KR102285185B1 - 질화물 반도체 자외선 발광 소자 - Google Patents

질화물 반도체 자외선 발광 소자 Download PDF

Info

Publication number
KR102285185B1
KR102285185B1 KR1020207020875A KR20207020875A KR102285185B1 KR 102285185 B1 KR102285185 B1 KR 102285185B1 KR 1020207020875 A KR1020207020875 A KR 1020207020875A KR 20207020875 A KR20207020875 A KR 20207020875A KR 102285185 B1 KR102285185 B1 KR 102285185B1
Authority
KR
South Korea
Prior art keywords
layer
type
light emitting
rich
region
Prior art date
Application number
KR1020207020875A
Other languages
English (en)
Other versions
KR20200096649A (ko
Inventor
아키라 히라노
요스케 나가사와
시게후사 지치부
가즈노부 고지마
Original Assignee
소코 가가쿠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 소코 가가쿠 가부시키가이샤 filed Critical 소코 가가쿠 가부시키가이샤
Publication of KR20200096649A publication Critical patent/KR20200096649A/ko
Application granted granted Critical
Publication of KR102285185B1 publication Critical patent/KR102285185B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities

Abstract

(과제) 활성층으로부터 n 형 질화물 반도체층측을 향해 출사된 자외선을 소자 외부로 취출하는 질화물 반도체 발광 소자에 있어서, 월 플러그 효율의 향상을 도모한다.
(해결 수단) 질화물 반도체 자외선 발광 소자 (1) 를 구성하는 n 형 AlGaN 계 반도체층 (21) 중에, 상기 n 형층 (21) 의 일부로서 국소적으로 Ga 조성비가 높은 박막상의 복수의 Ga 리치층 (21b) 이, n 형층 (21) 의 상면과 직교하는 방향인 상하 방향으로 이간되어 존재하고, 상하 방향과 평행한 제 1 평면 상에서의 복수의 Ga 리치층 (21b) 의 적어도 일부의 연신 방향이, n 형층 (21) 의 상면과 제 1 평면의 교선에 대해 경사져 있고, n 형층 (21) 의 상면으로부터 하방측으로 100 nm 이내의 두께의 상층역 내에 있어서, n 형층 (21) 의 상면과 평행한 제 2 평면 상에, 복수의 Ga 리치층 (21b) 이 줄무늬상으로 존재하고, Ga 리치층 (21b) 의 AlN 몰 분율이, 발광 소자 (1) 를 구성하는 활성층 (22) 내의 우물층 (22b) 의 AlN 몰 분율보다 크다.

Description

질화물 반도체 자외선 발광 소자
본 발명은, AlGaN 계 반도체로 구성된 발광층을 갖는 질화물 반도체 자외선 발광 소자에 관한 것이다.
일반적으로, 질화물 반도체 발광 소자는, 사파이어 등의 기판 상에 에피택셜 성장에 의해 복수의 질화물 반도체층으로 이루어지는 발광 소자 구조를 형성한 것이 다수 존재한다. 질화물 반도체층은, 일반식 Al1-x-yGaxInyN (0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ x+y ≤ 1) 으로 나타내어진다.
발광 다이오드의 발광 소자 구조는, n 형 질화물 반도체층과 p 형 질화물 반도체층 사이에, 단일 양자 우물 구조 (SQW : Single-Quantum-Well) 혹은 다중 양자 우물 구조 (MQW : Multi-Quantum-Well) 의 질화물 반도체층으로 이루어지는 활성층이 끼워진 더블 헤테로 구조를 가지고 있다. 활성층이 AlGaN 계 반도체층인 경우, AlN 몰 분율 (Al 조성비라고도 한다) 을 조정함으로써, 밴드 갭 에너지를, GaN 과 AlN 이 취할 수 있는 밴드 갭 에너지 (약 3.4 eV 와 약 6.2 eV) 를 각각 하한 및 상한으로 하는 범위 내에서 조정할 수 있고, 발광 파장이 약 200 nm 에서부터 약 365 nm 까지인 자외선 발광 소자가 얻어진다. 구체적으로는, p 형 질화물 반도체층으로부터 n 형 질화물 반도체층을 향해 순방향 전류를 흘림으로써, 활성층에 있어서 캐리어 (전자 및 정공) 의 재결합으로 인한 상기 밴드 갭 에너지에 따른 발광이 생긴다. 당해 순방향 전류를 외부로부터 공급하기 위해, p 형 질화물 반도체층 상에 p 전극이, n 형 질화물 반도체층 상에 n 전극이, 각각 형성되어 있다.
활성층이 AlGaN 계 반도체층인 경우, 활성층을 사이에 두는 n 형 질화물 반도체층과 p 형 질화물 반도체층은, 활성층보다 고 AlN 몰 분율의 AlGaN 계 반도체층으로 구성된다. 그러나, 고 AlN 몰 분율의 p 형 질화물 반도체층은, p 전극과 양호한 옴 접촉을 형성하는 것이 곤란하기 때문에, p 형 질화물 반도체층의 최상층에 저 AlN 몰 분율의 p 형 AlGaN 계 반도체 (구체적으로는 p-GaN) 로 이루어지는 p 전극과 양호한 옴 접촉 가능한 p 형 컨택트층을 형성하는 것이 일반적으로 실시되고 있다. 이 p 형 컨택트층은, AlN 몰 분율이 활성층을 구성하는 AlGaN 계 반도체보다 작기 때문에, 활성층으로부터 p 형 질화물 반도체층측을 향해 출사된 자외선은 그 p 형 컨택트층에서 흡수되어, 소자 외부로 유효하게 취출할 수 없다. 이 때문에, 활성층이 AlGaN 계 반도체층인 일반적인 자외선 발광 다이오드는, 도 8 에 모식적으로 나타내는 바와 같은 소자 구조를 채용하여, 활성층으로부터 n 형 질화물 반도체층측을 향해 출사된 자외선을 소자 외부로 유효하게 취출하고 있다 (예를 들어, 하기의 특허문헌 1 및 2, 비특허문헌 1 및 2 등 참조).
도 8 에 나타내는 바와 같이, 일반적인 자외선 발광 다이오드는, 사파이어 기판 등의 기판 (100) 상에 AlGaN 계 반도체층 (101) (예를 들어, AlN 층) 을 퇴적하여 형성된 템플릿 (102) 상에, n 형 AlGaN 계 반도체층 (103), 활성층 (104), p 형 AlGaN 계 반도체층 (105), 및, p 형 컨택트층 (106) 을 차례로 퇴적하고, 활성층 (104) 과 p 형 AlGaN 계 반도체층 (105) 과 p 형 컨택트층 (106) 의 일부를, n 형 AlGaN 계 반도체층 (103) 이 노출될 때까지 에칭 제거하고, n 형 AlGaN 계 반도체층 (103) 의 노출면에 n 전극 (107) 을, p 형 컨택트층 (106) 의 표면에 p 전극 (108) 을 각각 형성하여 구성된다.
국제 공개 공보 제2014/178288호 국제 공개 공보 제2016/157518호
Kentaro Nagamatsu, et al., "High-efficiency AlGaN-based UV light-emitting diode on laterally overgrown AlN", Journal of Crystal Growth, 2008, 310, pp.2326-2329 Shigeaki Sumiya, et al., "AlGaN-Based Deep Ultraviolet Light-Emitting Diodes Grown on Epitaxial AlN/Sapphire Templates", Japanese Journal of Applied Physics, Vol.47, No.1, 2008, pp.43-46
발광 소자의 월 플러그 효율 Ewp 는, 발광 소자에 입력한 전체 전력에 대한 광 출력의 비율로서 정의되는 발광 효율로, 발광 소자의 외부 양자 효율 Eex 와, 활성층에 인가되는 전압 Vg 와 발광 소자에 인가되는 구동 전압 V 의 비 (Vg/V) 로 나타내어지는 전압 효율 Ev 의 곱 (Eex×Ev) 으로 나타내어진다. 한편, 발광 소자의 외부 양자 효율 Eex 는, 활성층 내에서의 캐리어 재결합에 의한 발광 효율을 나타내는 내부 양자 효율 Ein 과, 활성층에서 발광한 광을 발광 소자의 외부로 취출하는 효율을 나타내는 광 취출 효율 Eext 의 곱 (Ein×Eext) 으로 정의된다.
따라서, 월 플러그 효율 Ewp 를 향상시키려면, 상기 전압 효율 Ev 와, 상기 내부 양자 효율 Ein 과, 상기 광 취출 효율 Eext 를 각각 개별적으로 향상시킬 필요가 있고, 지금까지 다수의 제안이 이루어져 있다.
내부 양자 효율은, AlGaN 계 반도체층의 결정 품질의 개선, 및, 캐리어의 활성층 내로의 주입 효율을 높이는 것 등에 의해 향상을 도모하는 시도가 이루어지고 있고, 예를 들어, 후자의 시도로서, 활성층을 다중 양자 우물 구조로 하는 것, 활성층 상에 전자 블록층을 형성하는 것 등이 이미 실시되고 있지만, 여전히 개선의 여지가 남아 있다.
활성층 내의 캐리어 밀도를 n 으로 한 경우, 캐리어의 재결합은, 경험칙으로서, 하기 식 (1) 로 나타내어지는 3 종류의 재결합으로 이루어지는 모델로 근사적으로 나타내어진다.
R = An+Bn2+Cn3 (1)
식 (1) 에 있어서, 좌변의 R 은 캐리어의 재결합 속도 (활성층에 주입되는 전류에 상당) 이고, 우변의 A, B, C 는, 비발광 재결합 중심을 통해 캐리어가 재결합하는 쇼클리·리드·홀 (SRH) 재결합, 발광 재결합, 오제 (Auger) 재결합의 각 계수이다. 발광 다이오드의 경우, 통상, 캐리어 밀도 n 의 3 승에 비례하는 오제 재결합의 효과는 무시할 수 있기 때문에, 추가로, 발광 소자에 주입되는 전류의 전류 밀도가 낮고, 활성층에 주입되지 않고 오버플로하는 전류의 비율이 작아 무시할 수 있는 경우를 상정하면, 내부 양자 효율 Ein 은, 근사적으로 하기의 식 (2) 의 캐리어 밀도 n 의 함수 f(n) 으로 나타내어진다.
Ein = f(n) = Bn/(A+Bn) (2)
식 (2) 로부터, 오제 재결합을 무시할 수 있는 범위 내에 있어서의 캐리어 밀도 n 의 증가에 의해, 내부 양자 효율 Ein 은 증가하게 된다.
한편, 도 8 에 나타내는 소자 구조에 있어서, p 전극 (108) 으로부터 n 전극 (107) 을 향하여 흐르는 순방향 전류의 전류 경로 상에는 다양한 기생 저항이 존재하고, 그 기생 저항이 커지면, 그 기생 저항에 의한 전압 강하로 인해, p 전극 (108) 과 n 전극 (107) 사이에 인가되는 순방향 바이어스에 대해 활성층 (104) 에 인가되는 전압이 상대적으로 작아져, 전압 효율 Ev 가 저하되고, 결과적으로 발광 소자의 월 플러그 효율 Ewp 가 저하된다.
특히, 도 8 에 나타내는 소자 구조에서는, 활성층 (104) 의 바로 아래에 n 전극 (107) 을 형성할 수 없기 때문에, 활성층 (104) 과 n 전극 (107) 사이가 가로 방향 (n 형 AlGaN 계 반도체층 (103) 의 표면에 평행한 방향) 으로 이간되고, n 형 AlGaN 계 반도체층 (103) 의 당해 가로 방향의 전기 저항이 큰 기생 저항이 된다. 또, 자외선 발광 소자에서는, 발광 파장의 단파장화에 수반하여, 활성층 (104) 및 n 형 AlGaN 계 반도체층 (103) 을 구성하는 AlGaN 계 반도체의 AlN 몰 분율이 커지지만, n 형 AlGaN 계 반도체의 비저항은 AlN 몰 분율이 클수록 높아지는 경향이 있고, n 형 AlGaN 계 반도체층 (103) 의 기생 저항에서 기인하는 전압 효율 Ev 의 저하는, 발광 파장의 단파장화에 수반하여 현저해진다.
이 때문에, 활성층이 AlGaN 계 반도체층인 자외선 발광 다이오드에서는, 활성층의 평면에서 본 형상을, 활성층 내의 임의의 점으로부터 n 전극에 이르는 전류 경로의 거리를 짧게 할 수 있는 빗형 형상으로 하여, n 형 AlGaN 계 반도체층의 기생 저항에서 기인하는 전압 효율 Ev 의 저하를 억제하고, 월 플러그 효율 Ewp 의 저하의 억제가 도모되어 있었다 (예를 들어, 하기의 특허문헌 1 및 2 등 참조).
그런데, 일반적인 질화물 반도체 자외선 발광 소자에서는, n 형 AlGaN 계 반도체층의 막 두께는 1 ∼ 2 ㎛ 정도 (예를 들어, 상기 특허문헌 2, 비특허문헌 1 및 2 참조) 인 것에 대해, 칩 사이즈는 400 ㎛ 부터 1 mm 를 초과하는 것까지 있기 때문에, 활성층의 평면에서 본 형상의 최소 폭은, 만일, 상기 특허문헌 1 및 2 에 개시되어 있는 바와 같은 빗형 형상을 상정하면, 적어도 40 ㎛ 는 될 것으로 생각된다. 이 경우, n 형 AlGaN 계 반도체층 중의 전류 경로의 세로 방향 (상하 방향) 의 길이가 1 ∼ 2 ㎛ 정도 이하인 것에 대해, n 형 AlGaN 계 반도체층 중의 전류 경로의 가로 방향의 길이는 20 ㎛ 이상 (10 배 이상) 이 된다. n 형 AlGaN 계 반도체층의 비저항이 만일 당해 층 내에 있어서 균일해도, 상기 전류 경로의 가로 방향의 전기 저항 (비저항×길이/단면적) 은, 상기 전류 경로의 세로 방향의 전기 저항의 100 배 이상이 된다. 따라서, n 형 AlGaN 계 반도체층의 기생 저항의 영향은, 가로 방향에 있어서 현저해진다.
본 발명은, 상기 서술한 문제점을 감안하여 이루어진 것으로, 그 목적은, 활성층으로부터 n 형 질화물 반도체층측을 향해 출사된 자외선을 소자 외부로 취출하는 질화물 반도체 발광 소자에 있어서, 월 플러그 효율의 향상을 도모하는 것에 있다.
본 발명은, 상기 목적을 달성하기 위해, n 형 AlGaN 계 반도체층으로 이루어지는 n 형층과, 상기 n 형층의 상면의 제 1 영역 상에 형성된 AlGaN 계 반도체층의 활성층과, 상기 활성층의 상면에 형성된 1 층 이상의 p 형 AlGaN 계 반도체층으로 이루어지는 p 형층을 포함하는 반도체 적층부와, 상기 n 형층의 상면의 상기 제 1 영역이 아닌 제 2 영역 상에 형성된 n 전극과, 상기 p 형층의 상면에 형성된 p 전극을 구비하여 이루어지는 질화물 반도체 자외선 발광 소자로서,
상기 활성층이, AlGaN 계 반도체층으로 구성된 우물층을 1 층 이상 포함하는 양자 우물 구조를 갖고, 상기 n 형층의 상기 상면의 적어도 상기 제 1 영역의 하방의 상기 n 형층 중에, 상기 n 형층의 일부로서 국소적으로 Ga 조성비가 높은 박막상의 복수의 Ga 리치층이, 상기 상면과 직교하는 방향인 상하 방향으로 이간되어 존재하고,
상기 상하 방향과 평행한 제 1 평면 상에서의 상기 복수의 Ga 리치층의 적어도 일부의 연신 방향이, 상기 n 형층의 상기 상면과 상기 제 1 평면의 교선에 대해 경사져 있고,
상기 n 형층의 상기 상면과 평행한 복수의 제 2 평면의 각각에 있어서, 복수의 상기 Ga 리치층이 줄무늬상으로 존재하고, 상기 복수의 제 2 평면의 적어도 1 개가, 상기 n 형층의 상기 상면으로부터 하방측으로 100 nm 이내의 두께의 상층역 내에 존재하고,
상기 제 1 영역의 하방에 존재하는 상기 Ga 리치층의 AlN 몰 분율이, 상기 우물층의 AlN 몰 분율보다 큰 것을 특징으로 하는 질화물 반도체 자외선 발광 소자를 제공한다.
또한, AlGaN 계 반도체란, 일반식 Al1-xGaxN (0 ≤ x ≤ 1) 으로 나타내어지지만, 밴드 갭 에너지가 GaN 과 AlN 이 취할 수 있는 밴드 갭 에너지를 각각 하한 및 상한으로 하는 범위 내이면, B 또는 In 등의 3 족 원소 또는 P 등의 5 족 원소 등의 불순물을 미량으로 함유하고 있어도 된다. 또한, n 형 또는 p 형 AlGaN 계 반도체층은, 상기 AlGaN 계 반도체층에 도너 또는 억셉터 불순물로서 Si 또는 Mg 등이 도핑된 층이다. 본원에서는, p 형 및 n 형으로 명기되어 있지 않은 AlGaN 계 반도체층은, 언도프의 AlGaN 계 반도체층을 의미하지만, 언도프층이더라도, 불가피적으로 혼입되는 정도의 미량의 도너 또는 억셉터 불순물은 함유될 수 있다. 또, 제 1 평면과 제 2 평면은, 반드시 상기 반도체 적층부에 제조 과정에서 구체적으로 형성된 노출면이나 각 반도체층 간의 경계면은 아니고, 상기 n 형층 내를 상하 방향으로 평행하게 연신되는 가상적인 평면과, 상하 방향으로 직교하여 연신되는 가상적인 평면이다.
상기 특징의 질화물 반도체 자외선 발광 소자에 의하면, 이하의 이유로부터 내부 양자 효율의 향상이 기대된다. 상기 상층역 내의 상기 제 2 평면 내에 있어서, 복수의 상기 Ga 리치층이 줄무늬상으로 존재하고 있음으로써, 활성층 바로 아래의 n 형층 내에서 Ga 조성비가 높은 Ga 리치층과 상대적으로 Ga 조성비가 낮은 층 (임시로 베이스층이라고 칭한다) 이 교대로 존재하는 Ga 의 조성 변조가 발생되어 있다. Ga 리치층 쪽이 베이스층보다 전류를 흘리기 쉽기 때문에, Ga 리치층으로부터 활성층을 향해 주입되는 캐리어 밀도 쪽이, 베이스층으로부터 활성층을 향해 주입되는 캐리어 밀도보다 높아져, 활성층 내의 제 2 평면과 평행한 면 내에 있어서, 캐리어 밀도가 높은 부분과 낮은 부분의 차가 생긴다.
여기서, 활성층 내의 제 2 평면과 평행한 면 내의 2 개의 동일한 면적의 미소 영역 S1 과 S2 를 상정하고, 상기 Ga 의 조성 변조가 발생되지 않아, 미소 영역 S1 과 S2 에 주입되는 전류 I 가 동일한 I0 인 케이스 1 과, 상기 Ga 의 조성 변조가 발생되어, 미소 영역 S1 에 주입되는 전류 I1 이 미소 영역 S2 에 주입되는 전류 I2 보다 커져, I1+I2 = 2×I0 (I1 > I0, I2 < I0) 이 되는 케이스 2 를 상정한다.
케이스 1 에서는, 미소 영역 S1 과 S2 사이에서 캐리어 밀도 n 은 동일하여, 캐리어 밀도 n0 으로 한다. 따라서, 미소 영역 S1 과 S2 의 각 내부 양자 효율 Ein 은, f(n0) 으로 나타내어지고, 미소 영역 S1 과 S2 에서 각각 광 재결합에 제공되는 전류 Ig0 과 그 합계 전류 Ig0t 는, 하기의 식 (3) 에 나타내는 바와 같이 된다.
Ig0t = 2Ig0 = 2f(n0)I0 (3)
케이스 2 에서는, I1 = I0(1+x), I2 = I0(1-x), 단, 0 < x ≤ 1 로 하면, 미소 영역 S1 에 있어서는, 전류 I1 과 마찬가지로, 주입되는 캐리어 밀도 n 이 (1+x) 배로 증가하여, 내부 양자 효율 Ein 이, 케이스 1 의 미소 영역 S1 의 내부 양자 효율 f(n0) 보다 높은 내부 양자 효율 f(n0(1+x)) 가 되고, 미소 영역 S2 에 있어서는, 전류 I2 와 마찬가지로, 주입되는 캐리어 밀도 n 이 (1-x) 배로 감소하여, 내부 양자 효율 Ein 이, 케이스 1 의 미소 영역 S2 의 내부 양자 효율 f(n0) 보다 낮은 내부 양자 효율 f(n0(1-x)) 가 된다. 따라서, 미소 영역 S1 과 S2 에서 각각 광 재결합에 제공되는 전류 Ig1, Ig2 와 그 합계 전류 Ig1t 는, 하기의 식 (4) 에 나타내는 바와 같이 된다.
Ig1t = Ig1+Ig2 = f(n0(1+x))I0(1+x)
+f(n0(1-x))I0(1-x) (4)
여기서, 함수 f(n) 은, 변수 n 의 0 으로부터의 증가에 의해, 0 부터 1 을 향해 단조롭게 증가하는 함수이며, I1 및 I2 의 I0 으로부터의 변화량이 작은 경우에는, f(n0(1+x)) 와 f(n0(1-x)) 는, f(n0)+Δ(x) 와 f(n0)-Δ(x) 로 근사할 수 있고, 식 (4) 는, 하기의 식 (5) 가 된다.
Ig1t = 2f(n0)I0+2Δ(x)I0x
= Ig0t+2Δ(x)I0x (5)
상기 식 (5) 로부터, I1 및 I2 의 I0 으로부터의 변화량이 작은 경우에는, 상기 Ga 의 조성 변조가 발생되는 케이스 2 쪽이, 그 조성 변조가 발생되어 있지 않은 케이스 1 보다, 광 재결합에 제공되는 전류가, 미소 영역당 Δ(x)I0x 만큼 증가함을 알 수 있다.
한편, I1 및 I2 의 I0 으로부터의 변화량이 크고, x = 1 인 경우에는, 상기식 (4) 는, 하기의 식 (6) 이 된다.
Ig1t = 2f(2n0)I0 (6)
식 (6) 의 f(2n0) 은, 식 (3) 의 f(n0) 보다 크기 때문에, I1 및 I2 의 I0 으로부터의 변화량이 큰 경우에도, 상기 Ga 의 조성 변조가 발생되는 케이스 2 쪽이, 그 조성 변조가 발생되어 있지 않은 케이스 1 보다, 광 재결합에 제공되는 전류가, 미소 영역당 (f(2n0) ― f(n0)) 만큼 증가함을 알 수 있다.
이상으로부터, 활성층 전체에 주입되는 총 전류가 동일한 경우에, 상기 Ga 의 조성 변조가 발생되는 케이스 2 쪽이, 그 조성 변조가 발생되어 있지 않은 케이스 1 보다, 활성층 전체에서 광 재결합에 제공되는 전류가 증가하게 되어, 활성층 전체에서의 내부 양자 효율 Ein 이 증가하게 된다. 이 결과, 월 플러그 효율의 향상이 기대된다.
여기서 주의해야 할 포인트는, 활성층 내에 있어서 Ga 의 조성 변조가 발생되어 있지 않아도, 그 근방에 존재하는 n 형층에 있어서 Ga 의 조성 변조가 발생되어 있으면, 활성층을 향해 주입되는 캐리어 밀도에 변화가 생기고, 결과적으로 내부 양자 효율 Ein 의 향상을 도모할 수 있을 것으로 기대되는 점이다.
상기 특징의 질화물 반도체 자외선 발광 소자에 의하면, n 형층 중에 있어서 상대적으로 비저항이 낮은, 요컨대, 전류가 흐르기 쉬운 복수의 Ga 리치층이, 그 위에 활성층이 존재하는 제 1 영역의 하방의 n 형층 내에 상하 방향으로 이간되어 형성되어 있으므로, p 전극과 n 전극 사이에 인가되는 순방향 바이어스에 의해, p 형 질화물 반도체층으로부터 n 형 질화물 반도체층을 향해 흐르는 순방향 전류는, 활성층 바로 아래의 n 형층 중에 있어서, 가로 방향 (n 형층의 상면과 평행한 방향) 으로, n 전극 바로 아래의 영역을 향해 흐를 때에, 당해 가로 방향에 대해서도 연신되어 있는 그 전류가 흐르기 쉬운 복수의 Ga 리치층을 통과할 수 있기 때문에, 당해 n 형층의 가로 방향의 기생 저항을, 복수의 Ga 리치층이 형성되어 있지 않은 경우와 비교하여 저감시킬 수 있을 것으로 생각된다. 이 결과, 활성층으로부터 n 형 질화물 반도체층측을 향해 출사된 자외선을 소자 외부로 취출하는 소자 구조에 있어서, 그 기생 저항에서 기인하는 전압 강하를 억제할 수 있어, 전압 효율 Ev 의 향상에 의한 월 플러그 효율의 향상이 기대된다.
그 기생 저항에서 기인하는 전압 강하는, 제 1 영역의 외주부로부터 중심부를 향해 현저해지기 때문에, 제 1 영역의 최소 폭은, 당해 전압 강하에 의해 일정치 이하로 제한된다. 그러나, 당해 전압 강하를 억제할 수 있으면, 제 1 영역의 최소 폭을 크게 할 수 있다. 이 결과, 칩 사이즈에서 차지하는 제 1 영역의 면적을 크게 할 수 있다.
또한, 상기 특징의 질화물 반도체 자외선 발광 소자는, 상기 제 1 영역의 하방의 상기 상층역 내의 적어도 1 개의 상기 제 2 평면 상에 있어서, 줄무늬상의 상기 Ga 리치층이 부분적으로 존재함으로써 Ga 의 조성 변조가 발생되어 있는 1 ㎛ 사방 이하의 미소 구역이 분산되어 존재하는 것이 바람직하다. 이로써, 활성층에 주입되는 전류의 전류 밀도가 높은 부분과 낮은 부분이 세분화되어 균일하게 분산시킬 수 있고, 비발광 재결합에 의한 발열의 국재화를 방지할 수 있음과 함께, Ga 의 조성 변조에서 기인하는 내부 양자 효율의 변화에 수반하는 발광 강도의 변화가 미소 구역 내에서 생기며, 또한, 당해 발광 강도의 변화가 활성층 내에서 균일하게 분포되기 때문에, 국소적인 발광 강도의 면 내 편차를 활성층 전체에서 균일화할 수 있어, 활성층 내에서의 발광 강도의 거시적인 (입도가 엉성한) 균일화를 도모할 수 있다.
또한, 상기 특징의 질화물 반도체 자외선 발광 소자는, 상기 상층역 내에, 상기 복수의 Ga 리치층의 적어도 일부가 상기 상하 방향으로 복수 존재하고, 상기 상하 방향으로 인접하는 상기 Ga 리치층 사이의 상기 상하 방향의 이간 거리의 최소치가 100 nm 이하인 것이 바람직하다.
또한, 상기 특징의 질화물 반도체 자외선 발광 소자는, 상기 복수의 Ga 리치층의 적어도 일부가, 상기 n 형층의 상기 상면의 상기 제 2 영역 내의 상기 n 전극이 형성된 지점의 하방의 상기 n 형층 중에 존재하는 것이 바람직하다.
또한, 상기 특징의 질화물 반도체 자외선 발광 소자는, 상기 복수의 Ga 리치층의 적어도 일부가, 상기 제 1 평면 상에 있어서의 상기 Ga 리치층의 연신 방향의 상기 교선에 대한 경사각이 0°이상 10°이하인 저경사 부분을 갖는 것이 바람직하다. 또한, 상기 저경사 부분이, 상기 상층역 내에 존재하는 것이 보다 바람직하다.
또한, 상기 특징의 질화물 반도체 자외선 발광 소자는, 상기 복수의 Ga 리치층의 적어도 일부가, 상기 제 1 평면 상에 있어서, 다른 상기 Ga 리치층과 교차, 또는, 다른 상기 Ga 리치층으로부터 분기되어 있는 것이 바람직하다.
또한, 상기 특징의 질화물 반도체 자외선 발광 소자는, 상기 제 1 평면 상에 있어서의 상기 복수의 Ga 리치층의 임의의 1 점의 연신 방향의 상기 교선에 대한 경사각이, 0°이상 45°미만의 범위 내에 있는 것이 바람직하다.
상기 특징의 질화물 반도체 자외선 발광 소자의 각 바람직한 양태의 각각에 있어서, 상기 기생 저항의 저감이 더욱 촉진되고, 그 기생 저항에서 기인하는 전압 강하를 한층 억제할 수 있어, 전압 효율 Ev 의 추가적인 향상을 도모할 수 있기 때문에, 월 플러그 효율의 추가적인 향상을 기대할 수 있다.
또한, 상기 특징의 질화물 반도체 자외선 발광 소자는, 상기 n 형층 내에, 상기 n 형층 내의 다른 영역에 비해 n 형 불순물 농도가 상대적으로 작은 저불순물 농도층이, 상기 제 2 평면과 평행한 층상으로 존재하는 것이 바람직하다. 또한, 상기 저불순물 농도층이, 상기 상층역에 존재하는 것이 보다 바람직하다.
상기 특징의 질화물 반도체 자외선 발광 소자에서는, 상기 복수의 Ga 리치층의 적어도 일부의 연신 방향이, 상기 n 형층의 상기 상면과 상기 제 1 평면의 교선에 대해 경사져 있지만, 이것은, 당해 Ga 리치층이 가로 방향과 세로 방향의 양방에 대해 동시에 성장하고 있음을 의미하고 있고, n 형 불순물 농도가 낮을수록, 그 가로 방향의 성장이 촉진되는 결과, 상기 n 형층의 가로 방향의 기생 저항의 저감이 촉진된다.
또한, 상기 특징의 질화물 반도체 자외선 발광 소자는, 사파이어 기판을 포함하는 하지부 (下地部) 를 추가로 구비하고, 상기 반도체 적층부가 상기 하지부 상에 형성되어 있고, 상기 하지부의 상면에 상기 Ga 리치층의 성장 개시점이 되는 복수의 단차부가 분산되어 형성되어 있는 것이 바람직하다.
상기 특징의 질화물 반도체 자외선 발광 소자에 의하면, 당해 n 형층 내에 복수의 Ga 리치층이 형성되는 것에 수반하여, 내부 양자 효율 Ein 또는 전압 효율 Ev 또는 그 양방의 향상에 의한 월 플러그 효율의 향상이 기대된다.
도 1 은, 본 발명의 실시형태에 관련된 질화물 반도체 자외선 발광 소자의 구조의 일례를 모식적으로 나타낸 주요부 단면도이다.
도 2 는, 도 1 에 나타내는 질화물 반도체 자외선 발광 소자를 도 1 의 상측으로부터 본 경우의 구조의 일례를 모식적으로 나타낸 평면도이다.
도 3 은, 평면에서 본 형상의 최소 폭의 정의를 설명하는 도면이다.
도 4 는, AlN 층의 표면에 형성되는 단차부 (홈, 돌기, 단차) 의 단면 형상의 일례를 모식적으로 나타낸 주요부 단면도이다.
도 5 는, n 형 클래드층 내의 단면 구조를 나타내는 HAADF-STEM 이미지이다.
도 6 은, 도 5 에 나타내는 HAADF-STEM 이미지의 주요부 확대도이다.
도 7 은, 도 5 에 나타내는 HAADF-STEM 이미지의 다른 주요부 확대도이다.
도 8 은, 일반적인 자외선 발광 다이오드의 소자 구조의 일례를 모식적으로 나타낸 주요부 단면도이다.
본 발명의 실시형태에 관련된 질화물 반도체 자외선 발광 소자 (이하, 간단히 「발광 소자」라고 약칭한다) 에 대해, 도면에 기초하여 설명한다. 또한, 이하의 설명에서 사용하는 도면 (HAADF-STEM 이미지를 제외한다) 에서는, 설명의 이해의 용이를 위해, 주요부를 강조하여 발명 내용을 모식적으로 나타내고 있기 때문에, 각 부의 치수비는 반드시 실제 소자와 동일한 치수비로는 되어 있지 않다. 이하, 본 실시형태에서는, 발광 소자가 발광 다이오드인 경우를 상정하여 설명한다.
<발광 소자의 소자 구조>
도 1 에 나타내는 바와 같이, 본 실시형태의 발광 소자 (1) 는, 사파이어 기판 (11) 을 포함하는 하지부 (10) 와, 복수의 AlGaN 계 반도체층 (21 ∼ 25), p 전극 (26), 및, n 전극 (27) 을 포함하는 발광 소자 구조부 (20) 를 구비한다. 발광 소자 (1) 는, 실장용의 기대 (基臺) (서브마운트 등) 에 발광 소자 구조부 (20) 측 (도 1 에 있어서의 도면 중 상측) 을 향해 실장되는 (플립 칩 실장되는) 것이며, 광의 취출 방향은 하지부 (10) 측 (도 1 에 있어서의 도면 중 하측) 이다. 또한, 본 명세서에서는, 설명의 편의상, 사파이어 기판 (11) 의 주면 (主面) (11a) (또는, 하지부 (10) 및 각 AlGaN 계 반도체층 (21 ∼ 25) 의 상면) 에 수직인 방향을 「상하 방향」(또는, 「세로 방향」) 이라고 칭하고, 하지부 (10) 로부터 발광 소자 구조부 (20) 를 향하는 방향을 상 방향, 그 반대를 하 방향으로 한다. 또, 상하 방향에 평행한 평면을 「제 1 평면」이라고 칭한다. 또한, 사파이어 기판 (11) 의 주면 (11a) (또는, 하지부 (10) 및 각 AlGaN 계 반도체층 (21 ∼ 25) 의 상면) 에 평행한 평면을 「제 2 평면」이라고 칭하고, 그 제 2 평면에 평행한 방향을 「가로 방향」이라고 칭한다.
하지부 (10) 는, 사파이어 기판 (11) 과, 사파이어 기판 (11) 의 주면 (11a) 상에 직접 형성된 AlN 층 (12) 을 구비하여 구성된다. AlN 층 (12) 은, 사파이어 기판 (11) 의 주면으로부터 에피택셜 성장한 AlN 결정으로 구성되고, 이 AlN 결정은 사파이어 기판 (11) 의 주면 (11a) 에 대해 에피택셜한 결정 방위 관계를 가지고 있다. 구체적으로는, 예를 들어, 사파이어 기판 (11) 의 C 축 방향 (<0001> 방향) 과 AlN 결정의 C 축 방향이 일치하도록, AlN 결정이 성장한다. 또한, AlN 층 (12) 을 구성하는 AlN 결정이, 미량의 Ga 나 그 밖의 불순물을 함유하고 있어도 된다. 또, AlN 층 (12) 의 상면에, AlαGa1―αN (1 > α > 0) 계 반도체로 구성된 층이 더욱 형성되어 있어도 된다. 본 실시형태에서는, AlN 층 (12) 의 막 두께로서, 2 ㎛ ∼ 3 ㎛ 정도를 상정하고 있다. 또한, 하지부 (10) 의 구조 및 사용하는 기판 등은, 상기 서술한 구성으로 한정되는 것은 아니다. 예를 들어, AlN 층 (12) 과 AlGaN 계 반도체층 (21) 사이에, AlN 몰 분율이 당해 AlGaN 계 반도체층 (21) 의 AlN 몰 분율 이상인 AlGaN 층을 구비하고 있어도 된다.
발광 소자 구조부 (20) 는, 하지부 (10) 측으로부터 순서대로, n 형 클래드층 (21) (n 형층), 활성층 (22), 전자 블록층 (23) (p 형층), p 형 클래드층 (24) (p 형층), 및, p 형 컨택트층 (25) (p 형층) 을 순서대로 에피택셜 성장시켜 적층한 구조 (반도체 적층부) 를 구비하고 있다.
또한, 도 1 에 나타내는 바와 같이, 발광 소자 구조부 (20) 중, 활성층 (22), 전자 블록층 (23), p 형 클래드층 (24), 및, p 형 컨택트층 (25) 은, n 형 클래드층 (21) 의 상면의 제 2 영역 (R2) 상에 적층된 부분이 에칭 등에 의해 제거되고, n 형 클래드층 (21) 의 상면의 제 1 영역 (R1) 상에 형성되어 있다. 그리고, n 형 클래드층 (21) 의 상면은, 제 1 영역 (R1) 을 제외한 제 2 영역 (R2) 에 있어서 노출되어 있다. n 형 클래드층 (21) 의 상면은, 도 1 에 모식적으로 나타내는 바와 같이, 제 1 영역 (R1) 과 제 2 영역 (R2) 사이에서 높이가 상이한 경우가 있고, 그 경우에는, n 형 클래드층 (21) 의 상면은, 제 1 영역 (R1) 과 제 2 영역 (R2) 에 있어서 개별적으로 규정된다.
n 형 클래드층 (21) 은, n 형 AlXGa1―XN (1 ≥ X > Q) 계 반도체로 구성되는 베이스층 (21a) 내에, 국소적으로 Ga 조성비가 높은 n 형 AlWGa1―WN (X > W > Q) 계 반도체로 구성되는 Ga 리치층 (21b) 을 구비하여 구성된다. (1―X) 및 (1―W) 가 Ga 조성비이다. Q 는, 후술하는 활성층 (22) 의 우물층 (22b) 을 구성하는 AlQGa1―QN (W > Q ≥ 0) 계 반도체의 AlN 몰 분율 (Al 조성비) 이다. 본 실시형태에서는, n 형 클래드층 (21) 의 막 두께로서, 일반적인 질화물 반도체 자외선 발광 소자에서 채용되고 있는 막 두께와 마찬가지로, 1 ㎛ ∼ 2 ㎛ 정도를 상정하고 있지만, 당해 막 두께는 2 ㎛ ∼ 4 ㎛ 정도여도 된다. 또한, 베이스층 (21a) 을 구성하는 n 형 AlXGa1―XN 의 AlN 몰 분율 X, 및, Ga 리치층 (21b) 을 구성하는 n 형 AlWGa1―WN 의 AlN 몰 분율 W 는, n 형 클래드층 (21) 내에서 반드시 일정할 필요는 없고, n 형 클래드층 (21) 의 국소적인 영역 내에 존재하는 베이스층 (21a) 과 Ga 리치층 (21b) 사이에서, X > W > Q 의 관계가 성립하고 있으면 된다.
활성층 (22) 은, AlQGa1―QN (W > Q ≥ 0) 계 반도체로 구성되는 우물층 (22b) 과, AlPGa1―PN (X ≥ P > Q) 계 반도체로 구성되는 장벽층 (22a) 의 각각을, 1 층 이상 교대로 적층한 단일 또는 다중 양자 우물 구조를 구비한다. 또한, 최상층의 우물층 (22b) 과 전자 블록층 (23) 사이에, 장벽층 (22a) 또는 장벽층 (22a) 보다 박막이고 AlN 몰 분율이 높은 AlGaN 층 또는 AlN 층을 형성해도 상관없다.
전자 블록층 (23) 은, p 형 AlYGa1―YN (1 ≥ Y > P) 계 반도체로 구성된다. p 형 클래드층 (24) 은, p 형 AlZGa1―ZN (Y > Z > R) 계 반도체로 구성된다. p 형 컨택트층 (25) 은, p 형 AlRGa1―RN (Z > R ≥ 0) 계 반도체로 구성된다. p 형 컨택트층 (25) 은, 전형적으로는 GaN (즉, R = 0) 으로 구성된다. 또한, 활성층 (22), 전자 블록층 (23), p 형 클래드층 (24), 및, p 형 컨택트층 (25) 등의 각 층의 막 두께는, 발광 소자 (1) 의 발광 파장 특성 및 전기적 특성에 따라 적절히 결정된다. 또, p 형 클래드층 (24) 은, p 형층의 기생 저항을 저감시키기 위해 생략해도 상관없다.
p 전극 (26) 은, 예를 들어 Ni/Au 등의 다층 금속막으로 구성되고, p 형 컨택트층 (25) 의 상면에 형성된다. n 전극 (27) 은, 예를 들어 Ti/Al/Ti/Au 등의 다층 금속막으로 구성되고, n 형 클래드층 (21) 의 제 2 영역 (R2) 내의 노출면 상의 일부의 영역에 형성된다. 또한, p 전극 (26) 및 n 전극 (27) 은, 상기 서술한 다층 금속막으로 한정되는 것은 아니고, 각 전극을 구성하는 금속, 적층 수, 적층순 등의 전극 구조는 적절히 변경해도 된다. 도 2 에, p 전극 (26) 과 n 전극 (27) 의 발광 소자 (1) 의 상측으로부터 본 형상의 일례를 나타낸다. 도 2 에 있어서, p 전극 (26) 과 n 전극 (27) 사이에 존재하는 선 BL 은, 제 1 영역 (R1) 과 제 2 영역 (R2) 의 경계선을 나타내고 있고, 활성층 (22), 전자 블록층 (23), p 형 클래드층 (24), 및, p 형 컨택트층 (25) 의 외주측 벽면과 일치한다.
본 실시형태에서는, 도 2 에 나타내는 바와 같이, 제 1 영역 (R1) 및 p 전극 (26) 의 평면에서 본 형상은, 일례로서, 빗형 형상의 것을 채용하고 있다. 본 실시형태에서는, 일례로서, 제 1 영역 (R1) 의 평면에서 본 형상의 최소 폭이 40 ㎛ 이상인 경우를 상정하고, 바람직하게는, 40 ㎛ 이상 130 ㎛ 이하이며, 더욱 바람직하게는 60 ㎛ 이상 100 ㎛ 이하이다. 여기서, 평면에서 본 형상의 최소 폭이란, 도 3 에 나타내는 바와 같이, 그 평면에서 본 형상의 외주 라인 OL (도 2 의 경계선 BL 에 상당) 을, 외주 라인 OL 과 수직인 방향으로 내측을 향해 균등하게 서서히 축소시킨 경우에 양측에서부터 접하여 최종적으로 잔존하는 골격 라인 CL 을 사이에 두고 대향하는 외주 라인 상의 2 점 A, B 사이를 연결하는 임의의 선분 LAB 의 길이의 최소치이다.
p 전극 (26) 과 n 전극 (27) 사이에 순방향 바이어스를 인가하면, p 전극 (26) 으로부터 활성층 (22) 을 향해 정공이 공급되며, n 전극 (27) 으로부터 활성층 (22) 을 향해 전자가 공급되고, 공급된 정공 및 전자의 각각이 활성층 (22) 에 도달하여 재결합함으로써 발광한다. 또, 이로써, p 전극 (26) 과 n 전극 (27) 사이에 순방향 전류가 흐른다.
Ga 리치층 (21b) 은, 도 1 중에 있어서, 1 개의 층이 2 중선으로 모식적으로 나타내어져 있는 바와 같이, 복수 층이 상하 방향으로 이간되어 존재한다. 또, 상하 방향으로 평행한 1 개의 제 1 평면 (예를 들어, 도 1 에 나타내어져 있는 단면) 에서, Ga 리치층 (21b) 의 적어도 일부의 연신 방향이 가로 방향 (제 1 평면과 제 2 평면의 교선의 연신 방향) 에 대해 경사져 있다. 또한, 도 1 에 나타내는 제 1 평면 상에서는, Ga 리치층 (21b) 의 각 층은, 모식적으로 평행한 선 (2 중선) 으로 도시되어 있지만, 후술하는 바와 같이, 그 연신 방향과 가로 방향이 이루는 경사각 θ 는, 각 Ga 리치층 (21b) 사이에서 반드시 동일하지는 않고, 동일한 Ga 리치층 (21b) 내에서도 위치에 따라 변화될 수 있기 때문에, 제 1 평면 상의 Ga 리치층 (21b) 은 반드시 직선상으로 연신되어 있다고는 할 수 없다. 또, 그 경사각 θ 는, 제 1 평면의 방향에 따라서도 변화된다. 따라서, Ga 리치층 (21b) 의 일부가, 제 1 평면 상에 있어서, 다른 Ga 리치층 (21b) 과 교차, 또는, 다른 Ga 리치층 (21b) 으로부터 분기되어 있는 경우도 있을 수 있다. 또, 상하 방향으로 인접하는 Ga 리치층 (21b) 사이의 상하 방향의 이간 거리의 최소치가 100 nm 이하이다. 요컨대, 그 이간 거리의 최소치는, 실질적으로 0 nm 를 포함하고, 상기 서술한 Ga 리치층 (21b) 사이에서의 교차 및 분기를 상정하고 있다.
Ga 리치층 (21b) 은, 상기 서술한 바와 같이, 베이스층 (21a) 내에 있어서 국소적으로 Ga 조성비가 높은 지점으로서, n 형 클래드층 (21) 의 국소적인 영역 내에 존재하는 베이스층 (21a) 과 Ga 리치층 (21b) 의 각 AlN 몰 분율 사이에서, X > W 의 관계가 성립하고 있으면 된다. 따라서, 베이스층 (21a) 과 Ga 리치층 (21b) 의 경계 근방에 있어서, 양 층의 AlN 몰 분율이 점근적으로 연속하고 있는 경우, 양 층의 경계는 명확하게 규정할 수 없다. 따라서, 이러한 경우에는, n 형 클래드층 (21) 전체의 평균적인 AlN 몰 분율, 예를 들어, 후술하는 n 형 클래드층 (21) 의 성장 조건 (유기 금속 화합물 기상 성장법에서 사용하는 원료 가스나 캐리어 가스의 공급량 및 유속) 의 전제가 되는 AlN 몰 분율을 기준으로 하여, AlN 몰 분율이 당해 기준치보다 낮은 부분을, 상대적으로 Ga 리치층 (21b) 으로서 규정할 수 있다. 또한, 상기 규정 방법 이외에도, 예를 들어, 후술하는 HAADF-STEM 이미지에 기초하여, 명도 변화가 큰 부분을 양 층의 경계로 규정할 수도 있다. 단, 본원 발명에 있어서, 양 층의 경계의 정의 자체는 중요하지는 않고, Ga 리치층 (21b) 의 존재 자체를 파악할 수 있으면 충분하다.
또, Ga 리치층 (21b) 은, 도 1 중의 제 1 평면 상에서는, 각각, 1 개의 선 (2 중선) 으로 나타내어져 있지만, 그 제 1 평면에 수직인 방향으로도, 제 2 평면에 평행 또는 경사져 연신되어 있어, 2 차원적인 퍼짐을 가지고 있다. 따라서, 복수의 Ga 리치층 (21b) 은, n 형 클래드층 (21) 내의 복수의 제 2 평면 상에서는, 줄무늬상으로 존재한다. 본 실시형태에서는, 복수의 Ga 리치층 (21b) 이 줄무늬상으로 존재하는 제 2 평면은, n 형 클래드층 (21) 의 상면으로부터 하방측으로 100 nm 이내의 깊이의 상층역 내에 존재하고 있는 것이 바람직하다. 또한, 제 1 영역의 하방의 상층역 내의 적어도 1 개의 제 2 평면 상의 1 ㎛ 사방 이하의 미소 구역 내에 있어서, 줄무늬상의 Ga 리치층 (21b) 이 부분적으로 존재함으로써 Ga 의 조성 변조가 발생되어 있어, 복수의 당해 1 ㎛ 사방 이하의 미소 구역이, 그 제 2 평면 상에 분산되어 존재하는 것이 보다 바람직하다. 또한, Ga 리치층 (21b) 의 일부가, 제 2 평면 상에 있어서도, 다른 Ga 리치층 (21b) 과 교차, 또는, 다른 Ga 리치층 (21b) 으로부터 분기되어 있는 경우, 혹은, 루프상이 되는 경우도 있을 수 있다.
Ga 리치층 (21b) 의 상기 경사각 θ 는, 임의의 제 1 평면 상에 있어서, 0°이상 45°미만의 범위 내에 있는 것이 바람직하다. 또한, 복수 층의 Ga 리치층 (21b) 중에, 상기 경사각 θ 가 0°이상 10°이하인 저경사 부분이 포함되어 있는 것이 바람직하다. 또한, 그 저경사 부분이, 상기 상층역 내에 존재하고 있는 것이 바람직하다.
Ga 리치층 (21b) 은, 도 1 에 나타내는 바와 같이, 제 1 영역 (R1) 뿐만 아니라, 제 2 영역 (R2), 특히, n 전극 (27) 의 하방에 형성되어 있는 것이 바람직하다. 이 경우, 제 1 영역 (R1) 의 하방에 형성되어 있는 복수의 Ga 리치층 (21b) 의 어느 1 개는, 제 2 영역 (R2) 의 하방에 형성되어 있는 복수의 Ga 리치층 (21b) 의 어느 1 개와 연속하고 있다.
<발광 소자의 제조 방법>
다음으로, 도 1 에 예시한 발광 소자 (1) 의 제조 방법의 일례에 대해 설명한다.
먼저, 유기 금속 화합물 기상 성장 (MOVPE) 법 등의 주지의 에피택셜 성장법에 의해, 하지부 (10) 에 포함되는 AlN 층 (12) 및 발광 소자 구조부 (20) 에 포함되는 질화물 반도체층 (21 ∼ 25) 을, 사파이어 기판 (11) 상에 차례로 에피택셜 성장시켜 적층한다. 이 때, n 형 클래드층 (21) 에는 도너 불순물로서 예를 들어 Si 를 도핑하고, 전자 블록층 (23), p 형 클래드층 (24), 및, p 형 컨택트층 (25) 에는 억셉터 불순물로서 예를 들어 Mg 를 도핑한다.
본 실시형태에서는, n 형 클래드층 (21) 중에, 복수의 층상의 Ga 리치층 (21b) 을 상하 방향으로 분리시켜 복수 층 형성하기 위해, AlN 층 (12) 의 상면으로부터의 n 형 클래드층 (21) 의 성장 개시 직후에 있어서, 줄무늬상의 Ga 리치층 (21b) 의 성장 개시점이 형성되도록, AlN 층 (12) 의 상면에, 도 4(a) ∼ (d) 에 모식적으로 나타내는 바와 같이, 줄무늬상의 홈 (13a), 돌기 (13b), 또는, 단차 (13c, 13d) 등의 Ga 가 마이그레이션에 의해 집적되기 쉬운 구조 부분 (이하, 이것들을 종합하여 「단차부 (13)」라고 칭한다) 을 형성한다. 여기서, 그 단차부 (13) 의 높이 (깊이) 는, 3 nm ∼ 100 nm 정도가 바람직하다. 또, 그 줄무늬상의 단차부 (13) 의 가로 방향의 간격은, 50 nm ∼ 500 nm 정도가 바람직하고, 또한, 100 nm ∼ 300 nm 정도가 보다 바람직하다. 또한, 도 4(a) 및 (b) 에 나타내는 홈 (13a) 및 돌기 (13b) 의 세로 방향의 단면 형상은, 사각형, 사다리꼴, V 자형 (역 V 자형), U 자형 (역 U 자형) 등, 다양한 형상을 취할 수 있다. 또한, 단차부 (13) 는, 줄무늬상의 홈 (13a), 돌기 (13b), 또는, 단차 (13c, 13d) 로 한정되는 것은 아니고, AlN 층 (12) 의 상면에, 도상 (島狀) 으로 분산되어 점재하는 구멍 또는 돌기여도 된다. 도상의 단차부 (13) 의 높이 (깊이), 가로 방향의 간격, 및, 세로 방향의 단면 형상은, 단차부 (13) 가 줄무늬상인 경우와 동일하다. 또, 도상의 단차부 (13) 의 평면에서 본 형상은, 원형, 사각형, 삼각형, 육각형 등, 다양한 형상을 취할 수 있다.
도 4(a) ∼ (c) 에 나타내는 단차부 (13) (13a ∼ 13c) 는, 예를 들어, AlN 층 (12) 의 평탄한 표면에 대해 나노 임프린트, 간섭 무늬 노광, 전자 빔 노광, 스텝퍼 등에 의한 패터닝에 의해, SiO2 등의 마스크를 형성하고, 반응성 이온 에칭 등의 주지의 에칭법에 의해 형성할 수 있다. 또, 도 4(d) 에 나타내는 단차 (13d) 는, AlN 층 (12) 의 표면에, 사파이어 기판 (11) 의 주면 (11a) 에서 유래하는 다단상의 테라스 (T) 가 표출되도록 (테라스가 메워져 표면이 평탄해지는 경우가 없도록), 에피택셜 성장을 실시함으로써도 얻어진다. 이러한 에피택셜 성장의 조건으로서, 예를 들어, 사파이어 기판 (11) 의 주면 (11a) 이 (0001) 면에 대해 일정한 범위 내 (예를 들어, 0 도부터 수 도 정도까지) 의 각도 (오프각) 로 경사지고, 주면 (11a) 상에 다단상의 테라스가 표출되어 있는 기판의 사용, 및, 테라스가 표출되기 쉬운 성장 속도 (구체적으로 예를 들어, 성장 온도, 원료 가스나 캐리어 가스의 공급량이나 유속 등의 여러 조건을 적절히 설정함으로써, 당해 성장 속도를 달성한다) 등을 들 수 있다. 또한, 이들 여러 조건은, 성막 장치의 종류나 구조에 따라 상이할 수 있기 때문에, 성막 장치에 있어서 실제로 몇 개인가의 시료를 제작하고, 이것들의 조건을 특정하면 된다. 또, 도상의 단차부 (13) 로는, AlN 층 (12) 의 결정 성장시에 표면에 표출되는 육각 기둥상, 육각 뿔상, 또는, 육각 뿔대상 등의 피트 (구멍) 또는 힐록 (돌기) 도, 적절한 높이 (깊이) 및 가로 방향의 간격으로 AlN 층 (12) 의 상면에 분산되어 형성되어 있으면, 이용할 수 있다. 또한, 하지부 (10) 가, AlN 층 (12) 상에 AlGaN 층을 구비하고, 하지부 (10) 의 최상면이 그 AlGaN 층의 상면인 경우에는, 상기 서술한 줄무늬상 또는 도상의 단차부 (13) 는, 그 AlGaN 층의 상면에 형성된다.
n 형 클래드층 (21) 의 성장 조건으로서, 성장 개시 직후에, AlN 층 (12) 의 상면에 형성된 단차부에 Ga 의 마이그레이션에 의해 Ga 리치층 (21b) 의 성장 개시점이 형성되고, 계속해서, n 형 클래드층 (21) (베이스층 (21a)) 의 에피택셜 성장에 수반하여, Ga 리치층 (21b) 이, Ga 의 마이그레이션에 수반하는 편석에 의해 비스듬한 상방을 향해 성장할 수 있도록, 성장 온도, 성장 압력, 및, 도너 불순물 농도가 선택된다. 구체적으로는, 성장 온도로는, Ga 의 마이그레이션이 생기기 쉬운 1050 ℃ 이상이고, 양호한 n 형 AlGaN 이 조제 가능한 1150 ℃ 이하가 바람직하다. 성장 압력으로는, 75 Torr 이하가 양호한 AlGaN 의 성장 조건으로서 바람직하고, 성막 장치의 제어 한계로서 10 Torr 이상이 현실적이고 바람직하다. 도너 불순물 농도는, 1×1018 ∼ 5×1018 cm-3 정도가 바람직하다. 또한, 상기 성장 온도 및 성장 압력 등은, 일례로서, 사용하는 성막 장치에 따라 적절히 최적인 조건을 특정하면 된다. 단, 상기 바람직한 성장 온도 조건은, 분자선 에피택시 (MBE) 법에 적합하지 않기 때문에, n 형 클래드층 (21) 의 성막법으로는, 유기 금속 화합물 기상 성장 (MOVPE) 법이 바람직하다. 또한, 유기 금속 화합물 기상 성장법에서 사용하는 원료 가스 (트리메틸알루미늄 (TMA) 가스, 트리메틸갈륨 (TMG) 가스, 암모니아 가스) 나 캐리어 가스의 공급량 및 유속은, n 형 클래드층 (21) 을 구성하는 n 형 AlGaN 층 전체의 평균적인 AlN 몰 분율 Xa 에 따라 설정된다. 또한, 그 평균적인 AlN 몰 분율 Xa 는, 베이스층 (21a) 을 구성하는 n 형 AlXGa1―XN 의 AlN 몰 분율 X, 및, Ga 리치층 (21b) 을 구성하는 n 형 AlWGa1―WN 에 대해, X > Xa > W 가 된다.
또한, 도너 불순물 농도는, n 형 클래드층 (21) 의 막 두께에 대해, 반드시 상하 방향으로 균일하게 제어할 필요는 없다. 예를 들어, n 형 클래드층 (21) 내의 소정의 얇은 막 두께 부분의 불순물 농도가, 상기 설정 농도보다 낮고, 예를 들어, 1×1018 cm-3 미만, 더욱 바람직하게는 1×1017 cm-3 이하로 제어된 저불순물 농도층이어도 된다. 당해 저불순물 농도층의 막 두께로는, 0 nm 보다 크고 200 nm 이하 정도가 바람직하고, 10 nm 이상 100 nm 이하 정도가 보다 바람직하고, 또한, 20 nm 이상 50 nm 이하 정도가 보다 바람직하다. 또, 당해 저불순물 농도층의 도너 불순물 농도는, 상기 설정 농도보다 낮으면 되고, 언도프층 (0 cm-3) 이 일부에 포함되어 있어도 된다. 또한, 그 저불순물 농도층의 일부 또는 전부는, n 형 클래드층 (21) 의 상면으로부터 하방측으로 100 nm 이내의 깊이의 상층역에 존재하는 것이 바람직하다.
후술하는 실험 결과로부터, Ga 리치층 (21b) 의 비스듬한 상방으로의 성장은, 도너 불순물 농도가 낮으면 가로 방향으로의 성장이 촉진되어, 상기 서술한 경사각 θ 가 작아지는 경향이 있다. 따라서, n 형 클래드층 (21) 의 상면 근방에 있어서, 도너 불순물 농도를 낮게 제어하면, Ga 리치층 (21b) 의 기울기가 낮아져, 상기 서술한 Ga 리치층 (21b) 의 저경사 부분이 형성된다. 이와 같이, Ga 리치층 (21b) 의 저경사 부분이 n 형 클래드층 (21) 의 상면 근방에 형성됨으로써, 상기 서술한 순방향 전류가 n 형 클래드층 (21) 내에서 효율적으로 가로 방향으로 흘러, 가로 방향으로 흐르는 순방향 전류에 대한 기생 저항의 저감을 도모할 수 있다.
상기 요령으로, 베이스층 (21a) 과 Ga 리치층 (21b) 을 갖는 n 형 클래드층 (21) 이 형성되면, n 형 클래드층 (21) 의 상면의 전체 면에, 계속해서, 유기 금속 화합물 기상 성장 (MOVPE) 법 등의 주지의 에피택셜 성장법에 의해, 활성층 (22) (장벽층 (22a), 우물층 (22b)), 전자 블록층 (23), p 형 클래드층 (24), 및, p 형 컨택트층 (25) 등을 형성한다.
다음으로, 반응성 이온 에칭 등의 주지의 에칭법에 의해, 상기 요령으로 적층한 질화물 반도체층 (21 ∼ 25) 의 제 2 영역 (R2) 을, n 형 클래드층 (21) 의 상면이 노출될 때까지 선택적으로 에칭하여, n 형 클래드층 (21) 의 상면의 제 2 영역 (R2) 부분을 노출시킨다. 그리고, 전자빔 증착법 등의 주지의 성막법에 의해, 에칭되어 있지 않은 제 1 영역 (R1) 내의 p 형 컨택트층 (25) 상에 p 전극 (26) 을 형성함과 함께, 에칭된 제 2 영역 (R2) 내의 n 형 클래드층 (21) 상에 n 전극 (27) 을 형성한다. 또한, p 전극 (26) 및 n 전극 (27) 의 일방 또는 양방의 형성 후에, RTA (순간 열 어닐) 등의 주지의 열 처리 방법에 의해 열 처리를 실시해도 된다.
또한, 발광 소자 (1) 는, 일례로서, 서브마운트 등의 기대에 플립 칩 실장된 후, 실리콘 수지나 비정질 불소 수지 등의 소정의 수지 (예를 들어, 렌즈 형상의 수지) 에 의해 봉지된 상태에서 사용될 수 있다.
<Ga 리치층의 구체예>
다음으로, n 형 클래드층 (21) 의 단면 관찰용의 시료를 제작하고, 그 시료로부터 n 형 클래드층 (21) 의 상면에 수직 (또는 대략 수직) 인 단면을 갖는 시료편을 수속 이온 빔 (FIB) 으로 가공하고, 그 시료편을 주사형 투과 전자 현미경 (STEM) 으로 관찰한 결과를, 도면을 참조하여 설명한다.
그 시료는, 상기 서술한 n 형 클래드층 (21) 등의 제작 요령에 따라, 상기 서술한 사파이어 기판 (11) 과 AlN 층 (12) 으로 이루어지는 하지부 (10) 상에, n 형 클래드층 (21) 과, 장벽층 (22a) 과 우물층 (22b) 의 각 3 층으로 이루어지는 활성층 (22) 과, 장벽층 (22a) 보다 고 AlN 몰 분율의 AlGaN 층과, 시료 표면 보호용의 AlGaN 층과, 보호용 수지막을 차례로 퇴적하여 제작하였다. 또한, 그 시료의 제작에 있어서는, 주면이 (0001) 면에 대해 오프각을 갖는 사파이어 기판 (11) 을 사용하여 AlN 층 (12) 의 표면에 도 4(d) 에 예시하는 바와 같은 다단상의 테라스가 표출된 하지부 (10) 를 사용하였다. 또한, 그 테라스의 단부의 단차의 가로 방향의 간격은, 대체로 300 nm ∼ 350 nm 이다. 또, 그 시료의 제작에 있어서, n 형 클래드층 (21) 의 막 두께는 2 ㎛ 로 하고, 아래에서부터 1.9 ㎛ 까지의 도너 불순물 농도가 1×1018 ∼ 5×1018 cm-3 이 되고, 아래에서부터 1.9 ㎛ ∼ 2.0 ㎛ 까지의 상층역의 도너 불순물 농도가 1×1017 cm-3 이하가 되도록, 도너 불순물 (Si) 의 주입량을 실험적으로 제어하였다.
도 5 ∼ 도 7 에, 상기 시료편의 단면의 고각 산란 환상 암시야 (HAADF)-STEM 이미지를 나타낸다. 도 5 는, 그 시료편의 AlN 층 (12) 의 상층부부터 활성층 (22) 까지를 포함하는 n 형 클래드층 (21) 의 전체를 관찰하는 HAADF-STEM 이미지이다. 도 6 은, 도 5 의 부분 확대도로, n 형 클래드층 (21) 의 상면으로부터 하방측으로 약 500 nm 의 영역과 활성층 (22) 까지를 포함하는 HAADF-STEM 이미지이다. 도 7 은, 도 5 의 다른 부분 확대도로, AlN 층 (12) 의 상층부와 n 형 클래드층 (21) 의 하면으로부터 상방측으로 약 500 nm 의 영역을 포함하는 HAADF-STEM 이미지이다.
HAADF-STEM 이미지는, 원자량에 비례한 콘트라스트가 얻어지고, 무거운 원소는 밝게 표시된다. 따라서, n 형 클래드층 (21) 내의 베이스층 (21a) 과 Ga 리치층 (21b) 은, AlN 몰 분율이 낮은 Ga 리치층 (21b) 쪽이, 베이스층 (21a) 보다 밝게 표시된다. HAADF-STEM 이미지는, 통상의 STEM 이미지 (명시야 이미지) 보다 AlN 몰 분율의 차의 관찰에는 적합하다.
도 5 ∼ 도 7 에 나타내는 바와 같이, n 형 클래드층 (21) 에 있어서, 베이스층 (21a) 내에, 국소적으로 Ga 조성비가 높은 Ga 리치층 (21b) 의 복수 층이 상하 방향으로 이간되어 존재하고 있다. 또, 각 Ga 리치층 (21b) 의 연신 방향은, 전체적으로 가로 방향에 대해 경사져 있고, 도 5 ∼ 도 7 에 나타내는 단면에서는, 그 연신 방향과 가로 방향이 이루는 경사각 θ 는, 대체로 0°∼ 30°의 범위 내에 있고, 대부분은 10°∼ 25°의 범위 내이다. 각 Ga 리치층 (21b) 의 각각은, 선상으로 비스듬한 상방을 향해 연신되어 있지만, 반드시 직선상으로 연신되어 있지는 않고, 상기 경사각 θ 는, 동일한 Ga 리치층 (21b) 내에서도 위치에 따라 변화되어 있음을 알 수 있다. 또, 도 5 ∼ 도 7 에 나타내는 단면 (제 1 평면에 상당) 에 있어서, Ga 리치층 (21b) 의 일부가, 다른 Ga 리치층 (21b) 과 교차, 또는, 다른 Ga 리치층 (21b) 으로부터 분기되어 있는 것도 관찰된다.
또한, 도 5 ∼ 도 7 에 나타내는 단면에서는, n 형 클래드층 (21) 의 상면과 평행한 제 2 평면은, n 형 클래드층 (21) 의 상면과 평행한 직선이 되지만, 당해 직선 상에, 베이스층 (21a) 과 Ga 리치층 (21b) 이 혼재하여 존재하고 있음을 알 수 있다. 또, 당해 직선 (제 2 평면) 이, n 형 클래드층 (21) 내의 하면의 바로 위에서부터 상면 근방에 이를 때까지 존재하고, 상층역 내에도 존재하고 있음을 알 수 있다. 또, 당해 직선의 1 ㎛ 이내의 범위에, Ga 리치층 (21b) 이 복수 존재하고 있고, 제 2 평면 상의 1 ㎛ 사방 이하의 미소 구역 내에 있어서, Ga 의 조성 변조가 발생되어 있고, 당해 미소 구역이, 제 2 평면 상에 분산되어 존재하고 있음을 알 수 있다.
도 5 ∼ 도 7 의 각 도면을 대비하면, n 형 클래드층 (21) 내의 도너 불순물 농도가 1×1017 cm-3 이하로 낮은 상층역에 있어서, 도너 불순물 농도가 1×1018 cm-3 이상인 상층역의 하방측보다, 각 Ga 리치층 (21b) 의 경사각 θ 가, 상대적으로 작아져 있어, 10°이하인 경사각 θ 도 포함되어 있고, 국소적으로 0°도 포함되어 있음을 알 수 있다. 이것으로부터, Ga 리치층 (21b) 의 비스듬한 상방으로의 성장은, 도너 불순물 농도가 낮으면 가로 방향으로의 성장이 촉진되어, 상기 서술한 경사각 θ 가 작아지는 것을 알 수 있다.
또, 도 7 에 나타내는 바와 같이, Ga 리치층 (21b) 의 AlN 층 (12) 으로부터의 성장 개시 직후의 경사각 θ 는, AlN 층 (12) 의 상면의 위치에 따라 편차가 있고, 대체로 15°∼ 25°의 범위 내에 있다. 사파이어 기판 (11) 이 취할 수 있는 오프각은 커도 수 도 정도이므로, Ga 리치층 (21b) 의 성장 개시 직후의, 요컨대, AlN 층 (12) 의 상면 (하지부 (10) 의 상면) 과 접하고 있는 부분의 경사각 θ 는, 사파이어 기판 (11) 의 오프각보다 분명하게 크다. 또, 도 7 로부터, Ga 리치층 (21b) 은 주로, AlN 층 (12) 의 주면 상에 표출된 다단상의 테라스의 단부의 단차 근방으로부터 비스듬한 상방을 향해 성장하고 있음을 알 수 있다. 요컨대, 당해 단차 근방에, Ga 리치층 (21b) 의 주된 성장 개시점이 형성되어 있다.
다음으로, 참고로서, 상기 시료의 각 층의 AlN 몰 분율을, 에너지 분산형 X 선 분석 (EDX) 에 의해 계측한 결과를 나타낸다. AlN 층 (12) 의 상면으로부터 20 nm 부근에서 계측한 베이스층 (21a) 과 Ga 리치층 (21b) 의 각 1 점에서의 AlN 몰 분율은, 71.9 % 와 59.1 % 였다. n 형 클래드층 (21) 전체의 평균적인 AlN 몰 분율의 설정치는 61 % 였다. 3 층의 장벽층 (22a) 의 각 1 점에서의 AlN 몰 분율의 평균 (최대, 최소) 은 75.1 % (75.3 %, 74.7 %) 이고, 3 층의 우물층 (22b) 의 각 1 점에서의 AlN 몰 분율의 평균 (최대, 최소) 은 45.5 % (47.6 %, 42.8 %) 였다. 이들 계측 결과로부터, 베이스층 (21a) 과 Ga 리치층 (21b) 에서는, 10 % 이상의 AlN 몰 분율의 차가 생김을 알 수 있다. Ga 리치층 (21b) 의 AlN 몰 분율은 우물층 (22b) 의 각 AlN 몰 분율보다 11.5 % 이상 높기 때문에, 우물층 (22b) 으로부터의 발광이 Ga 리치층 (21b) 에서 흡수되는 경우는 없다. 또한, 이들 AlN 몰 분율의 계측치는 어디까지나 참고치로, 발광 소자 (1) 를 구성하는 복수의 AlGaN 계 반도체층의 AlN 몰 분율의 일례에 지나지 않는다.
<다른 실시형태>
상기 실시형태에서는, n 형 클래드층 (21) 의 성장 조건의 일례로서, 유기 금속 화합물 기상 성장법에서 사용하는 원료 가스나 캐리어 가스의 공급량 및 유속은, n 형 클래드층 (21) 을 구성하는 n 형 AlGaN 층 전체의 평균적인 AlN 몰 분율에 따라 설정되는 것으로 설명하였다. 요컨대, n 형 클래드층 (21) 전체의 평균적인 AlN 몰 분율이, 상하 방향으로 일정치로 설정되어 있는 경우에는, 상기 원료 가스 등의 공급량 및 유속은 일정하게 제어되는 경우를 상정하였다. 그러나, 상기 원료 가스 등의 공급량 및 유속은 반드시 일정하게 제어되지 않아도 된다.
상기 실시형태에서는, 제 1 영역 (R1) 및 p 전극 (26) 의 평면에서 본 형상은, 일례로서, 빗형 형상의 것을 채용하였지만, 그 평면에서 본 형상은, 빗형 형상으로 한정되는 것은 아니다. 또, 제 1 영역 (R1) 이 복수 존재하고, 각각이, 1 개의 제 2 영역 (R2) 으로 둘러싸여 있는 평면에서 본 형상이어도 된다.
상기 실시형태에서는, 주면이 (0001) 면에 대해 오프각을 갖는 사파이어 기판 (11) 을 사용하여 AlN 층 (12) 의 표면에 도 4(d) 에 예시하는 바와 같은 다단상의 테라스가 표출된 하지부 (10) 를 사용하는 경우를 예시하였지만, 당해 오프각의 크기나, 오프각을 형성하는 방향 (구체적으로는, (0001) 면을 기울이는 방향이며, 예를 들어 m 축 방향이나 a 축 방향 등) 은, AlN 층 (12) 의 표면에 다단상의 테라스가 표출되어, Ga 리치층 (21b) 의 성장 개시점이 형성되는 한, 임의로 결정해도 된다.
또한, AlN 층 (12) 의 표면에 도 4(a) ∼ (c) 에 예시한 바와 같은 단차부 (13) 를 주지의 에칭법 등에 의해 형성하는 경우에는, AlN 층 (12) 의 표면에 사파이어 기판 (11) 의 주면 (11a) 에서 유래하는 다단상의 테라스를 표출시킬 필요가 없기 때문에, 사파이어 기판 (11) 의 오프각 및 AlN 층의 성장 조건은, 다른 조건을 우선하여 임의로 결정할 수 있다.
상기 실시형태에서는, 하지부 (10) 의 상면 (AlN 층 (12) 의 표면) 에 Ga 리치층 (21b) 의 성장 개시점이 되는 줄무늬상 또는 도상의 단차부 (13) 를 형성하는 경우를 설명하였지만, 하지부 (10) 의 상면에 단차부 (13) 를 형성하는 것 대신에, 혹은, 하지부 (10) 의 상면의 단차부 (13) 의 형성 상태가 Ga 리치층 (21b) 의 성장에 충분하지 않은 경우에는, n 형 클래드층 (21) 을 어느 정도 (예를 들어, 100 nm ∼ 1 ㎛ 정도) 성장시킨 후, 그 n 형 클래드층 (21) 의 상면에 Ga 리치층 (21b) 의 성장 개시점이 되는 단차부를 형성하고, 이어서 n 형 클래드층 (21) 의 성장을 계속하도록 해도 된다. 요컨대, Ga 리치층 (21b) 의 성장 개시점이 되는 단차부를 n 형 클래드층 (21) 의 중간층에 형성해도 된다.
상기 실시형태에서는, 발광 소자 (1) 로서, 도 1 에 예시하는 바와 같이, 사파이어 기판 (11) 을 포함하는 하지부 (10) 를 구비하는 발광 소자 (1) 를 예시하고 있지만, 사파이어 기판 (11) (나아가서는, 하지부 (10) 에 포함되는 일부 또는 전부의 층) 을 리프트 오프 등에 의해 제거해도 된다. 또한, 하지부 (10) 를 구성하는 기판은, 사파이어 기판으로 한정되는 것은 아니다.
산업상 이용가능성
본 발명은, AlGaN 계 반도체로 구성된 발광층을 갖는 질화물 반도체 자외선 발광 소자에 이용 가능하다.
1 : 질화물 반도체 자외선 발광 소자
10 : 하지부
11 : 사파이어 기판
11a : 사파이어 기판의 주면
12 : AlN 층
13 : 단차부
13a : 홈
13b : 돌기
13c, 13d : 단차
20 : 발광 소자 구조부
21 : n 형 클래드층 (n 형층)
21a : 베이스층 (n 형층)
21b : Ga 리치층 (n 형층)
22 : 활성층
22a : 장벽층
22b : 우물층
23 : 전자 블록층 (p 형층)
24 : p 형 클래드층 (p 형층)
25 : p 형 컨택트층 (p 형층)
26 : p 전극
27 : n 전극
100 : 기판
101 : AlGaN 계 반도체층
102 : 템플릿
103 : n 형 AlGaN 계 반도체층
104 : 활성층
105 : p 형 AlGaN 계 반도체층
106 : p 형 컨택트층
107 : n 전극
108 : p 전극
BL : 제 1 영역과 제 2 영역의 경계선
CL : 제 1 영역의 평면에서 본 형상의 골격 라인
OL : 제 1 영역의 평면에서 본 형상의 외주 라인
R1 : 제 1 영역
R2 : 제 2 영역
T : AlN 층 표면의 테라스

Claims (11)

  1. n 형 AlGaN 계 반도체층으로 이루어지는 n 형층과, 상기 n 형층의 상면의 제 1 영역 상에 형성된 AlGaN 계 반도체층의 활성층과, 상기 활성층의 상면에 형성된 1 층 이상의 p 형 AlGaN 계 반도체층으로 이루어지는 p 형층을 포함하는 반도체 적층부와,
    상기 n 형층의 상면의 상기 제 1 영역이 아닌 제 2 영역 상에 형성된 n 전극과,
    상기 p 형층의 상면에 형성된 p 전극을 구비하여 이루어지는 질화물 반도체 자외선 발광 소자로서,
    상기 활성층이, AlGaN 계 반도체층으로 구성된 우물층을 1 층 이상 포함하는 양자 우물 구조를 갖고,
    상기 n 형층의 상기 상면의 적어도 상기 제 1 영역의 하방의 상기 n 형층 중에, 상기 n 형층의 일부로서 국소적으로 Ga 조성비가 높은 박막상의 복수의 Ga 리치층이, 상기 상면과 직교하는 방향인 상하 방향으로 이간되어 존재하고,
    상기 상하 방향과 평행한 제 1 평면 상에서의 상기 복수의 Ga 리치층의 적어도 일부의 연신 방향이, 상기 n 형층의 상기 상면과 상기 제 1 평면의 교선에 대해 경사져 있고,
    상기 n 형층의 상기 상면과 평행한 복수의 제 2 평면의 각각에 있어서, 복수의 상기 Ga 리치층이 줄무늬상으로 존재하고, 상기 복수의 제 2 평면의 적어도 1 개가, 상기 n 형층의 상기 상면으로부터 하방측으로 100 nm 이내의 두께의 상층역 내에 존재하고,
    상기 제 1 영역의 하방에 존재하는 상기 Ga 리치층의 AlN 몰 분율이, 상기 우물층의 AlN 몰 분율보다 큰 것을 특징으로 하는 질화물 반도체 자외선 발광 소자.
  2. 제 1 항에 있어서,
    상기 제 1 영역의 하방의 상기 상층역 내의 적어도 1 개의 상기 제 2 평면 상에 있어서, 줄무늬상의 상기 Ga 리치층이 부분적으로 존재함으로써 Ga 의 조성 변조가 발생되어 있는 1 ㎛ 사방 이하의 미소 구역이 분산되어 존재하는 것을 특징으로 하는 질화물 반도체 자외선 발광 소자.
  3. 제 1 항에 있어서,
    상기 상층역 내에, 상기 복수의 Ga 리치층의 적어도 일부가 상기 상하 방향으로 복수 존재하고,
    상기 상하 방향으로 인접하는 상기 Ga 리치층 사이의 상기 상하 방향의 이간 거리의 최소치가 100 nm 이하인 것을 특징으로 하는 질화물 반도체 자외선 발광 소자.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 복수의 Ga 리치층의 적어도 일부가, 상기 n 형층의 상기 상면의 상기 제 2 영역 내의 상기 n 전극이 형성된 지점의 하방의 상기 n 형층 중에 존재하는 것을 특징으로 하는 질화물 반도체 자외선 발광 소자.
  5. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 복수의 Ga 리치층의 적어도 일부가, 상기 제 1 평면 상에 있어서의 상기 Ga 리치층의 연신 방향의 상기 교선에 대한 경사각이 0°이상 10°이하인 저경사 부분을 갖는 것을 특징으로 하는 질화물 반도체 자외선 발광 소자.
  6. 제 5 항에 있어서,
    상기 저경사 부분이, 상기 상층역 내에 존재하는 것을 특징으로 하는 질화물 반도체 자외선 발광 소자.
  7. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 복수의 Ga 리치층의 적어도 일부가, 상기 제 1 평면 상에 있어서, 다른 상기 Ga 리치층과 교차, 또는, 다른 상기 Ga 리치층으로부터 분기되어 있는 것을 특징으로 하는 질화물 반도체 자외선 발광 소자.
  8. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 n 형층 내에, 상기 n 형층 내의 다른 영역에 비해 n 형 불순물 농도가 상대적으로 작은 저불순물 농도층이, 상기 제 2 평면과 평행한 층상으로 존재하는 것을 특징으로 하는 질화물 반도체 자외선 발광 소자.
  9. 제 8 항에 있어서,
    상기 저불순물 농도층이, 상기 상층역에 존재하는 것을 특징으로 하는 질화물 반도체 자외선 발광 소자.
  10. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 제 1 평면 상에 있어서의 상기 복수의 Ga 리치층의 임의의 1 점의 연신 방향의 상기 교선에 대한 경사각이, 0°이상 45°미만의 범위 내에 있는 것을 특징으로 하는 질화물 반도체 자외선 발광 소자.
  11. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    사파이어 기판을 포함하는 하지부를 추가로 구비하고,
    상기 반도체 적층부가 상기 하지부 상에 형성되어 있고,
    상기 하지부의 상면에 상기 Ga 리치층의 성장 개시점이 되는 복수의 단차부가 분산되어 형성되어 있는 것을 특징으로 하는 질화물 반도체 자외선 발광 소자.
KR1020207020875A 2018-02-14 2018-02-14 질화물 반도체 자외선 발광 소자 KR102285185B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/005126 WO2019159265A1 (ja) 2018-02-14 2018-02-14 窒化物半導体紫外線発光素子

Publications (2)

Publication Number Publication Date
KR20200096649A KR20200096649A (ko) 2020-08-12
KR102285185B1 true KR102285185B1 (ko) 2021-08-02

Family

ID=63580028

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207020875A KR102285185B1 (ko) 2018-02-14 2018-02-14 질화물 반도체 자외선 발광 소자

Country Status (7)

Country Link
US (1) US11217726B2 (ko)
EP (1) EP3754732B1 (ko)
JP (1) JP6391207B1 (ko)
KR (1) KR102285185B1 (ko)
CN (1) CN111712930B (ko)
TW (1) TWI684291B (ko)
WO (1) WO2019159265A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11552217B2 (en) * 2018-11-12 2023-01-10 Epistar Corporation Semiconductor device
US20230197889A1 (en) 2020-06-24 2023-06-22 Nikkiso Co., Ltd. Nitride semiconductor ultraviolet light-emitting element and production method therefor
US20230299232A1 (en) * 2020-07-07 2023-09-21 Soko Kagaku Co., Ltd. Nitride Semiconductor Ultraviolet Light-Emitting Element and Manufacturing Method Thereof
US20230261139A1 (en) 2020-08-21 2023-08-17 Soko Kagaku Co., Ltd. Nitride Semiconductor Ultraviolet Light-Emitting Element
JPWO2022059125A1 (ko) * 2020-09-17 2022-03-24
WO2022091173A1 (ja) * 2020-10-26 2022-05-05 創光科学株式会社 窒化物半導体紫外線発光素子
JPWO2022219731A1 (ko) * 2021-04-14 2022-10-20
WO2023203599A1 (ja) * 2022-04-18 2023-10-26 日機装株式会社 窒化物半導体紫外線発光素子

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012089754A (ja) 2010-10-21 2012-05-10 Uv Craftory Co Ltd 窒化物半導体紫外線発光素子
JP2017224841A (ja) 2017-08-09 2017-12-21 創光科学株式会社 窒化物半導体紫外線発光素子

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298090A (ja) * 1998-04-09 1999-10-29 Nichia Chem Ind Ltd 窒化物半導体素子
JP4757586B2 (ja) * 2005-09-21 2011-08-24 浜松ホトニクス株式会社 化合物半導体基板、化合物半導体デバイス及び化合物半導体基板の製造方法
US9048385B2 (en) * 2009-06-24 2015-06-02 Nichia Corporation Nitride semiconductor light emitting diode
CN105161402B (zh) * 2010-04-30 2020-08-18 波士顿大学理事会 具有能带结构电位波动的高效紫外发光二极管
JP5995302B2 (ja) * 2011-07-05 2016-09-21 パナソニック株式会社 窒化物半導体発光素子の製造方法
JP5881222B2 (ja) 2011-08-09 2016-03-09 創光科学株式会社 窒化物半導体紫外線発光素子及び窒化物半導体紫外線発光素子の製造方法
CN105742442B (zh) * 2011-08-09 2018-10-09 创光科学株式会社 氮化物半导体紫外线发光元件的制造方法
RU2589449C1 (ru) 2013-04-30 2016-07-10 Соко Кагаку Ко., Лтд. Излучающий ультрафиолетовое излучение прибор
WO2016014696A1 (en) 2014-07-23 2016-01-28 Rayvio Corporation Uv light emitting devices and systems and methods for production
JP5985782B1 (ja) 2015-04-03 2016-09-06 創光科学株式会社 窒化物半導体紫外線発光素子及び窒化物半導体紫外線発光装置
KR101995152B1 (ko) * 2015-07-21 2019-07-02 소코 가가쿠 가부시키가이샤 질화물 반도체 자외선 발광 소자
JP2017168640A (ja) * 2016-03-16 2017-09-21 旭化成株式会社 紫外線発光素子
CN109314166A (zh) * 2016-06-03 2019-02-05 创光科学株式会社 氮化物半导体紫外线发光装置及其制造方法
JP6486401B2 (ja) * 2017-03-08 2019-03-20 日機装株式会社 半導体発光素子および半導体発光素子の製造方法
RU2702948C1 (ru) * 2017-05-26 2019-10-14 Соко Кагаку Ко., Лтд. Основание, нитридный полупроводниковый излучающий ультрафиолетовое излучение элемент и способ производства основания
JP6438542B1 (ja) * 2017-07-27 2018-12-12 日機装株式会社 半導体発光素子
WO2019087348A1 (ja) * 2017-11-02 2019-05-09 創光科学株式会社 紫外線発光装置、紫外線発光装置の製造方法及び紫外線発光モジュールの製造方法
CN111373552B (zh) * 2017-11-22 2023-09-05 日机装株式会社 氮化物半导体发光元件

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012089754A (ja) 2010-10-21 2012-05-10 Uv Craftory Co Ltd 窒化物半導体紫外線発光素子
JP2017224841A (ja) 2017-08-09 2017-12-21 創光科学株式会社 窒化物半導体紫外線発光素子

Also Published As

Publication number Publication date
CN111712930A (zh) 2020-09-25
EP3754732B1 (en) 2023-04-12
US20210043804A1 (en) 2021-02-11
TW201935707A (zh) 2019-09-01
US11217726B2 (en) 2022-01-04
KR20200096649A (ko) 2020-08-12
JPWO2019159265A1 (ja) 2020-02-27
WO2019159265A1 (ja) 2019-08-22
TWI684291B (zh) 2020-02-01
EP3754732A4 (en) 2021-09-29
CN111712930B (zh) 2023-09-12
EP3754732A1 (en) 2020-12-23
JP6391207B1 (ja) 2018-09-19

Similar Documents

Publication Publication Date Title
KR102285185B1 (ko) 질화물 반도체 자외선 발광 소자
US9502606B2 (en) Nitride semiconductor ultraviolet light-emitting element
US10396240B2 (en) III-nitride semiconductor light emitting device having amber-to-red light emission (>600 nm) and a method for making same
US20060060833A1 (en) Radiation-emitting optoelectronic component with a quantum well structure and method for producing it
JP6686172B2 (ja) 窒化物半導体発光素子
US9318645B2 (en) Nitride semiconductor light-emitting element
KR20130058406A (ko) 반도체 발광소자
KR100558455B1 (ko) 질화물 반도체 소자
JP7421657B2 (ja) 窒化物半導体紫外線発光素子
JP7406632B2 (ja) 窒化物半導体紫外線発光素子
CN116325191A (zh) 整合在单一晶片上的三色光源
TW202218186A (zh) 氮化物半導體紫外線發光元件及其製造方法
KR20230002875A (ko) 질화물 반도체 자외선 발광 소자 및 그 제조 방법
US6875995B2 (en) Heterogeneous bandgap structures for semiconductor devices and manufacturing methods therefor
WO2023203599A1 (ja) 窒化物半導体紫外線発光素子
JP4055794B2 (ja) 窒化ガリウム系化合物半導体発光素子
TW202218178A (zh) 氮化物半導體紫外線發光元件
KR20130067159A (ko) 질화물계 발광소자 및 그 제조방법
KR20130098761A (ko) 질화갈륨 기판을 갖는 발광 다이오드

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant