WO2021260850A1 - 窒化物半導体紫外線発光素子及びその製造方法 - Google Patents

窒化物半導体紫外線発光素子及びその製造方法 Download PDF

Info

Publication number
WO2021260850A1
WO2021260850A1 PCT/JP2020/024828 JP2020024828W WO2021260850A1 WO 2021260850 A1 WO2021260850 A1 WO 2021260850A1 JP 2020024828 W JP2020024828 W JP 2020024828W WO 2021260850 A1 WO2021260850 A1 WO 2021260850A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
layer
algan
type
mole fraction
Prior art date
Application number
PCT/JP2020/024828
Other languages
English (en)
French (fr)
Inventor
光 平野
陽祐 長澤
Original Assignee
創光科学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 創光科学株式会社 filed Critical 創光科学株式会社
Priority to PCT/JP2020/024828 priority Critical patent/WO2021260850A1/ja
Priority to JP2022531323A priority patent/JP7406633B2/ja
Priority to KR1020227040420A priority patent/KR20230002875A/ko
Priority to US17/926,240 priority patent/US20230197889A1/en
Priority to CN202080102059.5A priority patent/CN115699340A/zh
Priority to TW109135119A priority patent/TW202201813A/zh
Publication of WO2021260850A1 publication Critical patent/WO2021260850A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction

Definitions

  • the present invention relates to a nitride semiconductor ultraviolet light emitting device having a light emitting device structure in which an n-type layer, an active layer, and a p-type layer made of an AlGaN-based semiconductor having a wurtzite structure are laminated in the vertical direction, and a method for manufacturing the same. ..
  • nitride semiconductor light emitting devices in which a light emitting device structure composed of a plurality of nitride semiconductor layers is formed by epitaxial growth on a substrate such as sapphire.
  • the nitride semiconductor layer is represented by the general formula Al 1-x-y Ga x In y N (0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1,0 ⁇ x + y ⁇ 1).
  • the light emitting device structure of the light emitting diode has a double hetero structure in which an active layer made of a nitride semiconductor layer is sandwiched between two clad layers, an n-type nitride semiconductor layer and a p-type nitride semiconductor layer.
  • the active layer is an AlGaN-based semiconductor
  • the bandgap energy can be obtained by adjusting the AlN molar fraction (also referred to as Al composition ratio), and the bandgap energy (about 3.4 eV and about 6.2 eV) that GaN and AlN can take.
  • an ultraviolet light emitting element having an emission wavelength of about 200 nm to about 365 nm can be obtained.
  • a forward current from the p-type nitride semiconductor layer toward the n-type nitride semiconductor layer the bandgap energy due to the recombination of carriers (electrons and holes) in the active layer was responded to. Light emission occurs.
  • a p electrode is provided on the p-type nitride semiconductor layer, and an n electrode is provided on the n-type nitride semiconductor layer.
  • the active layer is an AlGaN-based semiconductor
  • the n-type nitride semiconductor layer and the p-type nitride semiconductor layer sandwiching the active layer are composed of an AlGaN-based semiconductor having a higher AlN mole fraction than the active layer.
  • the p-type nitride semiconductor layer having a high AlN molar fraction to form good ohmic contact with the p electrode
  • the p-type having a low AlN molar fraction is formed on the uppermost layer of the p-type nitride semiconductor layer.
  • a p-type contact layer capable of making good ohmic contact with a p-electrode made of an AlGaN-based semiconductor (specifically, p-GaN). Since this p-type contact layer has an AlN mole fraction smaller than that of the AlGaN-based semiconductor constituting the active layer, the ultraviolet rays emitted from the active layer toward the p-type nitride semiconductor layer side are absorbed by the p-type contact layer. , Cannot be effectively taken out of the element. Therefore, a general ultraviolet light emitting diode whose active layer is an AlGaN-based semiconductor adopts an element structure as schematically shown in FIG. 14, and ultraviolet rays emitted from the active layer toward the n-type nitride semiconductor layer side. Is effectively taken out to the outside of the device (see, for example, Patent Documents 1 and 2 below).
  • a general ultraviolet light emitting diode is an n-type AlGaN-based diode on a template 102 formed by depositing an AlGaN-based semiconductor layer 101 (for example, an AlN layer) on a substrate 100 such as a sapphire substrate.
  • the semiconductor layer 103, the active layer 104, the p-type AlGaN-based semiconductor layer 105, and the p-type contact layer 106 are sequentially deposited, and the active layer 104, the p-type AlGaN-based semiconductor layer 105, and a part of the p-type contact layer 106 are partially deposited.
  • the n-type AlGaN-based semiconductor layer 103 is removed by etching until it is exposed, and the n-electrode 107 is formed on the exposed surface of the n-type AlGaN-based semiconductor layer 103 and the p-electrode 108 is formed on the surface of the p-type contact layer 106. Ru.
  • the active layer has a multiple quantum well structure, an electron block layer is provided on the active layer, and the like. ..
  • composition modulation occurs due to segregation of Ga in the clad layer composed of the n-type AlGaN-based semiconductor layer, and a layered region having a locally low AlN mole fraction extending diagonally with respect to the clad layer surface is formed.
  • Patent Document 3 Non-Patent Document 1, 2, etc. below. Since the bandgap energy of the AlGaN-based semiconductor layer having a locally low AlN mole fraction is also locally reduced, in Patent Document 3, the carriers in the clad layer are likely to be localized in the layered region, and the active layer is liable to be localized. It has been reported that a low-resistance current path can be provided and the luminous efficiency of the ultraviolet light emitting diode can be improved.
  • An ultraviolet light emitting device made of an AlGaN-based semiconductor is manufactured on a substrate such as a sapphire substrate by a well-known epitaxial growth method such as an organometallic compound vapor deposition (MOVPE) method.
  • MOVPE organometallic compound vapor deposition
  • Drift of the crystal growth device occurs due to changes in the effective temperature of the crystal growth site due to deposits such as trays and chamber walls. For this reason, in order to suppress drift, conventionally, an experienced person examines the growth history and slightly changes the set temperature and the composition of the raw material gas, or fixes the growth schedule for a certain period and cleans it. Although the maintenance of the above is carried out in the same way for a certain period of time, it is difficult to completely eliminate the drift.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a nitride semiconductor ultraviolet light emitting device capable of stably producing with suppressed characteristic fluctuations caused by drift of a crystal growth apparatus or the like. To do.
  • the present invention is a nitride semiconductor including a light emitting device structure portion in which an n-type layer, an active layer, and a p-type layer made of an AlGaN-based semiconductor having a wurtzite structure are laminated in the vertical direction. It is an ultraviolet light emitting element
  • the n-type layer is composed of an n-type AlGaN-based semiconductor.
  • the active layer arranged between the n-type layer and the p-type layer has a quantum well structure including one or more well layers made of an AlGaN-based semiconductor.
  • the p-type layer is composed of a p-type AlGaN-based semiconductor, and the p-type layer is composed of a p-type AlGaN-based semiconductor.
  • Each semiconductor layer in the n-type layer and the active layer is an epitaxial growth layer having a surface on which a multi-stage terrace parallel to the (0001) plane is formed.
  • the n-type layer is a layered region having a locally low AlN mole fraction existing uniformly dispersed in the n-type layer, and the AlGaN composition ratio is Al 1 Ga 1 N 2 having an integer ratio. It has a plurality of first Ga enriched regions including an n-type AlGaN region.
  • Each stretching direction of the first Ga enriched region on the first plane orthogonal to the upper surface of the n-type layer is inclined with respect to the line of intersection between the upper surface of the n-type layer and the first plane.
  • the boundary region portion between adjacent terraces of the multi-tiered terrace of the well layer has a second Ga enriched region locally low in AlN mole fraction within the same well layer.
  • a nitride semiconductor ultraviolet light emitting device characterized in that an AlGaN region having an AlGaN composition ratio of an integer ratio of Al 1 Ga 2 N 3 exists in the second Ga enriched region.
  • the present invention includes a nitride having a light emitting device structure in which an n-type layer made of an AlGaN-based semiconductor having a wurtzite structure, an active layer, and a p-type layer are laminated in the vertical direction.
  • This is a method for manufacturing a semiconductor ultraviolet light emitting device.
  • the n-type layer of an n-type AlGaN-based semiconductor is epitaxially grown on a base portion including a sapphire substrate having a main surface inclined by a predetermined angle with respect to the (0001) surface, and the surface of the n-type layer is (0001).
  • the first step to expose the multi-tiered terrace parallel to the surface The active layer having a quantum well structure including one or more well layers composed of AlGaN-based semiconductors is epitaxially grown on the n-type layer, and a multi-stage terrace parallel to the (0001) plane on the surface of the well layer.
  • the second step to express It has a third step of forming the p-type layer of the p-type AlGaN-based semiconductor on the active layer by epitaxial growth. In the first step, it is a layered region having a locally low AlN mole fraction existing uniformly dispersed in the n-type layer, and the AlGaN composition ratio becomes Al 1 Ga 1 N 2 having an integer ratio.
  • a plurality of first Ga-enriched regions including the n-type AlGaN region are grown so as to extend diagonally upward.
  • the second step while forming a second Ga-enriched region having a low AlN mole fraction locally in the same well layer in the boundary region portion between adjacent terraces of the multi-stage terrace of the well layer.
  • a method for manufacturing a nitride semiconductor ultraviolet light emitting device characterized in that an AlGaN region having an AlGaN composition ratio of an integer ratio of Al 1 Ga 2 N 3 is grown in the second Ga enriched region.
  • the AlGaN-based semiconductor is represented by the general formula Al 1-x Ga x N (0 ⁇ x ⁇ 1), and the bandgap energy can be the lower limit and the upper limit of the bandgap energy that GaN and AlN can take, respectively. Within the range, impurities such as Group 3 elements such as B or In or Group 5 elements such as P may be contained in a trace amount. Further, the GaN-based semiconductor is a nitride semiconductor basically composed of Ga and N, but contains a small amount of impurities such as Group 3 elements such as Al, B or In or Group 5 elements such as P. You may.
  • the AlN-based semiconductor is a nitride semiconductor basically composed of Al and N, but contains a small amount of impurities such as Group 3 elements such as Ga, B or In, or Group 5 elements such as P. You may. Therefore, in the present application, the GaN-based semiconductor and the AlN-based semiconductor are each a part of the AlGaN-based semiconductor.
  • the n-type or p-type AlGaN-based semiconductor is an AlGaN-based semiconductor doped with Si, Mg, or the like as a donor or acceptor impurity.
  • AlGaN-based semiconductors not specified as p-type and n-type mean undoped AlGaN-based semiconductors, but even if they are undoped, they contain a small amount of donor or acceptor impurities that are inevitably mixed. obtain.
  • the first plane is not an exposed surface specifically formed in the manufacturing process of the n-type layer or a boundary surface with another semiconductor layer, but a virtual surface extending in the n-type layer in parallel in the vertical direction. It is a flat surface.
  • the AlGaN-based semiconductor layer, the GaN-based semiconductor layer, and the AlN-based semiconductor layer are semiconductor layers composed of an AlGaN-based semiconductor, a GaN-based semiconductor, and an AlN-based semiconductor, respectively.
  • semi-stable AlGaN which will be described later, which are formed in the second Ga-enriched region, characteristic fluctuations caused by drift of the crystal growth apparatus are suppressed, and a nitride semiconductor ultraviolet light emitting device having the desired light emission characteristics can be obtained. It is expected that stable production will be possible.
  • a ternary mixed crystal such as AlGaN is a crystal state in which group 3 elements (Al and Ga) are randomly mixed, and is approximately described by "random non-uniformity".
  • group 3 elements Al and Ga
  • the covalent radius of Al and the covalent radius of Ga are different, the higher the symmetry of the atomic arrangement of Al and Ga in the crystal structure, the more stable the structure is.
  • An AlGaN-based semiconductor having a Wurtzite structure may have two types of arrays, a random array without symmetry and a stable symmetric array.
  • a state in which the symmetric array becomes dominant appears.
  • a periodic symmetrical array structure of Al and Ga is expressed.
  • the mixed crystal mole fraction is slightly stable in terms of energy, and mass transfer (mass transfer). It is possible to prevent the proliferation of places where Ga, which is easy to easily increase, increases extremely. That is, by utilizing the property of "quasi-stable AlGaN" formed in the first Ga-enriched region in the n-type layer, as an AlGaN-based semiconductor, the variation in the mixed crystal mole fraction due to the drift of the crystal growth apparatus and the like.
  • FIG. 1 shows a schematic diagram of a 1-unit cell (2 monoatomic layers) in the c-axis direction of AlGaN.
  • white circles indicate sites where group 3 element atoms (Al, Ga) are located, and black circles indicate sites where group 5 element atoms (N) are located.
  • the site planes (A3 plane, B3 plane) of the Group 3 element and the site planes (A5 plane, B5 plane) of the Group 5 element shown by hexagons in FIG. 1 are both parallel to the (0001) plane.
  • Each site on the A3 surface and the A5 surface (collectively, the A surface) has six sites at each vertex of the hexagon and one site at the center of the hexagon.
  • Each site on the A plane overlaps in the c-axis direction
  • each site on the B plane overlaps in the c-axis direction.
  • the atom (N) at one site on the B5 plane is one of the atoms (Al, Ga) at the three sites on the A3 plane located above the B5 plane and one of the B3 planes located below the B5 plane.
  • a four-coordinate bond is formed with the site atom (Al, Ga), and the one site atom (Al, Ga) on the B3 plane is the one site atom (N) on the B5 plane located above the B3 plane.
  • each site of the A plane is the B plane. It does not overlap with each site in the c-axis direction.
  • FIG. 2 shows the positional relationship between each site on the A plane and each site on the B plane as a plan view seen from the c-axis direction.
  • each of the six vertices of the hexagon is shared by the other two adjacent hexagons on both sides A and B, and the central site is not shared with the other hexagons.
  • FIG. 3 schematically shows the A3 plane and the B3 plane of the group 3 elements of the above five combinations. Ga is indicated by a black circle and Al is indicated by a white circle.
  • Ga is located at the six vertex sites of the A3 surface, the six vertex sites of the B3 surface, and one central site, and is located at one central site of the A3 surface. Al is located.
  • Ga is located at the three vertex sites of the A3 surface and the B3 surface and one central site
  • Al is located at the three vertex sites of the A3 surface and the B3 surface. positioned.
  • Ga is located at three vertex sites on the A3 surface, one center site, and three vertex sites on the B3 surface, and the three vertex sites on the A3 surface.
  • Al is located at three vertex sites and one central site on the B3 surface.
  • Ga is located at the three vertex sites of the A3 surface and the B3 surface
  • Al is located at the three vertex sites of the A3 surface and the B3 surface and one central site. positioned. This is equivalent to swapping the positions of Al and Ga in the case of Al 1 Ga 2 N 3 shown in FIG. 3 (B).
  • Ga is located at one central site of the A3 surface, and at the six vertex sites of the A3 surface, the six vertex sites of the B3 surface, and one central site. Al is located. This is equivalent to swapping the positions of Al and Ga in the case of Al 1 Ga 5 N 6 shown in FIG. 3 (A).
  • FIGS. 3A to 3E assuming another hexagon whose center is moved to any one of the six vertices of the hexagon, Al or Ga is present at the six vertex sites of the A3 surface. It is equivalent to being located and having Al or Ga located at the three vertex sites and one central site of the A3 surface, and Al or Ga is located at one central site of the A3 surface. It can be seen that this is equivalent to the location of Al or Ga at the three vertex sites of the A3 surface. The same applies to the B3 surface. Further, in each of the drawings of FIGS. 3 (A), (C) and (E), the A3 surface and the B3 surface may be interchanged.
  • the hexagonal site planes are repeatedly arranged in a honeycomb shape on the A3 plane and the B3 plane of FIGS. 3A to 3E, the direction parallel to the (0001) plane, for example, the [11-20] direction.
  • the direction parallel to the (0001) plane for example, the [11-20] direction.
  • x1 N is referred to as "first metastable AlGaN".
  • the atomic arrangement of Al and Ga becomes a periodic symmetric arrangement, and becomes an energetically stable AlGaN.
  • the site surface shown by the hexagon shown in FIG. 1 is expanded to a 2-unit cell (4 monoatomic layer)
  • the site surface of the group 3 element (A3 surface, B3 surface) and the site surface of the group 5 element (A5) are expanded.
  • these six AlGaN composition ratios 6) to 11) are a combination of two AlGaN composition ratios of the first metastable AlGaN, GaN and AlN located before and after the six AlGaN composition ratios, they are in the c-axis direction. Since the symmetry of AlGaN is likely to be disturbed, the stability is lower than that of the first metastable AlGaN, but the symmetry of the atomic arrangement of Al and Ga in the A3 plane and the B3 plane is the first metastable AlGaN. Since it is the same as, the stability is higher than that of AlGaN in a random asymmetric array state.
  • x2 Ga 1-x2 N is referred to as "second metastable AlGaN" for convenience of explanation.
  • the first and second metastable AlGaN have a stable structure due to the symmetry of the atomic arrangement of Al and Ga in the crystal structure.
  • the first and second metastable AlGaN are collectively referred to as "metastable AlGaN".
  • Ga is expected to move around at 1000 ° C. or higher even after the atom reaches the site on the crystal surface.
  • Al is easily adsorbed on the surface, and movement after entering the site is considered to move to some extent, but it is strongly restricted.
  • Al 1 Ga 5 N 6 of 1) above, Al 1 Ga 11 N 12 of 6) above, and Al 1 Ga 3 N 4 of 7) above are all AlN moles. Since the fraction is 25% or less and the composition ratio of Ga is high, the movement of Ga is intense at a growth temperature of around 1000 ° C, the symmetry of the atomic arrangement is disturbed, and the atomic arrangement of Al and Ga is close to a random state. Therefore, it is considered that the above-mentioned stability is lower than that of other metastable AlGaN.
  • a multi-stage terrace is formed in which each semiconductor layer in the n-type layer and the active layer is parallel to the (0001) plane. Since it is an epitaxial growth layer having a surface, Ga, which easily moves mass in the n-type layer, moves on the terrace region and concentrates on the boundary region between adjacent terraces, so that AlN molars are compared with the terrace region. A region with a low fraction is formed.
  • the boundary region is stretched diagonally upward with respect to the (0001) plane along with the epitaxial growth of the n-type AlGaN layer of the n-type layer, so that the layered region having a low AlN mole fraction is locally contained in the n-type layer. It is formed evenly dispersed in.
  • the layered region can be a first Ga-enriched region including an n-type AlGaN region of metastable AlGaN having an AlGaN composition ratio of Al 1 Ga 1 N 2.
  • metastable AlGaN having an AlGaN composition ratio of Al 1 Ga 1 N 2 in the first Ga enriched region
  • fluctuations in the amount of Ga supplied into the first Ga enriched region are absorbed by the metastable AlGaN. Will be done. That is, in the first Ga enriched region, the metastable AlGaN increases when the Ga supply amount increases, and the metastable AlGaN decreases when the Ga supply amount decreases, and as a result, the AlN mole fraction in the first Ga enriched region. Fluctuations are suppressed.
  • the AlGaN composition ratio is almost Al 1 Ga 1 N 2 (AlN mole fraction is 50%) by absorbing the fluctuation of the Ga supply amount due to the drift of the crystal growth apparatus and the like.
  • Stable AlGaN is stably formed. That is, the fluctuation of the AlN mole fraction in the first Ga enriched region is suppressed with respect to the fluctuation of the Ga supply amount.
  • a state of a random asymmetric array and a state of a regular symmetric array can usually coexist, so that the state of the first Ga enrichment region is regularly symmetric.
  • a region of semi-stable AlGaN having an AlN mole fraction of 50% in an array state is stably formed, and a region in which the AlN mole fraction slightly fluctuates from 50% (for example, about 0 to 3%) is mixed. do. Therefore, the AlN mole fraction in the first Ga enriched region is concentrated and distributed in the vicinity of the AlN mole fraction (50%) of the semi-stable AlGaN having an AlGaN composition ratio of Al 1 Ga 1 N 2.
  • the carriers in the n-type layer have bandgap energy in the n-type layer.
  • the current can preferentially flow stably in the first Ga-enriched region in the n-type layer, and the characteristic fluctuation of the nitride semiconductor ultraviolet light emitting device can be suppressed.
  • each semiconductor layer in the n-type layer and the active layer is an epitaxial growth layer having a surface on which a multi-stage terrace parallel to the (0001) plane is formed, it is between adjacent terraces of the multi-stage terraces of the well layer.
  • the boundary region is an inclined region inclined with respect to the (0001) plane connecting the adjacent terraces (see Non-Patent Documents 1 and 2 above).
  • the inclined region has a structure in which a large number of steps (steps of one unit cell) and macro steps (steps of a plurality of unit cells) are gathered, and the (0001) surface that appears stepwise in the inclined region is It is distinguished from the terrace surface of the multi-tiered terrace.
  • the terrace on the upper surface of the well layer moves laterally with respect to the terrace on the lower surface of the well layer. It is thicker than the film thickness of the terrace area other than the inclined area.
  • the second Ga having a low AlN mole fraction is locally formed in the inclined region in the well layer. An enriched area is formed.
  • a metastable AlGaN region having an AlGaN composition ratio of Al 1 Ga 2 N 3 is formed in the second Ga enriched region.
  • metastable AlGaN having an AlGaN composition ratio of Al 1 Ga 2 N 3 in the second Ga enriched region
  • fluctuations in the amount of Ga supplied into the second Ga enriched region are absorbed by the metastable AlGaN. Will be done. That is, in the second Ga enriched region, the metastable AlGaN increases when the Ga supply amount increases, and the metastable AlGaN decreases when the Ga supply amount decreases, and as a result, the AlN mole fraction in the second Ga enriched region. Fluctuations are suppressed.
  • the AlGaN composition ratio is Al 1 Ga 2 N 3 (AlN mole fraction is 33.3% (AlN mole fraction) by absorbing the fluctuation of the Ga supply amount due to the drift of the crystal growth apparatus and the like.
  • the metastable AlGaN of 1/3)) is stably formed. That is, the fluctuation of the AlN mole fraction in the second Ga enriched region is suppressed with respect to the fluctuation of the Ga supply amount.
  • the AlN mole fraction of 1/3 is expressed as a percentage, it is approximately expressed as 33.3%.
  • a state of a random asymmetric array and a state of a regular symmetry array can usually coexist, so that the state of the second Ga enrichment region is regularly symmetric.
  • a region of semi-stable AlGaN having an AlN mole fraction of 33.3% in an array state is stably formed, and the AlN mole fraction slightly fluctuates from 33.3% (for example, about 0 to 3%). Areas are mixed.
  • the bandgap energy in the inclined region becomes smaller than that in the terrace region, and carrier localization is likely to occur as in the first Ga-enriched region of the n-type layer. Therefore, the light emission in the well layer becomes more remarkable in the inclined region than in the terrace region.
  • the above-mentioned non-patent documents 1 and 2 report similar contents for a well layer of an AlGaN-based semiconductor.
  • the terrace regions of the well layer and the barrier layer are regions sandwiched between the terraces on the upper surface and the terraces on the lower surface of each layer in the c-axis direction. Therefore, the area other than the terrace areas of the well layer and the barrier layer becomes the boundary area (sloping area) of each layer.
  • the multi-stage terrace formed by the epitaxial growth of the active layer is continuously formed on the multi-stage terrace formed by the epitaxial growth of the n-type layer. Therefore, the carriers (electrons) supplied to the well layer along the current path in the first Ga-enriched region are concentrated in the boundary region (inclined region) between adjacent terraces where light emission is concentrated in the well layer. Will be supplied.
  • an n-type AlGaN region which is a semi-stable AlGaN having an AlN mole fraction of 50%, is stably formed in the first Ga-enriched region that predominantly exists in the layered region of the n-type layer, and further, a well.
  • the AlGaN region which is a semi-stable AlGaN with an AlN mole fraction of 33.3%, is stably formed in the second Ga-enriched region in the inclined region of the layer, so that the well layer is stabilized in the inclined region.
  • Carriers can be supplied, and fluctuations in characteristics such as luminous efficiency of the nitride semiconductor ultraviolet light emitting device can be suppressed.
  • the AlN mole fraction of the n-type layer is 50% or more and the ultraviolet rays emitted from the well layer of the active layer pass through the n-type layer, it is possible to have an element structure in which the ultraviolet light emission is taken out from the n-type layer side.
  • the AlN mole fraction outside the first Ga enrichment region of the n-type layer is in the range of 54% to 66%.
  • the target value of the AlN mole fraction of the n-type layer is set within the range of 54% to 66%, and the first step is made. It is preferable to grow an n-type AlGaN region having an AlGaN composition ratio of an integer ratio of Al 1 Ga 1 N 2 in the 1 Ga enriched region.
  • the AlN mole fraction outside the first Ga enrichment region of the n-type layer absorbs fluctuations in the Ga supply amount due to drift of the crystal growth apparatus and the like, and is 54% to 66%. Since it is within the range of, the AlN mole fraction difference between the first Ga enriched region and the n-type main body region is stably secured at 4% or more. Therefore, the carriers in the n-type layer are more stably localized in the first Ga-enriched region having a smaller bandgap energy than the n-type main body region, and the current is preferentially enriched in the first Ga in the n-type layer. The region can be stably flowed, and fluctuations in the characteristics of the nitride semiconductor ultraviolet light emitting device can be suppressed.
  • the upper limit of the AlN mole fraction of the n-type main body region of the n-type layer and the upper limit of the target value of the AlN mole fraction of the n-type layer are defined as 66%, in the n-type layer, Semi-stable AlGaN having an AlGaN composition ratio of Al 2 Ga 1 N 3 is not predominantly formed. If the upper limit is 67% or more, the metastable AlGaN of Al 2 Ga 1 N 3 is stably formed in the n-type main body region, and the first Ga rich from the metastable AlGaN of Al 2 Ga 1 N 3.
  • the nitride semiconductor ultraviolet light emitting device having the above characteristics has an AlN mole fraction in the range of 33.4% to 37% other than the boundary region portion of the well layer.
  • the target value of the AlN mole fraction of the well layer is set within the range of 33.4% to 37%, and the above-mentioned method is performed. It is preferable to grow an AlGaN region having an AlGaN composition ratio of an integer ratio of Al 1 Ga 2 N 3 in the second Ga enriched region.
  • the fluctuation range of the AlN mole fraction in the well layer is suppressed to 3.7% or less, and further, the AlN mole fraction is derived from the composition modulation generated from the region other than 33.3%. Even when the emission peaks overlap, a quantum well with a single peak can be formed in a pseudo manner, so that separation of the emission peaks in the emission spectrum is avoided.
  • the active layer has a multiple quantum well structure including two or more well layers, and a barrier composed of an AlGaN-based semiconductor between the two well layers. It is preferable that a layer is present.
  • the well layer made of an AlGaN-based semiconductor and the barrier layer made of an AlGaN-based semiconductor are alternately laminated by epitaxial growth. It is preferable to form the active layer having a multiple quantum well structure including two or more well layers, in which a multi-stage terrace parallel to the (0001) plane is exposed on each surface of the barrier layer and the well layer.
  • the active layer has a multiple quantum well structure, and improvement in luminous efficiency can be expected as compared with the case where there is only one well layer.
  • the barrier layer is made of an AlGaN-based semiconductor, and among the barrier layers located between the well layers of the two layers, at least the barrier layer on the p-type layer side is the barrier layer. It is more preferable that the boundary region portion between the adjacent terraces of the multi-tiered terrace has a third Ga-enriched region having a low AlN mole fraction locally in the same barrier layer.
  • the barrier layer made of an AlGaN-based semiconductor when the barrier layer made of an AlGaN-based semiconductor is formed in the second step, the barrier layer located between the two well layers is formed.
  • carrier localization can occur in the barrier layer as well as in the first Ga-enriched region of the n-type layer and the second Ga-enriched region of the well layer. Therefore, when supplying carriers (electrons) from the n-type layer toward the second Ga-enriched region of the boundary region (inclined region) between adjacent terraces where light emission is concentrated in the well layer, the n-type layer is the first. It can be efficiently performed via the 1 Ga-enriched region and the third Ga-enriched region of the barrier layer.
  • the effective strength is large in the well layer on the p-type layer side, so that the third Ga enriched region is present in the barrier layer on the n-type layer side of the well layer.
  • the above-mentioned carriers can be supplied to the well layer more efficiently.
  • the third Ga enriched region of the barrier layer Al 1 Ga 1 N 2 and Al 2 Ga 1 N 3 having an AlGaN composition ratio of an integer ratio, It is preferable that there is an AlGaN region having Al 3 Ga 1 N 4 or Al 5 Ga 1 N 6.
  • the method for manufacturing the nitride semiconductor ultraviolet light emitting device is described in the second step.
  • the target value of the AlN mole fraction of the barrier layer is set in the range of 51% to 66%, and within the third Ga enriched region, the AlGaN composition ratio is set to Al 1 Ga 1 N 2 having an integer ratio.
  • Grow or grow the AlGaN region 2 The target value of the AlN mole fraction of the barrier layer is set in the range of 68% to 74%, and within the third Ga enriched region, the AlGaN composition ratio is set to Al 2 Ga 1 N 3 having an integer ratio.
  • the target value of the AlN mole fraction of the barrier layer is set in the range of 76% to 82%, and within the third Ga enriched region, the AlGaN composition ratio is set to Al 3 Ga 1 N 4 having an integer ratio.
  • the AlGaN region that is 4) The target value of the AlN mole fraction of the barrier layer is set in the range of 85% to 90%, and the AlGaN composition ratio is set to Al 5 Ga 1 N 6 in the third Ga enrichment region. It is preferable to grow the AlGaN region that has become.
  • the presence of metastable AlGaN in the third Ga-enriched region of the barrier layer causes the first Ga-enriched region of the n-type layer and the second Ga-enriched region of the well layer to be similar to the second Ga-enriched region. Fluctuations in the AlN mole fraction of the 3Ga-enriched region are suppressed, and a metastable AlGaN region is stably formed in the third Ga-enriched region. Therefore, the effect produced by the third Ga-enriched region of the barrier layer is more stably realized.
  • the nitride semiconductor ultraviolet light emitting device having the above-mentioned characteristics further includes a base portion including a sapphire substrate, and the sapphire substrate has a main surface inclined by a predetermined angle with respect to the (0001) surface.
  • the light emitting device structure is formed above the surface, and at least each semiconductor layer from the main surface of the sapphire substrate to the surface of the active layer forms a multi-stage terrace parallel to the (0001) plane. It is preferably an epitaxial growth layer having a sapphire surface.
  • epitaxial growth can be performed so that a multi-step terrace is exposed on the surface of each layer from the main surface of the sapphire substrate to the surface of the active layer.
  • a nitride semiconductor ultraviolet light emitting device having the above characteristics can be realized.
  • the nitride semiconductor ultraviolet light emitting device having the above-mentioned characteristics and the method for manufacturing the nitride semiconductor ultraviolet light emitting device, the nitride semiconductor has the desired light emitting characteristics in which the characteristic fluctuation due to the drift of the crystal growth apparatus is suppressed. It is possible to stably provide an ultraviolet light emitting element.
  • FIG. 3 is a plan view showing the positional relationship between each site on the A plane and each site on the B plane when viewed from the c-axis direction of the wurtzite crystal structure shown in FIG. 1.
  • FIG. 3 is a cross-sectional view of a main part schematically showing an example of the structure of a nitride semiconductor ultraviolet light emitting device according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a main part schematically showing an example of the structure of a nitride semiconductor ultraviolet light emitting device according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a main part schematically showing an example of a laminated structure of an active layer of a nitride semiconductor ultraviolet light emitting device shown in FIG.
  • the graph which shows the relationship between the emission wavelength of a quantum well structure composed of an AlGaN well layer and an AlGaN barrier layer, the thickness of the well layer and the AlN mole fraction of the barrier layer.
  • FIG. 5 is a plan view schematically showing an example of the structure when the nitride semiconductor ultraviolet light emitting device shown in FIG. 4 is viewed from the upper side of FIG. 4.
  • HAADF-STEM image showing the cross-sectional structure in the n-type clad layer. In the HAADF-STEM image shown in FIG.
  • FIG. 8 it is a figure which shows 6 measurement regions A to F which perform line analysis of the cross section TEM-EDX in an n-type clad layer.
  • FIG. 1 shows the measurement result of the AlN mole fraction and the GaN mole fraction by the line analysis of the cross section TEM-EDX in the n-type clad layer in the measurement area F shown in FIG. SEM image showing the measurement region of AlN mole fraction by the CL method in the n-type clad layer.
  • the nitride semiconductor ultraviolet light emitting device (hereinafter, simply abbreviated as “light emitting device”) according to the embodiment of the present invention will be described with reference to the drawings.
  • the main parts are emphasized and the contents of the invention are schematically shown. Therefore, the dimensional ratio of each part is not necessarily the same as that of the actual element. The dimensional ratios are not the same.
  • the light emitting element is a light emitting diode
  • the light emitting element 1 of the present embodiment has a light emitting element structure including a base portion 10 including a sapphire substrate 11, a plurality of AlGaN-based semiconductor layers 21 to 25, a p electrode 26, and an n electrode 27.
  • a unit 20 is provided.
  • the light emitting element 1 is mounted (flip chip mounted) on a mounting base (sub-mount or the like) with the light emitting element structure portion 20 side (upper side in the drawing in FIG. 4) facing, and light is taken out.
  • the direction is the base portion 10 side (lower side in the figure in FIG. 4).
  • the direction perpendicular to the main surface 11a of the sapphire substrate 11 is defined as the “vertical direction” (or “vertical”).
  • the direction is referred to as “direction"), and the direction from the base portion 10 toward the light emitting element structure portion 20 is the upward direction, and the opposite is the downward direction.
  • a plane parallel to the vertical direction is referred to as a "first plane”.
  • a plane parallel to the main surface 11a of the sapphire substrate 11 (or the upper surface of the base portion 10 and each of the AlGaN-based semiconductor layers 21 to 25) is referred to as a "second plane", and a direction parallel to the second plane is referred to as “second plane”. It is called "horizontal direction”.
  • the base portion 10 includes a sapphire substrate 11 and an AlN layer 12 directly formed on the main surface 11a of the sapphire substrate 11.
  • the main surface 11a is inclined at an angle (off angle) within a certain range (for example, from 0 degree to 6 degrees) with respect to the (0001) surface, and the main surface 11a has a multi-stage terrace. Is a slightly inclined substrate exposed.
  • the AlN layer 12 is composed of an AlN crystal epitaxially grown from the main surface of the sapphire substrate 11, and the AlN crystal has an epitaxial crystal orientation relationship with respect to the main surface 11a of the sapphire substrate 11. Specifically, for example, the AlN crystal grows so that the C-axis direction ( ⁇ 0001> direction) of the sapphire substrate 11 and the C-axis direction of the AlN crystal are aligned.
  • the AlN crystal constituting the AlN layer 12 may be an AlN-based semiconductor layer that may contain a trace amount of Ga or other impurities. In the present embodiment, the film thickness of the AlN layer 12 is assumed to be about 2 ⁇ m to 3 ⁇ m.
  • the structure of the base portion 10 and the substrate to be used are not limited to the above-mentioned configuration.
  • an AlGaN-based semiconductor layer having an AlN mole fraction equal to or higher than the AlN mole fraction of the AlGaN-based semiconductor layer 21 may be provided between the AlN layer 12 and the AlGaN-based semiconductor layer 21.
  • the AlGaN-based semiconductor layers 21 to 25 of the light emitting device structure portion 20 are, in order from the base portion 10 side, an n-type clad layer 21 (n-type layer), an active layer 22, an electron block layer 23 (p-type layer), and a p-type clad. It has a structure in which a layer 24 (p-type layer) and a p-type contact layer 25 (p-type layer) are sequentially grown and laminated.
  • the AlN layer 12 of the base portion 10 epitaxially grown from the main surface 11a of the sapphire substrate 11, the n-type clad layer 21 of the light emitting device structure portion 20, and each semiconductor layer in the active layer 22 are the sapphire substrate 11. It has a surface on which a multi-step terrace parallel to the (0001) plane derived from the main plane 11a of the above is formed. Since the electronic block layer 23, the p-type clad layer 24, and the p-type contact layer 25 of the p-type layer are formed on the active layer 22 by epitaxial growth, a similar multi-stage terrace can be formed. , It does not necessarily have to have a surface on which a similar multi-tiered terrace is formed.
  • the active layer 22, the electron block layer 23, the p-type clad layer 24, and the p-type contact layer 25 are the first on the upper surface of the n-type clad layer 21.
  • the portion laminated on the two regions R2 is removed by etching or the like, and is formed on the first region R1 on the upper surface of the n-type clad layer 21.
  • the upper surface of the n-type clad layer 21 is exposed in the second region R2 excluding the first region R1.
  • the height of the upper surface of the n-type clad layer 21 may differ between the first region R1 and the second region R2, in which case the n-type clad layer 21 may have a different height.
  • the upper surface is individually defined in the first region R1 and the second region R2.
  • the n-type clad layer 21 is composed of an n-type AlGaN-based semiconductor, and in the n-type clad layer 21, layered regions having a low AlN mole fraction are locally dispersed in the n-type clad layer 21. do.
  • an n-type AlGaN region having an AlGaN composition ratio of an integer ratio of Al 1 Ga 1 N 2 that is, an n-type metastable AlGaN having an AlN mole fraction of 50%.
  • the first Ga-enriched region 21a containing the above is predominantly present.
  • n-type main body region 21b The region other than the layered region in the n-type clad layer 21 is referred to as an n-type main body region 21b.
  • the AlN mole fraction of the n-type main body region 21b is adjusted within the range of 54% to 66%.
  • the film thickness of the n-type clad layer 21 is assumed to be about 1 ⁇ m to 2 ⁇ m, which is the same as the film thickness used in a general nitride semiconductor ultraviolet light emitting device, but the film thickness is about 2 ⁇ m to 4 ⁇ m. It may be.
  • the metastable AlGaN n-type AlGaN region in which the AlGaN composition ratio existing in the first Ga enriched region 21a is an integer ratio of Al 1 Ga 1 N 2 is used for convenience. Is referred to as a "metastable n-type region".
  • a region in which the AlN mole fraction other than the metastable n-type region existing in the first Ga-enriched region 21a slightly fluctuates with respect to 50% (1/2) is referred to as a “metastable neighborhood n-type region”.
  • the metastable n-type region does not necessarily have to exist continuously in a layered manner in the plurality of layered first Ga-enriched regions 21a, and is intermittently divided by the metastable neighborhood n-type region. May exist.
  • the active layer 22 has a multiple quantum well structure in which two or more well layers 220 made of AlGaN-based semiconductors and one or more barrier layers 221 made of AlGaN-based semiconductors or AlN-based semiconductors are alternately laminated. .. It is not always necessary to provide the barrier layer 221 between the well layer 220 of the lowest layer and the n-type clad layer 21. Further, an AlGaN layer or an AlN layer which is thinner than the barrier layer 221 or the barrier layer 221 and has a higher AlN mole fraction may be provided between the well layer 220 and the electron block layer 23 of the uppermost layer.
  • FIG. 5 schematically shows an example of a laminated structure (multiple quantum well structure) of the well layer 220 and the barrier layer 221 in the active layer 22.
  • FIG. 5 illustrates a case where the well layer 220 has three layers.
  • the structure in which the terrace T in the well layer 220 and the barrier layer 221 shown in FIG. 5 grows in a multi-stage manner is a known structure as disclosed in Non-Patent Documents 1 and 2.
  • the boundary region BA between the adjacent terraces T is an inclined region inclined with respect to the (0001) plane.
  • the depth of one terrace T (distance between adjacent boundary regions BA) is assumed to be several tens of nm to several hundreds of nm.
  • the AlN mole fraction is locally low in the well layer 220 in the boundary region (inclined region) BA between the adjacent terraces T of the multi-stage terrace T in the well layer 220.
  • the second Ga enriched region 220a is formed.
  • the region other than the second Ga enriched region 220a in the well layer 220 is referred to as a well body region 220b for convenience.
  • the second Ga enriched region 220a is a metastable AlGaN having an AlGaN composition ratio of an integer ratio of Al 1 Ga 2 N 3 , that is, an AlN mole fraction of 33.3% (3 minutes). 1) AlGaN exists. Further, the AlN mole fraction of the well body region 220b is adjusted within the range of 33.4% to 37%. The film thickness of the well layer 220 is adjusted to, for example, in the range of 2 unit cells to 7 unit cells, including the terrace region TA and the inclined region BA.
  • the metastable AlGaN existing in the second Ga enriched region 220a having an AlGaN composition ratio of an integer ratio of Al 1 Ga 2 N 3 is referred to as a “metastable well” for convenience. Called “area”. Further, a region in which the AlN mole fraction other than the metastable well region existing in the second Ga enriched region 220a slightly fluctuates with respect to 33.3% (1/3) is referred to as a “metastable near well region”. Refer to. Here, the metastable well region exists continuously along the edge line in the second Ga enriched region 220a formed in the inclined region BA existing along the edge line of the terrace T in a plan view. It is not necessary to be present, and it may exist intermittently by being divided by the metastable neighborhood n-type region.
  • the barrier layer 221 is made of an AlGaN-based semiconductor and has a surface on which a multi-stage terrace T parallel to the (0001) plane is formed, similarly to the n-type clad layer 21 and the well layer 220.
  • the AlN mole fraction of the entire barrier layer 221 is assumed to be in the range of 50% to 100% as an example, but the barrier layer 221 is composed of an AlN-based semiconductor having an AlN mole fraction of 100%. In some cases, it may be composed of an AlGaN-based semiconductor whose AlN mole fraction is not 100%. Therefore, as schematically shown in FIG.
  • the barrier layer 221 when the barrier layer 221 is composed of an AlGaN-based semiconductor having an AlN mole fraction not 100%, the barrier layer is similar to the n-type clad layer 21 and the well layer 220.
  • a third Ga-enriched region 221a having a locally low AlN mole fraction within 221 can be formed in the boundary region (inclined region) BA between adjacent terraces T of the barrier layer 221.
  • the region other than the third Ga-enriched region 221a in the terrace region in the barrier layer 221 is referred to as the barrier main body region 221b for convenience.
  • the barrier body region 221b mainly exists in the terrace region TA in the barrier layer 221.
  • the total AlN mole fraction including the third Ga-enriched region 221a of the barrier layer 221 is, for example, in the range of 50% to 90%, which is a part of the above-mentioned range of 50% to 100%.
  • the AlN mole fraction difference between the third Ga enriched region 221a and the barrier body region 221b is 4 to 5% or more. Even at about 1%, the effect of carrier localization can be expected. Therefore, in the present embodiment, the AlN mole fraction of the barrier body region 221b is set to be in the range of 51% to 90%.
  • the film thickness of the barrier layer 221 is preferably adjusted in the range of, for example, 6 nm to 8 nm including the terrace region TA and the inclined region BA.
  • FIG. 6 shows a well layer having a film thickness in the range of 4 ML (monatomic layer) to 14 ML (2 unit cells to 7 unit cells) with respect to a quantum well structure model in which the well layer 220 and the barrier layer 221 are composed of AlGaN. It is a graph of the simulation result (corresponding to the peak emission wavelength) of the emission wavelength obtained by changing the emission wavelength.
  • the AlN mole fraction of the second Ga enriched region 220a of the well layer 220 is set to 33.3% (1/3), which is the AlN mole fraction of the semi-stable well region, and the barrier layer 221 is formed.
  • the AlN mole fraction of the third Ga enriched region 221a was set to 66.7%, 75%, and 83.3%.
  • the ultraviolet light emission in the well layer 220 is remarkably generated in the boundary region (inclined region) BA. Therefore, it is important that the film thickness condition of the well layer 220 is satisfied in the inclined region BA.
  • the control range (lower limit and upper limit) of the emission wavelength assumed in the emission element 1 of the present embodiment are the control range (lower limit and upper limit) of the emission wavelength assumed in the emission element 1 of the present embodiment.
  • the thickness of the well layer 220 is set to the barrier layer 221.
  • the emission wavelength can be controlled in the range of 277 nm to 315 nm by setting it in the range of 5 ML to 14 ML according to the AlN mole fraction of.
  • the electronic block layer 23 is composed of a p-type AlGaN-based semiconductor.
  • the p-type clad layer 24 is composed of a p-type AlGaN-based semiconductor.
  • the p-type contact layer 25 is composed of a p-type AlGaN-based semiconductor or a p-type GaN-based semiconductor.
  • the p-type contact layer 25 is typically composed of GaN.
  • the film thickness of each layer such as the active layer 22, the electron block layer 23, the p-type clad layer 24, and the p-type contact layer 25 is appropriately determined according to the emission wavelength characteristics and electrical characteristics of the light emitting element 1. .. Further, the p-type clad layer 24 may be omitted in order to reduce the parasitic resistance of the p-type layer.
  • the p electrode 26 is made of a multilayer metal film such as Ni / Au, and is formed on the upper surface of the p-type contact layer 25.
  • the n electrode 27 is made of a multilayer metal film such as Ti / Al / Ti / Au, and is formed in a part of the exposed surface in the second region R2 of the n-type clad layer 21.
  • the p-electrode 26 and the n-electrode 27 are not limited to the above-mentioned multilayer metal film, and the electrode structures such as the metal constituting each electrode, the number of layers, and the order of layers may be appropriately changed.
  • FIG. 7 shows an example of the shape of the p electrode 26 and the n electrode 27 as viewed from above of the light emitting element 1.
  • the line BL existing between the p electrode 26 and the n electrode 27 shows the boundary line between the first region R1 and the second region R2, and is the active layer 22, the electron block layer 23, and the p-type clad layer. 24 and the outer peripheral side wall surface of the p-type contact layer 25.
  • the plan view shape of the first region R1 and the p electrode 26 adopts a comb shape as an example, but the plane of the first region R1 and the p electrode 26.
  • the visual shape, arrangement, and the like are not limited to the examples shown in FIG.
  • first Ga-enriched region 21a of the n-type clad layer 21 a plurality of layers are separated in the vertical direction as one layer is schematically shown by a double line in FIG. Further, in one first plane parallel to the vertical direction (for example, the cross section shown in FIG. 4), at least a part of the first Ga enriched region 21a is stretched in the lateral direction (first plane and second plane). It is inclined with respect to the extending direction of the line of intersection with. On the first plane shown in FIG. 4, each layer of the first Ga-enriched region 21a is schematically shown by parallel lines (double lines), but the inclination angle formed by the stretching direction and the lateral direction is formed.
  • first Ga-enriched regions 21a Is not necessarily the same between the first Ga-enriched regions 21a, and may change depending on the position even within the same first Ga-enriched region 21a, so that the first Ga-enriched region 21a on the first plane does not necessarily extend linearly. Not always.
  • the inclination angle also changes depending on the orientation of the first plane. Therefore, a part of the first Ga-enriched region 21a may intersect with another first Ga-enriched region 21a or branch from another first Ga-enriched region 21a on the first plane.
  • the first Ga enriched region 21a is shown by one line (double line) on the first plane in FIG. 4, but also in the direction perpendicular to the first plane. It extends parallel to or inclined in two planes and has a two-dimensional spread. Therefore, the plurality of first Ga-enriched regions 21a exist in a striped pattern on the plurality of second planes in the n-type clad layer 21.
  • the first Ga enriched region 21a is a layered region having a locally low AlN mole fraction in the n-type clad layer 21. That is, the AlN mole fraction of the first Ga enriched region 21a is relatively low with respect to the AlN mole fraction of the n-type main body region 21b. Further, when the AlN mole fractions of both regions are asymptotically continuous in the vicinity of the boundary between the first Ga enriched region 21a and the n-type main body region 21b, the boundary between the two regions cannot be clearly defined.
  • the average AlN mole fraction of the entire n-type clad layer 21, for example, the growth conditions of the n-type clad layer 21 described later (raw material gas or carrier used in the organic metal compound vapor phase growth method).
  • the portion where the AlN mole fraction is lower than the reference value can be relatively defined as the first Ga enriched region 21a.
  • a portion having a large change in brightness can be defined as a boundary between both layers.
  • the definition of the boundary between the two layers itself is not important, and it is sufficient if the existence of the first Ga enriched region 21a itself can be grasped.
  • the first Ga-enriched region 21a is formed with the mass transfer of Ga from the n-type main body region 21b, the first Ga-enriched region 21a is enriched according to the amount of Ga supplied from the n-type main body region 21b.
  • the average AlN mole fraction in the region 21a varies, and the AlN mole fraction is not always uniform even within the first Ga enriched region 21a.
  • the metastable n-type region is stably formed in the first Ga enriched region 21a, even if there is a slight fluctuation in the supply amount of Ga, the fluctuation is metastable n. It is absorbed by the mold region and the fluctuation of the AlN mole fraction in the first Ga enriched region 21a is suppressed.
  • the minimum value of the AlN mole fraction in each first Ga enriched region 21a is 50% or a value close to the AlN mole fraction of the semi-stable n-type region.
  • the first Ga enriched region 21a there is a metastable neighborhood n-type region as well as a metastable n-type region, and the metastable neighborhood n-type region is also Ga from the n-type main body region 21b. Since it is formed with mass transfer, the AlN mole fraction of the metastable n-type region is usually higher than the AlN mole fraction of the metastable n-type region, and the average AlN in the first Ga-enriched region 21a. The mole fraction is slightly higher than the AlN mole fraction in the metastable n-type region.
  • the n-type main body region 21b supplies Ga to the first Ga-enriched region 21a, so that the portion of the n-type main body region 21b after the mass transfer of Ga has a relatively high AlN mole fraction.
  • the AlN mole fraction fluctuates to some extent also in the n-type main body region 21b. ..
  • the carriers in the n-type clad layer 21 are localized in the first Ga enriched region 21a having a smaller bandgap energy than the n-type main body region 21b, and the current is prioritized in the n-type clad layer 21. Since the current stably flows through the first Ga-enriched region 21a, even if the AlN mole fraction in the n-type main body region 21b fluctuates slightly, the characteristic fluctuation of the light emitting element 1 is suppressed by the first Ga-enriched region 21a. To.
  • the above description of the first Ga-enriched region 21a is valid as it is for the second Ga-enriched region 220a. That is, in the present embodiment, since the semi-stable well region is stably formed in the second Ga enriched region 220a, even if there is a slight fluctuation in the supply amount of Ga, the fluctuation is the semi-stable well region.
  • the average AlN mole fraction of the second Ga enriched region 220a is 33.3% or its vicinity, which is the AlN mole fraction of the semi-stable well region.
  • the second Ga enriched region 220a there is a semi-stable near well region as well as a semi-stable well region, and the semi-stable near well region is also accompanied by the mass transfer of Ga from the well body region 220b. Due to the formation, the AlN mole fraction of the near-stable well region is usually higher than the AlN mole fraction of the semi-stable well region, and the average AlN mole fraction in the second Ga enriched region 220a is quasi. It is slightly higher than the AlN mole fraction in the stable well region.
  • the well body region 220b supplies Ga to the second Ga enriched region 220a, so that the AlN mole fraction in the well body region 220b after the mass transfer is relatively high. Further, since the mass transfer of Ga to the extent that the formation of the second Ga enriched region 220a may occur in the well body region 220b, the AlN mole fraction fluctuates to some extent also in the well body region 220b. However, as described above, the carriers in the well layer 220 are localized in the second Ga-enriched region 220a having a smaller bandgap energy than the well body region 220b, and the current is preferentially second Ga-enriched in the well layer 220. Since the current flows stably in the well body region 220a, even if the AlN mole fraction in the well body region 220b fluctuates slightly, the characteristic fluctuation of the light emitting element 1 is suppressed by the second Ga enrichment region 220a.
  • the organometallic compound vapor phase growth (MOVPE) method the AlN layer 12 contained in the base portion 10 and the nitride semiconductor layers 21 to 25 contained in the light emitting device structure portion 20 are sequentially epitaxially grown on the sapphire substrate 11. And stack.
  • the n-type clad layer 21 is doped with, for example, Si as a donor impurity
  • the electron block layer 23, the p-type clad layer 24, and the p-type contact layer 25 are doped with, for example, Mg as an acceptor impurity.
  • a multi-stage terrace parallel to the (0001) plane is exposed.
  • the main surface 11a is inclined at an angle (off angle) within a certain range (for example, from 0 degree to 6 degrees) with respect to the (0001) surface, and is multi-staged on the main surface 11a.
  • the growth rate at which the multi-stage terrace is easily exposed (specifically, for example, the growth temperature, the raw material gas and the carrier).
  • the growth rate is achieved by appropriately setting various conditions such as the amount of gas supplied and the flow velocity). Since these conditions may differ depending on the type and structure of the film forming apparatus, it is sufficient to actually prepare some samples in the film forming apparatus and specify these conditions.
  • the first Ga enriched region 21a grows by mass transfer of Ga to the stepped portion (boundary region) between the multistage terraces formed on the upper surface of the AlN layer 12.
  • the donor impurity concentration is selected.
  • the growth temperature is preferably 1050 ° C. or higher at which mass transfer of Ga is likely to occur, and 1150 ° C. or lower at which good n-type AlGaN can be prepared. Further, when the growth temperature exceeds 1170 ° C., the mass transfer of Ga becomes excessive, and even in the first semi-stable AlGaN, the AlN mole fraction tends to fluctuate randomly, so that the AlN mole fraction is 50%. Semi-stable AlGaN is not preferable because it is difficult to form stably.
  • As the growth pressure 75 Torr or less is preferable as a good growth condition of AlGaN, and 10 Torr or more is realistic and preferable as a control limit of the film forming apparatus.
  • the donor impurity concentration is preferably about 1 ⁇ 10 18 to 5 ⁇ 10 18 cm -3.
  • the growth temperature, growth pressure, and the like are examples, and optimum conditions may be appropriately specified according to the film forming apparatus to be used.
  • the supply amount and flow velocity of the raw material gas (trimethylaluminum (TMA) gas, trimethylgallium (TMG) gas, ammonia gas) and carrier gas used in the organic metal compound vapor phase growth method are average for the entire n-type clad layer 21.
  • the AlN mole fraction Xa is set as the target value.
  • Xc (> 50%) be the average AlN mole fraction of the first Ga-enriched region 21a in which a slightly higher near-stable n-type region exists, and Ga from the n-type main body region 21b to the first Ga-enriched region 21a.
  • a semi-stable n-type region having an AlN mole fraction of 50% is stably present in the first Ga-enriched region 21a, and the target value Xa of the AlN mole fraction of the n-type clad layer 21 is 54% or more. Since it is 66%, the difference between the AlN mole fraction 50% in the semi-stable n-type region and the average AlN mole fraction Xb in the n-type main body region 21b (Xc-50%) is stably 4% or more. Is secured, and the carriers in the n-type layer are localized in the first Ga-enriched region 21a having a smaller bandgap energy than the n-type main body region 21b.
  • metastable AlGaN having an AlGaN composition ratio of Al 2 Ga 1 N 3 is not predominantly formed in the n-type main body region 21b.
  • the upper limit of the target value Xa is at least 67%, metastable AlGaN of Al 2 Ga 1 N 3 in the n-type body region 21b is stably formed, metastable AlGaN of the Al 2 Ga 1 N 3 Therefore, it becomes difficult to sufficiently supply Ga for stably forming the metastable AlGaN (metastable n-type region) of Al 1 Ga 1 N 2 in the first Ga enriched region. Therefore, by setting the upper limit of the target value Xa to 66%, it becomes possible to stably form a metastable n-type region having an AlN mole fraction of 50% in the first Ga enriched region 21a.
  • the donor impurity concentration does not necessarily have to be controlled uniformly in the vertical direction with respect to the film thickness of the n-type clad layer 21.
  • the impurity concentration of the predetermined thin film thickness portion in the n-type clad layer 21 is lower than the above set concentration, for example, less than 1 ⁇ 10 18 cm -3 , more preferably 1 ⁇ 10 17 cm -3 or less. It may be a controlled low impurity concentration layer.
  • the film thickness of the low impurity concentration layer is preferably larger than 0 nm and about 200 nm or less, more preferably about 10 nm or more and 100 nm or less, and further preferably about 20 nm or more and about 50 nm or less.
  • the donor impurity concentration of the low impurity concentration layer may be lower than the set concentration, and the undoped layer (0 cm -3 ) may be partially contained. Further, it is preferable that a part or all of the low impurity concentration layer is present in the upper layer region having a depth of 100 nm or less downward from the upper surface of the n-type clad layer 21.
  • the organometallic compound vapor phase growth continues on the entire upper surface of the n-type clad layer 21.
  • the active layer 22 (well layer 220, barrier layer 221), the electron block layer 23, the p-type clad layer 24, the p-type contact layer 25, and the like are formed by a well-known epitaxial growth method such as the method.
  • the well layer 220 is grown with a target value of% to 37%), and the barrier layer 221 is further set with an AlN mole fraction (51% to 90% or 100%) set for the barrier body region 221b as a target value. To grow.
  • the second region R2 of the nitride semiconductor layers 21 to 25 laminated in the above manner is selectively etched by a well-known etching method such as reactive ion etching until the upper surface of the n-type clad layer 21 is exposed.
  • the second region R2 portion on the upper surface of the n-type clad layer 21 is exposed.
  • a p-electrode 26 is formed on the p-type contact layer 25 in the unetched first region R1 by a well-known film forming method such as an electron beam vapor deposition method, and n in the etched first region R2.
  • the n electrode 27 is formed on the mold clad layer 21.
  • heat treatment may be performed by a well-known heat treatment method such as RTA (instantaneous heat annealing).
  • the light emitting element 1 is flip-chip mounted on a base such as a submount and then sealed with a predetermined resin (for example, a lens-shaped resin) such as a silicone resin or an amorphous fluororesin. Can be used in state.
  • a predetermined resin for example, a lens-shaped resin
  • a silicone resin or an amorphous fluororesin such as silicone resin or an amorphous fluororesin.
  • a sample for observing the cross section of the n-type clad layer 21 is prepared, and a sample piece having a cross section perpendicular (or substantially vertical) to the upper surface of the n-type clad layer 21 is processed by a focused ion beam (FIB) from the sample. Then, the result of observing the sample piece with a scanning transmission electron microscope (STEM) will be described with reference to the drawings.
  • FIB focused ion beam
  • the sample is prepared according to the procedure for producing the n-type clad layer 21 and the like described above, on the base portion 10 composed of the sapphire substrate 11 and the AlN layer 12, the n-type clad layer 21, the active layer 22, and the n-type clad layer. It was prepared by sequentially depositing an AlGaN layer having a higher AlN molar fraction than 21, an AlGaN layer for protecting the sample surface, and a protective resin film. In the preparation of the sample, a sapphire substrate 11 whose main surface has an off angle with respect to the (0001) surface was used, and a base portion 10 in which a multi-step terrace was exposed on the surface of the AlN layer 12 was used.
  • the film thickness of the n-type clad layer 21 was set to 2 ⁇ m, and the target value of the AlN mole fraction of the n-type clad layer 21 was set to 58%. Further, the injection amount of the donor impurity (Si) was controlled so that the donor impurity concentration was about 3 ⁇ 10 18 cm -3.
  • FIG. 8 shows a high-angle scattering annular dark field (HAADF) -STEM image of the cross section of the sample piece.
  • FIG. 8 is a HAADF-STEM image for observing the entire upper layer of the AlN layer 12 of the sample piece, the n-type clad layer 21, and the n-type clad layer 21 including the active layer 22.
  • HAADF high-angle scattering annular dark field
  • the HAADF-STEM image has a contrast proportional to the atomic weight, and heavy elements are displayed brightly. Therefore, in the first Ga-enriched region 21a and the n-type main body region 21b in the n-type clad layer 21, the first Ga-enriched region 21a having a low AlN mole fraction is displayed brighter than the n-type main body region 21b.
  • the HAADF-STEM image is more suitable for observing the difference in AlN mole fraction than the normal STEM image (bright field image).
  • a plurality of first Ga-enriched regions 21a which are locally low AlN mole fractions, are dispersed in the vertical direction, and the first Ga-enriched regions 21a are present.
  • Each stretches in a direction inclined with respect to the line of intersection between the upper surface of the n-type clad layer 21 and the first plane on the screen of the HAADF-STEM image (cross section of the sample piece, corresponding to the first plane). You can see that there is.
  • Each of the first Ga-enriched regions 21a extends diagonally upward in a linear shape, but does not necessarily extend linearly, and the inclination angle with respect to the line of intersection is within the same first Ga-enriched region 21a.
  • composition analysis of the sample piece in the n-type clad layer 21 is performed by two types of analysis methods (energy dispersive X-ray spectroscopy (section TEM-EDX) line analysis and CL (cathodoluminescence) method). gone.
  • the electron beam probe (diameter: about 2 nm) is vertically (vertically) and horizontally. Scanned in the direction (direction parallel to the second plane) and distributed in a matrix of 512 ⁇ 512 in the vertical and horizontal directions at intervals of about 4 nm, detection data (corresponding to each composition of Al and Ga) at each probe location. X-ray intensity) was obtained.
  • the entire measurement region has a substantially square shape (about 420 nm).
  • Six measurement regions A to F ( ⁇ about 420 nm) were set.
  • FIG. 9 shows the HAADF-STEM image of FIG. 8 overlaid with a rectangular frame showing each measurement area A to F.
  • Each of the six measurement regions is set so as to cross at least one first Ga enriched region 21a confirmed on the HAADF-STEM image.
  • the inclination of each measurement region is set for each measurement region so that the stretching direction of at least one first Ga enriched region 21a in the measurement region is orthogonal to the scanning direction of the line analysis.
  • the inclinations of the measurement areas A to F are approximately equal at about 20 °, but are not necessarily the same.
  • the scanning direction of the line analysis is set to the vertical direction and the direction orthogonal to the scanning direction is set to be horizontal for convenience of explanation.
  • the central vertical line shown in each measurement region indicates the scanning direction, and the central horizontal line indicates the location where at least one first Ga enriched region 21a is assumed to exist, which will be described later. It is the origin (0 nm) of the scanning position of the line analysis in the composition analysis result.
  • An arrow is attached to the vertical line indicating the scanning direction, and indicates the direction of the AlN layer 12.
  • the scanning positions are set on the vertical line in the center in the vertical direction with the origin in between, at intervals of about 5 nm, in the range of 58 to 81 points in total for each of the measurement regions A to F.
  • the detection data obtained from a plurality of probe locations aligned in the horizontal direction are accumulated and used as the detection data at each scanning position.
  • aligned in the horizontal direction means that the irradiation range of the electron beam probe overlaps with the horizontal line that intersects the vertical line and extends in the horizontal direction at each scanning position.
  • the accumulated detection data is metastitious.
  • the AlN mole fraction in the stable n-type region will be shown accurately.
  • the accumulated detection data is the AlN of the n-type body region 21b. The mole fraction will be shown accurately.
  • the stretching direction of the metastable n-type region of the first Ga enriched region 21a is not exactly orthogonal to the scanning direction of the line analysis, or the metastable of the first Ga enriched region 21a.
  • the stretching direction of the n-type region is bent and not linear, a part of the plurality of probe points aligned in the lateral direction or a part of the probe range (diameter about 2 nm) of each probe point is metastable.
  • the accumulated detection data indicates the average AlN mole fraction of multiple probe locations. It shows a value higher than the AlN mole fraction in the metastable n-type region.
  • a part of the plurality of probe points or the probe of each probe point is a region where the AlN mole fraction generated by the mass transfer of Ga in the n-type main body region 21b is locally low or high, or an AlN mole fraction other than the n-type main body region 21b. If the rate is locally low (a layered region other than the first Ga-enriched region 21a, a semi-stable n-type region in the first Ga-enriched region 21a, or a semi-stable neighborhood n-type region), it is cumulative.
  • the detected detection data will show the average AlN mole fraction of the plurality of probe points, and the average AlN mole fraction of the n-type main body region 21b ( ⁇ the AlN mole fraction of the n-type clad layer 21). Indicates a value lower or higher than the target value).
  • FIGS. 10A to 10F show the results of composition analysis in the n-type clad layer 21 in the six measurement regions A to F shown in FIG. 9 by line analysis of EDX measurement.
  • the horizontal axis indicates the scanning position along the vertical line in the center of each measurement area, and the vertical axis represents the AlN mole fraction.
  • the measurement result of the GaN mole fraction is shown.
  • the 0 nm scan position on the horizontal axis indicates the position of the central horizontal line shown in each measurement region (where at least one first Ga enriched region 21a is assumed to be present).
  • the scanning position is shown with a positive value on the lower side (AlN layer 12 side) below the origin (0 nm) and a negative value on the upper side (active layer 22 side).
  • the X-rays emitted from the probe points are weak, so even if the detection data of the probe points (X-ray intensity of each composition) is accumulated in the lateral direction at each scanning position, it is general.
  • the measurement error is large.
  • the measurement error of the detection data at each scanning position is the reference AlN layer 12 Even in the vicinity, it is about ⁇ 2 to 3%, and the measurement accuracy further decreases as the distance from the AlN layer 12 increases.
  • the same sample as the sample piece used for the EDX measurement is used.
  • the composition of Al and Ga in the n-type clad layer 21 was analyzed by the Rutherford backscattering (RBS) analysis method, and the results obtained by the EDX measurement were calibrated using the RBS analysis results.
  • the AlN mole fraction and the GaN mole fraction of the measurement regions A to F shown in FIGS. 10A to 10F show the result of the calibration.
  • the existence of the first Ga-enriched region 21a can be confirmed in the region A1 in which the scanning position is about ⁇ 140 nm to about ⁇ 131 nm and the region A2 in which the scanning position is about -5 nm to about 5 nm.
  • the AlN mole fraction at the three scanning positions in region A1 is 52.4% to 52.8%.
  • the AlN mole fraction at the three scanning positions in the region A2 is 50.9% to 51.5% (1 point within 50% to 51%).
  • the presence of the first Ga-enriched region 21a can be confirmed in the region B1 at the scanning position of about -169 nm to about -145 nm and the region B2 at the scanning position of about -5 nm to about 5 nm.
  • the AlN mole fraction at 6 scanning positions in region B1 is 51.8% to 52.4% (4 points within 50% to 52%).
  • the AlN mole fraction at the three scanning positions in the region B2 is 51.5% to 53.0% (1 point within 50% to 52%).
  • the existence of the first Ga-enriched region 21a can be confirmed in the region C1 at the scanning position of about ⁇ 53 nm to about ⁇ 44 nm and the region C2 at the scanning position of about 0 nm to about 5 nm.
  • the AlN mole fraction at the three scanning positions in the region C1 is 51.2% to 52.6% (two points within 50% to 52%).
  • the AlN mole fractions at the two scanning positions in region C2 are 51.4% and 52.6%.
  • the presence of the first Ga-enriched region 21a can be confirmed in the region D1 at the scanning position of about -169 nm to about -97 nm and the region D2 at the scanning position of about -5 nm to about 5 nm.
  • the AlN mole fraction at 16 scanning positions in region D1 is 50.7% to 52.5% (6 points within 50% to 51%, 13 points within 50% to 52%).
  • the AlN mole fraction at the three scanning positions in region D2 is 50.8% to 52.6% (2 points within 50% to 52%).
  • the presence of the first Ga-enriched region 21a can be confirmed in the region E1 at the scanning position of about -116 nm to about -73 nm and the region E2 at the scanning position of about -5 nm to about 5 nm. ..
  • the AlN mole fraction at 10 scanning positions in region E1 is 51.3% to 52.8% (4 points within 50% to 52%).
  • the AlN mole fraction at the three scanning positions in the region E2 is 50.5% to 51.9% (1 point within 50% to 51%).
  • the presence of the first Ga-enriched region 21a can be confirmed in the region F4 at the scanning position of about 97 nm to about 106 nm.
  • the AlN mole fraction at the five scanning positions in the region F1 is 49.1% to 52.3% (2 points within 49% to 50%, 1 point within 50% to 52%).
  • the AlN mole fraction at the four scanning positions in the region F2 is 51.4% to 52.7% (two points within 50% to 52%).
  • the AlN mole fraction at the four scanning positions in the region F3 is 51.6% to 52.2% (3 points within 50% to 52%).
  • the AlN mole fraction at the three scanning positions in the region F4 is 51.0% to 51.3% (1 point within 50% to 51%).
  • the measurement error of about ⁇ 2 to 3% at each scanning position described above and the average AlN mole fraction of a plurality of probe locations aligned laterally with respect to the first Ga enriched region 21a are semi-stable n-type.
  • the existence of a semi-stable n-type region having an AlN mole fraction of 50% can be confirmed in the 1Ga enriched region 21a.
  • the first Ga enriched region 21a is a measurement region A to C in the upper portion near the upper surface of the n-type clad layer 21, a measurement region D in the central portion, and measurement regions E and F in the lower portion near the AlN layer 12, respectively. It can be seen that it exists in the n-type clad layer 21 and is uniformly dispersed in the n-type clad layer 21.
  • FIG. 10A Considering the possibility that the average AlN mole fraction of a plurality of laterally aligned probe locations with respect to the body region 21b may be higher or lower than the average AlN mole fraction of the n-type body region 21b, FIG. 10A. It can be seen that FIG. 10F accurately represents the AlN mole fraction of the n-type main body region 21b.
  • the sample piece used for the measurement was prepared in the same manner as the sample piece used for observing the HAADF-STEM image shown in FIG.
  • FIG. 11 is a scanning electron microscope (SEM) image showing a cross section of the sample piece in the n-type clad layer 21.
  • the measurement regions (a to f) surrounded by the dotted lines in the cross section indicate the incident regions of the electron beams irradiated for measurement, respectively.
  • the measurement regions a and b are located at a distance of about 1800 nm from the upper surface of the AlN layer 12
  • the measurement regions c and d are located at a distance of about 1000 nm from the upper surface of the AlN layer 12
  • the measurement regions e and f are AlN. It is located at a distance of about 400 nm from the upper surface of the layer 12.
  • an electron beam having a beam diameter of 50 nm (diameter) was moved laterally and irradiated once at intervals of 50 nm, for a total of 10 times, and the CL spectrum at each irradiation was measured.
  • FIG. 12 shows the first CL spectrum obtained by averaging two CL spectra having a wavelength distribution closer to the short wavelength among the ten CL spectra in each measurement region (a to f), and FIG. 12 showing the first CL spectrum having a wavelength distribution closer to the long wavelength.
  • the second CL spectrum obtained by averaging the two CL spectra is displayed for each measurement region (a to f).
  • the first Ga enriched region 21a and the n-type main body region 21b are included in the 10 irradiation regions. Both exist. Since the volume ratio of the first Ga-enriched region 21a to the entire n-type clad layer 21 is small, the first CL spectrum mainly shows the CL spectrum of the n-type main body region 21b. On the other hand, the second CL spectrum includes the CL spectrum of the first Ga-enriched region 21a, but the width of the first Ga-enriched region 21a in the cross section perpendicular to the stretching direction is about 20 nm on average.
  • the n-type main body region 21b may be partially included in the irradiation range having a beam diameter of 50 nm. Therefore, the second CL spectrum is a composite spectrum of the CL spectrum of the first Ga enriched region 21a and the CL spectrum of the n-type main body region 21b.
  • the center of each electron beam of the two CL spectra whose wavelength distribution is closer to the long wavelength is located at the center in the width direction of the first Ga enriched region 21a, the electron in the central portion within the irradiation range is located.
  • the beam is likely to gather in the first Ga-enriched region 21a with a low energy level and excite the first Ga-enriched region 21a exclusively, and the second CL spectrum mainly contains the CL spectrum of the first Ga-enriched region 21a. It is considered to indicate.
  • the reason why the first CL spectrum is the average of two CL spectra whose wavelength distribution is closer to the short wavelength and the second CL spectrum is the average of the two CL spectra whose wavelength distribution is closer to the long wavelength is Since the irradiation position of the electron beam in each measurement area is randomly set, the irradiation range of each one CL spectrum closest to the shortest wavelength and the longest wavelength is different for each measurement area, so that the measurement result is in the measurement area. In order to suppress the variation in each measurement region in consideration of the fact that there is a large variation in each measurement and that it may be difficult to select one CL spectrum for each of the shortest wavelength and the longest wavelength. It was decided to mechanically select and average two CL spectra having a wavelength distribution closer to the short wavelength and one closer to the long wavelength.
  • the first CL spectrum of each measurement region (a to f) will be examined.
  • the peak of the emission wavelength exists in the vicinity of about 262 nm.
  • gentle peaks of the emission wavelength exist at two locations, around about 263 nm and around about 271 nm.
  • the peak of the emission wavelength exists in the vicinity of about 261 nm.
  • the peak of the emission wavelength exists in the vicinity of about 262 nm to 263 nm.
  • the peak of the emission wavelength exists in the vicinity of about 256 nm to 259 nm.
  • the peak of the emission wavelength exists in the vicinity of about 257 nm to 259 nm.
  • the peak wavelength of about 256 nm to about 263 nm in each measurement region (a to f) corresponds to about 57% to about 63% when converted to AlN mole fraction, and is about ⁇ 3% when converted to AlN mole fraction.
  • the CL wavelength of the first CL spectrum and the average AlN mole fraction Xb ( ⁇ target value 58%) of the n-type main body region 21b are generally in agreement.
  • the long wavelength component having a peak wavelength of about 259 nm to about 263 nm is larger than the short wavelength component having a peak wavelength less than the same peak wavelength, and the first CL spectrum in each measurement region. It can be seen that the mass transfer of Ga occurs within the two irradiation ranges corresponding to the CL spectrum of. Further, the peak wavelength of about 271 nm in the first CL spectrum of the measurement region b corresponds to about 53% ⁇ 3% when converted to the AlN mole fraction, and the AlN mole fraction existing in the first Ga enriched region 21a.
  • the mass of Ga is part of the two irradiation ranges corresponding to the first CL spectrum of the measurement region b, which is roughly in agreement with the CL wavelength from the near-stable n-type region where the rate is slightly higher than 50%. It can be seen that the first Ga enriched region 21a formed by the migration is included.
  • the second CL spectrum of each measurement region (a to f) will be examined.
  • the peak of the emission wavelength exists in the vicinity of about 272 nm.
  • gentle peaks of the emission wavelength exist at two locations, around about 261 nm and around about 270 nm.
  • the peaks of the emission wavelength are present at two locations, around about 269 nm and around about 271 nm.
  • the peak of the emission wavelength exists in the vicinity of about 268 nm.
  • the peak wavelengths of the measurement regions a to d and f from about 270 nm to about 272 nm correspond to about 52% to about 53% when converted to AlN mole fraction, and about ⁇ 3% when converted to AlN mole fraction.
  • the AlN mole fraction existing in the first Ga enriched region 21a is almost the same as the CL wavelength (about 275 nm) corresponding to the semi-stable n-type region of 50%.
  • the second CL spectra of the measurement regions a to d and f include a CL wavelength of about 275 nm corresponding to the metastable n-type region with an emission intensity of about 73 to 79% of the peak intensity.
  • the peak wavelength of about 270 nm to about 272 nm is about 3 to 5 nm shorter than the CL wavelength (about 275 nm) corresponding to the metastable n-type region.
  • the second CL spectra of the measurement regions a to d and f are metastable with a slightly higher AlN mole fraction than the metastable n-type region and the metastable n-type region in the first Ga-enriched region 21a. It is shown that each CL spectrum in the neighboring n-type region and the CL spectrum in the n-type main body region 21b appear as a composite spectrum.
  • a gentle peak or shoulder (undulation) of the emission wavelength exists in the vicinity of about 260 nm to about 262 nm, and is synthesized as compared with the measurement regions a and b.
  • the ratio of the CL spectrum of the n-type main body region 21b to the spectrum is large.
  • the peak wavelength is about 268 nm, which corresponds to about 54% when converted to the AlN mole fraction.
  • the peak wavelength of about 268 nm is about 7 nm shorter than the CL wavelength (about 275 nm) corresponding to the metastable n-type region.
  • the second CL spectrum of the measurement region e contains a CL wavelength of about 275 nm corresponding to the metastable n-type region with an emission intensity of about 46% of the peak intensity.
  • the second CL spectrum of the measurement region e is the same as the measurement regions a to d and f, and the CL spectra of the metastable n-type region and the metastable neighborhood n-type region in the first Ga-enriched region 21a. , It is shown that it appears as a composite spectrum of the CL spectrum of the n-type main body region 21b. However, in the second CL spectrum of the measurement region e, the ratio of the CL spectrum in the metastable n-type region to the synthetic spectrum is smaller than that in the measurement regions a to d and f.
  • the AlN mole fraction of the n-type main body region 21b is almost one with the target value of 58% of the AlN mole fraction of the n-type clad layer 21. You can see that we are doing it.
  • the first Ga-enriched region 21a contains a metastable n-type region having an AlN mole fraction of 50%, and at the same time, a metastable n-type region. It can be seen that there is a metastable near n-type region having a higher AlN mole fraction than the region.
  • FIGS. 10A to 10F the analysis results shown in the first and second CL spectra in each of the measurement regions a to f shown in FIG. 12 are shown in FIGS. 10A to 10F, although there are differences in spatial resolution and the like due to differences in the analysis method. It is in good agreement with the analysis result by EDX measurement.
  • the abundance ratio of the metastable n-type region in the first Ga-enriched region 21a depends on the position in the n-type clad layer 21. However, since there are many uncertainties, detailed examination is omitted.
  • the effect of the present invention is not necessarily reduced.
  • the carriers (electrons) in the n-type clad layer 21 are localized in the first Ga-enriched region 21a, so that the current preferentially forms the first Ga-enriched region in the n-type clad layer 21. It can flow stably and suppress fluctuations in the characteristics of the light emitting element.
  • the active layer 22 in the light emitting region is located above the n-type clad layer 21, the effect of the localization becomes remarkable in the vicinity of the upper surface of the n-type clad layer 21 in contact with the active layer 22. Therefore, even if the localization is insufficient in the region close to the AlN layer 12 in the n-type clad layer 21, it is possible to suppress the characteristic fluctuation of the light emitting device in the same manner. Further, in the element structure shown in FIG. 4, since the forward current flows more on the upper layer side than the lower layer side in the n-type clad layer 21, the above localization is performed in the region close to the AlN layer 12 in the n-type clad layer 21. It is considered that there is almost no effect of insufficient.
  • FIG. 13 shows each CL of the inclined region BA and the terrace region TA of the well layer 220 with respect to the sample having a multiple quantum well structure in which the well layer 220 shown in FIG. 5 is composed of three layers and the barrier layer 221 is composed of two layers. The result of measuring the spectrum is shown.
  • the sample piece used for the CL measurement was prepared in the same manner as the sample piece when the composition analysis in the n-type clad layer 21 was performed by the EDX method and the CL method.
  • the film thickness of the well layer 220 of the sample piece in the terrace region TA (well body region 220b) is 7 to 8 ML, and the film thickness in the inclined region BA (second Ga enriched region 220a) is slightly thicker than that of the terrace region TA. It is 9 to 10 ML.
  • the target value of the AlN mole fraction of the barrier layer 221 of the sample piece is 80%.
  • semi-stable AlGaN having an AlGaN composition ratio of an integer ratio of Al 3 Ga 1 N 4 is predominantly formed in the inclined region BA (third Ga enriched region 221a) of the barrier layer 221.
  • the mole fraction is expected to be 75%.
  • the peak emission wavelength of the CL spectrum in the inclined region BA (second Ga enriched region 220a) of the well layer 220 is about 296 nm, which is almost the same as the emission wavelength of the simulation result shown in FIG. ing. From this, it can be seen that the metastable well region (metastable AlGaN having an AlGaN composition ratio of Al 1 Ga 2 N 3 ) predominantly exists in the second Ga-enriched region 220a of the well layer 220 of the sample piece. ..
  • the peak emission wavelength of the CL spectrum in the terrace region TA (barrier main body region 221b) of the well layer 220 is about 286 nm, which is about 10 nm shorter than the gradient region BA. This is because the terrace region TA has a thinner film thickness and a higher AlN mole fraction than the inclined region BA.
  • the AlN mole fraction of the well layer 220 is about 33.3% to 50% higher than the AlN mole fraction (33.3%) of the inclined region BA (second Ga enriched region 220a) of the well layer 220. Therefore, in the electron beam irradiated toward the inclined region BA of the well layer 220, even if the beam diameter is as large as 50 nm, the high-energy electrons in the center of the beam are concentrated in the inclined region BA of the well layer 220 having a low energy state. Therefore, the emission wavelength of the inclined region BA of the well layer 220 can be accurately measured.
  • the barrier layer 221 is composed of an AlGaN-based semiconductor having an AlN mole fraction not 100%, as an example, the entire AlN mole fraction including the third Ga enriched region 221a of the barrier layer 221.
  • the rate within the range of 50% to 90% and the AlN mole fraction of the barrier body region 221b within the range of 51% to 90%. It was shown that the difference in AlN mole fraction between the third Ga enriched region 221a and the barrier body region 221b is 1% or more.
  • the third Ga-enriched region 221a of the barrier layer 221 is also the same as the first Ga-enriched region 21a of the n-type clad layer 21 and the second Ga-enriched region 220a of the well layer 220 in the first embodiment. It is preferably composed of the first or second metastable AlGaN.
  • the AlN mole fraction of the entire barrier layer 221 is in the range of 50% to 90%, the first semi-stable AlGaN applicable to the third Ga enriched region 221a has an AlGaN composition ratio of an integer ratio. It becomes Al 1 Ga 1 N 2 , Al 2 Ga 1 N 3 , or Al 5 Ga 1 N 6.
  • Al 7 Ga 5 N 12 and Al 3 Ga 1 N 4 of the second metastable AlGaN are also considered to be applicable to the third Ga enriched region 221a, but if they are used intentionally, Al with higher stability is considered. 3 Ga 1 N 4 is preferable.
  • the composition ratio of Al is too high, so that a large amount of Al is randomly sited before the easily mobile Ga enters the site where the symmetric array is formed.
  • the AlN mole fraction of the third Ga enriched region 221a of the barrier layer 221 is 66.7%, 75%, and 83.3%.
  • Three cases were assumed, but these correspond to the AlN mole fractions of semi-stable AlGaN having AlGaN composition ratios of Al 2 Ga 1 N 3 , Al 3 Ga 1 N 4 , and Al 5 Ga 1 N 6. do.
  • the barrier body region 221b When the third Ga enriched region 221a is composed of the semi-stable AlGaN Al 1 Ga 1 N 2 , Al 2 Ga 1 N 3 , Al 3 Ga 1 N 4 , or Al 5 Ga 1 N 6 , the barrier body region 221b.
  • the AlN mole fraction corresponds to each of the four AlN mole fractions of the 3rd Ga enriched region 221a, 51% to 66%, 68% to 74%, 76% to 82%, or 85% to 85%. It is preferably within each range of 90%.
  • the barrier main body is used to prevent the low stability Al 11 Ga 1 N 12 from being randomly mixed.
  • the AlN mole fraction of the region 221b is preferably set so as not to exceed 90%.
  • the method for producing the third Ga-enriched region 221a and the barrier body region 221b of the barrier layer 221 is the same as that for the n-type clad layer 21, and the AlN mole fraction set for the barrier body region 221b.
  • the barrier layer 221 is grown under the growth condition that the multi-tiered terrace is easily exposed.
  • AlN of the barrier layer 221 is similar to the target value Xa of the AlN mole fraction of the n-type clad layer 21.
  • the target value Xd of the mole fraction is set in the range of 51% to 66%.
  • the target value Xd of the AlN mole fraction of the barrier layer 221 is 68% to 74.
  • the target value Xd of the AlN mole fraction of the barrier layer 221 is set to 76.
  • the target value of the AlN mole fraction of the barrier layer 221 is set. Set Xd in the range of 85% to 90%.
  • the target value Xd of the AlN mole fraction of the barrier layer 221 is 1% or more from the AlN mole fraction of the semi-stable AlGaN (eye standard stable AlGaN) formed in the third Ga enriched region 221a, and the eye standard stable AlGaN. It is set within the range of less than the AlN mole fraction of the latest semi-stable AlGaN having a larger AlN mole fraction. Therefore, similarly to the first Ga-enriched region 21a of the n-type clad layer 21, the standard stable AlGaN can be stably formed in the third Ga-enriched region 221a, and the third Ga-enriched region 221a and the barrier.
  • An AlN mole fraction difference of 1% or more is secured in the main body region 221b, and the carriers in the barrier layer 221 are localized in the third Ga enriched region 221a having a smaller bandgap energy than the barrier main body region 221b.
  • the third Ga-enriched region 221a By constructing the third Ga-enriched region 221a with highly stable metastable AlGaN, fluctuations in the mixed crystal mole fraction caused by drift of the crystal growth apparatus are suppressed, and carrier localization in the barrier layer 221 is suppressed.
  • the third Ga enriched region 221a in which the above occurs is stably formed at the AlN mole fraction corresponding to the metastable AlGaN used.
  • the current can preferentially flow stably in the third Ga enriched region 221a in the barrier layer 221 as well as in the n-type clad layer 21, and further, the characteristic fluctuation of the light emitting element 1 is suppressed. Can be planned.
  • the active layer 22 has two or more well layers 220 made of AlGaN-based semiconductors and one or more barriers made of AlGaN-based semiconductors or AlN-based semiconductors. It is assumed that the active layer 22 is composed of multiple quantum well structures in which layers 221 are alternately laminated, but the active layer 22 is a single quantum well structure having only one well layer 220, and the barrier layer 221 (quantum barrier layer). ) May not be provided. It is clear that the effect of the n-type clad layer 21 adopted in each of the above embodiments can be similarly exerted on such a single quantum well structure.
  • the supply amount and the flow velocity of the raw material gas and the carrier gas used in the organometallic compound vapor phase growth method constitute the n-type clad layer 21. It was explained that it is set according to the average AlN mole fraction of the entire n-type AlGaN layer. That is, when the average AlN mole fraction of the entire n-type clad layer 21 is set to a constant value in the vertical direction, it is assumed that the supply amount and the flow velocity of the raw material gas or the like are controlled to be constant. .. However, the supply amount and the flow velocity of the raw material gas and the like do not necessarily have to be controlled to be constant.
  • the plan view shape of the first region R1 and the p electrode 26 adopts a comb shape as an example, but the plan view shape is not limited to the comb shape. Further, a plurality of first regions R1 may exist, and each of them may have a plan view shape surrounded by one second region R2.
  • the sapphire substrate 11 whose main surface has an off angle with respect to the (0001) surface is used and the base portion 10 in which the multi-tiered terrace is exposed on the surface of the AlN layer 12 is used.
  • the size of the off-angle and the direction in which the off-angle is provided are set on the surface of the AlN layer 12. It may be arbitrarily determined as long as the multi-tiered terrace is exposed and the growth starting point of the first Ga enriched region 21a is formed.
  • the light emitting element 1 including the base portion 10 including the sapphire substrate 11 is exemplified, but the sapphire substrate 11 (further, the base portion) is illustrated. Part or all of the layers contained in 10) may be removed by lift-off or the like. Further, the substrate constituting the base portion 10 is not limited to the sapphire substrate.
  • the present invention can be used for a nitride semiconductor ultraviolet light emitting device including a light emitting device structure in which an n-type layer, an active layer, and a p-type layer made of an AlGaN-based semiconductor having a Wurtzite structure are laminated in the vertical direction. ..
  • Nitride semiconductor ultraviolet light emitting device 10 Base part 11: Sapphire substrate 11a: Main surface of sapphire substrate 12: AlN layer 20: Light emitting element structure part 21: n-type clad layer (n-type layer) 21a: 1st Ga enriched region (n-type layer) 21b: n-type body region (n-type layer) 22: Active layer 220: Well layer 220a: Second Ga enriched region 220b: Well body region 221: Barrier layer 221a: Third Ga enriched region 221b: Barrier body region 23: Electronic block layer (p-type layer) 24: p-type clad layer (p-type layer) 25: p-type contact layer (p-type layer) 26: p electrode 27: n electrode 100: substrate 101: AlGaN-based semiconductor layer 102: template 103: n-type AlGaN-based semiconductor layer 104: active layer 105: p-type AlGaN-based semiconductor layer 106: p-type contact layer 107: n-elect

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

窒化物半導体紫外線発光素子が、ウルツ鉱構造のAlGaN系半導体からなるn型層、活性層、及びp型層が上下方向に積層された発光素子構造部を備え、n型層がn型AlGaN系半導体で構成され、活性層がAlGaN系半導体で構成された1層以上の井戸層を含み、p型層がp型AlGaN系半導体で構成され、n型層と活性層内の各半導体層が、(0001)面に平行な多段状のテラスが形成された表面を有するエピタキシャル成長層であり、n型層が、n型層内で一様に分散して存在する局所的にAlNモル分率の低い層状領域であって、AlGaN組成比が整数比のAlGaとなっているn型AlGaN領域を含む複数の第1Ga富化領域を有し、井戸層が、井戸層内で局所的にAlNモル分率の低い第2Ga富化領域を有し、第2Ga富化領域内に、AlGaN組成比が整数比のAlGaとなっているAlGaN領域が存在する。

Description

窒化物半導体紫外線発光素子及びその製造方法
 本発明は、ウルツ鉱構造のAlGaN系半導体からなるn型層、活性層、及びp型層が上下方向に積層された発光素子構造部を備えてなる窒化物半導体紫外線発光素子及びその製造方法に関する。
 一般的に、窒化物半導体発光素子は、サファイア等の基板上にエピタキシャル成長により複数の窒化物半導体層からなる発光素子構造を形成したものが多数存在する。窒化物半導体層は、一般式Al1-x-yGaInN(0≦x≦1,0≦y≦1,0≦x+y≦1)で表される。
 発光ダイオードの発光素子構造は、n型窒化物半導体層とp型窒化物半導体層の2つのクラッド層の間に、窒化物半導体層よりなる活性層が挟まれたダブルへテロ構造を有している。活性層がAlGaN系半導体の場合、AlNモル分率(Al組成比とも言う)を調整することにより、バンドギャップエネルギを、GaNとAlNが取り得るバンドギャップエネルギ(約3.4eVと約6.2eV)を夫々下限及び上限とする範囲内で調整でき、発光波長が約200nmから約365nmまでの紫外線発光素子が得られる。具体的には、p型窒化物半導体層からn型窒化物半導体層に向けて順方向電流を流すことで、活性層においてキャリア(電子及び正孔)の再結合による上記バンドギャップエネルギに応じた発光が生じる。当該順方向電流を外部から供給するために、p型窒化物半導体層上にp電極が、n型窒化物半導体層上にn電極が、夫々設けられている。
 活性層がAlGaN系半導体の場合、活性層を挟むn型窒化物半導体層とp型窒化物半導体層は、活性層より高AlNモル分率のAlGaN系半導体で構成される。しかし、高AlNモル分率のp型窒化物半導体層は、p電極と良好なオーミック接触を形成することが困難なため、p型窒化物半導体層の最上層に低AlNモル分率のp型AlGaN系半導体(具体的にはp-GaN)からなるp電極と良好なオーミック接触可能なp型コンタクト層を形成することが一般的に行われている。このp型コンタクト層は、AlNモル分率が活性層を構成するAlGaN系半導体より小さいため、活性層からp型窒化物半導体層側に向けて出射された紫外線は該p型コンタクト層で吸収され、素子外部に有効に取り出すことができない。このため、活性層がAlGaN系半導体の一般的な紫外線発光ダイオードは、図14に模式的に示すような素子構造を採用し、活性層からn型窒化物半導体層側に向けて出射された紫外線を素子外部に有効に取り出している(例えば、下記の特許文献1及び2等参照)。
 図14に示すように、一般的な紫外線発光ダイオードは、サファイア基板等の基板100上にAlGaN系半導体層101(例えば、AlN層)を堆積して形成されたテンプレート102上に、n型AlGaN系半導体層103、活性層104、p型AlGaN系半導体層105、及び、p型コンタクト層106を順番に堆積し、活性層104とp型AlGaN系半導体層105とp型コンタクト層106の一部を、n型AlGaN系半導体層103が露出するまでエッチング除去し、n型AlGaN系半導体層103の露出面にn電極107を、p型コンタクト層106の表面にp電極108を夫々形成して構成される。
 また、活性層内でのキャリア再結合による発光効率(内部量子効率)を高めるために、活性層を多重量子井戸構造とすること、活性層上に電子ブロック層を設けること等が実施されている。
 一方、n型AlGaN系半導体層で構成されるクラッド層内においてGaの偏析による組成変調が生じ、クラッド層表面に対して斜め方向に延伸する局所的にAlNモル分率の低い層状領域が形成されることが報告されている(例えば、下記の特許文献3、非特許文献1,2等参照)。局所的にAlNモル分率の低いAlGaN系半導体層はバンドギャップエネルギも局所的に小さくなるため、特許文献3では、当該クラッド層内のキャリアが層状領域に局在化し易くなり、活性層に対して低抵抗の電流経路を提供することができ、紫外線発光ダイオードの発光効率の向上が図れることが報告されている。
国際公開第2014/178288号公報 国際公開第2016/157518号公報 国際公開第2019/159265号公報
 AlGaN系半導体で構成される紫外線発光素子は、サファイア基板等の基板上に、例えば、有機金属化合物気相成長(MOVPE)法等の周知のエピタキシャル成長法によって作製される。しかしながら、紫外線発光素子を生産する場合、紫外線発光素子の特性(発光波長、ウォールプラグ効率、順方向バイアス等の特性)は、結晶成長装置のドリフトの影響を受けて変動するため、安定した歩留まりでの生産は必ずしも容易ではない。
 結晶成長装置のドリフトは、トレーやチャンバの壁等の付着物が原因で、結晶成長部位の実効温度が変化すること等に起因して生じる。このため、ドリフトを抑制するために、従来は、成長履歴を検討して、経験者が設定温度や原料ガスの組成を微妙に変化させる、或いは、一定期間の成長スケジュールを固定して、清掃等のメンテナンスも一定期間で同じように実施する等の工夫をしているが、ドリフトを完全に排除をすることは難しい。
 本発明は、上述の問題点に鑑みてなされたものであり、その目的は、結晶成長装置のドリフト等に起因する特性変動の抑制された安定的に生産可能な窒化物半導体紫外線発光素子を提供することにある。
 本発明は、上記目的を達成するために、ウルツ鉱構造のAlGaN系半導体からなるn型層、活性層、及びp型層が上下方向に積層された発光素子構造部を備えてなる窒化物半導体紫外線発光素子であって、
 前記n型層がn型AlGaN系半導体で構成され、
 前記n型層と前記p型層の間に配置された前記活性層が、AlGaN系半導体で構成された1層以上の井戸層を含む量子井戸構造を有し、
 前記p型層がp型AlGaN系半導体で構成され、
 前記n型層と前記活性層内の各半導体層が、(0001)面に平行な多段状のテラスが形成された表面を有するエピタキシャル成長層であり、
 前記n型層が、前記n型層内で一様に分散して存在する局所的にAlNモル分率の低い層状領域であって、AlGaN組成比が整数比のAlGaとなっているn型AlGaN領域を含む複数の第1Ga富化領域を有し、
 前記n型層の上面と直交する第1平面上での前記第1Ga富化領域の各延伸方向が、前記n型層の前記上面と前記第1平面との交線に対して傾斜しており、
 前記井戸層の前記多段状のテラスの隣接するテラス間の境界領域部分が、同じ前記井戸層内で局所的にAlNモル分率の低い第2Ga富化領域を有し、
 前記第2Ga富化領域内に、AlGaN組成比が整数比のAlGaとなっているAlGaN領域が存在していることを特徴とする窒化物半導体紫外線発光素子を提供する。
 更に、本発明は、上記目的を達成するために、ウルツ鉱構造のAlGaN系半導体からなるn型層、活性層、及びp型層が上下方向に積層された発光素子構造部を備えてなる窒化物半導体紫外線発光素子の製造方法であって、
 (0001)面に対して所定の角度だけ傾斜した主面を有するサファイア基板を含む下地部の上に、n型AlGaN系半導体の前記n型層をエピタキシャル成長し、前記n型層の表面に(0001)面に平行な多段状のテラスを表出させる第1工程と、
 前記n型層の上に、AlGaN系半導体で構成された井戸層を1層以上含む量子井戸構造の前記活性層をエピタキシャル成長し、前記井戸層の表面に(0001)面に平行な多段状のテラスを表出させる第2工程と、
 前記活性層の上に、p型AlGaN系半導体の前記p型層をエピタキシャル成長により形成する第3工程を有し、
 前記第1工程において、前記n型層内で一様に分散して存在する局所的にAlNモル分率の低い層状領域であって、AlGaN組成比が整数比のAlGaとなっているn型AlGaN領域を含む複数の第1Ga富化領域を斜め上方に向かって延伸するように成長させ、
 前記第2工程において、前記井戸層の前記多段状のテラスの隣接するテラス間の境界領域部分に、同じ前記井戸層内で局所的にAlNモル分率の低い第2Ga富化領域を形成しつつ、前記第2Ga富化領域内にAlGaN組成比が整数比のAlGaとなっているAlGaN領域を成長させることを特徴とする窒化物半導体紫外線発光素子の製造方法を提供する。
 尚、AlGaN系半導体とは、一般式Al1-xGaN(0≦x≦1)で表されるが、バンドギャップエネルギがGaNとAlNが取り得るバンドギャップエネルギを夫々下限及び上限とする範囲内であれば、BまたはIn等の3族元素またはP等の5族元素等の不純物を微量に含んでいてもよい。また、GaN系半導体とは、基本的にGaとNで構成される窒化物半導体であるが、Al、BまたはIn等の3族元素またはP等の5族元素等の不純物を微量に含んでいてもよい。また、AlN系半導体とは、基本的にAlとNで構成される窒化物半導体であるが、Ga、BまたはIn等の3族元素またはP等の5族元素等の不純物を微量に含んでいてもよい。従って、本願では、GaN系半導体及びAlN系半導体は、それぞれAlGaN系半導体の一部である。
 更に、n型またはp型AlGaN系半導体は、ドナーまたはアクセプタ不純物としてSiまたはMg等がドーピングされたAlGaN系半導体である。本願では、p型及びn型と明記されていないAlGaN系半導体は、アンドープのAlGaN系半導体を意味するが、アンドープであっても、不可避的に混入する程度の微量のドナーまたはアクセプタ不純物は含まれ得る。また、第1平面は、前記n型層の製造過程で具体的に形成された露出面や他の半導体層との境界面ではなく、前記n型層内を上下方向に平行に延伸する仮想的な平面である。更に、本明細書において、AlGaN系半導体層、GaN系半導体層、及びAlN系半導体層は、それぞれ、AlGaN系半導体、GaN系半導体、及びAlN系半導体で構成された半導体層である。
 上記特徴の窒化物半導体紫外線発光素子、または、上記特徴の窒化物半導体紫外線発光素子の製造方法によれば、以下に説明するように、n型層内の第1Ga富化領域及び井戸層内の第2Ga富化領域にそれぞれ形成される後述する準安定AlGaNを利用することで、結晶成長装置のドリフト等に起因する特性変動が抑制され、所期の発光特性を有する窒化物半導体紫外線発光素子を安定的に生産できることが期待される。
 先ず、AlGaN組成比が所定の整数比で表される「準安定AlGaN」について説明する。
 通常、AlGaN等の三元混晶は、ランダムに3族元素(AlとGa)が混合している結晶状態であり、「ランダム・ノンユニフォーミティ(random nonuniformity)」で近似的に説明される。しかし、Alの共有結合半径とGaの共有結合半径が異なるため、結晶構造中においてAlとGaの原子配列の対称性が高いほうが、一般的に安定な構造となる。
 ウルツ鉱構造のAlGaN系半導体は、対称性のないランダム配列と安定な対称配列の2種類の配列が存在し得る。ここで、一定の比率で、対称配列が支配的となる状態が現れる。後述するAlGaN組成比(AlとGaとNの組成比)が所定の整数比で表される「準安定AlGaN」において、AlとGaの周期的な対称配列構造が発現する。
 当該周期的な対称配列構造では、結晶成長面へのGa供給量が僅かに増減しても、対称性が高いためにエネルギ的に若干安定な混晶モル分率となり、質量移動(mass transfer)し易いGaが極端に増える場所の増殖を防ぐことができる。つまり、n型層内の第1Ga富化領域に形成される「準安定AlGaN」の性質を利用することで、AlGaN系半導体として、結晶成長装置のドリフト等に起因する混晶モル分率の変動が生じても、後述するように活性層に対して低抵抗の電流経路を提供する第1Ga富化領域における混晶モル分率の変動が局所的に抑制される。この結果、n型層から活性層内への安定したキャリア供給が実現でき、デバイス特性の変動が抑制される結果、所期の特性を奏する窒化物半導体紫外線発光素子を安定的に生産できることが期待される。
 次に、AlとGaが(0001)面内で周期的な対称配列となり得るAlGaN組成比について説明する。
 図1に、AlGaNのc軸方向に1ユニットセル(2単原子層)の模式図を示す。図1において、白丸は3族元素の原子(Al,Ga)が位置するサイトを示し、黒丸は5族元素の原子(N)が位置するサイトを示している。
 図1において六角形で示される3族元素のサイト面(A3面、B3面)、及び、5族元素のサイト面(A5面、B5面)は、何れも(0001)面に平行である。A3面とA5面(総称してA面)の各サイトには、六角形の各頂点に6つ、六角形の中心に1つのサイトが存在する。B3面とB5面(総称してB面)についても同様であるが、図1では、B面の六角形内に存在する3つのサイトだけを図示している。A面の各サイトはc軸方向に重なっており、B面の各サイトはc軸方向に重なっている。しかし、B5面の1つのサイトの原子(N)は、B5面の上側に位置するA3面の3つのサイトの原子(Al,Ga)と、B5面の下側に位置するB3面の1つのサイトの原子(Al,Ga)と4配位結合を形成し、B3面の1つのサイトの原子(Al,Ga)は、B3面の上側に位置するB5面の1つのサイトの原子(N)と、B3面の下側に位置するA5面の3つのサイトの原子(N)と4配位結合を形成しているため、図1に示すように、A面の各サイトは、B面の各サイトとはc軸方向に重なっていない。
 図2は、A面の各サイトとB面の各サイトとの間の位置関係を、c軸方向から見た平面図として図示したものである。A面及びB面ともに、六角形の6つの各頂点は、隣接する他の2つの六角形により共有され、中心のサイトは他の六角形とは共有されないため、1つの六角形内には、実質的に3原子分のサイトが存在する。従って、1ユニットセル当たり、3族元素の原子(Al,Ga)のサイトが6つ、5族元素の原子(N)のサイトが6つ存在する。従って、GaNとAlNを除く整数比で表されるAlGaN組成比としては、以下の5つのケースが存在する。
1)AlGa
2)AlGa(=AlGa)、
3)AlGa(=AlGa)、
4)AlGa(=AlGa)、
5)AlGa
 図3に、上記5つの組み合わせの3族元素のA3面とB3面を模式的に示す。Gaが黒丸、Alが白丸で示されている。
 図3(A)に示すAlGaの場合、A3面の6つの頂点サイトとB3面の6つの頂点サイトと1つの中心サイトにGaが位置し、A3面の1つの中心サイトにAlが位置している。
 図3(B)に示すAlGaの場合、A3面及びB3面の3つの頂点サイトと1つの中心サイトにGaが位置し、A3面及びB3面の3つの頂点サイトにAlが位置している。
 図3(C)に示すAlGaの場合、A3面の3つの頂点サイトと1つの中心サイトとB3面の3つの頂点サイトにGaが位置し、A3面の3つの頂点サイトとB3面の3つの頂点サイトと1つの中心サイトにAlが位置している。
 図3(D)に示すAlGaの場合、A3面及びB3面の3つの頂点サイトにGaが位置し、A3面及びB3面の3つの頂点サイトと1つの中心サイトにAlが位置している。これは、図3(B)に示すAlGaの場合のAlとGaの位置を入れ替えたものに等しい。
 図3(E)に示すAlGaの場合、A3面の1つの中心サイトにGaが位置し、A3面の6つの頂点サイトとB3面の6つの頂点サイトと1つの中心サイトにAlが位置している。これは、図3(A)に示すAlGaの場合のAlとGaの位置を入れ替えたものに等しい。
 図3(A)~(E)の各図において、六角形の6つの頂点の何れか1つに中心が移動した別の六角形を想定すると、A3面の6つの頂点サイトにAlまたはGaが位置していることと、A3面の3つの頂点サイトと1つの中心サイトにAlまたはGaが位置していることと等価であり、A3面の1つの中心サイトにAlまたはGaが位置していることは、A3面の3つの頂点サイトにAlまたはGaが位置していることと等価であることが分かる。B3面についても同様である。また、図3(A),(C)及び(E)の各図において、A3面とB3面は入れ替わってもよい。
 図3(A)~(E)の各図において、A3面とB3面の何れにおいても、AlとGaの原子配列は対称性が維持されている。また、六角形の中心を移動させても、AlとGaの原子配列は対称性が維持されている。
 更に、図3(A)~(E)のA3面とB3面において、六角形のサイト面をハニカム状に繰り返して配置すると、(0001)面に平行な方向、例えば、[11-20]方向、[10-10]方向に各サイトを見ると、AlとGaが周期的に繰り返されて位置しているか、AlとGaの何れか一方が連続して位置している状態が出現する。従って、何れも、周期的で対称的な原子配列となることが分かる。
 ここで、上記1)~5)のAlGaN組成比に対応するAlNモル分率x1(x1=1/6,1/3,1/2,2/3,5/6)のAlx1Ga1-x1Nを、説明の便宜上、「第1の準安定AlGaN」と称する。第1の準安定AlGaNは、AlとGaの原子配列が周期的な対称配列となり、エネルギ的に安定なAlGaNとなる。
 次に、図1に示す六角形で示されるサイト面を2ユニットセル(4単原子層)に拡張すると、3族元素のサイト面(A3面、B3面)と5族元素のサイト面(A5面、B5面)がそれぞれ2面ずつ存在することになり、2ユニットセル当たり、3族元素の原子(Al,Ga)のサイトが12個、5族元素の原子(N)のサイトが12個存在することになる。従って、GaNとAlNを除く整数比で表されるAlGaN組成比としては、上記1)~5)のAlGaN組成比以外に、以下の6つの組み合わせが存在する。
6) AlGa1112(=GaN+AlGa)、
7) AlGa12(=AlGa=AlGa+AlGa)、
8) AlGa12(=AlGa+AlGa)、
9) AlGa12(=AlGa+AlGa)、
10)AlGa12(=AlGa=AlGa+AlGa)、
11)Al11Ga12(=AlGa+AlN)。
 しかし、これら6)~11)の6つのAlGaN組成比は、その前後に位置する第1の準安定AlGaN、GaN及びAlNの内の2つのAlGaN組成比を組み合わせたものとなるため、c軸方向の対称性が乱れる可能性が高いため、第1の準安定AlGaNより安定度は低下するが、A3面及びB3面内でのAlとGaの原子配列の対称性は、第1の準安定AlGaNと同じであるので、ランダムな非対称配列状態のAlGaNよりは安定度は高い。ここで、上記6)~11)のAlGaN組成比に対応するAlNモル分率x2(x2=1/12,1/4,5/12,7/12,3/4,11/12)のAlx2Ga1-x2Nを、説明の便宜上、「第2の準安定AlGaN」と称する。以上より、第1及び第2の準安定AlGaNは、結晶構造中におけるAlとGaの原子配列の対称性により安定な構造となる。以下、第1及び第2の準安定AlGaNを「準安定AlGaN」と総称する。
 AlGaNを一定の結晶品質を維持して成長させるには、1000℃以上の高温で結晶成長を行う必要がある。しかしながら、Gaは、結晶表面のサイトに原子が到達した後も、1000℃以上では動き回ることが想定される。一方、Alは、Gaと異なり、表面に吸着し易く、サイトに入った後の移動も、多少は動くと考えられるが制限が強い。
 従って、準安定AlGaNであっても、上記1)のAlGa、上記6)のAlGa1112、及び、上記7)のAlGaは、何れもAlNモル分率が25%以下で、Gaの組成比が高いため、1000℃付近の成長温度では、Gaの移動が激しく、原子配列の対称性が乱れ、AlとGaの原子配列はランダムな状態に近くなり、上述の安定度が、他の準安定AlGaNと比べて低下すると考えられる。
 次に、「第1Ga富化領域」について説明する。上記特徴の窒化物半導体紫外線発光素子及び窒化物半導体紫外線発光素子の製造方法においては、n型層と活性層内の各半導体層が、(0001)面に平行な多段状のテラスが形成された表面を有するエピタキシャル成長層であるため、n型層内では、質量移動し易いGaは、テラス領域上を移動して、隣接するテラス間の境界領域に集中することで、テラス領域に比べてAlNモル分率の低い領域が形成される。当該境界領域が、n型層のn型AlGaN層のエピタキシャル成長とともに、(0001)面に対して斜め上方に向かって延伸することで、局所的にAlNモル分率の低い層状領域がn型層内で一様に分散して形成される。ここで、Gaの質量移動量が十分に大きいと、当該層状領域が、AlGaN組成比がAlGaである準安定AlGaNのn型AlGaN領域を含む第1Ga富化領域となり得る。
 第1Ga富化領域内に、AlGaN組成比がAlGaである準安定AlGaNが存在することで、第1Ga富化領域内へのGa供給量の変動が、当該準安定AlGaNにおいて吸収される。つまり、第1Ga富化領域内において、Ga供給量が増加すると準安定AlGaNが増加し、Ga供給量が減少すると準安定AlGaNが減少し、結果として、第1Ga富化領域内のAlNモル分率の変動が抑制される。従って、第1Ga富化領域内において、結晶成長装置のドリフト等に起因するGa供給量の変動を吸収して、AlGaN組成比がAlGa(AlNモル分率が50%)の準安定AlGaNが安定的に形成される。つまり、当該Ga供給量の変動に対して、第1Ga富化領域内のAlNモル分率の変動が抑制される。
 但し、上述したように、AlGaNの結晶成長においては、通常、ランダムな非対称配列の状態と、規則的な対称配列の状態が混在し得るため、第1Ga富化領域内においては、規則的な対称配列状態にあるAlNモル分率が50%の準安定AlGaNの領域が安定的に形成されるとともに、AlNモル分率が50%から僅かに(例えば、0~3%程度)変動した領域が混在する。従って、第1Ga富化領域内のAlNモル分率は、AlGaN組成比がAlGaである準安定AlGaNのAlNモル分率(50%)の近傍に集中して分布する。
 n型層内に局所的にAlNモル分率の低い層状領域である第1Ga富化領域が安定的に形成されることで、n型層内のキャリアは、n型層内においてバンドギャップエネルギの小さい第1Ga富化領域内に局在化し、n型層内において電流は優先的に第1Ga富化領域を安定的に流れることができ、窒化物半導体紫外線発光素子の特性変動の抑制が図れる。
 次に、「井戸層」及び「第2Ga富化領域」について説明する。n型層と活性層内の各半導体層が、(0001)面に平行な多段状のテラスが形成された表面を有するエピタキシャル成長層であるため、井戸層の多段状のテラスの隣接するテラス間の境界領域が、隣接するテラス間を連結する(0001)面に対して傾斜した傾斜領域となる(上記非特許文献1及び2参照)。尚、当該傾斜領域は多数のステップ(1ユニットセルの段差)及びマクロステップ(複数ユニットセルの段差)が集合している構造であり、傾斜領域に階段状に表出する(0001)面は、多段状のテラスのテラス面とは区別される。
 ステップフロー成長におけるテラスエッジの側面の横方向への成長に伴い、井戸層上面のテラスが、井戸層下面のテラスに対して横方向に移動するため、井戸層の当該傾斜領域の膜厚は、傾斜領域以外のテラス領域の膜厚より厚くなる。更に、n型層内に局所的にAlNモル分率の低い第1Ga富化領域が形成されるのと同様に、井戸層内の当該傾斜領域に、局所的にAlNモル分率の低い第2Ga富化領域が形成される。ここで、Gaの質量移動量が十分に大きいと、第2Ga富化領域内に、AlGaN組成比がAlGaである準安定AlGaNのAlGaN領域が形成される。
 第2Ga富化領域内に、AlGaN組成比がAlGaである準安定AlGaNが存在することで、第2Ga富化領域内へのGa供給量の変動が、当該準安定AlGaNにおいて吸収される。つまり、第2Ga富化領域内において、Ga供給量が増加すると準安定AlGaNが増加し、Ga供給量が減少すると準安定AlGaNが減少し、結果として、第2Ga富化領域内のAlNモル分率の変動が抑制される。従って、第2Ga富化領域内において、結晶成長装置のドリフト等に起因するGa供給量の変動を吸収して、AlGaN組成比がAlGa(AlNモル分率が33.3%(3分の1))の準安定AlGaNが安定的に形成される。つまり、当該Ga供給量の変動に対して、第2Ga富化領域内のAlNモル分率の変動が抑制される。本明細書では、適宜、3分の1のAlNモル分率を百分率で表記する場合、近似的に33.3%と示す。
 但し、上述したように、AlGaNの結晶成長においては、通常、ランダムな非対称配列の状態と、規則的な対称配列の状態が混在し得るため、第2Ga富化領域内においては、規則的な対称配列状態にあるAlNモル分率が33.3%の準安定AlGaNの領域が安定的に形成されるとともに、AlNモル分率が33.3%から僅かに(例えば、0~3%程度)変動した領域が混在する。
 以上より、当該傾斜領域のバンドギャップエネルギはテラス領域より小さくなり、n型層の第1Ga富化領域と同様に、キャリアの局在化が起き易くなる。このため、井戸層での発光は、テラス領域より当該傾斜領域において顕著になる。上記非特許文献1及び2では、AlGaN系半導体の井戸層に対する同様の内容が報告されている。尚、井戸層及びバリア層の各テラス領域とは、c軸方向に各層の上面のテラスと下面のテラスに挟まれた領域である。従って、井戸層及びバリア層の各テラス領域以外が各層の境界領域(傾斜領域)となる。
 また、活性層のエピタキシャル成長によって形成される多段状のテラスは、n型層のエピタキシャル成長によって形成される多段状のテラスに連続して形成される。従って、第1Ga富化領域内の電流経路に沿って井戸層に供給されるキャリア(電子)は、井戸層において発光の集中している隣接するテラス間の境界領域(傾斜領域)に集中的に供給される。
 従って、n型層の層状領域内において支配的に存在する第1Ga富化領域内に、AlNモル分率が50%の準安定AlGaNであるn型AlGaN領域が安定的に形成され、更に、井戸層の傾斜領域内の第2Ga富化領域内に、AlNモル分率が33.3%の準安定AlGaNであるAlGaN領域が安定的に形成されることで、井戸層の傾斜領域への安定したキャリア供給が可能となり、窒化物半導体紫外線発光素子の発光効率等の特性変動の抑制が図れる。
 更に、n型層のAlNモル分率が50%以上であり、活性層の井戸層で発光した紫外線がn型層を透過するため、紫外線発光をn型層側から取り出す素子構造を取り得る。
 更に、上記特徴の窒化物半導体紫外線発光素子は、前記n型層の前記第1Ga富化領域外のAlNモル分率が54%~66%の範囲内にあることが好ましい。
 更に、上記特徴の窒化物半導体紫外線発光素子の製造方法は、前記第1工程において、前記n型層のAlNモル分率の目標値を54%~66%の範囲内に設定して、前記第1Ga富化領域内にAlGaN組成比が整数比のAlGaとなっているn型AlGaN領域を成長させることが好ましい。
 これらの好適な実施態様では、n型層の前記第1Ga富化領域外のAlNモル分率が、結晶成長装置のドリフト等に起因するGa供給量の変動を吸収して、54%~66%の範囲内にあるので、第1Ga富化領域とn型本体領域の間のAlNモル分率差は、安定的に4%以上が確保されている。従って、n型層内のキャリアは、n型本体領域よりバンドギャップエネルギの小さい第1Ga富化領域内に、より安定的に局在化し、n型層内において電流は優先的に第1Ga富化領域を安定的に流れることができ、窒化物半導体紫外線発光素子の特性変動の抑制が図れる。
 更に、n型層のn型本体領域のAlNモル分率の上限、及び、n型層のAlNモル分率の目標値の上限が、66%に規定されているため、n型層内において、AlGaN組成比がAlGaの準安定AlGaNが支配的に形成されることはない。仮に、当該上限が67%以上であると、n型本体領域にAlGaの準安定AlGaNが安定的に形成され、当該AlGaの準安定AlGaNから、第1Ga富化領域内に、AlGaの準安定AlGaNを安定的に形成するためのGaを十分に供給することが困難となり、第1Ga富化領域内に形成されるn型AlGaN系半導体のAlNモル分率がランダムに変動することになり、所期の効果が期待できなくなる。
 更に、上記特徴の窒化物半導体紫外線発光素子は、前記井戸層の前記境界領域部分以外のAlNモル分率が33.4%~37%の範囲内にあることが好ましい。
 更に、上記特徴の窒化物半導体紫外線発光素子の製造方法は、前記第2工程において、前記井戸層のAlNモル分率の目標値を33.4%~37%の範囲内に設定して、前記第2Ga富化領域内にAlGaN組成比が整数比のAlGaとなっているAlGaN領域を成長させることが好ましい。
 これらの好適な実施態様により、井戸層内のAlNモル分率の変動幅が3.7%以内に抑制され、更に、AlNモル分率が33.3%以外の領域から発生する組成変調由来の発光ピークが重なった場合でも、疑似的に単一ピークの量子井戸を形成することができるため、発光スペクトルにおける発光ピークの分離が回避される。
 更に、上記特徴の窒化物半導体紫外線発光素子は、前記活性層が、2層以上の前記井戸層を含む多重量子井戸構造を有し、2層の前記井戸層間にAlGaN系半導体で構成されたバリア層が存在することが好ましい。
 更に、上記特徴の窒化物半導体紫外線発光素子の製造方法は、前記第2工程において、AlGaN系半導体で構成された前記井戸層とAlGaN系半導体で構成されたバリア層を交互にエピタキシャル成長により積層し、前記バリア層と前記井戸層の各表面に(0001)面に平行な多段状のテラスが表出した、前記井戸層を2層以上含む多重量子井戸構造の前記活性層を形成することが好ましい。
 これらの好適な実施態様により、活性層が多重量子井戸構造となり、井戸層が1層だけの場合に比べて発光効率の向上が期待できる。
 更に、上記特徴の窒化物半導体紫外線発光素子は、前記バリア層がAlGaN系半導体で構成され、2層の前記井戸層間に位置する前記バリア層の内、少なくとも最も前記p型層側の前記バリア層の前記多段状のテラスの隣接するテラス間の境界領域部分が、同じ前記バリア層内で局所的にAlNモル分率の低い第3Ga富化領域を有することがより好ましい。
 更に、上記特徴の窒化物半導体紫外線発光素子の製造方法は、前記第2工程において、AlGaN系半導体で構成された前記バリア層を形成する際に、2層の前記井戸層間に位置する前記バリア層の内、少なくとも最も前記p型層側の前記バリア層の前記テラス間の境界領域部分に同じ前記バリア層内で局所的にAlNモル分率の低い第3Ga富化領域を形成することがより好ましい。
 これらの好適な実施態様により、バリア層においても、n型層の第1Ga富化領域及び井戸層の第2Ga富化領域と同様に、第3Ga富化領域においてキャリアの局在化が生じ得る。従って、n型層から井戸層において発光の集中している隣接するテラス間の境界領域(傾斜領域)の第2Ga富化領域に向けてキャリア(電子)を供給する際に、n型層の第1Ga富化領域とバリア層の第3Ga富化領域を経由して、効率的に行うことができる。
 ここで、井戸層が2層以上の多重量子井戸構造では、最もp型層側の井戸層において発効強度が大きいため、当該井戸層のn型層側のバリア層において、第3Ga富化領域が形成されていることで、上述のキャリアの井戸層への供給がより効率的に行うことができる。
 更に、上記好適な実施態様の窒化物半導体紫外線発光素子は、前記バリア層の前記第3Ga富化領域内に、AlGaN組成比が整数比のAlGa、AlGa、AlGa、または、AlGaとなっているAlGaN領域が存在することが好ましい。
 更に、上記好適な実施態様の窒化物半導体紫外線発光素子の製造方法は、前記第2工程において、
1)前記バリア層のAlNモル分率の目標値を51%~66%の範囲内に設定して、前記第3Ga富化領域内に、AlGaN組成比が整数比のAlGaとなっているAlGaN領域を成長させる、または、
2)前記バリア層のAlNモル分率の目標値を68%~74%の範囲内に設定して、前記第3Ga富化領域内に、AlGaN組成比が整数比のAlGaとなっているAlGaN領域を成長させる、または、
3)前記バリア層のAlNモル分率の目標値を76%~82%の範囲内に設定して、前記第3Ga富化領域内に、AlGaN組成比が整数比のAlGaとなっているAlGaN領域を成長させる、または、
4)前記バリア層のAlNモル分率の目標値を85%~90%の範囲内に設定して、前記第3Ga富化領域内に、AlGaN組成比が整数比のAlGaとなっているAlGaN領域を成長させることが好ましい。
 これらの好適な実施態様により、バリア層の第3Ga富化領域内に準安定AlGaNが存在することで、n型層の第1Ga富化領域及び井戸層の第2Ga富化領域と同様に、第3Ga富化領域のAlNモル分率の変動が抑制され、安定的に準安定AlGaNの領域が第3Ga富化領域内に形成される。従って、バリア層の第3Ga富化領域によって奏される効果が、より安定的に実現される。
 更に、上記特徴の窒化物半導体紫外線発光素子は、サファイア基板を含む下地部を、さらに備え、前記サファイア基板は、(0001)面に対して所定の角度だけ傾斜した主面を有し、当該主面の上方に前記発光素子構造部が形成されており、少なくとも前記サファイア基板の前記主面から前記活性層の表面までの各半導体層が、(0001)面に平行な多段状のテラスが形成された表面を有するエピタキシャル成長層であることが好ましい。
 上記好適な実施態様により、オフ角を有するサファイア基板を用いて、サファイア基板の主面から活性層の表面までの各層の表面に多段状のテラスが表出するようにエピタキシャル成長を行うことができ、上記特徴の窒化物半導体紫外線発光素子を実現できる。
 上記特徴の窒化物半導体紫外線発光素子、及び、窒化物半導体紫外線発光素子の製造方法によれば、結晶成長装置のドリフト等に起因する特性変動の抑制された所期の発光特性を有する窒化物半導体紫外線発光素子を安定的に提供することができる。
AlGaNのウルツ鉱結晶構造を模式的に示す図。 図1に示すウルツ鉱結晶構造のc軸方向から見たA面の各サイトとB面の各サイトとの間の位置関係を示す平面図。 整数比で表されるAlGaN組成比の5つの組み合わせのそれぞれにおけるA3面とB3面でのAlとGaの配置を模式的に示す図。 本発明の実施形態に係る窒化物半導体紫外線発光素子の構造の一例を模式的に示した要部断面図。 図4に示す窒化物半導体紫外線発光素子の活性層の積層構造の一例を模式的に示した要部断面図。 AlGaN井戸層とAlGaNバリア層からなる量子井戸構造の発光波長と、井戸層の膜厚及びバリア層のAlNモル分率との関係を示すグラフ。 図4に示す窒化物半導体紫外線発光素子を図4の上側から見た場合の構造の一例を模式的に示した平面図。 n型クラッド層内の断面構造を示すHAADF-STEM像。 図8に示すHAADF-STEM像中に、n型クラッド層内の断面TEM-EDXのライン分析を行う6箇所の測定領域A~Fを示す図。 図9に示す測定領域Aにおける、n型クラッド層内の断面TEM-EDXのライン分析によるAlNモル分率とGaNモル分率の計測結果を示す図。 図9に示す測定領域Bにおける、n型クラッド層内の断面TEM-EDXのライン分析によるAlNモル分率とGaNモル分率の計測結果を示す図。 図9に示す測定領域Cにおける、n型クラッド層内の断面TEM-EDXのライン分析によるAlNモル分率とGaNモル分率の計測結果を示す図。 図9に示す測定領域Dにおける、n型クラッド層内の断面TEM-EDXのライン分析によるAlNモル分率とGaNモル分率の計測結果を示す図。 図9に示す測定領域Eにおける、n型クラッド層内の断面TEM-EDXのライン分析によるAlNモル分率とGaNモル分率の計測結果を示す図。 図9に示す測定領域Fにおける、n型クラッド層内の断面TEM-EDXのライン分析によるAlNモル分率とGaNモル分率の計測結果を示す図。 n型クラッド層内のCL法によるAlNモル分率の測定領域を示すSEM像。 図11に示す各測定領域において測定した10点のCLスペクトルから算出される第1及び第2のCLスペクトルを示す図。 図5に示す多重量子井戸構造を有する井戸層の傾斜領域及びテラス領域の各CLスペクトルを示す図 一般的な紫外線発光ダイオードの素子構造の一例を模式的に示した要部断面図。
 本発明の実施形態に係る窒化物半導体紫外線発光素子(以下、単に「発光素子」と略称する。)につき、図面に基づいて説明する。尚、以下の説明で使用する図面の模式図では、説明の理解の容易のために、要部を強調して発明内容を模式的に示しているため、各部の寸法比は必ずしも実際の素子と同じ寸法比とはなっていない。以下、本実施形態では、発光素子が発光ダイオードの場合を想定して説明する。
[第1実施形態]
<発光素子の素子構造>
 図4に示すように、本実施形態の発光素子1は、サファイア基板11を含む下地部10と、複数のAlGaN系半導体層21~25、p電極26、及び、n電極27を含む発光素子構造部20とを備える。発光素子1は、実装用の基台(サブマウント等)に発光素子構造部20側(図4における図中上側)を向けて実装される(フリップチップ実装される)ものであり、光の取出方向は下地部10側(図4における図中下側)である。尚、本明細書では、説明の便宜上、サファイア基板11の主面11a(または、下地部10及び各AlGaN系半導体層21~25の上面)に垂直な方向を「上下方向」(または、「縦方向」)と称し、下地部10から発光素子構造部20に向かう方向を上方向、その逆を下方向とする。また、上下方向に平行な平面を「第1平面」と称す。更に、サファイア基板11の主面11a(または、下地部10及び各AlGaN系半導体層21~25の上面)に平行な平面を「第2平面」と称し、該第2平面に平行な方向を「横方向」と称す。
 下地部10は、サファイア基板11と、サファイア基板11の主面11a上に直接形成されたAlN層12を備えて構成される。サファイア基板11は、主面11aが(0001)面に対して一定の範囲内(例えば、0度から6度程度まで)の角度(オフ角)で傾斜し、主面11a上に多段状のテラスが表出している微傾斜基板である。
 AlN層12は、サファイア基板11の主面からエピタキシャル成長したAlN結晶で構成され、このAlN結晶はサファイア基板11の主面11aに対してエピタキシャルな結晶方位関係を有している。具体的には、例えば、サファイア基板11のC軸方向(<0001>方向)とAlN結晶のC軸方向が揃うように、AlN結晶が成長する。尚、AlN層12を構成するAlN結晶は、微量のGaやその他の不純物を含んでいてもよいAlN系半導体層であってもよい。本実施形態では、AlN層12の膜厚として、2μm~3μm程度を想定している。尚、下地部10の構造及び使用する基板等は、上述した構成に限定されるものではない。例えば、AlN層12とAlGaN系半導体層21の間に、AlNモル分率が当該AlGaN系半導体層21のAlNモル分率以上のAlGaN系半導体層を備えていてもよい。
 発光素子構造部20のAlGaN系半導体層21~25は、下地部10側から順に、n型クラッド層21(n型層)、活性層22、電子ブロック層23(p型層)、p型クラッド層24(p型層)、及び、p型コンタクト層25(p型層)を順にエピタキシャル成長させて積層した構造を備えている。
 本実施形態では、サファイア基板11の主面11aから順番にエピタキシャル成長した下地部10のAlN層12、発光素子構造部20のn型クラッド層21と活性層22内の各半導体層は、サファイア基板11の主面11aに由来する(0001)面に平行な多段状のテラスが形成された表面を有する。尚、p型層の電子ブロック層23、p型クラッド層24、及び、p型コンタクト層25については、活性層22上にエピタキシャル成長により形成されるため、同様の多段状のテラスが形成され得るが、必ずしも同様の多段状のテラスが形成された表面を有していなくてもよい。
 尚、図4に示すように、発光素子構造部20の内、活性層22、電子ブロック層23、p型クラッド層24、及び、p型コンタクト層25は、n型クラッド層21の上面の第2領域R2上に積層された部分が、エッチング等によって除去され、n型クラッド層21の上面の第1領域R1上に形成されている。そして、n型クラッド層21の上面は、第1領域R1を除く第2領域R2において露出している。n型クラッド層21の上面は、図4に模式的に示すように、第1領域R1と第2領域R2間で高さが異なっている場合があり、その場合は、n型クラッド層21の上面は、第1領域R1と第2領域R2において個別に規定される。
 n型クラッド層21は、n型AlGaN系半導体で構成され、n型クラッド層21内に、n型クラッド層21内で局所的にAlNモル分率の低い層状領域が一様に分散して存在する。当該層状領域には、上述したように、AlGaN組成比が整数比のAlGaとなっているn型AlGaN領域(つまり、AlNモル分率が50%のn型の準安定AlGaN)を含む第1Ga富化領域21aが、支配的に存在する。図4では、層状領域内において第1Ga富化領域21aが支配的に存在している一例として、層状領域が全て第1Ga富化領域21aとなっている場合を模式的に示している。n型クラッド層21内の層状領域以外の領域を、n型本体領域21bと称す。
 本実施形態では、n型本体領域21bのAlNモル分率は54%~66%の範囲内に調整されている。n型クラッド層21の膜厚として、一般的な窒化物半導体紫外線発光素子で採用されている膜厚と同様に、1μm~2μm程度を想定しているが、当該膜厚は、2μm~4μm程度であってもよい。以下において、説明を簡潔にするために、第1Ga富化領域21a内に存在するAlGaN組成比が整数比のAlGaとなっている準安定AlGaNのn型AlGaN領域を、便宜的に「準安定n型領域」と称する。また、第1Ga富化領域21a内に存在する準安定n型領域以外のAlNモル分率が50%(2分の1)に対して僅かに変動した領域を「準安定近傍n型領域」と称する。ここで、準安定n型領域は、複数の層状の第1Ga富化領域21a内において、必ずしも層状に連続して存在している必要はなく、準安定近傍n型領域によって分断されて断続的に存在してもよい。
 活性層22は、AlGaN系半導体で構成される2層以上の井戸層220と、AlGaN系半導体またはAlN系半導体で構成される1層以上のバリア層221を交互に積層した多重量子井戸構造を備える。最下層の井戸層220とn型クラッド層21の間には、バリア層221を必ずしも設ける必要はない。また、最上層の井戸層220と電子ブロック層23の間に、バリア層221またはバリア層221より薄膜でAlNモル分率の高いAlGaN層またはAlN層を設けても構わない。
 図5に、活性層22における井戸層220及びバリア層221の積層構造(多重量子井戸構造)の一例を模式的に示す。図5では、井戸層220が3層の場合を例示する。図5に示される井戸層220及びバリア層221におけるテラスTが多段状に成長する構造は、上記非特許文献1及び2に開示されているように、公知の構造である。隣接するテラスT間の境界領域BAは、上述したように、(0001)面に対して傾斜した傾斜領域となっている。本実施形態では、1つのテラスTの奥行(隣接する境界領域BA間の距離)は数10nm~数100nmが想定される。
 図5に模式的に示すように、井戸層220内の多段状のテラスTの隣接するテラスT間の境界領域(傾斜領域)BAに、井戸層220内で局所的にAlNモル分率の低い第2Ga富化領域220aが形成される。井戸層220内の第2Ga富化領域220a以外の領域を、便宜的に、井戸本体領域220bと称す。
 本実施形態では、第2Ga富化領域220aには、AlGaN組成比が整数比のAlGaとなっている準安定AlGaN、つまり、AlNモル分率が33.3%(3分の1)のAlGaNが存在する。また、井戸本体領域220bのAlNモル分率は33.4%~37%の範囲内に調整されている。井戸層220の膜厚は、テラス領域TA及び傾斜領域BAを含めて、例えば、2ユニットセル~7ユニットセルの範囲内に調整されている。
 以下において、説明を簡潔にするために、第2Ga富化領域220a内に存在するAlGaN組成比が整数比のAlGaとなっている準安定AlGaNを、便宜的に「準安定井戸領域」と称する。また、第2Ga富化領域220a内に存在する準安定井戸領域以外のAlNモル分率が33.3%(3分の1)に対して僅かに変動した領域を「準安定近傍井戸領域」と称する。ここで、準安定井戸領域は、平面視においてテラスTのエッジラインに沿って存在する傾斜領域BAに形成される第2Ga富化領域220a内で、当該エッジラインに沿って連続して存在している必要はなく、準安定近傍n型領域によって分断されて断続的に存在してもよい。
 バリア層221は、上述したように、n型クラッド層21及び井戸層220と同様に、AlGaN系半導体で構成され、(0001)面に平行な多段状のテラスTが形成された表面を有する。ここで、バリア層221全体のAlNモル分率は、一例として、50%~100%の範囲内を想定するが、バリア層221は、AlNモル分率が100%のAlN系半導体で構成される場合が含まれるが、AlNモル分率が100%でないAlGaN系半導体で構成される場合がある。従って、図5に模式的に示すように、バリア層221が、AlNモル分率が100%でないAlGaN系半導体で構成される場合は、n型クラッド層21及び井戸層220と同様に、バリア層221内で局所的にAlNモル分率の低い第3Ga富化領域221aが、バリア層221の隣接するテラスT間の境界領域(傾斜領域)BAに形成され得る。ここで、バリア層221内のテラス領域の第3Ga富化領域221a以外の領域を、便宜的に、バリア本体領域221bと称す。バリア本体領域221bは、主として、バリア層221内のテラス領域TAに存在する。バリア層221の第3Ga富化領域221aを含む全体のAlNモル分率は、一例として、上述した50%~100%の範囲内の一部である50%~90%の範囲内とすると、第3Ga富化領域221aにおけるキャリアの局在化の効果を十分に確保するために、第3Ga富化領域221aとバリア本体領域221bのAlNモル分率差を4~5%以上とするのが好ましいが、1%程度でも、キャリアの局在化の効果は期待し得る。よって、本実施形態では、バリア本体領域221bのAlNモル分率は、51%~90%の範囲内とする。また、バリア層221の膜厚は、テラス領域TA及び傾斜領域BAを含めて、例えば、6nm~8nmの範囲内で調整するのが好ましい。
 図6は、井戸層220及びバリア層221がAlGaNで構成された量子井戸構造モデルに対して、井戸層の膜厚を4ML(単原子層)~14ML(2ユニットセル~7ユニットセル)の範囲内で変化させて得られる発光波長のシミュレーション結果(ピーク発光波長に相当)をグラフ化したものである。上記シミュレーションの条件として、井戸層220の第2Ga富化領域220aのAlNモル分率を、準安定井戸領域のAlNモル分率である33.3%(3分の1)とし、バリア層221の第3Ga富化領域221aのAlNモル分率を、66.7%、75%、及び、83.3%の3通りとした。図6に示すシミュレーション結果では、井戸層220における紫外線発光が、境界領域(傾斜領域)BAで顕著に発生することを想定している。このため、井戸層220の膜厚条件は、当該傾斜領域BAにおいて満足することが重要である。
 図6より、井戸層220の膜厚が4ML~14MLの範囲内では、バリア層221のAlNモル分率が大きくなるほど、また、井戸層220の膜厚が小さくなるほど、井戸層220への量子閉じ込め効果が大きくなり、発光波長が短波長化していることが分かる。また、井戸層220の膜厚及びバリア層221のAlNモル分率の上記範囲内において、発光波長が、概ね261nm~328nmの範囲で変化することが分かる。更に、バリア層221をAlNで構成すると、発光波長を更に拡張することができる。図6中に一点鎖線で示す発光波長277nmと315nmは、本実施形態の発光素子1において想定される発光波長の制御範囲(下限及び上限)である。井戸層220の第2Ga富化領域220aにAlGaN組成比がAlGaとなっている準安定AlGaNが支配的に存在する結果、一例として、井戸層220の膜厚を、バリア層221のAlNモル分率に応じて、5ML~14MLの範囲内で設定することで、発光波長を277nm~315nmの範囲内に制御し得る。
 電子ブロック層23は、p型AlGaN系半導体で構成される。p型クラッド層24は、p型AlGaN系半導体で構成される。p型コンタクト層25は、p型AlGaN系半導体またはp型GaN系半導体で構成される。p型コンタクト層25は、典型的にはGaNで構成される。尚、活性層22、電子ブロック層23、p型クラッド層24、及び、p型コンタクト層25等の各層の膜厚は、発光素子1の発光波長特性及び電気的特性に応じて適宜決定される。また、p型クラッド層24は、p型層の寄生抵抗を低減するために省略しても構わない。
 p電極26は、例えばNi/Au等の多層金属膜で構成され、p型コンタクト層25の上面に形成される。n電極27は、例えばTi/Al/Ti/Au等の多層金属膜で構成され、n型クラッド層21の第2領域R2内の露出面上の一部の領域に形成される。尚、p電極26及びn電極27は、上述の多層金属膜に限定されるものではなく、各電極を構成する金属、積層数、積層順などの電極構造は適宜変更してもよい。図7に、p電極26とn電極27の発光素子1の上側から見た形状の一例を示す。図7において、p電極26とn電極27の間に存在する線BLは、第1領域R1と第2領域R2の境界線を示しており、活性層22、電子ブロック層23、p型クラッド層24、及び、p型コンタクト層25の外周側壁面と一致する。
 本実施形態では、図7に示すように、第1領域R1及びp電極26の平面視形状は、一例として、櫛形形状のものを採用しているが、第1領域R1及びp電極26の平面視形状及び配置等は、図7の例示に限定されるものではない。
 p電極26とn電極27間に順方向バイアスを印加すると、p電極26から活性層22に向けて正孔が供給され、n電極27から活性層22に向けて電子が供給され、供給された正孔及び電子の夫々が活性層22に到達して再結合することで発光する。また、これにより、p電極26とn電極27間に順方向電流が流れる。
 n型クラッド層21の第1Ga富化領域21aは、図4中において、1つの層が2重線で模式的に示されているように、複数層が上下方向に離間して存在する。また、上下方向に平行な1つの第1平面(例えば、図4に示されている断面)で、第1Ga富化領域21aの少なくとも一部の延伸方向が横方向(第1平面と第2平面との交線の延伸方向)に対して傾斜している。尚、図4に示す第1平面上では、第1Ga富化領域21aの各層は、模式的に平行な線(2重線)で図示されているが、該延伸方向と横方向の成す傾斜角は、各第1Ga富化領域21a間で、必ずしも同じではなく、同じ第1Ga富化領域21a内でも位置によって変化し得るため、第1平面上の第1Ga富化領域21aは必ずしも直線状に延伸しているとは限らない。また、該傾斜角は、第1平面の向きによっても変化する。従って、第1Ga富化領域21aの一部が、第1平面上において、他の第1Ga富化領域21aと交差、または、他の第1Ga富化領域21aから分岐することもあり得る。第1Ga富化領域21aの延伸方向と横方向の成す傾斜角が位置によって変化している点、及び、第1Ga富化領域21aがn型クラッド層21内で一様に分散して存在している点は、図8に示すHAADF-STEM像に明確に示されている。
 また、第1Ga富化領域21aは、図4中の第1平面上では、夫々、1本の線(2重線)で示されているが、該第1平面に垂直な方向にも、第2平面に平行または傾斜して延伸しており、2次元的な広がりを有している。従って、複数の第1Ga富化領域21aは、n型クラッド層21内の複数の第2平面上では、縞状に存在する。
 第1Ga富化領域21aは、上述のように、n型クラッド層21内において局所的にAlNモル分率の低い層状領域である。つまり、第1Ga富化領域21aのAlNモル分率が、n型本体領域21bのAlNモル分率に対して相対的に低くなっている。また、第1Ga富化領域21aとn型本体領域21bの境界近傍において、両領域のAlNモル分率が漸近的に連続している場合、両領域間の境界は明確に規定できない。
 従って、斯かる場合には、n型クラッド層21全体の平均的なAlNモル分率、例えば、後述するn型クラッド層21の成長条件(有機金属化合物気相成長法で使用する原料ガスやキャリアガスの供給量及び流速)の前提となるAlNモル分率を基準として、AlNモル分率が当該基準値より低い部分を、相対的に第1Ga富化領域21aとして規定することができる。更に、上記規定方法以外にも、例えば、後述するHAADF-STEM像に基いて、明度変化の大きい部分を、両層の境界と規定することもできる。但し、本願発明において、両層の境界の定義自体は重要ではなく、第1Ga富化領域21aの存在自体を把握できれば十分である。
 実際、第1Ga富化領域21aは、n型本体領域21bからのGaの質量移動に伴い形成されるものであるので、n型本体領域21bからのGaの供給量に応じて、第1Ga富化領域21a内の平均的なAlNモル分率は変化し、第1Ga富化領域21a内においてもAlNモル分率は必ずしも一様ではない。しかし、本実施形態では、第1Ga富化領域21a内に、準安定n型領域が安定的に形成されるため、上記Gaの供給量に少々の変動があっても、当該変動が準安定n型領域によって吸収され、第1Ga富化領域21a内のAlNモル分率の変動は抑制される。このため、個々の第1Ga富化領域21a内のAlNモル分率の極小値は、準安定n型領域のAlNモル分率である50%またはその近傍値となる。但し、上述したように、第1Ga富化領域21a内には、準安定n型領域とともに、準安定近傍n型領域も存在し、準安定近傍n型領域もn型本体領域21bからのGaの質量移動に伴い形成されるため、通常、準安定近傍n型領域のAlNモル分率は、準安定n型領域のAlNモル分率より高くなり、第1Ga富化領域21a内の平均的なAlNモル分率は、準安定n型領域のAlNモル分率より僅かに高くなる。
 一方、n型本体領域21bは、第1Ga富化領域21aに対してGaを供給することで、n型本体領域21b内のGaが質量移動した後の箇所は相対的にAlNモル分率が高くなる。更に、n型本体領域21b内において、第1Ga富化領域21aの形成に至らない程度のGaの質量移動も発生し得るため、n型本体領域21b内においても、AlNモル分率はある程度変動する。しかし、上述したように、n型クラッド層21内のキャリアは、n型本体領域21bよりバンドギャップエネルギの小さい第1Ga富化領域21a内に局在化し、n型クラッド層21内において電流は優先的に第1Ga富化領域21aを安定的に流れるため、n型本体領域21b内のAlNモル分率が少々変動しても、発光素子1の特性変動は、第1Ga富化領域21aによって抑制される。
 ここで、上述の第1Ga富化領域21aについての説明は、第2Ga富化領域220aについても、そのまま妥当する。つまり、本実施形態では、第2Ga富化領域220a内に、準安定井戸領域が安定的に形成されるため、上記Gaの供給量に少々の変動があっても、当該変動が準安定井戸領域によって吸収され、第2Ga富化領域220aの平均的なAlNモル分率は、準安定井戸領域のAlNモル分率である33.3%またはその近傍値となる。但し、上述したように、第2Ga富化領域220a内には、準安定井戸領域とともに、準安定近傍井戸領域も存在し、準安定近傍井戸領域も井戸本体領域220bからのGaの質量移動に伴い形成されるため、通常、準安定近傍井戸領域のAlNモル分率は、準安定井戸領域のAlNモル分率より高くなり、第2Ga富化領域220a内の平均的なAlNモル分率は、準安定井戸領域のAlNモル分率より僅かに高くなる。
 一方、井戸本体領域220bは、第2Ga富化領域220aに対してGaを供給することで、井戸本体領域220b内のGaが質量移動した後の箇所は相対的にAlNモル分率が高くなる。更に、井戸本体領域220b内において、第2Ga富化領域220aの形成に至らない程度のGaの質量移動も発生し得るため、井戸本体領域220b内においても、AlNモル分率はある程度変動する。しかし、上述したように、井戸層220内のキャリアは、井戸本体領域220bよりバンドギャップエネルギの小さい第2Ga富化領域220a内に局在化し、井戸層220内において電流は優先的に第2Ga富化領域220aを安定的に流れるため、井戸本体領域220b内のAlNモル分率が少々変動しても、発光素子1の特性変動は、第2Ga富化領域220aによって抑制される。
<発光素子の製造方法>
 次に、図4に例示した発光装置1の製造方法の一例について説明する。
 先ず、有機金属化合物気相成長(MOVPE)法により、下地部10に含まれるAlN層12及び発光素子構造部20に含まれる窒化物半導体層21~25を、サファイア基板11上に順番にエピタキシャル成長させて積層する。このとき、n型クラッド層21にはドナー不純物として例えばSiをドーピングし、電子ブロック層23、p型クラッド層24、及び、p型コンタクト層25にはアクセプタ不純物として例えばMgをドーピングする。
 本実施形態では、少なくともAlN層12、n型クラッド層21、及び、活性層22(井戸層220、バリア層221)の各表面に(0001)面に平行な多段状のテラスを表出させるために、サファイア基板11は、主面11aが(0001)面に対して一定の範囲内(例えば、0度から6度程度まで)の角度(オフ角)で傾斜し、主面11a上に多段状のテラスが表出している微傾斜基板を使用する。
 斯かるエピタキシャル成長の条件として、上述の微傾斜基板の(0001)サファイア基板11の使用に加えて、例えば、多段状のテラスが表出し易い成長速度(具体的に例えば、成長温度、原料ガスやキャリアガスの供給量や流速等の諸条件を適宜設定することで、当該成長速度を達成する)等が挙げられる。尚、これらの諸条件は、成膜装置の種類や構造によって異なり得るため、成膜装置において実際に幾つかの試料を作製して、これらの条件を特定すればよい。
 n型クラッド層21の成長条件として、成長開始直後に、AlN層12の上面に形成された多段状のテラス間の段差部(境界領域)にGaの質量移動によって第1Ga富化領域21aの成長開始点が形成され、引き続き、n型クラッド層21のエピタキシャル成長に伴い、第1Ga富化領域21aが、Gaの質量移動に伴う偏析によって斜め上方に向かって成長できるように、成長温度、成長圧力、及び、ドナー不純物濃度が選択される。
 具体的には、成長温度としては、Gaの質量移動の生じ易い1050℃以上で、良好なn型AlGaNが調製可能な1150℃以下が好ましい。また、成長温度が1170℃を超えると、Gaの質量移動が過剰となり、第1の準安定AlGaNといえども、AlNモル分率がランダムに変動し易くなるため、AlNモル分率が50%の準安定AlGaNが安定的に形成し辛くなるため、好ましくない。成長圧力としては、75Torr以下が良好なAlGaNの成長条件として好ましく、成膜装置の制御限界として10Torr以上が現実的であり好ましい。ドナー不純物濃度は、1×1018~5×1018cm-3程度が好ましい。尚、上記成長温度及び成長圧力等は、一例であって、使用する成膜装置に応じて適宜最適な条件を特定すればよい。
 有機金属化合物気相成長法で使用する原料ガス(トリメチルアルミニウム(TMA)ガス、トリメチルガリウム(TMG)ガス、アンモニアガス)やキャリアガスの供給量及び流速は、n型クラッド層21全体の平均的なAlNモル分率Xaを目標値として設定される。ここで、n型本体領域21bの平均的なAlNモル分率をXb(=54%~66%)とし、AlNモル分率が50%の準安定n型領域とAlNモル分率が50%より僅かに高い準安定近傍n型領域の存在する第1Ga富化領域21aの平均的なAlNモル分率をXc(>50%)とし、n型本体領域21bから第1Ga富化領域21aへのGaの質量移動を考慮すると、Xb>Xa>Xcとなるが、n型クラッド層21全体に占める第1Ga富化領域21aの体積比率が小さいため、近似的にXa=Xbとして設定することができる。
 第1Ga富化領域21a内には、AlNモル分率が50%の準安定n型領域が安定的に存在しており、n型クラッド層21のAlNモル分率の目標値Xaが54%~66%であるので、準安定n型領域のAlNモル分率50%とn型本体領域21bの平均的なAlNモル分率Xbとの差は(Xc-50%)は安定的に4%以上が確保され、n型層内のキャリアは、n型本体領域21bよりバンドギャップエネルギの小さい第1Ga富化領域21a内に局在化する。更に、目標値Xaの上限が66%であるので、n型本体領域21b内において、AlGaN組成比がAlGaの準安定AlGaNが支配的に形成されることはない。仮に、目標値Xaの上限が67%以上であると、n型本体領域21b内にAlGaの準安定AlGaNが安定的に形成され、当該AlGaの準安定AlGaNから、第1Ga富化領域内に、AlGaの準安定AlGaN(準安定n型領域)を安定的に形成するためのGaを十分に供給することが困難となる。従って、目標値Xaの上限を66%に設定することで、第1Ga富化領域21aにAlNモル分率が50%の準安定n型領域を安定的に形成することが可能となる。
 尚、ドナー不純物濃度は、n型クラッド層21の膜厚に対して、必ずしも上下方向に均一に制御する必要はない。例えば、n型クラッド層21内の所定の薄い膜厚部分の不純物濃度が、上記設定濃度より低く、例えば、1×1018cm-3未満、更に好ましくは、1×1017cm-3以下に制御された低不純物濃度層であってもよい。当該低不純物濃度層の膜厚としては、0nmより大きく200nm以下程度が好ましく、10nm以上100nm以下程度がより好ましく、更に、20nm以上50nm以下程度がより好ましい。また、当該低不純物濃度層のドナー不純物濃度は、上記設定濃度より低ければよく、アンドープ層(0cm-3)が一部に含まれていてもよい。更に、該低不純物濃度層の一部または全部は、n型クラッド層21の上面から下方側に100nm以内の深さの上層域に存在することが好ましい。
 上記要領で、第1Ga富化領域21aとn型本体領域21bを有するn型クラッド層21が形成されると、n型クラッド層21の上面の全面に、引き続き、有機金属化合物気相成長(MOVPE)法等の周知のエピタキシャル成長法により、活性層22(井戸層220、バリア層221)、電子ブロック層23、p型クラッド層24、及び、p型コンタクト層25等を形成する。
 活性層22の形成において、n型クラッド層21と同様の要領で、上述した多段状のテラスが表出し易い成長条件で、井戸本体領域220bに対して設定されたAlNモル分率(33.4%~37%)を目標値として井戸層220を成長させ、更に、バリア本体領域221bに対して設定されたAlNモル分率(51%~90%または100%)を目標値として、バリア層221を成長させる。
 次に、反応性イオンエッチング等の周知のエッチング法により、上記要領で積層した窒化物半導体層21~25の第2領域R2を、n型クラッド層21の上面が露出するまで選択的にエッチングして、n型クラッド層21の上面の第2領域R2部分を露出させる。そして、電子ビーム蒸着法などの周知の成膜法により、エッチングされていない第1領域R1内のp型コンタクト層25上にp電極26を形成するとともに、エッチングされた第1領域R2内のn型クラッド層21上にn電極27を形成する。尚、p電極26及びn電極27の一方または両方の形成後に、RTA(瞬間熱アニール)等の周知の熱処理方法により熱処理を行ってもよい。
 尚、発光素子1は、一例として、サブマウント等の基台にフリップチップ実装された後、シリコーン樹脂や非晶質フッ素樹脂等の所定の樹脂(例えば、レンズ形状の樹脂)によって封止された状態で使用され得る。
<n型クラッド層の断面観察及び組成分析結果>
 次に、n型クラッド層21の断面観察用の試料を作製し、該試料からn型クラッド層21の上面に垂直(または略垂直)な断面を有する試料片を収束イオンビーム(FIB)で加工し、該試料片を走査型透過電子顕微鏡(STEM)で観察した結果を、図面を参照して説明する。
 該試料は、上述したn型クラッド層21等の作製要領に従って、上述のサファイア基板11とAlN層12からなる下地部10上に、n型クラッド層21と、活性層22と、n型クラッド層21より高AlNモル分率のAlGaN層と、試料表面保護用のAlGaN層と、保護用樹脂膜を順番に堆積して作製した。尚、該試料の作製においては、主面が(0001)面に対してオフ角を有するサファイア基板11を用いてAlN層12の表面に多段状のテラスが表出した下地部10を使用した。尚、該試料の作製において、n型クラッド層21の膜厚は2μmとし、n型クラッド層21のAlNモル分率の目標値を58%とした。更に、ドナー不純物濃度が約3×1018cm-3となるように、ドナー不純物(Si)の注入量を制御した。
 図8に、上記試料片の断面の高角散乱環状暗視野(HAADF)-STEM像を示す。図8は、該試料片のAlN層12の上層部、n型クラッド層21、及び、活性層22を含むn型クラッド層21の全体を観察するHAADF-STEM像である。
 HAADF-STEM像は、原子量に比例したコントラストが得られ、重い元素は明るく表示される。よって、n型クラッド層21内の第1Ga富化領域21aとn型本体領域21bは、AlNモル分率の低い第1Ga富化領域21aの方が、n型本体領域21bより明るく表示される。HAADF-STEM像は、通常のSTEM像(明視野像)よりAlNモル分率の差の観察には適している。
 図8より、n型クラッド層21内に、局所的にAlNモル分率の低い層状領域である複数の第1Ga富化領域21aが上下方向に分散して存在し、第1Ga富化領域21aのそれぞれが、HAADF-STEM像の画面(試料片の断面、第1平面に相当)上において、n型クラッド層21の上面と該第1平面との交線に対して傾斜した方向に延伸していることが分かる。第1Ga富化領域21aのそれぞれは、線状に斜め上方に向けて延伸しているが、必ずしも直線状に延伸しておらず、上記交線に対する傾斜角は、同じ第1Ga富化領域21a内でも位置によって変化していることが分かる。また、図8に示す断面(第1平面に相当)において、第1Ga富化領域21aの一部が、他の第1Ga富化領域21aと交差、または、他の第1Ga富化領域21aから分岐していることも観察される。
 本実施形態では、上記試料片のn型クラッド層21内の組成分析を2種類の分析方法(エネルギ分散型X線分光法(断面TEM-EDX)のライン分析とCL(カソードルミネッセンス)法)で行った。
 EDX法による組成分析(EDX測定)では、先ず、図8に示すHAADF-STEM像のほぼ全域をカバーする全体測定領域において、電子線プローブ(直径:約2nm)を縦方向(上下方向)及び横方向(第2平面に平行な方向)に走査して、512×512のマトリクス状に、縦方向及び横方向に約4nm間隔で分布した各プローブ箇所における検出データ(Al及びGaの各組成に対応するX線強度)を取得した。
 次に、全体測定領域に分散して存在する第1Ga富化領域21aに対して、EDX測定によるライン分析を行うために、図9に示すように、全体測定領域内に概ね正方形状(約420nm×約420nm)の6箇所の測定領域A~Fを設定した。図9は、図8のHAADF-STEM像に、各測定領域A~Fを示す矩形枠を重ねて示している。6箇所の各測定領域は、HAADF-STEM像上で確認された少なくとも1本の第1Ga富化領域21aが横断するように設定されてる。また、各測定領域の傾きは、測定領域内の少なくとも1本の第1Ga富化領域21aの延伸方向が、ライン分析の走査方向と直交するように、測定領域毎に設定されている。測定領域A~Fの各傾き(全体測定領域の縦方向と各測定領域の縦方向の成す角度)は、約20°でほぼ等しいが、厳密には必ずしも同じではない。ここで、全体測定領域の縦方向及び横方向とは別に、図9の各測定領域A~F内において、説明の便宜上、ライン分析の走査方向を縦方向とし、走査方向と直交する方向を横方向とする。各測定領域内に示されている中央の縦線は走査方向を示し、同中央の横線は、上記少なくとも1本の第1Ga富化領域21aが存在していると想定される場所を示し、後述する組成分析結果におけるライン分析の走査位置の原点(0nm)となっている。尚、走査方向を示す縦線には矢印が付されており、AlN層12の方向を指している。尚、走査位置は、中央の縦線上に、上記原点を挟んで上下方向に、約5nm間隔で、測定領域A~F別に、合計が58~81点の範囲内で設定されている。
 EDX測定では、照射する電子線プローブの直径が約2nmと小さいため、空間分解能は高いが、各プローブ箇所から放射されるX線が微弱であるため、本実施形態のライン分析では、各走査位置において横方向に整列した複数のプローブ箇所から得られる検出データを累積して、各走査位置での検出データとしている。尚、「横方向に整列」するとは、電子線プローブの照射範囲が、各走査位置において上記縦線と交差し横方向に延伸する横線と重なっていることを意味する。
 従って、或る走査位置において、横方向に整列した複数のプローブ箇所の全てが、第1Ga富化領域21aの準安定n型領域内に位置している場合は、累積された検出データは、準安定n型領域のAlNモル分率を精度良く示すことになる。同様に、或る走査位置において、横方向に整列した複数のプローブ箇所の全てが、n型本体領域21b内に位置している場合は、累積された検出データは、n型本体領域21bのAlNモル分率を精度良く示すことになる。
 しかし、或る走査位置において、第1Ga富化領域21aの準安定n型領域の延伸方向が、ライン分析の走査方向と正確に直交していない場合、または、第1Ga富化領域21aの準安定n型領域の延伸方向が屈曲等して、直線状でない場合等、横方向に整列した複数のプローブ箇所の一部、または、各プローブ箇所のプローブ範囲(直径約2nm)の一部が、準安定n型領域以外の準安定近傍n型領域内またはn型本体領域21b内に位置している場合は、累積された検出データは、複数のプローブ箇所の平均的なAlNモル分率を示すことになり、準安定n型領域のAlNモル分率より高い値を示す。
 同様に、或る走査位置において、横方向に整列した複数のプローブ箇所の大半がn型本体領域21b内に位置しているとしても、複数のプローブ箇所の一部、または、各プローブ箇所のプローブ範囲(直径約2nm)の一部が、n型本体領域21b内のGaの質量移動によって生じたAlNモル分率が局所的に低いまたは高い領域、または、n型本体領域21b以外のAlNモル分率が局所的に低い領域(第1Ga富化領域21a以外の層状領域、第1Ga富化領域21a内の準安定n型領域または準安定近傍n型領域)内に位置している場合は、累積された検出データは、複数のプローブ箇所の平均的なAlNモル分率を示すことになり、n型本体領域21bの平均的なAlNモル分率(≒n型クラッド層21のAlNモル分率の目標値)より低いまたは高い値を示す。
 図10A~図10Fに、EDX測定のライン分析により、図9に示す6箇所の測定領域A~Fにおけるn型クラッド層21内の組成分析を行った結果を示す。図10A~図10Fに示す各測定領域A~Fの組成分析結果のグラフは、横軸が、各測定領域の中央の縦線に沿った走査位置を示し、縦軸が、AlNモル分率とGaNモル分率の測定結果を示している。横軸の走査位置の0nmは、各測定領域内に示されている中央の横線の位置(少なくとも1本の第1Ga富化領域21aが存在していると想定される場所)を示している。走査位置は、原点(0nm)より下側(AlN層12側)が正値で、上側(活性層22側)が負値で、それぞれ示されている。
 EDX測定では、上述したように、プローブ箇所から放射されるX線が微弱であるため、各走査位置において横方向にプローブ箇所の検出データ(各組成のX線強度)を累積しても、一般的に測定誤差は大きい。例えば、AlNモル分率が予め確定しているAlN層12のAlNモル分率(100%)を基準に較正を行った場合、各走査位置の検出データの測定誤差は、基準となるAlN層12近傍でも±2~3%程度はあり、更に、AlN層12から遠ざかるに従い、測定精度は更に低下する。このため、本実施形態では、AlN層12から離間した領域においても各走査位置における測定誤差を±2~3%程度に抑制するために、EDX測定に使用した試料片と同じ試料を用いて、ラザフォード後方散乱(RBS)分析法によるn型クラッド層21内のAlとGaの組成分析を行い、当該RBS分析結果を用いて、EDX測定で得られた結果を較正した。図10A~図10Fに示す測定領域A~FのAlNモル分率とGaNモル分率は、当該較正した結果を示している。
 図10Aより、測定領域Aにおいては、走査位置が約-140nm~約-131nmの領域A1と走査位置が約-5nm~約5nmの領域A2に、第1Ga富化領域21aの存在が確認できる。領域A1内の3点の走査位置でのAlNモル分率は、52.4%~52.8%である。領域A2内の3点の走査位置でのAlNモル分率は、50.9%~51.5%(50%~51%内は1点)である。
 図10Bより、測定領域Bにおいては、走査位置の約-169nm~約-145nmの領域B1と走査位置が約-5nm~約5nmの領域B2に、第1Ga富化領域21aの存在が確認できる。領域B1内の6点の走査位置でのAlNモル分率は、51.8%~52.4%(50%~52%内は4点)である。領域B2内の3点の走査位置でのAlNモル分率は、51.5%~53.0%(50%~52%内は1点)である。
 図10Cより、測定領域Cにおいては、走査位置の約-53nm~約-44nmの領域C1と走査位置が約0nm~約5nmの領域C2に、第1Ga富化領域21aの存在が確認できる。領域C1内の3点の走査位置でのAlNモル分率は、51.2%~52.6%(50%~52%内は2点)である。領域C2内の2点の走査位置でのAlNモル分率は、51.4%と52.6%である。
 図10Dより、測定領域Dにおいては、走査位置の約-169nm~約-97nmの領域D1と走査位置の約-5nm~約5nmの領域D2に、第1Ga富化領域21aの存在が確認できる。領域D1内の16点の走査位置でのAlNモル分率は、50.7%~52.5%(50%~51%内は6点、50%~52%内は13点)である。領域D2内の3点の走査位置でのAlNモル分率は、50.8%~52.6%(50%~52%内は2点)である。
 図10Eより、測定領域Eにおいては、走査位置の約-116nm~約-73nmの領域E1と、走査位置の約-5nm~約5nmの領域E2に、第1Ga富化領域21aの存在が確認できる。領域E1内の10点の走査位置でのAlNモル分率は、51.3%~52.8%(50%~52%内は4点)である。領域E2内の3点の走査位置でのAlNモル分率は、50.5%~51.9%(50%~51%内は1点)である。
 図10Fより、測定領域Fにおいては、走査位置の約-160nm~約-140nmの領域F1、走査位置の約-73nm~約-58nmの領域F2、走査位置の約0nm~約15nmの領域F3、及び、走査位置の約97nm~約106nmの領域F4に、第1Ga富化領域21aの存在が確認できる。領域F1内の5点の走査位置でのAlNモル分率は、49.1%~52.3%(49%~50%内は2点、50%~52%内は1点)である。領域F2内の4点の走査位置でのAlNモル分率は、51.4%~52.7%(50%~52%内は2点)である。領域F3内の4点の走査位置でのAlNモル分率は、51.6%~52.2%(50%~52%内は3点)である。領域F4内の3点の走査位置でのAlNモル分率は、51.0%~51.3%(50%~51%内は1点)である。
 以上より、上述した各走査位置における±2~3%程度の測定誤差、及び、第1Ga富化領域21aに関して横方向に整列した複数のプローブ箇所の平均的なAlNモル分率が準安定n型領域のAlNモル分率より高い値を示す可能性を考慮すると、測定領域A~Fの各領域A1、A2、B1、B2、C1、C2、D1、D4、E1、E2、F1~F4の第1Ga富化領域21a内において、AlNモル分率50%の準安定n型領域の存在が確認できる。更に、第1Ga富化領域21aは、n型クラッド層21の上面に近い上方部分の測定領域A~C、中央部分の測定領域D、AlN層12に近い下方部分の測定領域E及びFのそれぞれに存在し、n型クラッド層21内において一様に分散して存在していることが分かる。
 更に、図10A~図10Fより、測定領域A~Fの各領域A1、A2、B1、B2、C1、C2、D1、D4、E1、E2、F1~F4のn型本体領域21b内のAlNモル分率が約55%~約59%の範囲内にあることが確認できる。上述したように、EDX測定に使用した試料のn型クラッド層21のAlNモル分率の目標値は58%であるので、各走査位置における±2~3%程度の測定誤差、及び、n型本体領域21bに関して横方向に整列した複数のプローブ箇所の平均的なAlNモル分率がn型本体領域21bの平均的なAlNモル分率より高いまたは低い値を示す可能性を考慮すると、図10A~図10Fがn型本体領域21bのAlNモル分率を精度良く表していることが分かる。
 次に、n型クラッド層21内の第1Ga富化領域21aとn型本体領域21bのAlNモル分率の測定をCL(カソードルミネッセンス)法で行った結果を説明する。測定に使用した試料片は、図8に示すHAADF-STEM像の観察に使用した試料片と同様に作成した。
 図11は、上記試料片のn型クラッド層21内の断面を示す走査型電子顕微鏡(SEM)像である。該断面内の点線で囲まれた測定領域(a~f)は、それぞれ測定用に照射した電子ビームの入射した領域を示す。測定領域a及びbは、AlN層12の上面から約1800nmの距離に位置し、測定領域c及びdは、AlN層12の上面から約1000nmの距離に位置し、測定領域e及びfは、AlN層12の上面から約400nmの距離に位置している。各測定領域内において、ビーム径50nm(直径)の電子ビームを横方向に移動し、50nm間隔で各1回、合計10回照射して、各照射でのCLスペクトルを測定した。
 図12は、各測定領域(a~f)での10個のCLスペクトルの内、波長分布が短波長寄りの2つのCLスペクトルを平均した第1のCLスペクトルと、波長分布が長波長寄りの2つのCLスペクトルを平均した第2のCLスペクトルを、測定領域(a~f)別に表示したものである。
 各測定領域(a~f)内の10個の電子ビーム中心の両端間の離間距離は450nmであるので、10個の照射領域内には、第1Ga富化領域21aとn型本体領域21bの両方が存在している。n型クラッド層21全体に占める第1Ga富化領域21aの体積比率が小さいため、第1のCLスペクトルは、主として、n型本体領域21bのCLスペクトルを示している。一方、第2のCLスペクトルには、第1Ga富化領域21aのCLスペクトルが含まれているが、第1Ga富化領域21aの延伸方向に垂直な断面での幅が、平均的に約20nm程度であるので、ビーム径50nmの照射範囲内には、n型本体領域21bが部分的に含まれ得る。よって、第2のCLスペクトルは、第1Ga富化領域21aのCLスペクトルとn型本体領域21bのCLスペクトルの合成スペクトルとなっている。しかし、仮に、波長分布が長波長寄りの2つのCLスペクトルの各電子ビームの中心が、第1Ga富化領域21aの幅方向の中央に位置している場合は、照射範囲内の中央部分の電子ビームは、エネルギレベルの低い第1Ga富化領域21aに集まって第1Ga富化領域21aを専ら励起する可能性が高く、第2のCLスペクトルは、主として、第1Ga富化領域21aのCLスペクトルを示すものと考えられる。
 ここで、第1のCLスペクトルを、波長分布が短波長寄りの2つのCLスペクトルの平均とし、第2のCLスペクトルを、波長分布が長波長寄りの2つのCLスペクトルの平均とした理由は、各測定領域での電子ビームの照射位置はランダムに設定しているため、最も短波長寄りと長波長寄りの各1つのCLスペクトルの照射範囲が、測定領域毎に異なるため、測定結果が測定領域毎に大きくばらつくこと、また、最も短波長寄りと長波長寄りの各1つのCLスペクトルを選別するのが困難な場合があり得ること等を考慮して、測定領域毎のバラツキを抑制するため、波長分布が短波長寄りと長波長寄りの各2つのCLスペクトルを機械的に選択して平均を取ることとした。
 先ず、各測定領域(a~f)の第1のCLスペクトルについて検討する。測定領域aでは、発光波長のピークが約262nm付近に存在している。測定領域bでは、発光波長の緩やかなピークが約263nm付近と約271nm付近の2箇所に存在している。測定領域cでは、発光波長のピークが約261nm付近に存在している。測定領域dでは、発光波長のピークが約262nm~263nm付近に存在している。測定領域eでは、発光波長のピークが約256nm~259nm付近に存在している。測定領域fでは、発光波長のピークが約257nm~259nm付近に存在している。
 各測定領域(a~f)の約256nm~約263nmのピーク波長は、AlNモル分率に換算すると、約57%~約63%に相当し、AlNモル分率に換算した約±3%程度の測定誤差を考慮すると、上記第1のCLスペクトルのCL波長とn型本体領域21bの平均的なAlNモル分率Xb(≒目標値58%)と概ね一致している。
 また、測定領域a~fの第1のCLスペクトルでは、約259nm~約263nmのピーク波長以上の長波長成分は、同ピーク波長未満の短波長成分より多くなっており、各測定領域の第1のCLスペクトルに対応する2つの照射範囲内において、Gaの質量移動が生じていることが分かる。更に、測定領域bの第1のCLスペクトルの約271nmのピーク波長は、AlNモル分率に換算すると、約53%±3%に相当し、第1Ga富化領域21a内に存在するAlNモル分率が50%より僅かに高い準安定近傍n型領域からのCL波長と概ね一致しており、測定領域bの第1のCLスペクトルに対応する2つの照射範囲内の一部に、Gaの質量移動によって形成される第1Ga富化領域21aが含まれていることが分かる。
 次に、各測定領域(a~f)の第2のCLスペクトルについて検討する。測定領域a及び測定領域bでは、発光波長のピークが約272nm付近に存在している。測定領域cでは、発光波長の緩やかなピークが約261nm付近と約270nm付近の2箇所に存在している。測定領域dでは、発光波長のピークが約269nm付近と約271nm付近の2箇所に存在している。測定領域eでは、発光波長のピークが約268nm付近に存在している。測定領域fでは、発光波長の緩やかなピークが約260nm付近と約270nm付近の2箇所に存在し、更に、全体として台地状のピーク領域が、約260nm~約270nmの範囲に広がっている。
 測定領域a~d及びfの約270nm~約272nmのピーク波長は、AlNモル分率に換算すると、約52%~約53%に相当し、AlNモル分率に換算した約±3%程度の測定誤差を考慮すると、第1Ga富化領域21a内に存在するAlNモル分率が50%の準安定n型領域に対応するCL波長(約275nm)と概ね一致している。また、測定領域a~d及びfの第2のCLスペクトルには、準安定n型領域に対応する約275nmのCL波長が、ピーク強度の約73~79%の発光強度で含まれている。但し、約270nm~約272nmのピーク波長は、準安定n型領域に対応するCL波長(約275nm)より約3~5nm短くなっている。これらは、測定領域a~d及びfの各第2のCLスペクトルが、第1Ga富化領域21a内の準安定n型領域と当該準安定n型領域より僅かにAlNモル分率の高い準安定近傍n型領域の各CLスペクトルと、n型本体領域21bのCLスペクトルの合成スペクトルとして現れていること示している。更に、測定領域c、d及びfの各第2のCLスペクトルでは、発光波長の緩やかなピークまたは肩(起伏)が約260nm~約262nm付近に存在し、測定領域a及びbと比べて、合成スペクトルに占めるn型本体領域21bのCLスペクトルの割合が大きくなっている。
 一方、測定領域eの第2のCLスペクトルでは、ピーク波長が約268nmであり、AlNモル分率に換算すると、約54%に相当する。約268nmのピーク波長は、準安定n型領域に対応するCL波長(約275nm)より約7nm短くなっている。また、測定領域eの第2のCLスペクトルには、準安定n型領域に対応する約275nmのCL波長が、ピーク強度の約46%の発光強度で含まれている。これらは、測定領域eの第2のCLスペクトルが、測定領域a~d及びfと同様に、第1Ga富化領域21a内の準安定n型領域と準安定近傍n型領域の各CLスペクトルと、n型本体領域21bのCLスペクトルの合成スペクトルとして現れていること示している。但し、測定領域eの第2のCLスペクトでは、測定領域a~d及びfと比べて、合成スペクトルに占める準安定n型領域のCLスペクトルの割合が小さくなっている。
 以上、図12に示す各測定領域a~fにおける第1のCLスペクトルより、n型本体領域21bのAlNモル分率は、n型クラッド層21のAlNモル分率の目標値58%とほぼ一致していることが分かる。更に、各測定領域a~fにおける第2のCLスペクトルより、第1Ga富化領域21aには、AlNモル分率が50%の準安定n型領域が含まれていると同時に、準安定n型領域よりAlNモル分率の高い準安定近傍n型領域が存在していることが分かる。また、図12に示す各測定領域a~fにおける第1及び第2のCLスペクトルに示される分析結果は、分析法の違いによる空間分解能等に差があるものの、図10A~図10Fに示されるEDX測定による分析結果と良く符合している。
 尚、図12に示す各測定領域a~fにおける第2のCLスペクトルからは、第1Ga富化領域21a内における準安定n型領域の存在比率が、n型クラッド層21内の位置に依存して変化する傾向が見受けられるが、不確定な部分も多いため詳細な検討は省略する。
 ここで、仮に、n型クラッド層21内のAlN層12に近い領域で準安定n型領域の存在比率が小さくなっているとしても、本発明の効果を必ずしも低減するものではない。上述したように、n型クラッド層21内のキャリア(電子)が第1Ga富化領域21a内に局在化することで、n型クラッド層21内において電流は優先的に第1Ga富化領域を安定的に流れることができ、発光素子の特性変動の抑制が図れる。しかし、発光領域である活性層22は、n型クラッド層21の上側に位置するので、上記局在化の効果は、n型クラッド層21の活性層22と接する上面近傍において顕著となる。従って、n型クラッド層21内のAlN層12に近い領域で上記局在化が不十分であっても、発光素子の特性変動の抑制は同様に図ることができる。更に、図4に示す素子構造では、順方向電流は、n型クラッド層21内の下層側より上層側を多く流れるため、n型クラッド層21内のAlN層12に近い領域で上記局在化が不十分であることの影響は殆ど無いと考えられる。
<井戸層のCLスペクトル>
 図13に、図5に示す井戸層220が3層、バリア層221が2層で構成された多重量子井戸構造を有する試料に対して、井戸層220の傾斜領域BA及びテラス領域TAの各CLスペクトルを測定した結果を示す。当該CL測定に使用した試料片は、n型クラッド層21内の組成分析をEDX法及びCL法で行った際の試料片と同様に作製した。
 試料片の井戸層220のテラス領域TA(井戸本体領域220b)での膜厚は7~8MLで、傾斜領域BA(第2Ga富化領域220a)での膜厚はテラス領域TAより僅かに厚く、9~10MLである。試料片のバリア層221のAlNモル分率の目標値は、80%である。その結果、バリア層221の傾斜領域BA(第3Ga富化領域221a)には、AlGaN組成比が整数比のAlGaとなっている準安定AlGaNが支配的に形成され、そのAlNモル分率は75%であることが想定される。
 図13に示すように、井戸層220の傾斜領域BA(第2Ga富化領域220a)でのCLスペクトルのピーク発光波長は、約296nmであり、図6に示すシミュレーション結果の発光波長とほぼ一致している。これより、試料片の井戸層220の第2Ga富化領域220aには、準安定井戸領域(AlGaN組成比がAlGaの準安定AlGaN)が支配的に存在していることが分かる。
 更に、図13に示すように、井戸層220のテラス領域TA(バリア本体領域221b)でのCLスペクトルのピーク発光波長は、約286nmであり、傾斜領域BAより約10nm短波長化している。これは、テラス領域TAの方が傾斜領域BAより、膜厚が薄く、AlNモル分率が高いことに起因する。
 図13に示すCLスペクトルでは、傾斜領域BAとテラス領域TAのそれぞれに対してビーム径50nm(直径)の電子ビームをそれぞれ照射しているため、個別に測定されている。しかし、実際のLED発光では、上述したように、発光を励起する電流は、主として井戸層220及びバリア層221の傾斜領域BAを流れるため、ピーク発光波長が約296nmの発光が主となり、発光スペクトルのピークが、約296nmと約286nmの2つのピークに分離することはない。
 井戸層220のCLスペクトルの測定で注目すべき点は、n型クラッド層21のCL法による組成分析と異なり、井戸層220に隣接するバリア層221、n型クラッド層21、及び、電子ブロック層のAlNモル分率が、井戸層220の傾斜領域BA(第2Ga富化領域220a)のAlNモル分率(33.3%)より、約33.3%~50%程度高いことである。このため、井戸層220の傾斜領域BAに向けて照射された電子ビームは、ビーム径が50nmと大きくてもビーム中央の高エネルギの電子は、エネルギ状態の低い井戸層220の傾斜領域BAに集中するため、井戸層220の傾斜領域BAの発光波長を正確に計測できる。
[第2実施形態]
 上記第1実施形態では、バリア層221が、AlNモル分率が100%でないAlGaN系半導体で構成される場合において、一例として、バリア層221の第3Ga富化領域221aを含む全体のAlNモル分率を50%~90%の範囲内とし、バリア本体領域221bのAlNモル分率を51%~90%の範囲内とし、第3Ga富化領域221aにおけるキャリアの局在化の効果を確保するために、第3Ga富化領域221aとバリア本体領域221bのAlNモル分率差を1%以上とすることを示した。
 第2実施形態では、第1実施形態におけるn型クラッド層21の第1Ga富化領域21a及び井戸層220の第2Ga富化領域220aと同様に、バリア層221の第3Ga富化領域221aも、第1または第2の準安定AlGaNで構成するのが好ましい。ここで、バリア層221全体のAlNモル分率が50%~90%の範囲内であるので、第3Ga富化領域221aに適用可能な第1の準安定AlGaNは、AlGaN組成比が整数比のAlGa、AlGa、または、AlGaとなる。また、第2の準安定AlGaNのAlGa12とAlGaも第3Ga富化領域221aに適用可能と考えられるが、敢えて使用するのであれば、より安定度の高いAlGaが好ましい。尚、第2の準安定AlGaNのAl11Ga12は、Alの組成比が高過ぎるため、移動し易いGaが対称配列となるサイトに入るまでに、量的に多いAlがランダムにサイトに入ることで、AlとGaの原子配列が対称配列とならない可能性が高くなり、AlとGaの原子配列はランダムな状態に近くなり、上述の安定度が低下するため、第2Ga富化領域221aには適用困難と考えられる。
 ところで、図6に示した井戸層220の発光波長のシミュレーション結果では、バリア層221の第3Ga富化領域221aのAlNモル分率が、66.7%、75%、及び、83.3%の3通りである場合を想定したが、これらは、AlGaN組成比がAlGa、AlGa、及び、AlGaの準安定AlGaNのAlNモル分率に該当する。
 第3Ga富化領域221aを準安定AlGaNのAlGa、AlGa、AlGa、または、AlGaで構成する場合、バリア本体領域221bのAlNモル分率は、第3Ga富化領域221aの4通りのAlNモル分率に各別に対応して、51%~66%、68%~74%、76%~82%、または、85%~90%の各範囲内とするのが好ましい。ここで、第3Ga富化領域221aを準安定AlGaNのAlGaで構成する場合において、安定度の低いAl11Ga12がランダムに混在するのを防止するために、バリア本体領域221bのAlNモル分率は90%を超えないように設定するのが好ましい。
 バリア層221の第3Ga富化領域221a及びバリア本体領域221bの製造方法は、上述したように、n型クラッド層21と同様の要領で、バリア本体領域221bに対して設定されたAlNモル分率を目標値として、多段状のテラスが表出し易い成長条件で、バリア層221を成長させる。
 第3Ga富化領域221a内に第1の準安定AlGaNであるAlGaを成長させる場合、n型クラッド層21のAlNモル分率の目標値Xaと同様に、バリア層221のAlNモル分率の目標値Xdを51%~66%の範囲内に設定する。同様の要領で、第3Ga富化領域221a内に第1の準安定AlGaNであるAlGaを成長させる場合は、バリア層221のAlNモル分率の目標値Xdを68%~74%の範囲内に設定し、第3Ga富化領域221a内に第2の準安定AlGaNであるAlGaを成長させる場合は、バリア層221のAlNモル分率の目標値Xdを76%~82%の範囲内に設定し、第3Ga富化領域221a内に第1の準安定AlGaNであるAlGaを成長させる場合は、バリア層221のAlNモル分率の目標値Xdを85%~90%の範囲内に設定する。
 従って、バリア層221のAlNモル分率の目標値Xdは、第3Ga富化領域221a内に形成する準安定AlGaN(目標準安定AlGaN)のAlNモル分率より1%以上、当該目標準安定AlGaNよりAlNモル分率の大きい直近の準安定AlGaNのAlNモル分率未満の範囲内に設定されている。このため、n型クラッド層21の第1Ga富化領域21aと同様に、第3Ga富化領域221a内に目標準安定AlGaNを安定的に形成することができるとともに、第3Ga富化領域221aとバリア本体領域221bのAlNモル分率差として1%以上が確保され、バリア層221内のキャリアは、バリア本体領域221bよりバンドギャップエネルギの小さい第3Ga富化領域221aに局在化する。
 第3Ga富化領域221aを安定度の高い準安定AlGaNで構成することにより、結晶成長装置のドリフト等に起因する混晶モル分率の変動が抑制され、バリア層221内においてキャリアの局在化が起こる第3Ga富化領域221aが、使用する準安定AlGaNに対応するAlNモル分率で安定的に形成される。この結果、n型クラッド層21内と同様に、バリア層221内においても、電流は優先的に第3Ga富化領域221aを安定的に流れることができ、更に、発光素子1の特性変動の抑制が図れる。
[別実施形態]
 以下に、上記第1及び第2実施形態の変形例について説明する。
(1)上記第1及び第2実施形態では、活性層22は、AlGaN系半導体で構成される2層以上の井戸層220と、AlGaN系半導体またはAlN系半導体で構成される1層以上のバリア層221を交互に積層した多重量子井戸構造で構成されている場合を想定したが、活性層22は、井戸層220が1層だけの単一量子井戸構造であり、バリア層221(量子バリア層)を備えない構成としても良い。斯かる単一量子井戸構造に対しても、上記各実施形態で採用したn型クラッド層21による効果は同様に奏し得ることは明らかである。
(2)上記実施形態では、n型クラッド層21の成長条件の一例として、有機金属化合物気相成長法で使用する原料ガスやキャリアガスの供給量及び流速は、n型クラッド層21を構成するn型AlGaN層全体の平均的なAlNモル分率に応じて設定されると説明した。つまり、n型クラッド層21全体の平均的なAlNモル分率が、上下方向に一定値に設定されている場合は、上記原料ガス等の供給量及び流速は一定に制御される場合を想定した。しかし、上記原料ガス等の供給量及び流速は必ずしも一定に制御されなくてもよい。
(3)上記実施形態では、第1領域R1及びp電極26の平面視形状は、一例として、櫛形形状のものを採用しが、該平面視形状は、櫛形形状に限定されるものではない。また、第1領域R1が複数存在して、夫々が、1つの第2領域R2に囲まれている平面視形状であってもよい。
(4)上記実施形態では、主面が(0001)面に対してオフ角を有するサファイア基板11を用いてAlN層12の表面に多段状のテラスが表出した下地部10を使用する場合を例示したが、当該オフ角の大きさや、オフ角を設ける方向(具体的には、(0001)面を傾ける方向であり、例えばm軸方向やa軸方向等)は、AlN層12の表面に多段状のテラスが表出して、第1Ga富化領域21aの成長開始点が形成される限りにおいて、任意に決定してもよい。
(5)上記実施形態では、発光素子1として、図1に例示するように、サファイア基板11を含む下地部10を備える発光素子1を例示しているが、サファイア基板11(更には、下地部10に含まれる一部または全部の層)をリフトオフ等により除去してもよい。更に、下地部10を構成する基板は、サファイア基板に限定されるものではない。
 本発明は、ウルツ鉱構造のAlGaN系半導体からなるn型層、活性層、及びp型層が上下方向に積層された発光素子構造部を備えてなる窒化物半導体紫外線発光素子に利用可能である。
 1:    窒化物半導体紫外線発光素子
 10:   下地部
 11:   サファイア基板
 11a:  サファイア基板の主面
 12:   AlN層
 20:   発光素子構造部
 21:   n型クラッド層(n型層)
 21a:  第1Ga富化領域(n型層)
 21b:  n型本体領域(n型層)
 22:   活性層
 220:  井戸層
 220a: 第2Ga富化領域
 220b: 井戸本体領域
 221:  バリア層
 221a: 第3Ga富化領域
 221b: バリア本体領域
 23:   電子ブロック層(p型層)
 24:   p型クラッド層(p型層)
 25:   p型コンタクト層(p型層)
 26:   p電極
 27:   n電極
 100:  基板
 101:  AlGaN系半導体層
 102:  テンプレート
 103:  n型AlGaN系半導体層
 104:  活性層
 105:  p型AlGaN系半導体層
 106:  p型コンタクト層
 107:  n電極
 108:  p電極
 BL:   第1領域と第2領域の境界線
 BA:   境界領域(傾斜領域)
 R1:   第1領域
 R2:   第2領域
 T:    テラス
 TA:   テラス領域
 

Claims (13)

  1.  ウルツ鉱構造のAlGaN系半導体からなるn型層、活性層、及びp型層が上下方向に積層された発光素子構造部を備えてなる窒化物半導体紫外線発光素子であって、
     前記n型層がn型AlGaN系半導体で構成され、
     前記n型層と前記p型層の間に配置された前記活性層が、AlGaN系半導体で構成された1層以上の井戸層を含む量子井戸構造を有し、
     前記p型層がp型AlGaN系半導体で構成され、
     前記n型層と前記活性層内の各半導体層が、(0001)面に平行な多段状のテラスが形成された表面を有するエピタキシャル成長層であり、
     前記n型層が、前記n型層内で一様に分散して存在する局所的にAlNモル分率の低い層状領域であって、AlGaN組成比が整数比のAlGaとなっているn型AlGaN領域を含む複数の第1Ga富化領域を有し、
     前記n型層の上面と直交する第1平面上での前記第1Ga富化領域の各延伸方向が、前記n型層の前記上面と前記第1平面との交線に対して傾斜しており、
     前記井戸層の前記多段状のテラスの隣接するテラス間の境界領域部分が、同じ前記井戸層内で局所的にAlNモル分率の低い第2Ga富化領域を有し、
     前記第2Ga富化領域内に、AlGaN組成比が整数比のAlGaとなっているAlGaN領域が存在していることを特徴とする窒化物半導体紫外線発光素子。
  2.  前記n型層内の前記層状領域以外のn型本体領域のAlNモル分率が54%~66%の範囲内にあることを特徴とする請求項1に記載の窒化物半導体紫外線発光素子。
  3.  前記井戸層の前記境界領域部分以外のAlNモル分率が33.4%~37%の範囲内にあることを特徴とする請求項1または2に記載の窒化物半導体紫外線発光素子。
  4.  前記活性層が、2層以上の前記井戸層を含む多重量子井戸構造を有し、
     2層の前記井戸層間にAlGaN系半導体で構成されたバリア層が存在することを特徴とする請求項1~3の何れか1項に記載の窒化物半導体紫外線発光素子。
  5.  前記バリア層がAlGaN系半導体で構成され、2層の前記井戸層間に位置する前記バリア層の内、少なくとも最も前記p型層側の前記バリア層の前記多段状のテラスの隣接するテラス間の境界領域部分が、同じ前記バリア層内で局所的にAlNモル分率の低い第3Ga富化領域を有することを特徴とする請求項4に記載の窒化物半導体紫外線発光素子。
  6.  前記バリア層の前記第3Ga富化領域内に、AlGaN組成比が整数比のAlGa、AlGa、AlGa、または、AlGaとなっているAlGaN領域が存在することを特徴とする請求項5に記載の窒化物半導体紫外線発光素子。
  7.  サファイア基板を含む下地部を、さらに備え、
     前記サファイア基板は、(0001)面に対して所定の角度だけ傾斜した主面を有し、当該主面の上方に前記発光素子構造部が形成されており、
     少なくとも前記サファイア基板の前記主面から前記活性層の表面までの各半導体層が、(0001)面に平行な多段状のテラスが形成された表面を有するエピタキシャル成長層であることを特徴とする請求項1~6の何れか1項に記載の窒化物半導体発光素子。
  8.  ウルツ鉱構造のAlGaN系半導体からなるn型層、活性層、及びp型層が上下方向に積層された発光素子構造部を備えてなる窒化物半導体紫外線発光素子の製造方法であって、
     (0001)面に対して所定の角度だけ傾斜した主面を有するサファイア基板を含む下地部の上に、n型AlGaN系半導体の前記n型層をエピタキシャル成長し、前記n型層の表面に(0001)面に平行な多段状のテラスを表出させる第1工程と、
     前記n型層の上に、AlGaN系半導体で構成された井戸層を1層以上含む量子井戸構造の前記活性層をエピタキシャル成長し、前記井戸層の表面に(0001)面に平行な多段状のテラスを表出させる第2工程と、
     前記活性層の上に、p型AlGaN系半導体の前記p型層をエピタキシャル成長により形成する第3工程を有し、
     前記第1工程において、前記n型層内で一様に分散して存在する局所的にAlNモル分率の低い層状領域であって、AlGaN組成比が整数比のAlGaとなっているn型AlGaN領域を含む複数の第1Ga富化領域を斜め上方に向かって延伸するように成長させ、
     前記第2工程において、前記井戸層の前記多段状のテラスの隣接するテラス間の境界領域部分に、同じ前記井戸層内で局所的にAlNモル分率の低い第2Ga富化領域を形成しつつ、前記第2Ga富化領域内にAlGaN組成比が整数比のAlGaとなっているAlGaN領域を成長させることを特徴とする窒化物半導体紫外線発光素子の製造方法。
  9.  前記第1工程において、前記n型層のAlNモル分率の目標値を54%~66%の範囲内に設定して、前記第1Ga富化領域内にAlGaN組成比が整数比のAlGaとなっているn型AlGaN領域を成長させることを特徴とする請求項8に記載の窒化物半導体紫外線発光素子の製造方法。
  10.  前記第2工程において、前記井戸層のAlNモル分率の目標値を33.4%~37%の範囲内に設定して、前記第2Ga富化領域内にAlGaN組成比が整数比のAlGaとなっているAlGaN領域を成長させることを特徴とする請求項8または9に記載の窒化物半導体紫外線発光素子の製造方法。
  11.  前記第2工程において、AlGaN系半導体で構成された前記井戸層とAlGaN系半導体で構成されたバリア層を交互にエピタキシャル成長により積層し、前記バリア層と前記井戸層の各表面に(0001)面に平行な多段状のテラスが表出した、前記井戸層を2層以上含む多重量子井戸構造の前記活性層を形成することを特徴とする請求項8~10の何れか1項に記載の窒化物半導体発光素子の製造方法。
  12.  前記第2工程において、AlGaN系半導体で構成された前記バリア層を形成する際に、2層の前記井戸層間に位置する前記バリア層の内、少なくとも最も前記p型層側の前記バリア層の前記テラス間の境界領域部分に同じ前記バリア層内で局所的にAlNモル分率の低い第3Ga富化領域を形成することを特徴とする請求項11に記載の窒化物半導体紫外線発光素子の製造方法。
  13.  前記第2工程において、
    1)前記バリア層のAlNモル分率の目標値を51%~66%の範囲内に設定して、前記第3Ga富化領域内に、AlGaN組成比が整数比のAlGaとなっているAlGaN領域を成長させる、または、
    2)前記バリア層のAlNモル分率の目標値を68%~74%の範囲内に設定して、前記第3Ga富化領域内に、AlGaN組成比が整数比のAlGaとなっているAlGaN領域を成長させる、または、
    3)前記バリア層のAlNモル分率の目標値を76%~82%の範囲内に設定して、前記第3Ga富化領域内に、AlGaN組成比が整数比のAlGaとなっているAlGaN領域を成長させる、または、
    4)前記バリア層のAlNモル分率の目標値を85%~90%の範囲内に設定して、前記第3Ga富化領域内に、AlGaN組成比が整数比のAlGaとなっているAlGaN領域を成長させることを特徴とする請求項12に記載の窒化物半導体紫外線発光素子の製造方法。
PCT/JP2020/024828 2020-06-24 2020-06-24 窒化物半導体紫外線発光素子及びその製造方法 WO2021260850A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2020/024828 WO2021260850A1 (ja) 2020-06-24 2020-06-24 窒化物半導体紫外線発光素子及びその製造方法
JP2022531323A JP7406633B2 (ja) 2020-06-24 2020-06-24 窒化物半導体紫外線発光素子及びその製造方法
KR1020227040420A KR20230002875A (ko) 2020-06-24 2020-06-24 질화물 반도체 자외선 발광 소자 및 그 제조 방법
US17/926,240 US20230197889A1 (en) 2020-06-24 2020-06-24 Nitride semiconductor ultraviolet light-emitting element and production method therefor
CN202080102059.5A CN115699340A (zh) 2020-06-24 2020-06-24 氮化物半导体紫外线发光元件及其制造方法
TW109135119A TW202201813A (zh) 2020-06-24 2020-10-12 氮化物半導體紫外線發光元件及其製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/024828 WO2021260850A1 (ja) 2020-06-24 2020-06-24 窒化物半導体紫外線発光素子及びその製造方法

Publications (1)

Publication Number Publication Date
WO2021260850A1 true WO2021260850A1 (ja) 2021-12-30

Family

ID=79282116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024828 WO2021260850A1 (ja) 2020-06-24 2020-06-24 窒化物半導体紫外線発光素子及びその製造方法

Country Status (6)

Country Link
US (1) US20230197889A1 (ja)
JP (1) JP7406633B2 (ja)
KR (1) KR20230002875A (ja)
CN (1) CN115699340A (ja)
TW (1) TW202201813A (ja)
WO (1) WO2021260850A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023203599A1 (ja) * 2022-04-18 2023-10-26 日機装株式会社 窒化物半導体紫外線発光素子

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002016000A (ja) * 2000-06-27 2002-01-18 Sanyo Electric Co Ltd 窒化物系半導体素子および窒化物系半導体基板
JP2006060164A (ja) * 2004-08-24 2006-03-02 National Institute Of Advanced Industrial & Technology 窒化物半導体デバイスおよび窒化物半導体結晶成長方法
JP2016088803A (ja) * 2014-11-04 2016-05-23 Dowaエレクトロニクス株式会社 Iii族窒化物半導体エピタキシャル基板およびその製造方法、ならびにiii族窒化物半導体発光素子
WO2017013729A1 (ja) * 2015-07-21 2017-01-26 創光科学株式会社 窒化物半導体紫外線発光素子
WO2019102557A1 (ja) * 2017-11-22 2019-05-31 創光科学株式会社 窒化物半導体発光素子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2993710B1 (en) 2013-04-30 2018-06-06 Soko Kagaku Co., Ltd. Ultraviolet light-emitting device
WO2016157518A1 (ja) 2015-04-03 2016-10-06 創光科学株式会社 窒化物半導体紫外線発光素子及び窒化物半導体紫外線発光装置
EP3754732B1 (en) 2018-02-14 2023-04-12 Soko Kagaku Co., Ltd. Nitride semiconductor ultraviolet light-emitting element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002016000A (ja) * 2000-06-27 2002-01-18 Sanyo Electric Co Ltd 窒化物系半導体素子および窒化物系半導体基板
JP2006060164A (ja) * 2004-08-24 2006-03-02 National Institute Of Advanced Industrial & Technology 窒化物半導体デバイスおよび窒化物半導体結晶成長方法
JP2016088803A (ja) * 2014-11-04 2016-05-23 Dowaエレクトロニクス株式会社 Iii族窒化物半導体エピタキシャル基板およびその製造方法、ならびにiii族窒化物半導体発光素子
WO2017013729A1 (ja) * 2015-07-21 2017-01-26 創光科学株式会社 窒化物半導体紫外線発光素子
WO2019102557A1 (ja) * 2017-11-22 2019-05-31 創光科学株式会社 窒化物半導体発光素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023203599A1 (ja) * 2022-04-18 2023-10-26 日機装株式会社 窒化物半導体紫外線発光素子

Also Published As

Publication number Publication date
CN115699340A (zh) 2023-02-03
JP7406633B2 (ja) 2023-12-27
US20230197889A1 (en) 2023-06-22
TW202201813A (zh) 2022-01-01
JPWO2021260850A1 (ja) 2021-12-30
KR20230002875A (ko) 2023-01-05

Similar Documents

Publication Publication Date Title
US9293646B2 (en) Method of manufacture for nitride semiconductor light emitting element, wafer, and nitride semiconductor light emitting element
JP5908979B2 (ja) 窒化物半導体発光素子及びその製造方法
US6969670B2 (en) Selective growth method, and semiconductor light emitting device and fabrication method thereof
US11217726B2 (en) Nitride semiconductor ultraviolet light-emitting element
WO2021260850A1 (ja) 窒化物半導体紫外線発光素子及びその製造方法
WO2021260849A1 (ja) 窒化物半導体紫外線発光素子
WO2022009306A1 (ja) 窒化物半導体紫外線発光素子及びその製造方法
WO2022038769A1 (ja) 窒化物半導体紫外線発光素子
WO2022059125A1 (ja) 窒化物半導体紫外線発光素子
US20220262977A1 (en) Light-emitting diode and manufacturing method
US11322649B2 (en) Three color light sources integrated on a single wafer
WO2022091173A1 (ja) 窒化物半導体紫外線発光素子
WO2022219731A1 (ja) 窒化物半導体紫外線発光素子及びその製造方法
WO2022149183A1 (ja) 窒化物半導体紫外線発光素子の製造方法、及び、窒化物半導体紫外線発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941859

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531323

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227040420

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941859

Country of ref document: EP

Kind code of ref document: A1