TWI684291B - 氮化物半導體紫外線發光元件 - Google Patents

氮化物半導體紫外線發光元件 Download PDF

Info

Publication number
TWI684291B
TWI684291B TW107138307A TW107138307A TWI684291B TW I684291 B TWI684291 B TW I684291B TW 107138307 A TW107138307 A TW 107138307A TW 107138307 A TW107138307 A TW 107138307A TW I684291 B TWI684291 B TW I684291B
Authority
TW
Taiwan
Prior art keywords
layer
type
rich
type layer
range
Prior art date
Application number
TW107138307A
Other languages
English (en)
Other versions
TW201935707A (zh
Inventor
平野光
長澤陽祐
秩父重英
小島一信
Original Assignee
日商創光科學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商創光科學股份有限公司 filed Critical 日商創光科學股份有限公司
Publication of TW201935707A publication Critical patent/TW201935707A/zh
Application granted granted Critical
Publication of TWI684291B publication Critical patent/TWI684291B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

本發明係一種氮化物半導體紫外線發光元件,其課題為將自活性層朝向於n型氮化物半導體層側所出射之紫外線取出元件外部之氮化物半導體發光元件,其中,謀求功率轉換效率之提升。 [解決手段]解決手段為在構成氮化物半導體紫外線發光元件(1)之n型AlGaN系半導體層21中,在前述n型層(21)之一部分,局部性地Ga組成比高之薄膜狀的複數之Ga富含層(21b)則離間於與n型層(21)之上面正交之方向的上下方向而存在,在與上下方向平行之第1平面上之複數的Ga富含層(21b)之至少一部分的延伸方向則對於n型層(21)之上面與第1平面之交線而言傾斜,而在自n型層(21)之上面至下方側100nm以內之厚度的上層域內,於與n型層(21)之上面平行之第2平面上,條狀地存在有複數之Ga富含層(21b),Ga富含層(21b)之AlN莫耳分率則較構成發光元件(1)之活性層(22)內的阱層(22b)之AlN莫耳分率為大。

Description

氮化物半導體紫外線發光元件
本發明係有關具有由AlGaN系半導體所構成之發光層的氮化物半導體紫外線發光元件。
一般而言,氮化物半導體發光元件係多數存在有經由磊晶成長而形成複數之氮化物半導體層所成之發光元件構造於藍寶石等之基板上的構成。氮化物半導體層係以一般式Al1-x-y Gax Iny N(0≦x≦1,0≦y≦1,0≦x+y≦1)所表示。
發光二極體之發光元件構造係於n型氮化物半導體層與p型氮化物半導體層之間,具有夾持單一量子阱構造(SQW:Single-Quantum-Well)或者多重量子阱構造(MQW:Multi-Quantum-Well)之氮化物半導體層所成之活性層的雙異質構造。活性層為AlGaN系半導體層之情況,經由調整AlN莫耳分率(亦稱為Al組成比)之時,可將帶隙能量,在將GaN與AlN所取得之帶隙能量(約3.4eV與約6.2eV)各作為下限及上限之範圍內進行調整,而得到發光波長為約200nm至約365nm之紫外線發光元件。具體而言,由自p型氮化物半導體層朝向n型氮化物半導體層而流動順方向電流者,在活性層中產生有因應經由載體(電子及電洞)之再結合的上述帶隙能量之發光。為了自外部供給該順方向電流,各於p型氮化物半導體層上設置有p電極,而於n型氮化物半導體層上設置有n電極。
活性層為AlGaN系半導體層之情況,夾持活性層之n型氮化物半導體層與p型氮化物半導體層係由較活性層為高之AlN莫耳分率的AlGaN系半導體層所構成。但高AlN莫耳分率之p型氮化物半導體層係與p電極形成良好之電阻接觸的情況則成為困難之故,一般而言,進行可與低AlN莫耳分率之p型AlGaN系半導體(具體而言係p-GaN)所成之p電極形成良好之電阻接觸的p型接觸層於p型氮化物半導體層之最上層之情況。此p型接觸層係AlN莫耳分率則較構成活性層之AlGaN系半導體為小之故,從活性層朝向p型氮化物半導體層側所出射的紫外線係由該p型接觸層所吸收,而無法有效地取出於元件外部者。因此,活性層則為AlGaN系半導體層之一般的紫外線發光二極體係採用如圖8模式性顯示之元件構造,有效地取出從活性層朝向n型氮化物半導體層側所出射的紫外線於元件外部(例如,參照下述之專利文獻1及2,非專利文獻1及2等。
如圖8所示,一般的紫外線發光二極體係由堆積AlGaN系半導層101(例如,AlN層)於藍寶石基板等之基板100上所形成之模板102上,依序堆積n型AlGaN系半導體層103、活性層104、p型AlGaN系半導體層105、及p型接觸層106,再將活性層104與p型AlGaN系半導體層105與p型接觸層106之一部分,至n型AlGaN系半導體層103露出為止進行蝕刻除去,各於n型AlGaN系半導體層103之露出面,形成n電極107,而於p型接觸層106之表面,形成p電極108所構成。 [先前技術文獻] [專利文獻]
[專利文獻1]國際公開第2014/178288號公報 [專利文獻2]國際公開第2016/157518號公報 [非專利文獻]
[非專利文獻1]Kentaro Nagamatsu,etal.,“High-efficiency AlGaN-based UV light-emitting diode on laterally overgrown AlN”,Journal of Crystal Growth,2008,310,pp.2326-2329 [非專利文獻2]Shigeaki Sumiya,etal.,“AlGaN-Based Deep Ultraviolet Light-Emitting Diodes Grown on Epitaxial AlN/Sapphire Templates”,Japanese Journal of Applied Physics,Vol.47, No.1, 2008,pp.43-46
[發明欲解決之課題]
發光元件的功率轉換效率Ewp係作為對於輸入至發光元件的全電力而言之光輸出的比例所定義之發光效率,而由發光元件之外部量子效率Eex,和由施加於活性層之電壓Vg與施加於發光元件的驅動電壓V的比(Vg/V)所表示的電壓效率Ev的積(Eex×Ev)所表示。另一方面,發光元件之外部量子效率Eex係以顯示經由在活性層內的載體再結合之發光效率的內部量子效率Ein,和顯示將在活性層發光的光取出於發光元件的外部之效率的光取出效率Eext的積(Ein×Eext)所定義。
隨之,對於使功率轉換效率Ewp提升,係必須個別地使各上述電壓效率Ev,和上述內部量子效率Ein,和上述光取出效率Eext提升,而到目前為止進行有多數的提案。
內部量子效率係在嘗試由提高AlGaN系半導體層之結晶品質的改善,及對於載體之活性層內的注入效率等而謀求提升,例如,作為後者之嘗試,既已進行有將活性層作為多重量子阱構造者,於活性層上設置電子方塊層者等,但目前仍有改善的餘地。
將活性層內的載體密度作為n之情況,載體的再結合係作為經驗準則,以下述式(1)所表示之3種類的再結合所成之模式類似性地加以顯示。
Figure 02_image001
在式(1)中,左邊的R係載體的再結合速度(相當於注入至活性層的電流),右邊的A,B,C係藉由非發光再結合中心而載體再結合之Shockley・Read・Hall (SRH)再結合,發光再結合,歐格(Auger)再結合之各係數。發光二極體的情況,通常,對於載體密度n的立方作為比例之歐格再結合的效果係可無視之故,更加地,當設想注入於發光元件的電流之電流密度為低,而未注入至活性層而作為溢出的電流之比率為小,可無視之情況時,內部量子效率Ein係近似性地以下述的式(2)之載體密度n的函數f(n)所表示。
Figure 02_image003
由式(2),經由可無視歐格再結合之範圍內的載體密度n之增加,內部量子效率Ein係成為增加者。
另一方面,在圖8所示之元件構造中,對於自p電極108朝向n電極107而流動之順方向電流的電流路徑上,係存在有種種的寄生阻抗,而當該寄生阻抗變大時,經由該寄生阻抗的電壓下降之時,對於施加於p電極108與n電極107間的順方向偏壓而言,施加於活性層104之電壓則相對變小,而電壓效率Ev則下降,作為結果,發光元件的功率轉換效率Ewp則降低。
特別是,在圖8所示之元件構造中,於活性層104之正下方,無法形成n電極107之故,活性層104與n電極107間則離間於橫方向(平行於n型AlGaN系半導體層103之表面的方向),而成為n型AlGaN系半導體層103之該橫方向的電性阻抗大的寄生阻抗。另外,在紫外線發光元件中,伴隨著發光波長的短波長化,構成活性層104及n型AlGaN系半導體層103的AlGaN系半導體之AlN莫耳分率則變大,但n型AlGaN系半導體的比阻抗係有著AlN莫耳分率越大而有變高之傾向,而由n型AlGaN系半導體層103的寄生阻抗引起之電壓效率Ev之降低係伴隨著發光波長的短波長化而變為顯著。
因此,在活性層則為AlGaN系半導體層之紫外線發光二極體中,將活性層之平面視形狀,作為可縮短自活性層內之任意的點至n電極之電流路徑的距離之梳形形狀,抑制因n型AlGaN系半導體層之寄生阻抗引起之電壓效率Ev之降低,謀求功率轉換效率Ewp之降低的抑制(例如,參照下述的專利文獻1及2等)。
但在一般的氮化物半導體紫外線發光元件中,n型AlGaN系半導體層之膜厚係對於1~2μm程度(例如,參照上述專利文獻2,非專利文獻1及2)而言,晶片尺寸係為自400μm超過1mm之構成之故,活性層之平面視形狀的最小寬度係當假設,設想如揭示於上述專利文獻1及2之梳形形狀時,認為至少有40μm。此情況,對於n型AlGaN系半導體層中之電流路徑的縱方向(上下方向)之長度則為1~2μm程度以下而言,n型AlGaN系半導體層中之電流路徑的橫方向的長度係成為20μm以上(10倍以上)。n型AlGaN系半導體層之比阻抗則假設在該層內中即使為均一,上述電流路徑之橫方向的電性阻抗(比電阻×長度/剖面積)係亦成為上述電流路徑之縱方向的電性阻抗的100倍以上。因而,n型AlGaN系半導體層之寄生阻抗的影響係在橫方向中成為顯著。
本發明係有鑑於上述的問題點所作為之構成,其目的係在將自活性層朝向於n型氮化物半導體層側所出射的紫外線,取出於元件外部的氮化物半導體發光元件中,謀求功率轉換效率之提升者。 [為了解決課題之手段]
本發明係為了達成上述目的,而具備n型AlGaN系半導體層所成之n型層,和形成於前述n型層的上面之第1範圍上之AlGaN系半導體層之活性層,和含有形成於前述活性層之上面的1層以上之p型AlGaN系半導體層所成之p型層之半導體層積部,和並非在前述n型層之上面的前述第1範圍而形成於第2範圍上之n電極,和形成於前述p型層之上面的p電極所成之氮化物半導體紫外線發光元件。 前述活性層則具有包含1層以上以AlGaN系半導體層所構成之阱層的量子阱構造,於前述n型層之前述上面的至少前述第1範圍之下方的前述n型層中,在前述n型層之一部分,局部性地Ga組成比高的薄膜狀之複數的Ga富含層則離間於與前述上面正交之方向的上下方向而存在。 在與前述上下方向平行之第1平面上之前述複數的Ga富含層之至少一部分的延伸方向則對於前述n型層之前述上面與前述第1平面的交線而言為傾斜著。 在與前述n型層之前述上面平行之各複數的第2平面中,條狀地存在有複數之前述Ga富含層,前述複數之第2平面之至少1個則自前述n型層之前述上面至下方向側,存在於100nm以內之厚度的上層域內。 提供存在於前述第1範圍的下方之前述Ga富含層的AlN莫耳分率則較前述阱層的AlN莫耳分率為大者為特徵的氮化物半導體紫外線發光元件。
然而,AlGaN系半導體係以一般式Al1-x Gax N (0≦x≦1)所表示,但帶隙能量則如為將GaN與AlN所取得之帶隙能量各作為下限及上限之範圍內,亦可微量地含有B或In等之3族元素或P等之5族元素等的不純物。更且,n型或p型AlGaN系半導體層係於上述AlGaN系半導體層,作為施主或受主不純物而摻雜Si或Mg等的層。在本申請中,未明記有p型及n型之AlGaN系半導體層係意味未摻雜之AlGaN系半導體層,但即使為未摻雜層,亦可含有不可避免所混入程度的微量之施主或受主不純物。另外,第1平面與第2平面係未必為在製造過程具體形成於前述半導體層積部之露出面或各半導體層間的邊界面,而為在前述n型層內,平行地延伸於上下方向之假想的平面,與正交於上下方向而延伸之假想的平面。
如根據上述特徵的氮化物半導體紫外線發光元件,從以下的理由,期待內部量子效率的提升。在前述上層域內的前述第2平面內,由條狀地存在有複數之前述Ga富含層者,產生有在活性層正下方的n型層內交互存在有Ga組成比高之Ga富含層與相對來說Ga組成比低的層(暫時稱為基底層)之Ga的組成調變。Ga富含層則較基底層容易流動電流之故,自Ga富含層朝向於活性層所注入之載體密度則成為較自基底層朝向活性層所注入之載體密度為高,而在與活性層內的第2平面平行的面內中,產生有載體密度高的部分與低的部分的差。
在此,假想與活性層內的第2平面平行的面內之2個相同面積之微小範圍S1與S2,未產生有上述Ga之組成調變,而較注入至微小範圍S1與S2之電流I則為相同,假想為I0之事例1,而產生有上述Ga之組成調變,注入於微小範圍S1之電流I1則成為較注入於微小範圍S2之電流I2為大,假想為成為I1+I2=2×I0(I1>I0、I2<I0)之事例2。
在事例1中,在微小範圍S1與S2間,載體密度n係為相同,作為載體密度n0。隨之,微小範圍S1與S2之各內部量子效率Ein係以f(n0)所表示,在微小範圍S1與S2各提供於光再結合之電流Ig0與其合計電流Ig0t係成為呈下述的式(3)所示。
Figure 02_image005
在事例2中,係I1=I0(1+x)、I2=I0(1-x)、但作為0<x≦1時,在微小範圍S1中,與電流I1同樣,所注入的載體密度n則倍增為(1+x)倍,內部量子效率Ein則成為較事例1之微小範圍S1之內部量子效率f(n0)為高的內部量子效率f(n0(1+x)),而在微小範圍S2中,與電流I2同樣,所注入的載體密度n則減少為(1-x)倍,內部量子效率Ein則成為較事例1之微小範圍S2之內部量子效率f(n0)為低的內部量子效率f(n0(1-x))。隨之,在微小範圍S1與S2各提供於光再結合之電流Ig1、Ig2與其合計電流Ig1t係成為呈下述的式(4)所示。
Figure 02_image007
在此,函數f(n)係經由變數n的0之增加,從0朝向1無變化地增加之函數,而自I1及I2之I0的變化量為小之情況係f(n0(1+x))與f(n0(1-x))係近似為f(n0)+Δ(x)與f(n0)-Δ(x),式(4)係成為下述的式(5)。
Figure 02_image009
自上述式(5),自I1及I2之I0的變化量為小之情況係產生有上述Ga之組成調變之事例2者則了解到提供於光再結合的電流則較未產生有該組成調變之事例1,每微小範圍僅增加Δ(x)I0x。
另一方面,自I1及I2之I0的變化量為大,x=1之情況係上述式(4)係成為下述的式(6)。
Figure 02_image011
式(6)之f(2n0)係因較式(3)之f(n0)為大之故,自I1及I2之I0的變化量為大之情況,產生有上述Ga之組成調變之事例2者則亦了解到提供於光再結合的電流則較未產生有該組成調變之事例1,每微小範圍僅增加(f(2n0)-f(n0))。
由以上,對於注入至活性層全體之總電流為相同的情況,產生有上述Ga之組成調變之事例2者則較未產生有該組成調變之事例1,在活性層全體提供於光再結合之電流則成為增加,而在活性層全體之內部量子效率Ein則成為增加。其結果,期待有功率轉換效率之提升。
在此應注意的點係即使在活性層內未產生有Ga之組成調變,在存在於其附近之n型層中產生有Ga之組成調變時,亦對於朝向於活性層所注入之載體密度產生有變化,作為結果,期待有謀求內部量子效率Ein的提升的點。
如根據上述特徵的氮化物半導體紫外線發光元件,在n型層中相對而言比阻抗為低,也就是容易流動電流之複數的Ga富含層則因於其上方,存在有活性層之第1範圍之下方的n型層內,離間於上下方向所形成之故,經由施加於p電極與n電極間之順方向偏壓,自p型氮化物半導體層朝向n型氮化物半導體層而流動的順方向電流係認為在活性層正下方的n型層中,在於橫方向(與n型層之上面平行的方向),朝向n電極正下方的範圍而流動時,可通過對於該橫方向而言亦延伸之容易流動該電流之複數的Ga富含層之故,比較於未形成有複數之Ga富含層的情況,可降低該n型層之橫方向的寄生阻抗者。其結果,在將自活性層朝向n型氮化物半導體層側所出射的紫外線,取出於元件外部的元件構造中,可抑制因該寄生阻抗引起之電壓下降,而期待經由電壓效率Ev之提升的功率轉換效率之提升。
因該寄生阻抗引起之電壓下降係自第1範圍的外周部朝向中心部而成為顯著之故,第1範圍的最小幅度係經由該電壓下降而限制為一定值以下。但當可抑制該電壓下降時,可增加第1範圍的最小幅度者。其結果,可增加佔於晶片尺寸之第1範圍的面積者。
更且,上述特徵的氮化物半導體紫外線發光元件係在前述第1範圍之下方的前述上層域內之至少1個之前述第2平面上,由部分性地存在有條狀的前述Ga富含層者,分散存在有Ga之組成調變所產生之1μm四方以下之微小範圍者為佳。經由此,注入至活性層之電流的電流密度高的部分與低的部分則可作為細分化而一樣地使其分散,可防止經由非發光再結合之發熱的局部化之同時,伴隨著因Ga之組成調變引起之內部量子效率的變化之發光強度的變化則在微小區域內產生,且在活性層內,一樣地分布有該發光強度的變化之故,可在活性層全體,均一化局部性之發光強度的面內不均,而可謀求在活性層內之發光強度的綜觀之(粒度的粗度)均一化者。
更加地,上述特徵的氮化物半導體紫外線發光元件係於前述上層域內,前述複數之Ga富含層之至少一部分則複數存在於前述上下方向,鄰接於前述上下方向的前述Ga富含層間的前述上下方向之離間距離的最小值為100nm以下者為佳。
更加地,上述特徵的氮化物半導體紫外線發光元件係前述複數之Ga富含層之至少一部分,則存在於前述n型層之前述上面的前述第2範圍內之前述n電極之所存在處之下方的前述n型層中者為佳。
更加地,上述特徵的氮化物半導體紫外線發光元件係前述複數之Ga富含層之至少一部分則具有對於在前述第1平面上之前述Ga富含層之延伸方向的前述交線而言之傾斜角為0°以上10°以下之低傾斜部分者為佳。更加地,前述低傾斜部分則存在於前述上層域內者則更佳。
更加地,上述特徵的氮化物半導體紫外線發光元件係前述複數之Ga富含層之至少一部分則在前述第1平面上中,與其他的前述Ga富含層交叉,或自其他的前述Ga富含層分歧者為佳。
更加地,上述特徵的氮化物半導體紫外線發光元件係在前述第1平面上之前述複數Ga富含層之任意的1點之延伸方向之前述交線而言之傾斜角則位於0°以上,不足45°之範圍內者為佳。
在上述特徵之氮化物半導體紫外線發光元件之各最佳的形態中,更促進上述寄生阻抗的降低,可更一層抑制因該寄生阻抗引起之電壓下降,而謀求電壓效率Ev之更加的提升之故,可期待功率轉換效率之更加的提升。
更且,上述特徵之氮化物半導體紫外線發光元件係於前述n型層內,比較於前述n型層內之其他的範圍,n型不純物濃度則相對而言為小之低不純物濃度層則存在為與前述第2平面平行之層狀者為佳。更加地,前述低不純物濃度層則存在於前述上層域者則更佳。
在上述特徵之氮化物半導體紫外線發光元件中,前述複數之Ga富含層之至少一部分的延伸方向則對於前述n型層之前述上面與前述第1平面的交線而言作為傾斜,但此係意味該Ga富含層則對於橫方向與縱方向的雙方而言同時成長著,而n型不純物濃度越低,促進該橫方向的成長之結果,促進前述n型層之橫方向的寄生阻抗之降低。
更且,上述特徵之氮化物半導體紫外線發光元件係更具備包含藍寶石基板之基底部,前述半導體層積部則形成於前述基底部上,而於前述基底部之上面,成為前述Ga富含層之成長開始點的複數之階差部則作為分散而加以形成者為佳。 [發明效果]
如根據上述特徵之氮化物半導體紫外線發光元件,伴隨著形成複數之Ga富含層於該n型層內,期待有內部量子效率Ein或電壓效率Ev,或經由其雙方的提升之功率轉換效率的提升。 【圖示簡單說明】
圖1係模式性地顯示有關本發明之實施形態的氮化物半導體紫外線發光元件之構造的一例的要部剖面圖。 圖2係模式性地顯示自圖1之上側而視圖1所示之氮化物半導體紫外線發光元件情況之構造的一例之平面圖。 圖3係說明平面視形狀的最小幅度之定義的圖。 圖4係模式性地顯示形成於AlN層之表面的階差部(溝,突起,階差)的剖面形狀之一例的要部剖面圖。 圖5係顯示n型覆蓋層內之剖面構造的HAADF-STEM像。 圖6係圖5所示之HAADF-STEM像的要部擴大圖。 圖7係圖5所示之HAADF-STEM像的其他之要部擴大圖。 圖8係模式性地顯示一般的紫外線發光二極體的元件構造之一例的要部剖面圖。
對於有關本發明之實施形態的氮化物半導體紫外線發光元件(以下,單略稱為「發光元件」),依據圖面而加以說明。然而,在以下的說明所使用之圖面(除了HAADF-STEM像)係為了容易理解說明,強調要部而模式性地顯示發明內容之故,各部的尺寸比係未必成為與實際的元件相同尺寸比。以下,在本實施形態中,假想發光元件為發光二極體的情況而加以說明。
<發光元件的元件構造> 如圖1所示,本實施形態之發光元件1係具備:包含藍寶石基板11之基底部10,和包含複數之AlGaN系半導體層21~25、p電極26、及n電極27之發光元件構造部20。發光元件1係於安裝用的基台(副載具等),朝向發光元件構造部20側(在圖1中的圖中上側)而加以安裝(加以覆晶安裝)之構成,而光的取出方向係基底部10側(在圖1中之圖中下側)。然而,在本說明書中,說明的方便上,將垂直於藍寶石基板11之主面11a(或基底部10及各AlGaN系半導體層21~25之上面)的方向,稱為「上下方向」(或「縱方向」),將自基底部10朝向於發光元件構造部20的方向作為上方向,而將其相反作為下方向。另外,將平行於上下方向的平面稱為「第1平面」。更且,將平行於藍寶石基板11之主面11a(或基底部10及各AlGaN系半導體層21~25之上面)的平面,稱為「第2平面」,而將平行於該第2平面的方向稱為「橫方向」。
基底部10係由具備藍寶石基板11,和直接形成於藍寶石基板11之主面11a上之AlN層12而加以構成。AlN層12係由自藍寶石基板11之主面磊晶成長的AlN結晶而加以構成,此AlN結晶係對於藍寶石基板11之主面11a而言具有磊晶之結晶方位關係。具體而言,例如,藍寶石基板11之C軸方向(<0001>方向)與AlN結晶之C軸方向則呈一致地,AlN結晶則成長。然而,構成AlN層12之AlN結晶則含有微量的Ga或其他的不純物亦可。另外,於AlN層12之上面,更形成有以Alα Ga1-α N(1>α>0)系半導體所構成的層亦可。在本實施形態中,作為AlN層12之膜厚,設想為2μm~3μm程度。然而,基底部10之構造及使用之基板等係並非限定於上述之構成者。例如,於AlN層12與AlGaN系半導體層21之間,具備AlN莫耳分率為該AlGaN系半導體層21之AlN莫耳分率以上的AlGaN層亦可。
發光元件構造部20係具備自基底部10側依序使n型覆蓋層21(n型層)、活性層22、電子方塊層23(p型層)、p型覆蓋層24(p型層)、及p型接觸層25(p型層)之順序加以磊晶成長而層積之構造(半導體層積部)。
然而,如圖1所示,發光元件構造部20之中,活性層22、電子方塊層23、p型覆蓋層24、及p型接觸層25係層積於n型覆蓋層21之上面的第2範圍R2上之部分,則經由蝕刻等而加以除去,形成於n型覆蓋層21之上面的第1範圍R1上。並且,n型覆蓋層21之上面係在除了第1範圍R1之第2範圍R2中露出。n型覆蓋層21之上面係如於圖1模式性所示,在第1範圍R1與第2範圍R2間有高度不同之情況,而此情況係n型覆蓋層21之上面係在第1範圍R1與第2範圍R2中個別加以規定。
n型覆蓋層21係於以n型AlX Ga1-X N(1≧X>Q)系半導體所構成之基底層21a內,由具備以局部性Ga組成比高之n型AlW Ga1-W N(X>W>Q)系半導體所構成之Ga富含層21b而加以構成。(1-X)及(1-W)則為Ga組成比。Q係構成後述之活性層22的阱層22b之AlQ Ga1-Q N(W>Q≧0)系半導體的AlN莫耳分率(Al組成比)。在本實施形態中,作為n型覆蓋層21之膜厚,與由一般的氮化物半導體紫外線發光元件所採用之膜厚同樣地,設想1μm~2μm程度,但該膜厚係亦可為2μm~4μm程度。然而,構成基底層21a之n型AlX Ga1-X N的AlN莫耳分率X,及構成Ga富含層21b之n型AlW Ga1-W N的AlN莫耳分率W係在n型覆蓋層21內未必必須為一定,在存在於n型覆蓋層21之局部性之範圍內的基底層21a與Ga富含層21b之間,如成立X>W>Q之關係即可。
活性層22係將各由AlQ Ga1-Q N(W>Q≧0)系半導體所構成之阱層22b,和由AlP Ga1-P N(X≧P>Q)系半導體所構成之障壁層22a,具備1層以上交互層積之單一或多重量子阱構造。然而,於最上層之阱層22b與電子方塊層23之間,以障壁層22a或較障壁層22a為薄膜而設置AlN莫耳分率高之AlGaN層或AlN層亦可。
電子方塊層23係由p型AlY Ga1-Y N(1≧Y>P)系半導體所構成。p型覆蓋層24係由p型AlZ Ga1-Z N(Y>Z>R)系半導體所構成。p型接觸層25係由p型AlR Ga1-R N(Z>R≧0)系半導體所構成。p型接觸層25係典型來說係由GaN(即、R=0)所構成。然而,活性層22、電子方塊層23、p型覆蓋層24、及p型接觸層25等之各層的膜厚係因應發光元件1之發光波長特性及電性特性而作適宜決定。另外,p型覆蓋層24係為了降低p型層的寄生阻抗而省略亦可。
p電極26係例如,由Ni/Au等之多層金屬膜所構成,再形成於p型接觸層25之上面。n電極27係例如,由Ti/Al/Ti/Au等之多層金屬膜所構成,再形成於n型覆蓋層21之第2範圍R2的露出面上之一部分的範圍。然而,p電極26及n電極27係並非限定於上述之多層金屬膜的構成,而構成各電極之金屬,層積數,層積順序等之電極構造係亦可作適宜變更。於圖2,顯示自p電極26與n電極27之發光元件1的上側而視之形狀的一例。在圖2中,存在於p電極26與n電極27之間的線BL係顯示第1範圍R1與第2範圍R2之邊界線,而與活性層22、電子方塊層23、p型覆蓋層24、及p型接觸層25之外周側壁面一致。
在本實施形態中,如圖2所示,第1範圍R1與p電極26之平面視形狀係作為一例,採用梳形形狀的構成。在本實施形態中,作為一例,設想第1範圍R1之平面視形狀的最小幅度為40μm以上之情況,而理想為40μm以上130μm以下,更理想為60μm以上100μm以下。在此,平面視形狀之最小幅度係如圖3所示,將該平面視形狀的外周線OL(相當於圖2之邊界線BL),於與外周線OL垂直之方向,朝向內側均等地徐緩縮小之情況,連結自兩側接觸,夾持最終殘存之架構線CL而對向之外周線上的2點A,B間之任意的線分LAB 之長度的最小值。
當施加順方向偏壓於p電極26與n電極27間時,自p電極26,朝向活性層22而供給有電洞,自n電極27,朝向活性層22而供給有電子,而所供給之各電洞及電子則由到達至活性層22而進行再結合者而產生發光。另外,經由此,流動有順方向電流於p電極26與n電極27間。
Ga富含層21b係在圖1中,呈以2重線模示性地顯示1個層地,複數層則離間於上下方向而存在。另外,在平行於上下方向的1個之第1平面(例如,圖1所示之剖面),Ga富含層21b之至少一部分的延伸方向則對於橫方向(第1平面與第2平面之交線的延伸方向)而言作為傾斜。然而,在圖1所示之第1平面上,Ga富含層21b之各層係模式性地以平行的線(2重線)加以圖示,但如後述,該延伸方向與橫方向之所成傾斜角θ係在各Ga富含層21b間,未必相同,而在相同之Ga富含層21b內亦可根據位置而變化之故,第1平面上之Ga富含層21b係未必限定延伸為直線狀。另外,該傾斜角θ係經由第1平面的方向而亦產生變化。隨之,Ga富含層21b之一部分則在第1平面上,亦可能有與其他的Ga富含層21b交叉,或自其他的Ga富含層21b分歧者。另外,鄰接於上下方向之Ga富含層21b間的上下方向之離間距離的最小值為100nm以下。也就是,該離間距離的最小值係實質上包含0nm,設想在上述之Ga富含層21b間的交叉及分歧。
Ga富含層21b係如上述,在基底層21a內局部性Ga組成比高之處所,在存在於n型覆蓋層21之局部的範圍內之基底層21a與Ga富含層21b之各AlN莫耳分率間,如成立X>W之關係即可。隨之,在基底層21a與Ga富含層21b之邊界附近,兩層之AlN莫耳分率則漸進性地連續的情況,兩層之邊界係無明確地規定。隨之,對於有關的情況係將n型覆蓋層21全體之平均的AlN莫耳分率,例如,成為後述之n型覆蓋層21之成長條件(在有機金屬化合物氣相成長法所使用之原料氣體或載氣之供給量及流速)之前提的AlN莫耳分率作為基準,將AlN莫耳分率則較該基準值為低之部分,相對性地作為Ga富含層21b而規定者。更且,對於上述規定方法以外,例如,亦可依據後述之HAADF-STEM像,將明度變化大的部分,規定為兩層之邊界者。但在本申請發明中,兩層的邊界之定義本身係並不重要,而如可把握Ga富含層21b之存在本身即為充分。
另外,Ga富含層21b係在圖1中的第1平面上,各以1條線(2重線)所顯示,但對於垂直於該第1平面之方向,亦平行或傾斜於第2平面而延伸,而具有2次元的擴張。隨之,複數的Ga富含層21b係在n型覆蓋層21內之複數的第2平面上係存在為條狀。在本實施形態中,複數之Ga富含層21b則存在為條狀的第2平面係自n型覆蓋層21之上面至下方側,存在於100nm以內的深度之上層域內者為佳。更且,在第1範圍之下方的上層域內之至少1個之第2平面上之1μm四方以下之微小區域內,由部分性地存在有條狀之Ga富含層21b者,產生有Ga之組成調變,複數之該1μm四方以下之微小區域則分散存在於該第2平面上者則更佳。更且,Ga富含層21b之一部分則在第2平面上,亦可能有與其他的Ga富含層21b交叉,或自其他的Ga富含層21b分歧者,或者成為環狀者。
Ga富含層21b之上述傾斜角θ係在任意的第1平面上,位於0°以上,不足45°之範圍內者為佳。更且,於複數之Ga富含層21b之中,含有上記傾斜角θ為0°以上10°以下之低傾斜部分者為佳。更加地,該低傾斜部分則存在於前述上層域內者為佳。
Ga富含層21b係如圖1所示,不僅第1範圍R1,而形成於第2範圍R2,特別是n電極27之下方者為佳。此情況,形成於第1範圍R1之下方的複數之Ga富含層21b之任何一個係與形成於第2範圍R2的複數之Ga富含層21b之任何一個連續著。
<發光元件的製造方法> 接著,對於圖1所例示之發光裝置1之製造方法的一例而加以說明。
首先,經由有機金屬化合物氣相成長(MOVPE)法等之周知的磊晶成長法,使含於基底部10之AlN層12及含於發光元件構造部20之氮化物半導體層21~25,依序磊晶成長法於藍寶石基板11上而層積。此時,對於n型覆蓋層21係作為施主不純物,例如摻雜Si,而對於電子方塊層23、p型覆蓋層24、及p型接觸層25係作為受主不純物,例如摻雜Mg。
在本實施形態中,於n型覆蓋層21中,為了使複數之層狀的Ga富含層21b分離於上下方向而作為複數層形成,在自AlN層12之上面的n型覆蓋層21之成長開始之後,呈形成條狀之Ga富含層21b的成長開始點地,於AlN層12之上面,如圖4(a)~(d)模式性所示地,形成條狀的溝13a、突起13b、或階差13c,13d等之Ga則經由移動而容易集聚之構造部分(以下,綜合此等而稱為「階差部13」)。在此,該階差部13之高度(深度)係3nm~100nm程度為佳。另外,該條狀的階差部13之橫方向的間隔係50nm~500nm程度為佳,更且,100nm~300nm程度為更佳。然而,圖4(a)及(b)所示的溝13a及突起13b之縱方向的剖面形狀係可採取矩形、台形、V字型(逆V字型)、U字型(逆U字型)等種種形狀。更且,階差部13係未加以限定為條狀的溝13a、突起13b、或階差13c,13d者,而於AlN層12之上面,分散為島狀而作為散布各處之孔或突起亦可。島狀的階差部13之高度(深度),橫方向之間隔,及縱方向的剖面形狀係與階差部13為條狀之情況同樣。另外,島狀之階差部13的平面視形狀係可採取圓形、矩形、三角形、六角形等種種形狀。
圖4(a)~(c)所示之階差部13(13a~13c)係例如,對於AlN層12之平坦的表面而言,可經由根據奈米壓印,條紋圖案曝光,電子束曝光,步進曝光機台等之圖案化,形成SiO2 等之光罩,再經由反應性離子蝕刻等之周知的蝕刻法而形成者。另外,圖4(d)所示之階差13d係於AlN層12之表面,亦可由呈表現出來自藍寶石基板11之主面11a的多段狀之階地T地(全埋上階地而表面呈未成為平坦地)進行磊晶成長而得到。作為有關之磊晶成長之條件,例如,可舉出:藍寶石基板11之主面11a則對於(0001)面而言,以一定的範圍內(例如,自0度至數度程度為止)之角度(偏角)而傾斜,多段狀之階地表現出於主面11a上之基板的使用,及容易表現出階地之成長速度(具體而言,例如,由適宜設定成長溫度,原料氣體或載氣之供給量或流速等之諸條件者而可達成該成長速度)等。然而,此等諸條件係經由成膜裝置之種類或構造而會有差異之故,在成膜裝置中實際至作幾個試料,如特定此等條件即可。另外,作為島狀之階差部13係在AlN層12之結晶成長時,表現出於表面之六角柱狀、六角錘狀、或六角錘台狀等之孔(穴)或小丘(突起)亦如以適當的高度(深度)及橫方向的間隔,分散於AlN層12之上面而加以形成時而可利用。然而,基底部10則於AlN層12上具備AlGaN層,基底部10之最上面則為該AlGaN層之上面的情況,上述之條狀或島狀之階差部13係形成於該AlGaN層之上面。
作為n型覆蓋層21之成長條件,於成長開始之後,於形成於AlN層12之上面的階差部,經由Ga之移動而形成Ga富含層21b之成長開始點,接著,伴隨著n型覆蓋層21(基底層21a)之磊晶成長,Ga富含層21b則呈可經由伴隨著Ga之移動的偏析而朝向斜上方成長地,選擇成長溫度,成長壓力,及施主不純物濃度。具體而言,作為成長溫度係容易產生Ga之移動之1050℃以上,而可調製良好之n型AlGaN的1150℃以下為佳。作為成長壓力係作為良好之AlGaN的成長條件,75Torr以下為佳,而作為成膜裝置之控制界限,現實上10Torr以上為佳。施主不純物濃度係1×1018 ~5×1018 cm-3 程度為佳。然而,上述成長溫度及成長壓力等係為一例,如因應所使用之成膜裝置而特定適宜最佳的條件即可。但上述最佳的成長溫度條件係不適合於分子束磊晶(MBE)法之故,作為n型覆蓋層21之成膜法係有機金屬化合物氣相成長(MOVPE)法為佳。然而,在有機金屬化合物氣相成長法所使用之原料氣體(三甲基鋁(TMA))氣體,三甲基鎵(TMG)氣體,氨氣)或載氣的供給量及流速係因應構成n型覆蓋層21之n型AlGaN層全體的平均的AlN莫耳分率Xa而加以設定。然而,該平均的AlN莫耳分率Xa係對於構成基底層21a之n型AlX Ga1-X N的AlN莫耳分率X,及構成Ga富含層21b之n型AlW Ga1-W N而言,成為X>Xa>W。
然而,施主不純物濃度係對於n型覆蓋層21之膜厚而言,未必均一地控制於上下方向。例如,n型覆蓋層21內之特定的薄膜厚部份之不純物濃度則較上述設定濃度為低,例如,不足1×1018 cm-3 ,而更理想為控制在 1×1017 cm-3 以下之低不純物濃度層亦可。作為該低不純物濃度層之膜厚係較0nm為大而200nm以下程度為佳,而10nm以上100nm以下程度更佳,更且,20nm以上50nm以下程度又更佳。另外,該低不純物濃度層之施主不純物濃度係如較上述設定濃度為低即可,而一部分含有未摻雜層(0cm-3 )亦可。更加地,該低不純物濃度層之一部分或全部係自n型覆蓋層21之上面至下方側,存在於100nm以內之深度的上層域者為佳。
由後述之實驗結果,對於Ga富含層21b之斜上方的成長係施主不純物濃度為低時,加以促進對於橫方向之成長,而上述之傾斜角θ則有變小之傾向。因而,在n型覆蓋層21之上面附近,降低控制施主不純物濃度時,Ga富含層21b之傾斜則降低,形成上述之Ga富含層21b之低傾斜部分。如此,由形成Ga富含層21b之低傾斜部分於n型覆蓋層21之上面附近者,上述之順方向電流則在n型覆蓋層21內,效率佳地流動於橫方向,而謀求對於流動於橫方向之順方向電流之寄生阻抗的降低。
在上述要領,當形成具有基底層21a與Ga富含層21b之n型覆蓋層21時,於n型覆蓋層21之上面的全面,持續,經由有機金屬化合物氣相成長(MOVPE)法等之周知的磊晶成長法,形成活性層22(障壁層22a、阱層22b)、電子方塊層23、p型覆蓋層24、及p型接觸層25等。
接著,經由反應性離子蝕刻等之周知的蝕刻法,將以上述要領所層積之氮化物半導體層21~25的第2範圍R2,n型覆蓋層21之上面至露出為止選擇性地進行蝕刻,使n型覆蓋層21之上面的第2範圍R2部分露出。並且,經由電子束蒸鍍法等之周知的成膜法,於未蝕刻之第1範圍R1內之p型接觸層25上,形成p電極26之同時,於蝕刻之第1範圍R2內之n型覆蓋層21上,形成n電極27。然而,在p電極26及n電極27之一方或雙方的形成後,經由RTA(瞬間熱退火)等之周知的熱處理方法而進行熱處理亦可。
然而,發光元件1係作為一例,在覆晶安裝於副載具等之基台之後,可以經由聚矽氧樹脂或非晶質氟樹脂等之特定的樹脂(例如,透鏡形狀的樹脂)所封閉的狀態而加以使用。
<Ga富含層之具體例> 接著,製作n型覆蓋層21之剖面觀察用之試料,以聚焦離子束(FIB)而加工從該試料具有垂直(或略垂直)於n型覆蓋層21之上面的剖面之試料片,以掃描型透過電子顯微鏡(STEM)而觀察該試料片之結果,參照圖面而加以說明。
該試料係依照上述之n型覆蓋層21等之製作要領,於上述之藍寶石基板11與AlN層12所成之基底部10上,依序堆積n型覆蓋層21,和障壁層22a與阱層22b之各3層所成之活性層22,和較障壁層22a為高之AlN莫耳分率之AlGaN層,和試料表面保護用之AlGaN層,和保護用樹脂膜而製作。然而,在該試料的製作中,係使用採用主面則對於(0001)面而言具有偏角之藍寶石基板11,而於AlN層12之表面,表現出如圖4(d)所例示之多段狀之階地的基底部10。然而,該階地之端部的階差之橫方向的間隔係大約為300nm~350nm。另外,在該試料的製作中,n型覆蓋層21之膜厚係作為2μm,自下方至1.9μm為止之施主不純物濃度則呈成為1×1018 ~5×1018 cm-3 ,而自下方至1.9μm~ 2.0μm為止之上層域的施主不純物濃度則呈成為1×1017 cm-3 以下地,實驗性地控制施主不純物(Si)之注入量。
於圖5~圖7,顯示上述試料片之剖面的高角散射環狀暗視野(HAADF)-STEM像。圖5係觀察包含自該試料片之AlN層12之上層部至活性層22為止之n型覆蓋層21之全體的HAADF-STEM像。圖6係圖5之部分擴大圖,包含自n型覆蓋層21之上面至下方側約500nm之範圍與活性層22為止之HAADF-STEM像。圖7係圖5之其他的部分擴大圖,包含自AlN層12之上層部與n型覆蓋層21之下面至上方側約500nm之範圍的HAADF-STEM像。
HAADF-STEM像係可得到對於原子量作比例之對比,明亮表示重元素。因而,n型覆蓋層21內之基底層21a與Ga富含層21b係AlN莫耳分率低之Ga富含層21b則較基底層21a明亮地表示。HAADF-STEM像係較通常之STEM像(明視野像),適合於AlN莫耳分率的差之觀察。
如圖5~圖7所示,在n型覆蓋層21中,於基底層21a內,局部性Ga組成比高之Ga富含層21b的複數層則離間於上下方向而存在著。另外,各Ga富含層21b之延伸方向係全體性地對於橫方向而言傾斜,而在圖5~圖7所示之剖面中,該延伸方向與橫方向之所成傾斜角θ係大約位於0°~30°之範圍內,而大部分係10°~25°之範圍內。各Ga富含層21b係朝向於斜上方而延伸為線狀,但未必延伸為直線狀,而上述傾斜角θ係了解到即使在Ga富含層21b內,亦經由位置而產生變化者。另外,在圖5~圖7所示之剖面(相當於第1平面),Ga富含層21b之一部分則與其他的Ga富含層21b交叉,另外,亦觀察自其他的Ga富含層21b分歧之情況。
更且,在圖5~圖7所示之剖面中,與n型覆蓋層21之上面平行之第2平面係成為與n型覆蓋層21之上面平行的直線,但於該直線上,知道基底層21a與Ga富含層21b混合存在者。另外,該直線(第2平面)則了解到自n型覆蓋層21內之下方的緊接著上方存在至上面附近為止,而對於上層域內亦存在著。另外,知道對於該直線之1μm以內範圍,複數存在有Ga富含層21b,而在第2平面上之1μm四方以下的微小區域內,產生有Ga之組成調變,而該微小區域則分散存在於第2平面上者。
當對比在圖5~圖7之各圖時,了解到在n型覆蓋層21內之施主不純物濃度為低的1×1017 cm-3 以下之上層域中,各Ga富含層21b之傾斜角θ則較施主不純物濃度為 1×1018 cm-3 以上之上層域的下方側相對而言變小,而亦包含有10°以下之傾斜角θ,局部性地亦包含有0°者。經由此,了解到對於Ga富含層21b之斜上方的成長係施主不純物濃度為低時,加以促進對於橫方向之成長,而上述之傾斜角θ則有變小之情況。
另外,如圖7所示,自Ga富含層21b的AlN層12之成長開始之後的傾斜角θ係經由AlN層12之上面的位置而不均,大約位於15°~25°之範圍內。藍寶石基板11之取得的偏角係即使為大亦因數度程度之故,Ga富含層21b之成長開始之後,也就是與AlN層12之上面(基底部10之上面)接觸的部分之傾斜角θ係較藍寶石基板11之偏角明顯為大。另外,由圖7了解到,Ga富含層21b係主要自表現出於AlN層12之主面上的多段狀之階地的端部之階差附近,朝向斜上方而進行成長者。也就是,於該階差附近,形成Ga富含層21b之主要的成長開始點。
接著,作為參考,顯示經由X射線能量散布分析(EDX)而計測上述試料之各層的AlN莫耳分率的結果。在自AlN層12之上面20nm附近所計測之基底層21a與Ga富含層21b之各1點之AlN莫耳分率係71.9%與59.1%。n型覆蓋層21全體之平均的AlN莫耳分率之設定值係61%。在3層之障壁層22a的各1點之AlN莫耳分率之平均(最大,最小)係為75.1%(75.3%、74.7%),而在3層之阱層22b的各1點之AlN莫耳分率之平均(最大,最小)係為45.5% (47.6%、42.8%)。由此等之計測結果,在基底層21a與Ga富含層21b中,了解到產生有10%以上之AlN莫耳分率的差。Ga富含層21b之AlN莫耳分率係較阱層22b的各AlN莫耳分率高11.5%以上之故,來自阱層22b的發光則未由Ga富含層21b所吸收。然而,此等之AlN莫耳分率的計測值係終歸是參考值,只是構成發光元件1之複數的AlGaN系半導體層之AlN莫耳分率的一例。
<另外實施形態> 在上述實施形態中,作為n型覆蓋層21之成長條件的一例,在有機金屬化合物氣相成長法所使用之原料氣體或載體的供給量及流速係說明過因應構成n型覆蓋層21之n型AlGaN層全體的平均的AlN莫耳分率而加以設定。也就是,n型覆蓋層21全體之平均的AlN莫耳分率則設定為一定值於上下方向之情況係設想一定地加以控制上述原料氣體等之供給量及流速之情況。但上述原料氣體等之供給量及流速係未必控制為一定亦可。
在上述實施形態中,第1範圍R1及p電極26之平面視形狀係作為一例,採用梳形形狀之構成,但該平面視形狀係並非限定於梳形形狀者。另外,第1範圍R1則複數存在,各自則為由1個之第2範圍R2所圍繞之平面視形狀亦可。
在上述實施形態中,例示過使用採用對於主面為(0001)面而言具有偏角之藍寶石基板11,於AlN層12之表面,表現出如圖4(d)所例示之多段狀之階地之基底部10之情況,但該偏角之大小,或設置偏角之方向(具體而言,傾斜(0001)面的方向,例如m軸方向或a軸方向等)係只要在於AlN層12之表面,表現出多段狀之階地,而形成Ga富含層21b之成長開始點,亦可任意地決定。
更且,經由周知的蝕刻法等而形成如圖4(a)~(c)所例示之階差部13於AlN層12之表面之情況係無須使來自藍寶石基板11之主面11a的多段狀之階地表現出於AlN層12之表面之故,藍寶石基板11之偏角及AlN層之成長條件係可優先其他的條件而任意地決定者。
在上述實施形態中,說明過於基底部10之上面(AlN層12之表面),形成成為Ga富含層21b之成長開始點之條狀或島狀的階差部13之情況,但取代於形成階差部13於基底部10之上面,或者基底部10之上面的階差部13之形成狀態則對於Ga富含層21b之成長並不充分之情況係使n型覆蓋層21做某種程度(例如,100nm~1μm程度)成長之後,作為呈於該n型覆蓋層21之上面,形成成為Ga富含層21b之成長開始點之階差部,接著繼續n型覆蓋層21之成長亦可。也就是,形成成為Ga富含層21b之成長開始點之階差部於n型覆蓋層21之中間層亦可。
在上述實施形態中,作為發光元件1,如圖1所例示地,例示具備包含藍寶石基板11之基底部10的發光元件1,但經由舉離等而除去藍寶石基板11(更且,含於基底部10之一部分或全部的層)亦可。更且,構成基底部10之基板係並非限定於藍寶石基板者。 [產業上之利用可能性]
本發明係可利用於具有以AlGaN系半導體所構成之發光層的氮化物半導體紫外線發光元件。
1‧‧‧氮化物半導體紫外線發光元件 10‧‧‧基底部 11‧‧‧藍寶石基板 11a‧‧‧藍寶石基板的主面 12‧‧‧AlN層 13‧‧‧階差部 13a‧‧‧溝 13b‧‧‧突起 13c、13d‧‧‧階差 20‧‧‧發光元件構造部 21‧‧‧n型覆蓋層(n型層) 21a‧‧‧基底層(n型層) 21b‧‧‧Ga富含層(n型層) 22‧‧‧活性層 22a‧‧‧障壁層 22b‧‧‧阱層 23‧‧‧電子方塊層(p型層) 24‧‧‧p型覆蓋層(p型層) 25‧‧‧p型接觸層(p型層) 26‧‧‧p電極 27‧‧‧n電極 100‧‧‧基板 101‧‧‧AlGaN系半導體層 102‧‧‧模板 103‧‧‧n型AlGaN系半導體層 104‧‧‧活性層 105‧‧‧p型AlGaN系半導體層 106‧‧‧p型接觸層 107‧‧‧n電極 108‧‧‧p電極 BL‧‧‧第1範圍與第2範圍之邊界線 CL‧‧‧第1範圍之平面視形狀的架構線 OL‧‧‧第1範圍之平面視形狀的外周線 R1‧‧‧第1範圍 R2‧‧‧第2範圍 T‧‧‧AlN層表面之階地
1‧‧‧氮化物半導體紫外線發光元件
10‧‧‧基底部
11‧‧‧藍寶石基板
11a‧‧‧藍寶石基板的主面
12‧‧‧AlN層
20‧‧‧發光元件構造部
21‧‧‧n型覆蓋層(n型層)
21a‧‧‧基底層(n型層)
21b‧‧‧Ga富含層(n型層)
22‧‧‧活性層
22a‧‧‧障壁層
22b‧‧‧阱層
23‧‧‧電子方塊層(p型層)
24‧‧‧p型覆蓋層(p型層)
25‧‧‧p型接觸層(p型層)
26‧‧‧p電極
27‧‧‧n電極
R1‧‧‧第1範圍
R2‧‧‧第2範圍

Claims (15)

  1. 一種氮化物半導體紫外線發光元件,係具備:含有n型AlGaN系半導體層所成之n型層,和形成於前述n型層的上面之第1範圍上之AlGaN系半導體層之活性層,和形成於前述活性層之上面的1層以上之p型AlGaN系半導體層所成之p型層之半導體層積部,和形成於前述n型層之上面的並非前述第1範圍之第2範圍之n電極,和形成於前述p型層之上面的p電極所成之氮化物半導體紫外線發光元件,其特徵為前述活性層則具有包含1層以上以AlGaN系半導體層所構成之阱層的量子阱構造,於前述n型層之前述上面的至少前述第1範圍之下方的前述n型層中,前述n型層之一部分,局部性地Ga組成比高的薄膜狀之複數的Ga富含層則離間於與前述上面正交之方向的上下方向而存在,在與前述上下方向平行之第1平面上之前述複數的Ga富含層之至少一部分的延伸方向則對於前述n型層之前述上面與前述第1平面的交線而言傾斜著,在與前述n型層之前述上面平行之各複數的第2平面中,條狀地存在複數之前述Ga富含層,前述複數之第2平面之至少1個則存在於自前述n型層之前述上面至下方側,100nm以內之厚度的上層域內, 存在於前述第1範圍的下方之前述Ga富含層的AlN莫耳分率則較前述阱層的AlN莫耳分率為大;在前述第1範圍之下方的前述上層域內之至少1個之前述第2平面上,藉由部分性地存在條狀的前述Ga富含層,Ga之組成調變所產生之1μm四方以下之微小範圍則分散存在者。
  2. 如申請專利範圍第1項項記載之氮化物半導體紫外線發光元件,其中,於前述上層域內,前述複數之Ga富含層之至少一部分則複數存在於前述上下方向,鄰接於前述上下方向之前述Ga富含層間的前述上下方向之離間距離的最小值為100nm以下者。
  3. 一種氮化物半導體紫外線發光元件,係具備:含有n型AlGaN系半導體層所成之n型層,和形成於前述n型層的上面之第1範圍上之AlGaN系半導體層之活性層,和形成於前述活性層之上面的1層以上之p型AlGaN系半導體層所成之p型層之半導體層積部,和形成於前述n型層之上面的並非前述第1範圍之第2範圍之n電極,和形成於前述p型層之上面的p電極所成之氮化物半導體紫外線發光元件,其特徵為前述活性層則具有包含1層以上以AlGaN系半導體層所構成之阱層的量子阱構造, 於前述n型層之前述上面的至少前述第1範圍之下方的前述n型層中,前述n型層之一部分,局部性地Ga組成比高的薄膜狀之複數的Ga富含層則離間於與前述上面正交之方向的上下方向而存在,在與前述上下方向平行之第1平面上之前述複數的Ga富含層之至少一部分的延伸方向則對於前述n型層之前述上面與前述第1平面的交線而言傾斜著,在與前述n型層之前述上面平行之各複數的第2平面中,條狀地存在複數之前述Ga富含層,前述複數之第2平面之至少1個則存在於自前述n型層之前述上面至下方側,100nm以內之厚度的上層域內,存在於前述第1範圍的下方之前述Ga富含層的AlN莫耳分率則較前述阱層的AlN莫耳分率為大;於前述上層域內,前述複數之Ga富含層之至少一部分則複數存在於前述上下方向,鄰接於前述上下方向之前述Ga富含層間的前述上下方向之離間距離的最小值為100nm以下者。
  4. 如申請專利範圍第1項至第3項任一項記載之氮化物半導體紫外線發光元件,其中,前述複數之Ga富含層之至少一部分則存在於前述n型層之前述上面的前述第2範圍內之前述n電極之所形成處所之下方的前述n型層中者。
  5. 如申請專利範圍第1項至第3項任一項記載之氮化物半 導體紫外線發光元件,其中,前述複數之Ga富含層之至少一部分則具有在前述第1平面上之前述Ga富含層之延伸方向的對於前述交線而言之傾斜角為0°以上10°以下之低傾斜部分者。
  6. 一種氮化物半導體紫外線發光元件,係具備:含有n型AlGaN系半導體層所成之n型層,和形成於前述n型層的上面之第1範圍上之AlGaN系半導體層之活性層,和形成於前述活性層之上面的1層以上之p型AlGaN系半導體層所成之p型層之半導體層積部,和形成於前述n型層之上面的並非前述第1範圍之第2範圍之n電極,和形成於前述p型層之上面的p電極所成之氮化物半導體紫外線發光元件,其特徵為前述活性層則具有包含1層以上以AlGaN系半導體層所構成之阱層的量子阱構造,於前述n型層之前述上面的至少前述第1範圍之下方的前述n型層中,前述n型層之一部分,局部性地Ga組成比高的薄膜狀之複數的Ga富含層則離間於與前述上面正交之方向的上下方向而存在,在與前述上下方向平行之第1平面上之前述複數的Ga富含層之至少一部分的延伸方向則對於前述n型層之前述上面與前述第1平面的交線而言傾斜著,在與前述n型層之前述上面平行之各複數的第2平面 中,條狀地存在複數之前述Ga富含層,前述複數之第2平面之至少1個則存在於自前述n型層之前述上面至下方側,100nm以內之厚度的上層域內,存在於前述第1範圍的下方之前述Ga富含層的AlN莫耳分率則較前述阱層的AlN莫耳分率為大;前述複數之Ga富含層之至少一部分則具有在前述第1平面上之前述Ga富含層之延伸方向的對於前述交線而言之傾斜角為0°以上10°以下之低傾斜部分者。
  7. 如申請專利範圍第5項記載之氮化物半導體紫外線發光元件,其中,前述低傾斜部分則存在於前述上層域內者。
  8. 如申請專利範圍第6項記載之氮化物半導體紫外線發光元件,其中,前述低傾斜部分則存在於前述上層域內者。
  9. 如申請專利範圍第1~3,6,8項任一項記載之氮化物半導體紫外線發光元件,其中,前述複數之Ga富含層之至少一部分則在前述第1平面上,與其他之前述Ga富含層正交,或自其他之前述Ga富含層分歧者。
  10. 如申請專利範圍第1~3,6,8項任一項記載之氮化物半導體紫外線發光元件,其中,於前述n型層內,相較於 前述n型層內之其他的範圍,n型不純物濃度則相對性地為小之低不純物濃度層則存在成與前述第2平面平行的層狀者。
  11. 一種氮化物半導體紫外線發光元件,係具備:含有n型AlGaN系半導體層所成之n型層,和形成於前述n型層的上面之第1範圍上之AlGaN系半導體層之活性層,和形成於前述活性層之上面的1層以上之p型AlGaN系半導體層所成之p型層之半導體層積部,和形成於前述n型層之上面的並非前述第1範圍之第2範圍之n電極,和形成於前述p型層之上面的p電極所成之氮化物半導體紫外線發光元件,其特徵為前述活性層則具有包含1層以上以AlGaN系半導體層所構成之阱層的量子阱構造,於前述n型層之前述上面的至少前述第1範圍之下方的前述n型層中,前述n型層之一部分,局部性地Ga組成比高的薄膜狀之複數的Ga富含層則離間於與前述上面正交之方向的上下方向而存在,在與前述上下方向平行之第1平面上之前述複數的Ga富含層之至少一部分的延伸方向則對於前述n型層之前述上面與前述第1平面的交線而言傾斜著,在與前述n型層之前述上面平行之各複數的第2平面中,條狀地存在複數之前述Ga富含層,前述複數之第2平 面之至少1個則存在於自前述n型層之前述上面至下方側,100nm以內之厚度的上層域內,存在於前述第1範圍的下方之前述Ga富含層的AlN莫耳分率則較前述阱層的AlN莫耳分率為大;於前述n型層內,相較於前述n型層內之其他的範圍,n型不純物濃度則相對性地為小之低不純物濃度層則存在成與前述第2平面平行的層狀者。
  12. 如申請專利範圍第10項記載之氮化物半導體紫外線發光元件,其中,前述低不純物濃度層則存在於前述上層域者。
  13. 如申請專利範圍第11項記載之氮化物半導體紫外線發光元件,其中,前述低不純物濃度層則存在於前述上層域者。
  14. 如申請專利範圍第1~3,6,8,11,13項任一項項記載之氮化物半導體紫外線發光元件,其中,在前述第1平面上之前述複數的Ga富含層之任意的1點之延伸方向之對於前述交線而言之傾斜角則位於0°以上,不足45°之範圍內者。
  15. 如申請專利範圍第1~3,6,8,11,13項任一項記載之氮化物半導體紫外線發光元件,其中,更具備含有藍寶 石基板之基底部,前述半導體層積部則形成於前述基底部上,於前述基底部之上面,分散形成成為前述Ga富含層之成長開始點的複數之階差部者。
TW107138307A 2018-02-14 2018-10-30 氮化物半導體紫外線發光元件 TWI684291B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/JP2018/005126 WO2019159265A1 (ja) 2018-02-14 2018-02-14 窒化物半導体紫外線発光素子
WOPCT/JP2018/005126 2018-02-14
??PCT/JP2018/005126 2018-02-14

Publications (2)

Publication Number Publication Date
TW201935707A TW201935707A (zh) 2019-09-01
TWI684291B true TWI684291B (zh) 2020-02-01

Family

ID=63580028

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107138307A TWI684291B (zh) 2018-02-14 2018-10-30 氮化物半導體紫外線發光元件

Country Status (7)

Country Link
US (1) US11217726B2 (zh)
EP (1) EP3754732B1 (zh)
JP (1) JP6391207B1 (zh)
KR (1) KR102285185B1 (zh)
CN (1) CN111712930B (zh)
TW (1) TWI684291B (zh)
WO (1) WO2019159265A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11552217B2 (en) * 2018-11-12 2023-01-10 Epistar Corporation Semiconductor device
US20230197889A1 (en) 2020-06-24 2023-06-22 Nikkiso Co., Ltd. Nitride semiconductor ultraviolet light-emitting element and production method therefor
WO2022009306A1 (ja) * 2020-07-07 2022-01-13 創光科学株式会社 窒化物半導体紫外線発光素子及びその製造方法
JP7512121B2 (ja) 2020-08-05 2024-07-08 パナソニックホールディングス株式会社 半導体レーザ素子
WO2022038769A1 (ja) * 2020-08-21 2022-02-24 創光科学株式会社 窒化物半導体紫外線発光素子
US20230307578A1 (en) * 2020-09-17 2023-09-28 Nikkiso Co., Ltd. Nitride Semiconductor Ultraviolet Light Emitting Element
WO2022091173A1 (ja) * 2020-10-26 2022-05-05 創光科学株式会社 窒化物半導体紫外線発光素子
JPWO2022219731A1 (zh) * 2021-04-14 2022-10-20
JPWO2023203599A1 (zh) * 2022-04-18 2023-10-26

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201308656A (zh) * 2011-08-09 2013-02-16 Soko Kagaku Co Ltd 氮化物半導體紫外線發光元件
US20140103289A1 (en) * 2010-04-30 2014-04-17 Yitao Liao High efficiency ultraviolet light emitting diode with band structure potential fluctuations

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298090A (ja) * 1998-04-09 1999-10-29 Nichia Chem Ind Ltd 窒化物半導体素子
JP4757586B2 (ja) * 2005-09-21 2011-08-24 浜松ホトニクス株式会社 化合物半導体基板、化合物半導体デバイス及び化合物半導体基板の製造方法
US9048385B2 (en) * 2009-06-24 2015-06-02 Nichia Corporation Nitride semiconductor light emitting diode
JP5594530B2 (ja) 2010-10-21 2014-09-24 創光科学株式会社 窒化物半導体紫外線発光素子
JP5995302B2 (ja) * 2011-07-05 2016-09-21 パナソニック株式会社 窒化物半導体発光素子の製造方法
CN105742442B (zh) * 2011-08-09 2018-10-09 创光科学株式会社 氮化物半导体紫外线发光元件的制造方法
WO2014178288A1 (ja) 2013-04-30 2014-11-06 創光科学株式会社 紫外線発光装置
WO2016014696A1 (en) 2014-07-23 2016-01-28 Rayvio Corporation Uv light emitting devices and systems and methods for production
JP5985782B1 (ja) 2015-04-03 2016-09-06 創光科学株式会社 窒化物半導体紫外線発光素子及び窒化物半導体紫外線発光装置
RU2676178C1 (ru) 2015-07-21 2018-12-26 Соко Кагаку Ко., Лтд. Излучающий ультрафиолетовый свет нитридный полупроводниковый элемент
JP2017168640A (ja) 2016-03-16 2017-09-21 旭化成株式会社 紫外線発光素子
JPWO2017208535A1 (ja) * 2016-06-03 2019-03-28 創光科学株式会社 窒化物半導体紫外線発光装置及びその製造方法
JP6486401B2 (ja) * 2017-03-08 2019-03-20 日機装株式会社 半導体発光素子および半導体発光素子の製造方法
US11049999B2 (en) * 2017-05-26 2021-06-29 Soko Kagaku Co., Ltd. Template, nitride semiconductor ultraviolet light-emitting element, and method of manufacturing template
JP6438542B1 (ja) * 2017-07-27 2018-12-12 日機装株式会社 半導体発光素子
JP6649324B2 (ja) 2017-08-09 2020-02-19 創光科学株式会社 窒化物半導体紫外線発光素子及び窒化物半導体紫外線発光素子の製造方法
CN111316454B (zh) * 2017-11-02 2023-03-28 创光科学株式会社 紫外线发光装置、紫外线发光装置的制造方法及紫外线发光模块的制造方法
JP6686172B2 (ja) * 2017-11-22 2020-04-22 創光科学株式会社 窒化物半導体発光素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140103289A1 (en) * 2010-04-30 2014-04-17 Yitao Liao High efficiency ultraviolet light emitting diode with band structure potential fluctuations
TW201308656A (zh) * 2011-08-09 2013-02-16 Soko Kagaku Co Ltd 氮化物半導體紫外線發光元件

Also Published As

Publication number Publication date
EP3754732B1 (en) 2023-04-12
EP3754732A1 (en) 2020-12-23
KR102285185B1 (ko) 2021-08-02
CN111712930B (zh) 2023-09-12
TW201935707A (zh) 2019-09-01
WO2019159265A1 (ja) 2019-08-22
JPWO2019159265A1 (ja) 2020-02-27
US20210043804A1 (en) 2021-02-11
EP3754732A4 (en) 2021-09-29
US11217726B2 (en) 2022-01-04
CN111712930A (zh) 2020-09-25
JP6391207B1 (ja) 2018-09-19
KR20200096649A (ko) 2020-08-12

Similar Documents

Publication Publication Date Title
TWI684291B (zh) 氮化物半導體紫外線發光元件
JP5881222B2 (ja) 窒化物半導体紫外線発光素子及び窒化物半導体紫外線発光素子の製造方法
JP3852000B2 (ja) 発光素子
JP6306200B2 (ja) 窒化物半導体発光素子
JP6194138B2 (ja) 窒化物半導体紫外線発光素子
JP6686172B2 (ja) 窒化物半導体発光素子
US8138494B2 (en) GaN series light-emitting diode structure
KR20130058406A (ko) 반도체 발광소자
JP2012175005A (ja) 半導体発光素子
KR100723250B1 (ko) 질화물 반도체 발광 소자
JP3724213B2 (ja) 窒化ガリウム系化合物半導体発光素子
JP7421657B2 (ja) 窒化物半導体紫外線発光素子
JP2015115343A (ja) 窒化物半導体素子の製造方法
TW202213814A (zh) 氮化物半導體紫外線發光元件
JP2014003121A (ja) 窒化物半導体発光素子
TW201316548A (zh) 半導體發光裝置
JP2005251922A (ja) 半導体発光素子
WO2023203599A1 (ja) 窒化物半導体紫外線発光素子
JP4055794B2 (ja) 窒化ガリウム系化合物半導体発光素子
JP2017224841A (ja) 窒化物半導体紫外線発光素子
KR101349604B1 (ko) 질화갈륨계 발광소자