。
 このように、本発明の実施形態に係る窒化物半導体発光素子1における外部量子効率の向上の原理(量子閉じ込め効果の水平面内における変動)は、特許文献1で提案されているような窒化物半導体発光素子における原理(Gaの偏析)と明確に異なる。そして、井戸層22bがGaN系半導体で構成されており、ピーク発光波長が354nmよりも短ければ(短波長側にシフトしていれば)、井戸層22bの厚さを水平面内で変動させたことによる量子閉じ込め効果の変動が、有効に作用していると言える。
<変形等>
 上述の実施形態では、サファイア基板11の主面11aに由来する多段状のテラスを利用して、井戸層22bの水平面内における厚さを変動させる場合について例示したが、他の方法で井戸層22bの水平面内における厚さを変動させてもよい。
 例えば、サファイア基板の主面、または、サファイア基板の主面から活性層の直前の層までのいずれかの層の表面に凹凸を形成しても、井戸層の水平面内における厚さを変動させることは可能である。この凹凸を形成する方法として、例えば、ナノインプリント、干渉縞露光、電子ビーム露光、ステッパー等によるパターニングによって、SiO等のマスクを形成したり、反応性イオンエッチング等の周知のエッチング法によりエッチングしたりすることが考えられる。
 一方、上述の実施形態のように、サファイア基板11の主面11aに由来する多段状のテラスを利用する方法であれば、オフ角を有するサファイア基板11を用いて、AlN層11及び窒化物半導体層21,22の表面に多段状のテラスが表出するようにエピタキシャル成長を行うだけで、容易に井戸層22bの水平面内における厚さを変動させることができる。また、キャリア拡散長と同程度かそれよりも短い数nm~数十nmの周期で、井戸層22bの水平面内における厚さを変動させることができるため、井戸層22b内の効率良く発光可能な部分にキャリアを確実に送り込むことができる。
 上述の実施形態では、サファイア基板11を含む下地部10を備える窒化物半導体発光素子1を例示しているが、サファイア基板11(さらには、下地部10に含まれる一部または全部の層)をリフトオフしてもよい。
 また、上述の実施形態では、窒化物半導体発光素子1を、樹脂封止していない状態(ベアチップ)として例示した上で、その状態における発光スペクトル(図5~図7)を示しているが、発光スペクトルの形状に大きな影響を与えない(例えば、ピークを消滅させたり新たなピークを創出したりしない)樹脂で封止した状態も、本発明の窒化物半導体発光素子に含まれ得る。
 本発明は、GaN系半導体で構成された発光層を有する窒化物半導体発光素子に利用可能である。
 1   窒化物半導体発光素子
 10  下地部
 11  サファイア基板
 11a 主面
 12  AlN層
 20  発光素子構造部
 21  n型クラッド層(n型層)
 22  活性層
 22a 障壁層
 22b 井戸層
 22b1 第1面
 22b2 第2面
 23  電子ブロック層(p型層)
 24  p型コンタクト層(p型層)
 25  p電極
 26  n電極
 A1~A3 第1~第3波長範囲
 S1~S4 発光スペクトル
 T   テラス

Claims (6)

  1.  少なくともn型層、活性層及びp型層を含む複数の窒化物半導体層を有する発光素子構造部を備え、
     前記n型層及び前記p型層の間に配置される前記活性層は、GaN系半導体で構成された井戸層を少なくとも1つ含む量子井戸構造を有し、
     前記井戸層は、前記n型層側の第1面と前記p型層側の第2面との間の最短距離が、前記窒化物半導体層の積層方向に対して垂直な平面内において変動しており、
     前記発光素子構造部から出射される光のピーク発光波長が、354nmよりも短いことを特徴とする窒化物半導体発光素子。
  2.  前記発光素子構造部から出射される光の発光スペクトルが、339nm以上343nm未満の第1ピークと、343nm以上349nm未満の第2ピークと、349nm以上353nm以下の第3ピークと、の少なくとも2つが一体化されて成る合成ピークを有していることを特徴とする請求項1に記載の窒化物半導体発光素子。
  3.  前記合成ピークの半値全幅が10nm以下であることを特徴とする請求項2に記載の窒化物半導体発光素子。
  4.  前記発光スペクトルが、前記第1ピーク及び前記第2ピークが一体化されて成る前記合成ピークを有し、ピーク発光波長が343nm以上349nm未満であることを特徴とする請求項2または3に記載の窒化物半導体発光素子。
  5.  前記発光スペクトルが、前記発光素子構造部から出射される光の発光スペクトルが、339nm以上343nm未満の第1ピークと、343nm以上349nm未満の第2ピークと、349nm以上353nm以下の第3ピークと、の少なくとも2つを有していることを特徴とする請求項1に記載の窒化物半導体発光素子。
  6.  サファイア基板を含む下地部を、さらに備え、
     前記サファイア基板は、(0001)面に対して所定の角度だけ傾斜した主面を有し、当該主面の上方に前記発光素子構造部が形成されており、
     少なくとも前記サファイア基板の前記主面から前記活性層の表面までの各層が、多段状のテラスが形成された表面を有するエピタキシャル成長層であることを特徴とする請求項1~5のいずれか1項に記載の窒化物半導体発光素子。
PCT/JP2017/042063 2017-11-22 2017-11-22 窒化物半導体発光素子 WO2019102557A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/761,090 US11152543B2 (en) 2017-11-22 2017-11-22 Nitride semiconductor light-emitting element
JP2018551480A JP6686172B2 (ja) 2017-11-22 2017-11-22 窒化物半導体発光素子
CN201780097121.4A CN111373552B (zh) 2017-11-22 2017-11-22 氮化物半导体发光元件
PCT/JP2017/042063 WO2019102557A1 (ja) 2017-11-22 2017-11-22 窒化物半導体発光素子
TW107135169A TWI707482B (zh) 2017-11-22 2018-10-05 氮化物半導體發光元件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/042063 WO2019102557A1 (ja) 2017-11-22 2017-11-22 窒化物半導体発光素子

Publications (1)

Publication Number Publication Date
WO2019102557A1 true WO2019102557A1 (ja) 2019-05-31

Family

ID=66630913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042063 WO2019102557A1 (ja) 2017-11-22 2017-11-22 窒化物半導体発光素子

Country Status (5)

Country Link
US (1) US11152543B2 (ja)
JP (1) JP6686172B2 (ja)
CN (1) CN111373552B (ja)
TW (1) TWI707482B (ja)
WO (1) WO2019102557A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021260850A1 (ja) * 2020-06-24 2021-12-30 創光科学株式会社 窒化物半導体紫外線発光素子及びその製造方法
WO2021260849A1 (ja) * 2020-06-24 2021-12-30 創光科学株式会社 窒化物半導体紫外線発光素子
WO2022009306A1 (ja) * 2020-07-07 2022-01-13 創光科学株式会社 窒化物半導体紫外線発光素子及びその製造方法
WO2022149183A1 (ja) * 2021-01-05 2022-07-14 創光科学株式会社 窒化物半導体紫外線発光素子の製造方法、及び、窒化物半導体紫外線発光素子

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159265A1 (ja) * 2018-02-14 2019-08-22 創光科学株式会社 窒化物半導体紫外線発光素子
US11552217B2 (en) * 2018-11-12 2023-01-10 Epistar Corporation Semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033513A (ja) * 2000-07-13 2002-01-31 Shiro Sakai 発光素子
JP2003086840A (ja) * 2001-09-10 2003-03-20 Mitsubishi Cable Ind Ltd GaN系半導体発光ダイオード
JP2006060164A (ja) * 2004-08-24 2006-03-02 National Institute Of Advanced Industrial & Technology 窒化物半導体デバイスおよび窒化物半導体結晶成長方法
JP2012044120A (ja) * 2010-08-23 2012-03-01 Nippon Telegr & Teleph Corp <Ntt> Iii族窒化物半導体の深紫外発光素子構造
US20160064598A1 (en) * 2013-04-12 2016-03-03 Seoul Viosys Co., Ltd. Ultraviolet light-emitting device
JP6194138B2 (ja) * 2015-07-21 2017-09-06 創光科学株式会社 窒化物半導体紫外線発光素子

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3719047B2 (ja) 1999-06-07 2005-11-24 日亜化学工業株式会社 窒化物半導体素子
JP4937599B2 (ja) * 2005-02-14 2012-05-23 昭和電工株式会社 窒化物半導体発光素子及びその製造方法
JP2007281140A (ja) * 2006-04-05 2007-10-25 Hamamatsu Photonics Kk 化合物半導体基板、その製造方法及び半導体デバイス
JP5995302B2 (ja) * 2011-07-05 2016-09-21 パナソニック株式会社 窒化物半導体発光素子の製造方法
KR101855053B1 (ko) * 2011-08-09 2018-05-04 소코 가가쿠 가부시키가이샤 질화물 반도체 자외선 발광 소자
US9000415B2 (en) 2012-09-12 2015-04-07 Lg Innotek Co., Ltd. Light emitting device
WO2017145026A1 (en) 2016-02-23 2017-08-31 Silanna UV Technologies Pte Ltd Resonant optical cavity light emitting device
JP6966063B2 (ja) * 2016-02-26 2021-11-10 国立研究開発法人理化学研究所 結晶基板、紫外発光素子およびそれらの製造方法
CN110914381A (zh) * 2017-05-23 2020-03-24 英特曼帝克司公司 彩色液晶显示器及显示器背光灯
JP6483913B1 (ja) * 2017-05-26 2019-03-13 創光科学株式会社 テンプレートの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033513A (ja) * 2000-07-13 2002-01-31 Shiro Sakai 発光素子
JP2003086840A (ja) * 2001-09-10 2003-03-20 Mitsubishi Cable Ind Ltd GaN系半導体発光ダイオード
JP2006060164A (ja) * 2004-08-24 2006-03-02 National Institute Of Advanced Industrial & Technology 窒化物半導体デバイスおよび窒化物半導体結晶成長方法
JP2012044120A (ja) * 2010-08-23 2012-03-01 Nippon Telegr & Teleph Corp <Ntt> Iii族窒化物半導体の深紫外発光素子構造
US20160064598A1 (en) * 2013-04-12 2016-03-03 Seoul Viosys Co., Ltd. Ultraviolet light-emitting device
JP6194138B2 (ja) * 2015-07-21 2017-09-06 創光科学株式会社 窒化物半導体紫外線発光素子

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021260850A1 (ja) * 2020-06-24 2021-12-30 創光科学株式会社 窒化物半導体紫外線発光素子及びその製造方法
WO2021260849A1 (ja) * 2020-06-24 2021-12-30 創光科学株式会社 窒化物半導体紫外線発光素子
JP7406632B2 (ja) 2020-06-24 2023-12-27 日機装株式会社 窒化物半導体紫外線発光素子
JP7406633B2 (ja) 2020-06-24 2023-12-27 日機装株式会社 窒化物半導体紫外線発光素子及びその製造方法
TWI828945B (zh) * 2020-06-24 2024-01-11 日商日機裝股份有限公司 氮化物半導體紫外線發光元件
WO2022009306A1 (ja) * 2020-07-07 2022-01-13 創光科学株式会社 窒化物半導体紫外線発光素子及びその製造方法
JP7462047B2 (ja) 2020-07-07 2024-04-04 日機装株式会社 窒化物半導体紫外線発光素子及びその製造方法
WO2022149183A1 (ja) * 2021-01-05 2022-07-14 創光科学株式会社 窒化物半導体紫外線発光素子の製造方法、及び、窒化物半導体紫外線発光素子

Also Published As

Publication number Publication date
US11152543B2 (en) 2021-10-19
US20200357953A1 (en) 2020-11-12
JPWO2019102557A1 (ja) 2020-01-16
JP6686172B2 (ja) 2020-04-22
CN111373552A (zh) 2020-07-03
TW201937753A (zh) 2019-09-16
TWI707482B (zh) 2020-10-11
CN111373552B (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
WO2019102557A1 (ja) 窒化物半導体発光素子
JP3852000B2 (ja) 発光素子
US7180088B2 (en) Nitride based semiconductor light-emitting device
US9324908B2 (en) Nitride semiconductor light-emitting element
US9978905B2 (en) Semiconductor structures having active regions comprising InGaN and methods of forming such semiconductor structures
KR102285185B1 (ko) 질화물 반도체 자외선 발광 소자
US9397258B2 (en) Semiconductor structures having active regions comprising InGaN, methods of forming such semiconductor structures, and light emitting devices formed from such semiconductor structures
US9634182B2 (en) Semiconductor structures having active regions including indium gallium nitride, methods of forming such semiconductor structures, and related light emitting devices
WO2008069482A1 (en) Manufacturing method of light emitting diode including current spreading layer
KR20130141945A (ko) 전자 차단층을 갖는 발광 소자
KR101368687B1 (ko) 초격자 구조를 이용한 질화물계 반도체 발광 소자의 제조 방법
KR100558455B1 (ko) 질화물 반도체 소자
JP6486401B2 (ja) 半導体発光素子および半導体発光素子の製造方法
JP2019033284A (ja) 半導体発光素子および半導体発光素子の製造方法
JPWO2018150651A1 (ja) 窒化物半導体紫外線発光素子の製造方法及び窒化物半導体紫外線発光素子
TWI545798B (zh) Nitride semiconductor light emitting device and manufacturing method thereof
KR101373804B1 (ko) 백색 발광다이오드 및 그 제조방법
WO2023203599A1 (ja) 窒化物半導体紫外線発光素子
JP4055794B2 (ja) 窒化ガリウム系化合物半導体発光素子
KR101156228B1 (ko) 백색 발광 다이오드 및 그 제조방법
JP2006222224A (ja) 窒化物半導体の製造方法および半導体素子の製造方法
JP2012060023A (ja) 半導体発光素子およびその製造方法
WO2016152453A1 (ja) 半導体発光素子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018551480

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932642

Country of ref document: EP

Kind code of ref document: A1