WO2019097710A1 - モータ及びその製造方法 - Google Patents

モータ及びその製造方法 Download PDF

Info

Publication number
WO2019097710A1
WO2019097710A1 PCT/JP2017/041622 JP2017041622W WO2019097710A1 WO 2019097710 A1 WO2019097710 A1 WO 2019097710A1 JP 2017041622 W JP2017041622 W JP 2017041622W WO 2019097710 A1 WO2019097710 A1 WO 2019097710A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
motor
motor housing
conductive sheet
heat conductive
Prior art date
Application number
PCT/JP2017/041622
Other languages
English (en)
French (fr)
Inventor
ウィツター ジワリヤウェート
山下 幸生
Original Assignee
三菱重工エンジン&ターボチャージャ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工エンジン&ターボチャージャ株式会社 filed Critical 三菱重工エンジン&ターボチャージャ株式会社
Priority to JP2019553660A priority Critical patent/JP6955578B2/ja
Priority to EP17932413.2A priority patent/EP3605805B1/en
Priority to US16/612,986 priority patent/US11509190B2/en
Priority to CN201780090187.0A priority patent/CN110612657A/zh
Priority to PCT/JP2017/041622 priority patent/WO2019097710A1/ja
Publication of WO2019097710A1 publication Critical patent/WO2019097710A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/14Casings; Enclosures; Supports
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/223Heat bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/24Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations

Definitions

  • the present disclosure relates to a motor and a method of manufacturing the motor.
  • the electric supercharger driven by the motor needs measures for the heat generation of the motor main body housed inside the motor housing and for the noise generated when the vibration generated in the motor main body is transmitted to the outside of the motor housing .
  • a heat conductive material made of a material having a good heat conductivity such as metal is filled in the gap between the stator and the motor housing, and the heat generation of the motor body is dissipated to the outside through the heat conductive material.
  • a cooling method is conceivable.
  • this method there is a problem that the vibration of the motor is transmitted to the outside of the motor housing through the heat transfer material, and the noise is not reduced. Therefore, if a flexible material is interposed in the gap between the stator and the motor housing as a vibration suppression measure, the noise problem can be solved, but there is a problem that the cooling effect of the motor is reduced this time.
  • Patent Document 1 discloses means for filling the gap between the stator and the motor housing with a thermally conductive resin in order to enhance the cooling effect of heat dissipation of the motor body.
  • Some embodiments aim at proposing a motor that can improve both the cooling effect and the vibration suppression effect of the motor and a simple manufacturing method of the motor.
  • the motor according to one embodiment Motor housing, A stator provided inside the motor housing and supported by the motor housing; A thermally conductive sheet provided so as to fill a radial or axial gap between the motor housing and the stator; Equipped with
  • the thermally conductive sheet is filled in the gap in the radial or axial direction formed between the motor housing and the stator, It can be dissipated from the motor housing to the outside, thereby enhancing the cooling effect.
  • the heat conductive sheet is composed of a graphite sheet. According to the configuration of the above (2), since the graphite sheet has good thermal conductivity, high tensile modulus and elasticity, it is possible to improve both the cooling effect and the vibration suppressing effect by heat dissipation of the motor.
  • thermally conductive sheets are stacked in a slidable manner to form a laminate.
  • the thermally conductive sheet is a laminate including a plurality of thermally conductive sheets
  • the sheet contains elasticity etc. between the sheets to have elasticity, so that the vibration of the stator is generated. Can be suppressed from being transmitted to the motor housing.
  • adjustment of the shape, size and thickness of the laminate is easy, and the radial or axial direction of the motor housing and the stator can be adjusted. According to the shape and size of the gap, the gap in the radial or axial direction can be easily filled.
  • stator when assembling is performed by inserting the stator into the motor housing by interposing the laminate between the motor housing and the stator, the stator can be easily inserted into the motor housing by utilizing slippage between the thermally conductive sheets. Be able to do so and be easy to assemble.
  • a passage through which a cooling medium is supplied to the motor housing radially or axially outside the heat conductive sheet is formed. According to the configuration of the above (4), since the heat generation of the motor main body transmitted to the motor housing through the thermally conductive sheet or the laminate thereof is cooled by the cooling medium supplied to the passage, the motor main body to the motor housing The heat dissipation to the motor can be promoted, and the motor cooling effect can be improved.
  • the thermally conductive sheet is discretely provided on a part of an axial end surface or an outer peripheral surface of the stator, A passage is provided through which the cooling medium is supplied to the motor housing radially or axially outside each of the thermally conductive sheets.
  • the shape, size, and thickness can be arbitrarily adjusted by laminating a plurality of heat conductive sheets, so that even when dispersed and disposed as in the configuration of the above (5), they can be easily disposed at desired positions.
  • the thermally conductive sheet can be disposed intensively at a place where cooling is required, and the cooling effect can be improved and the cost can be reduced.
  • any one of the configurations (1) to (5) An arcuate or annular recess is formed on the outer peripheral surface or the axial end surface of the stator, The heat conductive sheet is disposed in the recess.
  • the thermally conductive sheet is fixed without shifting to the desired position of the outer peripheral surface of the stator when assembling the motor housing and the stator. it can.
  • the thermal conductivity of the thermally conductive sheet is 0.5 W / (m ⁇ K) or more. According to the configuration of the above (7), when the thermal conductivity of the thermally conductive sheet is 0.5 W / (m ⁇ K) or more, the diffusion effect of transmitting the heat generation of the motor main body to the motor housing can be improved.
  • the tensile elastic modulus of the heat conductive sheet is 1000 MPa or more. According to the configuration of (8), when the tensile elastic modulus of the heat conductive sheet is 1000 MPa or more, the vibration of the stator main body can be suppressed from being transmitted to the outside of the motor housing, and the vibration of the motor can be reduced.
  • a method of manufacturing a motor according to one embodiment An assembling step of assembling the stator to the motor housing is provided such that a radial or axial gap between the motor housing and the stator is filled by the heat conductive sheet.
  • the motor manufactured by the above method (9) is filled with the thermally conductive sheet so as to fill the gap between the motor housing and the stator, so the heat generated from the motor main body is dissipated to the outside of the motor housing. While being able to heighten a cooling effect, it can control that vibration of a stator is transmitted to a motor housing.
  • a plurality of the heat conductive sheets are stacked to form a laminated body, and axial end portions of the plurality of heat conductive sheets are positioned on one axial end face side of the stator as going radially outward.
  • the plurality of thermally conductive sheets are axially displaced in the first arrangement step, and the thermally conductive sheet on the outermost side is disposed in the housing section in the insertion step. Since the stator is inserted into the housing section while being in sliding contact with the circumferential surface, after assembly due to the frictional force generated between the housing section and the thermally conductive sheet on the outermost side and the frictional force generated between the thermally conductive sheets The axial end face of the thermally conductive sheet can be naturally aligned in the radial direction. Further, the laminate is easy to adjust in shape, size and thickness, and can be easily disposed in the gap according to the shape and size of the radial gap between the motor housing and the stator. In addition, when assembling is performed in which the stator is inserted into the motor housing by interposing the laminate between the motor housing and the stator, the stator can be easily inserted into the motor housing by utilizing slippage between the thermally conductive sheets. it can.
  • each of the plurality of heat conductive sheets is applied to a contact surface formed in the housing section in a direction orthogonal to the axial direction of the stator, and the axial end of each of the heat conductive sheets is Align in the axial direction of the stator.
  • the axial end of the heat conductive sheet is brought into contact with the contact surface to ensure that the axial end of the heat conductive sheet is aligned in the radial direction.
  • the other of the motor housing or the stator is assembled by fitting to the one of the motor housing or the stator.
  • the thermally conductive sheet is disposed on one of the motor housing and the stator by assembling the motor housing and the stator by a fitting method such as shrink fitting or cold fitting. Even in this case, it is not necessary to divide the motor housing into two parts, and the motor can be easily assembled.
  • the thermally conductive sheet is disposed in an arc or annular recess formed on the outer peripheral surface of the stator. According to the method of (13), by disposing the thermally conductive sheet in the concave portion, the thermally conductive sheet can be fixed at a desired position on the outer peripheral surface of the stator at the time of manufacturing the motor.
  • both the cooling effect and the vibration suppression effect of the motor can be improved, and the motor can be easily manufactured.
  • (A) And (B) is sectional drawing which shows the manufacturing process of the motor which concerns on one Embodiment. It is a cross-sectional view of the motor which concerns on one Embodiment. It is a longitudinal section of a motor concerning one embodiment.
  • (A) And (B) is sectional drawing which shows the manufacturing process of the motor which concerns on one Embodiment. It is process drawing which shows the manufacturing method of the motor which concerns on one Embodiment.
  • expressions that indicate that things such as “identical”, “equal” and “homogeneous” are equal states not only represent strictly equal states, but also have tolerances or differences with which the same function can be obtained. It also represents the existing state.
  • expressions representing shapes such as quadrilateral shapes and cylindrical shapes not only represent shapes such as rectangular shapes and cylindrical shapes in a geometrically strict sense, but also uneven portions and chamfers within the range where the same effect can be obtained. The shape including a part etc. shall also be expressed.
  • the expressions “comprising”, “having”, “having”, “including” or “having” one component are not exclusive expressions excluding the presence of other components.
  • FIGS. 1 to 4 show motors 10 (10A, 10B, 10C) according to some embodiments.
  • the motor 10 is provided with a stator 14 inside the motor housing 12, and the stator 14 is supported by the motor housing 12.
  • a rotation shaft 16 is provided at the center of the motor housing 12, and a rotor 18 is fixed to an outer peripheral surface of the rotation shaft 16 at an axial position facing the stator 14. The rotating shaft 16 is rotated by the magnetic force generated by the current flowing through the stator coil (not shown).
  • a thermally conductive sheet 20 a is provided in a radial or axial gap c between the motor housing 12 and the stator 14.
  • the heat conductive sheet 20a is disposed in contact with the inner peripheral surface of the motor housing 12 and the outer peripheral surface of the stator 14 or the inner side surface of the motor housing 12 and the side surface of the stator 14 to fill the gap c in the radial or axial direction. Ru.
  • stator 14 is supported in contact with a support member (not shown) formed inside the motor housing 12.
  • the heat conductive sheet 20a is filled so as to fill the radial or axial gap c formed between the motor housing 12 and the stator 14, the heat generation of the motor main body is thermally conductive. The heat is dissipated from the motor housing 12 through the heat conductive sheet 20a. This can enhance the cooling effect of the motor body.
  • an epoxy resin an acrylic resin, a silicone resin or the like having a specific structure and having a predetermined or higher thermal conductivity can be used.
  • the thermally conductive sheet 20a is comprised of a graphite sheet.
  • the graphite sheet has a large thermal conductivity both in the surface direction and the thickness direction, and has a high tensile elastic modulus and elasticity, so that the heat dissipation effect and the vibration suppressing effect of the motor 10 can be improved.
  • the plurality of thermally conductive sheets 20 a are not adhered to each other and are slidably stacked so as to form a laminate 20.
  • the laminate 20 in which a plurality of sheets are stacked has elasticity due to air or the like existing between the sheets, transmission of vibration of the stator 14 to the motor housing 12 can be suppressed.
  • adjustment of the shape, size and thickness of the laminate 20 is easy, and the radial direction between the motor housing 12 and the stator 14 Alternatively, the gap can be easily filled according to the shape and size of the gap c in the axial direction.
  • stator 14 can be easily inserted into the motor housing 12 by utilizing the slippage between the heat conductive sheets. And the assembly of the motor 10 is facilitated.
  • the laminate 20 when the number of the heat conductive sheets 20a is adjusted to make the thickness of the laminate 20 be a thickness c or more in the radial or axial direction, and the stator 14 is inserted into the motor housing 12, the laminate The two side surfaces 20 are pressed against the motor housing 12 and the stator 14. As a result, the amount of heat transfer through the stacked body 20 can be increased, and the cooling effect of the motor 10 can be enhanced.
  • a cooling passage where the cooling medium w is supplied to the portion of the motor housing 12 located radially outside or in the axial direction of the laminate 20 22 are formed.
  • the cooling passage 22 since the heat generation of the motor main body transmitted to the motor housing 12 through the stacked body 20 is cooled by the cooling passage 22, the amount of heat dissipated from the motor main body to the outside of the motor housing can be increased. The cooling effect of the motor 10 can be improved.
  • a plurality of laminates 20 are discretely provided on a part of the axial end surface or the outer peripheral surface of the stator 14. Then, the cooling passage 22 is formed in the motor housing 12 outside the radial direction or the axial direction of each stack 20.
  • the shape and size of the laminate 20 can be arbitrarily adjusted, so that the laminate 20 can be dispersed at desired positions and easily disposed. As a result, the stacked body 20 can be disposed intensively at a place where cooling is required, and the cooling effect can be improved and the cost can be reduced. Further, since the laminate 20 can be freely disposed at any place, the degree of freedom in design of the motor housing 12 can be expanded.
  • each of the plurality of heat conductive sheets 20 a is disposed along the circumferential surface or the side surface of the motor housing 12 and the stator 14. This facilitates the arrangement of the thermally conductive sheet 20a in the radial or axial gap c.
  • an arc-shaped or annular recess 14a is formed on the outer peripheral surface or the axial end face of the stator 14, and the thermally conductive sheet 20a or the laminate 20 is It is accommodated in the recess 14a.
  • the heat conductive sheet 20 a or the laminate 20 is an annular laminate disposed on the entire outer periphery of the stator 14, an annular recess 14 a is formed on the outer periphery of the stator 14.
  • the plurality of arc-shaped thermally conductive sheets 20 a or the laminate 20 are discretely disposed on the outer peripheral surface of the stator 14, the plurality of arc-shaped concave portions 14 a are discretely formed on the outer peripheral surface of the stator 14 .
  • the heat conductive sheet 20a or the laminate 20 is displaced to a desired position on the outer peripheral surface of the stator 14 when the motor housing 12 and the stator 14 are assembled by arranging the laminate 20 in the recess 14a. It can fix without.
  • a thermally conductive sheet 20 a having a thermal conductivity of 0.5 W / (m ⁇ K) or more is used.
  • a thermally conductive sheet 20a having a tensile modulus of 1000 MPa or more is used. As a result, the transmission of the vibration of the motor body to the outside of the motor housing can be suppressed, and the vibration of the motor 10 can be reduced.
  • the motor housing 12 is configured such that the radial or axial gap c between the motor housing 12 and the stator 14 is filled with the thermally conductive sheet 20a.
  • the stator 14 is assembled to 12 (assembly step S10).
  • the motor manufactured by the above method is filled with the thermally conductive sheet 20 a so as to fill the radial or axial gap c between the motor housing 12 and the stator 14, so heat generation of the motor main body can be reduced outside the motor housing The heat can be dissipated to enhance the cooling effect of the motor, and the transmission of the vibration of the stator 14 to the motor housing 12 can be suppressed.
  • a plurality of heat conductive sheets 20 a are stacked to form a stacked body 20.
  • a plurality of thermal conductive sheets 20a are arranged such that axial end portions of the plurality of heat conductive sheets 20a are positioned on one axial end face side of the stator 14 The thermally conductive sheets 20a are disposed offset from each other in the axial direction.
  • the housing section 12 (12a) constituting the motor housing 12 is moved axially relative to the stator 14 from one axial end face side of the stator 14 to conduct a plurality of heat conductions
  • the stator 14 is inserted into the inside of the housing section 12 (12a) while the thermally conductive sheet 20a on the outermost side of the pressure sheet 20a is in sliding contact with the inner peripheral surface of the housing section 12 (12a) (insertion step S14) .
  • the plurality of thermally conductive sheets 20a are axially displaced, and in the insertion step S14, the thermally conductive sheet 20a on the outermost circumferential side is arranged in the housing section 12 (12a
  • the stator 14 is inserted into the housing section 12 (12a) while being in sliding contact with the inner peripheral surface of the housing section 12 (12a), so that the frictional force between the housing section 12 (12a) and the outermost thermally conductive sheet 20a
  • the frictional force between the sheets allows the axial end face of the thermally conductive sheet 20a after assembly to be naturally radially aligned.
  • the assembly in which the axial end faces of the plurality of heat conductive sheets 20a are aligned is possible without extra work.
  • the laminate 20 can be easily adjusted in shape, size and thickness, and can be easily disposed in the radial gap c in accordance with the shape and size of the radial gap c between the motor housing 12 and the stator 14.
  • the laminated body 20 is interposed between the motor housing 12 and the stator 14 and the stator is inserted into the motor housing, by utilizing the slip between the thermally conductive sheets 20a, the stator can be inserted into the motor housing. Can be easily inserted, which makes the assembly of the motor 10 easy.
  • the housing section 12 (12a, 12b) is manufactured by dividing the motor housing 12 in the radial direction. Then, in the first arrangement step S12, axial end portions of the plurality of heat conductive sheets 20a are closer to the housing section 12 (12a) of the stator 14 toward the outer peripheral surface of the stator 14 toward the radially outer side. The plurality of thermally conductive sheets 20a are arranged axially offset from one another so as to be located on the side. Next, in the insertion step S14, the stator 14 is inserted into the housing section 12 (12a). The housing section 12 (12b) is then butt-joined at the roof section to the housing section 12 (12a) so as to cover the exposed side of the stator 14.
  • the housing section 12 (12a) is provided with a plurality of heat conductive sheets 20a on the abutment surface 24a formed in the direction orthogonal to the axial direction of the stator 14.
  • the axial end portions are abutted so that the axial end portions of the respective heat conductive sheets 20 a are aligned in the axial direction of the stator 14.
  • the axial end of the thermally conductive sheet can be reliably aligned in the radial direction by bringing the axial end of the thermally conductive sheet 20a into contact with the contact surface 24a.
  • a pressure plate 24 is provided downward from the inner circumferential surface of the housing section 12 (12 a).
  • the backing plate 24 faces the open side of the housing section 12 (12a) in the opposite direction to the leg portion 26a, and has a seating surface 24a formed in a direction orthogonal to the axial direction of the stator 14.
  • the backing plate 24 extends from the height of the upper end of the stator 14 to the lower side.
  • the axial direction end portions of the plurality of heat conductive sheets 20a abut the abutting surface 24a
  • the axial direction of the thermally conductive sheet 20a with respect to the stator 14 so that the side surface of the upper end of the stator 14 simultaneously abuts the abutting surface 24a.
  • the position is decided.
  • the backing plate 24 has a function of aligning the axial end portions of the plurality of heat conductive sheets 20 a and a function of supporting and fixing the stator 14.
  • the heat conductive sheet 20a or the laminate 20 is disposed on one of the circumferential surfaces of the motor housing 12 or the stator 14 in the second disposition step S16.
  • the other of the motor housing 12 or the stator 14 is fitted into one of the motor housing 12 or the stator 14 by fitting (fitting step S18).
  • FIG. 4 shows the motor 10 (10C) according to an embodiment assembled by the fitting step S18.
  • the laminate 20 is disposed on one of the circumferential surfaces of the motor housing 12 or the stator 14 by assembling the motor housing 12 and the stator 14 by a fitting method such as shrink fitting or cold fitting. Even in this case, it is not necessary to manufacture the motor housing 12 in two, and the motor can be easily assembled.
  • the motor housing 12 having only one leg portion 26a is manufactured. Then, the stator 14 is inserted from the side opened without the leg portion 26a. Thereafter, the leg portion 26 b is disposed on the open side and assembled to the motor housing 12.
  • the thermally conductive sheet 20a or the laminate 20 is disposed in the arc-shaped or annular recess 14a formed on the outer peripheral surface of the stator 14. According to this embodiment, by arranging the heat conductive sheet 20a or the laminate 20 in the recess 14a, the heat conductive sheet 20a or the laminate 20 is displaced to a desired position on the outer peripheral surface of the stator 14 when the motor is manufactured. It can fix without.
  • the motor housing 12 and the stator 14 are assembled by shrink fitting (shrink fitting step S20). That is, after the motor housing 12 is heated and thermally expanded, the stator 14 is inserted into the motor housing 12 and then the motor housing 12 is returned to room temperature and thermally shrunk, and the radial direction gap c becomes the thermally conductive sheet 20a. Alternatively, it may be filled with the stack 20. According to this embodiment, assembly of the motor 10 (10C) is possible without manufacturing the housing section 12 (12a, 12b) shown in FIG.
  • a slightly larger motor housing 12 for shrink fitting is manufactured so that the radial gap c can be made larger with the stator 14. Then, the thermally conductive sheet 20a or the laminate 20 is disposed on the outer peripheral surface of the stator 14, and the shrink fit is performed so that the inner peripheral surface of the motor housing 12 stably contacts the upper surface of the thermally conductive sheet 20a or the laminated body 20. Do.
  • the heat conductive sheet 20a or the laminate 20 is disposed in an arc or annular recess 14a formed on the outer peripheral surface of the stator 14.
  • the heat conductive sheet 20a or the laminate 20 is formed on the outer peripheral surface of the stator 14 when the motor 10 (10C) is manufactured. It can be fixed without shifting to the desired position.
  • the heat conductive sheet 20a is slightly stacked to form a thick laminate 20, which is inserted into the recess 14a.
  • the upper surface of the laminate 20 can be in close contact with the inner peripheral surface of the motor housing 12, and the lower surface of the laminate 20 can be in close contact with the upper surface of the stator 14.
  • the stator 14 in the fitting step S18, is inserted into the motor housing 12 in a cooled and thermally contracted state, and then the stator 14 is returned to room temperature and thermally expanded.
  • the radial gap c is filled with the heat conductive sheet 20a or the laminate 20 (cold fitting step S22). This embodiment also allows the assembly of the motor 10 (10C) without manufacturing the housing section 12 (12a, 12b) shown in FIG.
  • a motor that can improve both the cooling effect and the vibration suppression effect of the motor can be realized, and the manufacturing process of the motor can be simplified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Motor Or Generator Frames (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

一実施形態に係るモータは、モータハウジングと、該モータハウジングの内部に設けられると共に、前記モータハウジングによって支持されるステータと、前記モータハウジングと前記ステータとの間の径方向または軸方向の隙間を埋めるように設けられた熱伝導性シートと、を備える。

Description

モータ及びその製造方法
 本開示は、モータ及び該モータの製造方法に関する。
 モータによって駆動される電動式過給機は、モータハウジングの内部に収容されるモータ本体の発熱に対する対策と、モータ本体で発生する振動がモータハウジング外に伝わって発生する騒音に対する対策が必要となる。
 発熱に対する対策として、例えば、金属などの熱伝導性が良い材料で作られた熱伝導材をステータとモータハウジングとの隙間に充填し、該熱伝導材を介してモータ本体の発熱を外部に放散させる冷却方法が考えられる。しかし、この方法では、モータの振動が該熱伝導材を介してモータハウジングの外側に伝わり、騒音が低減されないという問題がある。
 そこで、振動抑制対策として、ステータとモータハウジングとの隙間に柔軟性材料を介在させると、騒音問題は解決できるが、今度はモータの冷却効果が低下するという問題がある。
 特許文献1には、モータ本体の熱放散による冷却効果を高めるために、ステータとモータハウジングとの隙間に熱伝導性樹脂を充填する手段が開示されている。
米国特許第6798094号明細書
 一体型モータハウジングを備えるモータでは、製造工程において、特許文献1のように、ステータとモータハウジングとの隙間に熱伝導性樹脂を介在させるのは容易ではない。そこで、モータハウジングを径方向に沿って2個のハウジングセクションに二分割し、ステータと一方のハウジングセクションとの隙間に熱伝導性樹脂を挟んだ状態で、該一方のハウジングセクションの内部にステータを挿入する、等の方法が考えられる。
 しかし、熱伝導性樹脂はステータ及びハウジングセクション間で大きな摩擦が発生するため、ステータを容易にハウジングセクションの内側に挿入させることができない。また、熱伝導性樹脂では放熱効果がそれほど高くないという問題がある。
 幾つかの実施形態は、モータの冷却効果と振動抑制効果を共に向上可能なモータ及び該モータの簡易な製造方法を提案することを目的とする。
 (1)一実施形態に係るモータは、
 モータハウジングと、
 該モータハウジングの内部に設けられると共に、前記モータハウジングによって支持されるステータと、
 前記モータハウジングと前記ステータとの間の径方向または軸方向の隙間を埋めるように設けられた熱伝導性シートと、
 を備える。
 上記(1)の構成によれば、熱伝導性シートがモータハウジングとステータとの間に形成される径方向又は軸方向の隙間に充填されるため、モータ本体の発熱を該熱伝導性シートを介してモータハウジングから外部に放散でき、これによって、冷却効果を高めることができる。
 (2)一実施形態では、前記(1)の構成において、
 前記熱伝導性シートはグラファイトシートで構成される。
 上記(2)の構成によれば、グラファイトシートは熱伝導性が良くかつ引張弾性率が高く弾力性があるため、モータの発熱放散による冷却効果及び振動抑制効果を共に向上できる。
 (3)一実施形態では、前記(1)又は(2)の構成において、
 前記熱伝導性シートは互いに滑り可能に複数積層されて、積層体を形成している。
 上記(3)の構成によれば、該熱伝導性シートを複数の熱伝導性シートからなる積層体としたとき、シート間に空気などを含んで弾力性を有するようになるため、ステータの振動がモータハウジングに伝わるのを抑制できる。
 また、積層体を構成するシートの形状、大きさ及び枚数を調節することで、積層体の形状、大きさ及び厚さの調整は容易であり、モータハウジングとステータとの径方向又は軸方向の隙間の形状、大きさに合わせて容易に径方向又は軸方向の隙間に充填できる。
 また、モータハウジングとステータ間に積層体を介在させてモータハウジング内にステータを挿入する組立てを行う場合に、熱伝導性シート間のすべりを利用することで、モータハウジング内へステータを容易に挿入でき、組立てが容易になる。
 (4)一実施形態では、前記(1)~(3)の何れかの構成において、
 前記熱伝導性シートの径方向または軸方向の外側の前記モータハウジングに冷却媒体が供給される通路が形成される。
 上記(4)の構成によれば、熱伝導性シート又はその積層体を介してモータハウジングに伝わったモータ本体の発熱が上記通路に供給される冷却媒体で冷却されるため、モータ本体からモータハウジングへの熱放散を促進でき、モータの冷却効果を向上できる。
 (5)一実施形態では、前記(4)の構成において、
 前記熱伝導性シートは、前記ステータの軸方向端面又は外周面の一部に離散的に設けられ、
 前記熱伝導性シートの各々の径方向または軸方向の外側の前記モータハウジングに前記冷却媒体が供給される通路が形成される。
 熱伝導性シートは複数積層することで、形状、大きさ及び厚さを任意に調整できるので、上記(5)の構成のように、分散配置する場合でも、所望の位置に容易に配置できる。これによって、熱伝導性シートを冷却が必要な場所に重点的に配置でき、冷却効果を向上できると共に、低コスト化できる。
 (6)一実施形態では、前記(1)~(5)の何れかの構成において、
 前記ステータの外周面または軸方向端面に円弧状又は環状の凹部が形成され、
 前記熱伝導性シートは前記凹部に配置される。
 上記(6)の構成によれば、熱伝導性シートを上記凹部に配置することで、モータハウジングとステータとの組立て時に、熱伝導性シートをステータの外周面の所望の位置にずれることなく固定できる。
 (7)一実施形態では、前記(1)~(6)の何れかの構成において、
 前記熱伝導性シートの熱伝導率が0.5W/(m・K)以上である。
 上記(7)の構成によれば、熱伝導性シートの熱伝導率が0.5W/(m・K)以上であることで、モータ本体の発熱をモータハウジングに伝える放散効果を向上できる。
 (8)一実施形態では、前記(1)~(7)の何れかの構成において、
 前記熱伝導性シートの引張弾性率が1000MPa以上である。
 上記(8)の構成によれば、熱伝導性シートの引張弾性率が1000MPa以上であることで、ステータ本体の振動がモータハウジング外に伝わるのを抑制でき、モータの振動を低減できる。
 (9)一実施形態に係るモータの製造方法は、
 モータハウジングとステータとの間の径方向または軸方向の隙間が熱伝導性シートによって埋められるように、前記モータハウジングに前記ステータを組み付ける組付けステップを備える。
 上記(9)の方法によって製造されたモータは、モータハウジングとステータとの間の隙間を埋めるように熱伝導性シートが充填されるので、モータ本体の発熱をモータハウジング外へ放熱してモータの冷却効果を高めることができると共に、ステータの振動がモータハウジングに伝わるのを抑制できる。
 (10)一実施形態では、前記(9)の方法において、
 前記熱伝導性シートを複数積層して積層体を形成し、径方向外側に向かうほど、前記複数の熱伝導性シートの軸方向端部が前記ステータの一方の軸方向端面側に位置するように、前記複数の熱伝導性シートを軸方向に互いにずらして配置する第1配置ステップと、
 前記組付けステップでは、前記モータハウジングを構成するハウジングセクションを、前記ステータの前記一方の軸方向端面側から前記ステータに対して相対的に軸方向に動かし、前記複数の熱伝導性シートのうち最外周側の前記熱伝導性シートを前記ハウジングセクションの内周面に摺接させながら前記ステータを前記ハウジングセクションの内部に挿入する挿入ステップと、
 を備える。
 上記(10)の方法によれば、上記第1配置ステップにおいて、複数の熱伝導性シートを軸方向にずらして配置し、上記挿入ステップにおいて、最外周側の熱伝導性シートをハウジングセクションの内周面に摺接させながらステータをハウジングセクションに挿入するので、ハウジングセクションと最外周側の熱伝導性シート間に発生する摩擦力、及び熱伝導性シート相互間に発生する摩擦力によって、組み付け後の熱伝導性シートの軸方向端面を自然に径方向に揃えることができる。
 また、積層体は形状、大きさ及び厚さの調整は容易であり、モータハウジングとステータとの径方向隙間の形状、大きさに合わせて容易に該隙間に配置できる。
 また、モータハウジングとステータ間に積層体を介在させてモータハウジング内にステータを挿入させる組立てを行う場合に、熱伝導性シート間の滑りを利用することで、モータハウジング内へステータを容易に挿入できる。
 (11)一実施形態では、前記(10)の方法において、
 前記組付けステップにおいて、
 前記ハウジングセクションに前記ステータの軸方向と直交する方向に形成された当て面に前記複数の熱伝導性シートの前記軸方向端部を当て、前記熱伝導性シートの各々の前記軸方向端部を前記ステータの軸方向で揃える。
 上記(11)の方法によれば、組付けステップにおいて、上記当て面に熱伝導性シートの軸方向端部を当てることで、熱伝導性シートの軸方向端部を径方向に確実に揃えることができる。
 (12)一実施形態では、前記(9)の方法において、
 前記モータハウジング又は前記ステータのうち一方の周面上に前記熱伝導性シートを配置する第2配置ステップと、
 前記組付けステップでは、前記第2配置ステップの後、前記モータハウジング又は前記ステータの前記一方に対して前記モータハウジング又は前記ステータの他方を嵌め合いにより組み付ける。
 上記(12)の方法によれば、モータハウジングとステータとを焼き嵌め又は冷し嵌め等の嵌め合い方法により組み立てることで、モータハウジング又はステータのうち一方の周面上に熱伝導性シートを配置する場合でも、モータハウジングを二分割して製造する必要がなくなり、モータを容易に組み立てることができる。
 (13)一実施形態では、前記(12)の方法において、
 前記組付けステップにおいて、
 前記熱伝導性シートを前記ステータの外周面に形成された円弧状又は環状の凹部に配置する。
 上記(13)の方法によれば、熱伝導性シートを上記凹部に配置することで、モータの製造時に熱伝導性シートをステータの外周面の所望の位置にずれることなく固定できる。
 幾つかの実施形態によれば、モータの冷却効果と振動抑制効果を共に向上できると共に、該モータを容易に製造できる。
(A)及び(B)は一実施形態に係るモータの製造工程を示す断面図である。 一実施形態に係るモータの横断面図である。 一実施形態に係るモータの縦断面図である。 (A)及び(B)は一実施形態に係るモータの製造工程を示す断面図である。 一実施形態に係るモータの製造方法を示す工程図である。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載され又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一つの構成要素を「備える」、「具える」、「具備する」、「含む」、又は「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 図1~図4は幾つかの実施形態に係るモータ10(10A、10B、10C)を示す。
 図1~図4において、モータ10は、モータハウジング12の内部にステータ14が設けられ、ステータ14はモータハウジング12によって支持される。モータハウジング12の中心には回転軸16が設けられ、回転軸16の外周面にステータ14と対面する軸方向位置にロータ18が固定されている。ステータコイル(不図示)に流れる電流によって発生する磁力によって回転軸16が回転する。モータハウジング12とステータ14との間の径方向又は軸方向の隙間cに熱伝導性シート20aが設けられる。熱伝導性シート20aはモータハウジング12の内周面とステータ14の外周面、あるいはモータハウジング12の内側側面とステータ14の側面とに接し、径方向又は軸方向の隙間cを埋めるように配置される。
 一実施形態では、ステータ14は、モータハウジング12の内部に形成された支持部材(不図示)に当接して支持される。
 上記構成によれば、熱伝導性シート20aがモータハウジング12とステータ14との間に形成される径方向又は軸方向の隙間cを埋めるように充填されるため、モータ本体の発熱は熱伝導性が良い熱伝導性シート20aを介してモータハウジング12から外部に放散される。これによって、モータ本体の冷却効果を高めることができる。
 一実施形態では、熱伝導性シート20a用の材料として、エポキシ樹脂、アクリル樹脂、シリコン樹脂などで特定の構造を有し、ある一定以上の熱伝導率を有するものを使用できる。
 一実施形態では、熱伝導性シート20aをグラファイトシートで構成する。グラファイトシートは面方向及び厚さ方向で共に大きい熱伝導率を有し、かつ引張弾性率が高く弾力性があるので、モータ10の発熱放散効果及び振動抑制効果を向上できる。
 一実施形態では、複数の熱伝導性シート20aは互いに接着されず滑り可能に複数積層されて積層体20を形成している。
 これによって、複数のシートが積層された積層体20はシート間に存在する空気などによって弾力性をもつため、ステータ14の振動がモータハウジング12に伝わるのを抑制できる。
 また、積層体20を構成するシートの形状、大きさ及び枚数を調節することで、積層体20の形状、大きさ及び厚さの調整は容易であり、モータハウジング12とステータ14間の径方向又は軸方向の隙間cの形状、大きさに合わせて容易に隙間に充填できる。
 また、径方向又は軸方向の隙間cが熱伝導性シート20aの積層体20で埋められていても、各熱伝導性シート間の滑りを利用することで、モータハウジング12内へステータ14を容易に挿入でき、モータ10の組立てが容易になる。
 一実施形態では、熱伝導性シート20aの枚数を調節して積層体20の厚さを径方向又は軸方向の隙間c以上の厚さとし、モータハウジング12内にステータ14を挿入したとき、積層体20の両側面がモータハウジング12及びステータ14に圧接されるようにする。
 これによって、積層体20を通る伝熱量を増加でき、モータ10の冷却効果を高めることができる。
 一実施形態では、図2及び図3に示すモータ10(10B)のように、積層体20の径方向又は軸方向の外側に位置するモータハウジング12の部位に冷却媒体wが供給される冷却通路22が形成される。
 この実施形態によれば、積層体20を介してモータハウジング12に伝わったモータ本体の発熱が冷却通路22で冷却されるため、モータ本体の発熱をモータハウジング外に放散する放散量を増加でき、モータ10の冷却効果を向上できる。
 一実施形態では、図2及び図3に示すように、複数の積層体20がステータ14の軸方向端面又は外周面の一部に離散的に設けられる。そして、各積層体20の径方向又は軸方向の外側のモータハウジング12に冷却通路22が形成される。
 積層体20は形状や大きさを任意に調整できるので、所望の複数位置に分散して容易に配置できる。これによって、積層体20を冷却が必要な場所に重点的に配置でき、冷却効果を向上できると共に、低コスト化できる。また、積層体20を任意の場所に自在に配置できるので、モータハウジング12の設計の自由度を広げることができる。
 比較例として、図2及び図3に示す積層体20の各々の配置位置に、特許文献1に開示されているように、樹脂を充填する場合を想定してみる。比較例では、径方向又は軸方向の隙間cに溶融樹脂を注入して固化させる必要があり、樹脂の正確な位置決めが困難である。また、樹脂の軸方向端部及び径方向端面を平坦に揃えることは困難である。
 これに対して、上記実施形態では、所望の形状、大きさ及び厚さを有する積層体20をモータハウジング外で用意できるので、複数の積層体20の位置決めが容易である。
 一実施形態では、図2及び図3に示すように、複数の熱伝導性シート20aの各々の表面をモータハウジング12及びステータ14の周面又は側面に沿わせて配置する。これによって、径方向又は軸方向の隙間cへの熱伝導性シート20aの配置が容易になる。
 一実施形態では、図4に示すモータ10(10C)のように、ステータ14の外周面又は軸方向の端面に円弧状又は環状の凹部14aが形成され、熱伝導性シート20a又は積層体20は凹部14aに収容される。例えば、熱伝導性シート20a又は積層体20がステータ14の外周面全周に配置される環状の積層体であるときは、ステータ14の外周面に環状の凹部14aが形成される。ステータ14の外周面に複数の円弧状の熱伝導性シート20a又は積層体20が離散的に配置されるときは、ステータ14の外周面に複数の円弧状の凹部14aが離散的に形成される。
 この実施形態によれば、積層体20を凹部14aに配置することで、モータハウジング12とステータ14との組立て時に、熱伝導性シート20a又は積層体20をステータ14の外周面の所望位置にずれることなく固定できる。
 一実施形態では、熱伝導率が0.5W/(m・K)以上である熱伝導性シート20aを用いる。これによって、モータ本体の発熱をモータハウジング12に伝える放散効果を向上でき、モータ10の冷却効果を向上できる。
 一実施形態では、引張弾性率が1000MPa以上である熱伝導性シート20aを用いる。これによって、モータ本体の振動がモータハウジング外に伝わるのを抑制でき、モータ10の振動を低減できる。
 一実施形態に係るモータの製造方法は、図5に示すように、モータハウジング12とステータ14との間の径方向又は軸方向の隙間cが熱伝導性シート20aで埋められるように、モータハウジング12にステータ14を組み付ける(組付けステップS10)。
 上記方法によって製造されたモータは、モータハウジング12とステータ14との間の径方向又は軸方向の隙間cを埋めるように熱伝導性シート20aが充填されるので、モータ本体の発熱をモータハウジング外へ放熱してモータの冷却効果を高めることができると共に、ステータ14の振動がモータハウジング12に伝わるのを抑制できる。
 一実施形態では、図5に示す第1配置ステップS12において、熱伝導性シート20aを複数積層して積層体20を形成する。第1配置ステップS12では、図1に示すように、径方向外側に向かうほど、複数の熱伝導性シート20aの軸方向端部がステータ14の一方の軸方向端面側に位置するように、複数の熱伝導性シート20aを軸方向に互いにずらして配置する。
 次に、組付けステップS10では、モータハウジング12を構成するハウジングセクション12(12a)を、ステータ14の一方の軸方向端面側からステータ14に対して相対的に軸方向に動かし、複数の熱伝導性シート20aのうち最外周側の熱伝導性シート20aをハウジングセクション12(12a)の内周面に摺接させながら、ステータ14をハウジングセクション12(12a)の内部に挿入する(挿入ステップS14)。
 この実施形態によれば、第1配置ステップS12において、複数の熱伝導性シート20aを軸方向にずらして配置し、挿入ステップS14において、最外周側の熱伝導性シート20aをハウジングセクション12(12a)の内周面に摺接させながら、ステータ14をハウジングセクション12(12a)に挿入するので、ハウジングセクション12(12a)と最外周側の熱伝導性シート20aとの摩擦力、及び熱伝導性シート相互の摩擦力によって、組立て後の熱伝導性シート20aの軸方向端面を自然に径方向に揃えることができる。このように、挿入ステップS14において、複数の熱伝導性シート20aの軸方向端面を揃えた組立てを余分な作業なしで可能になる。
 また、積層体20は形状、大きさ及び厚さの調整は容易であり、モータハウジング12とステータ14との径方向隙間cの形状、大きさに合わせて容易に径方向隙間cに配置できる。
 また、モータハウジング12とステータ14間に積層体20を介在させてモータハウジング内にステータを挿入させる組立てを行う場合に、熱伝導性シート20a間の滑りを利用することで、モータハウジング内へステータを容易に挿入できるため、モータ10の組立てが容易になる。
 一実施形態では、モータハウジング12の製造時に、モータハウジング12を径方向に沿って二分割したハウジングセクション12(12a、12b)を製造する。そして、第1配置ステップS12において、ステータ14の外周面に、径方向外側に向かうほど、複数の熱伝導性シート20aの軸方向端部がステータ14のハウジングセクション12(12a)に近い軸方向端面側に位置するように、複数の熱伝導性シート20aを軸方向に互いにずらして配置する。次に、挿入ステップS14で、ステータ14をハウジングセクション12(12a)の内側へ挿入する。その後、ステータ14が露出した側を覆うようにハウジングセクション12(12a)にハウジングセクション12(12b)を屋根部位で突き合わせ結合する。
 一実施形態では、図1に示すように、組付けステップS10において、ハウジングセクション12(12a)にステータ14の軸方向と直交する方向に形成された当て面24aに複数の熱伝導性シート20aの軸方向端部を当て、各熱伝導性シート20aの軸方向端部をステータ14の軸方向で揃えるようにする。
 この実施形態によれば、当て面24aに熱伝導性シート20aの軸方向端部を当てることで、熱伝導性シートの軸方向端部を径方向に確実に揃えることができる。
 一実施形態では、図1に示すように、ハウジングセクション12(12a)の内周面から下方へ垂下した当て板24を備える。当て板24は、ハウジングセクション12(12a)の脚部位26aと反対方向の開放側に面し、ステータ14の軸方向と直交する方向に形成された当て面24aを有する。
 一実施形態では、当て板24はステータ14の上端部の高さから下方側まで延在する。また、当て面24aに複数の熱伝導性シート20aの軸方向端部が当ったとき、ステータ14の上端部の側面も同時に当て面24aに当たるように、ステータ14に対する熱伝導性シート20aの軸方向位置が決められる。
 この実施形態によれば、当て板24は複数の熱伝導性シート20aの軸方向端部を揃える機能と、ステータ14を支持固定する機能とを有する。
 一実施形態では、図5に示すように、第2配置ステップS16で、モータハウジング12又はステータ14の一方の周面上に熱伝導性シート20a又は積層体20を配置する。次に、第2配置ステップS16の後、組付けステップS10では、モータハウジング12又はステータ14の一方に対して、モータハウジング12又はステータ14の他方を嵌め合いにより組み付ける(嵌め合いステップS18)。図4は嵌め合いステップS18により組み立てられる一実施形態に係るモータ10(10C)を示す。
 この方法によれば、モータハウジング12とステータ14とを焼き嵌め又は冷し嵌め等の嵌め合い方法により組み立てることで、モータハウジング12又はステータ14のうち一方の周面上に積層体20を配置する場合でも、モータハウジング12を二分割して製造する必要がなくなり、モータを容易に組み立てることができる。
 一実施形態では、嵌め合いステップS18を行う場合、図4に示すように、一方の脚部位26aのみを有するモータハウジング12を製造する。そして、脚部位26aがなく開放された側からステータ14を挿入する。その後、開放された側に脚部位26bを配置し、モータハウジング12に組み付ける。
 一実施形態では、嵌め合いステップS18で、図4に示すように、熱伝導性シート20a又は積層体20をステータ14の外周面に形成された円弧状又は環状の凹部14aに配置する。
 この実施形態によれば、熱伝導性シート20a又は積層体20を凹部14aに配置することで、モータの製造時に熱伝導性シート20a又は積層体20をステータ14の外周面の所望の位置にずれることなく固定できる。
 一実施形態では、嵌め合いステップS18において、焼き嵌めによりモータハウジング12とステータ14とを組み立てる(焼き嵌めステップS20)。即ち、モータハウジング12を加熱し熱膨張させた後、モータハウジング12の内部にステータ14を挿入し、その後、モータハウジング12を常温に戻して熱収縮させ、径方向隙間cが熱伝導性シート20a又は積層体20で埋められるようにする。
 この実施形態によれば、図1に示すハウジングセクション12(12a、12b)を製造することなく、モータ10(10C)の組立てが可能になる。
 一実施形態では、図4に示すモータ10(10C)のように、ステータ14との間で径方向隙間cを大きく取れるように、焼き嵌め用の少し大きめのモータハウジング12を製造する。そして、ステータ14の外周面に熱伝導性シート20a又は積層体20を配置し、モータハウジング12の内周面が熱伝導性シート20a又は積層体20の上面に安定して接触するように焼き嵌めする。
 一実施形態では、焼き嵌めステップS20において、図4に示すように、熱伝導性シート20a又は積層体20をステータ14の外周面に形成された円弧状又は環状の凹部14aに配置する。
 この実施形態によれば、熱伝導性シート20a又は積層体20を凹部14aに配置することで、モータ10(10C)の製造時に、熱伝導性シート20a又は積層体20をステータ14の外周面の所望の位置にずれることなく固定できる。
 一実施形態では、熱伝導性シート20aを少し厚めに重ねて厚めの積層体20を形成して凹部14aに入れる。これによって、積層体20の上面をモータハウジング12の内周面に密着でき、積層体20の下面をステータ14の上面に密着できる。
 一実施形態では、図5に示すように、嵌め合いステップS18において、ステータ14を冷却し熱収縮させた状態でモータハウジング12の内部に挿入し、その後、ステータ14を常温に戻して熱膨張させ、径方向隙間cが熱伝導性シート20a又は積層体20で埋められるようにする(冷し嵌めステップS22)。
 この実施形態によっても、図1に示すハウジングセクション12(12a、12b)を製造することなく、モータ10(10C)の組立てが可能になる。
 幾つかの実施形態によれば、モータの冷却効果と振動抑制効果を共に向上できるモータを実現できると共に、該モータの製造工程を簡素化できる。
 10(10A、10B、10C)  モータ
 12  モータハウジング
 12(12a、12b)  ハウジングセクション
 14  ステータ
  14a  凹部
 16  回転軸
 18  ロータ
 20  積層体
 20a  熱伝導性シート
 22  冷却通路
 24  当て板
  24a  当て面
 26a、26b  脚部位
 w   冷却媒体

Claims (13)

  1.  モータハウジングと、
     該モータハウジングの内部に設けられると共に、前記モータハウジングによって支持されるステータと、
     前記モータハウジングと前記ステータとの間の径方向または軸方向の隙間を埋めるように設けられた熱伝導性シートと、
     を備えることを特徴とするモータ。
  2.  前記熱伝導性シートはグラファイトシートで構成されることを特徴とする請求項1に記載のモータ。
  3.  前記熱伝導性シートは互いに滑り可能に複数積層されて、積層体を形成していることを特徴とする請求項1又は2に記載のモータ。
  4.  前記熱伝導性シートの径方向または軸方向の外側の前記モータハウジングに冷却媒体が供給される通路が形成されることを特徴とする請求項1乃至3の何れか一項に記載のモータ。
  5.  前記熱伝導性シートは、前記ステータの軸方向端面又は外周面の一部に離散的に設けられ、
     前記熱伝導性シートの各々の径方向または軸方向の外側の前記モータハウジングに前記冷却媒体が供給される通路が形成されることを特徴とする請求項4に記載のモータ。
  6.  前記ステータの外周面または軸方向端面に円弧状又は環状の凹部が形成され、
     前記熱伝導性シートは前記凹部に配置されることを特徴とする請求項1乃至5の何れか一項に記載のモータ。
  7.  前記熱伝導性シートの熱伝導率が0.5W/(m・K)以上であることを特徴とする請求項1乃至6の何れか一項に記載のモータ。
  8.  前記熱伝導性シートの引張弾性率が1000MPa以上であることを特徴とする請求項1乃至7の何れか一項に記載のモータ。
  9.  モータハウジングとステータとの間の径方向または軸方向の隙間が熱伝導性シートによって埋められるように、前記モータハウジングに前記ステータを組み付ける組付けステップを備えることを特徴とするモータの製造方法。
  10.  前記熱伝導性シートを複数積層して、積層体を形成し、径方向外側に向かうほど、前記複数の熱伝導性シートの軸方向端部が前記ステータの一方の軸方向端面側に位置するように、前記複数の熱伝導性シートを軸方向に互いにずらして配置する第1配置ステップと、
     前記組付けステップでは、前記モータハウジングを構成するハウジングセクションを、前記ステータの前記一方の軸方向端面側から前記ステータに対して相対的に軸方向に動かし、前記複数の熱伝導性シートのうち最外周側の前記熱伝導性シートを前記ハウジングセクションの内周面に摺接させながら前記ステータを前記ハウジングセクションの内部に挿入する挿入ステップと、
     を備えることを特徴とする請求項9に記載のモータの製造方法。
  11.  前記組付けステップにおいて、
     前記ハウジングセクションに前記ステータの軸方向と直交する方向に形成された当て面に前記複数の熱伝導性シートの前記軸方向端部を当て、前記熱伝導性シートの各々の前記軸方向端部を前記ステータの軸方向で揃えることを特徴とする請求項10に記載のモータの製造方法。
  12.  前記モータハウジング又は前記ステータのうち一方の周面上に前記熱伝導性シートを配置する第2配置ステップと、
     前記組付けステップでは、前記第2配置ステップの後、前記モータハウジング又は前記ステータの前記一方に対して前記モータハウジング又は前記ステータの他方を嵌め合いにより組み付けることを特徴とする請求項9に記載のモータの製造方法。
  13.  前記組付けステップにおいて、
     前記熱伝導性シートを前記ステータの外周面に形成された円弧状又は環状の凹部に配置することを特徴とする請求項12に記載のモータの製造方法。
PCT/JP2017/041622 2017-11-20 2017-11-20 モータ及びその製造方法 WO2019097710A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019553660A JP6955578B2 (ja) 2017-11-20 2017-11-20 モータ及びその製造方法
EP17932413.2A EP3605805B1 (en) 2017-11-20 2017-11-20 Motor and method for manufacturing same
US16/612,986 US11509190B2 (en) 2017-11-20 2017-11-20 Motor and method of producing the same
CN201780090187.0A CN110612657A (zh) 2017-11-20 2017-11-20 电机及其制造方法
PCT/JP2017/041622 WO2019097710A1 (ja) 2017-11-20 2017-11-20 モータ及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/041622 WO2019097710A1 (ja) 2017-11-20 2017-11-20 モータ及びその製造方法

Publications (1)

Publication Number Publication Date
WO2019097710A1 true WO2019097710A1 (ja) 2019-05-23

Family

ID=66539465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041622 WO2019097710A1 (ja) 2017-11-20 2017-11-20 モータ及びその製造方法

Country Status (5)

Country Link
US (1) US11509190B2 (ja)
EP (1) EP3605805B1 (ja)
JP (1) JP6955578B2 (ja)
CN (1) CN110612657A (ja)
WO (1) WO2019097710A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2568252B (en) * 2017-11-08 2020-07-01 Ge Energy Power Conversion Technology Ltd Power systems
CN117175860A (zh) 2022-05-27 2023-12-05 通用汽车环球科技运作有限责任公司 用于电机的热桥

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11240706A (ja) * 1997-12-18 1999-09-07 Matsushita Electric Ind Co Ltd グラファイトシートの作製方法及びグラファイトシート積層体
US6798094B2 (en) 2000-10-06 2004-09-28 Valeo Equipements Electriques Moteur Rotary electric machine, and in particular motor vehicle alternator, comprising a stator elastically mounted in a heat-conductive resin
JP2007507195A (ja) * 2003-06-26 2007-03-22 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング プレス嵌めを介して互いに結合された構成部分を備えた装置、特に電気機械
JP2008043133A (ja) * 2006-08-09 2008-02-21 Hitachi Via Mechanics Ltd 揺動アクチュエータ装置およびレーザ加工装置
WO2009025093A1 (ja) * 2007-08-23 2009-02-26 Kabushiki Kaisha Toshiba 外被冷却型回転電機およびその固定子
JP2010038470A (ja) * 2008-08-06 2010-02-18 Kaneka Corp 暖房床構造および床暖房パネル
JP2013106366A (ja) * 2011-11-10 2013-05-30 Yaskawa Electric Corp 回転電機

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152136A (ja) * 1984-08-21 1986-03-14 Mitsubishi Electric Corp 電動機内部発生熱の除去方法
JPH08149756A (ja) * 1994-11-15 1996-06-07 Fuji Electric Co Ltd 外被水冷式回転電機の固定子
JP2007236045A (ja) * 2006-02-28 2007-09-13 Toshiba Corp 外被冷却型回転電機およびその製造方法
JP2010038400A (ja) * 2008-08-01 2010-02-18 Panasonic Corp フィン付き熱交換器
JP5216038B2 (ja) * 2010-03-25 2013-06-19 株式会社日立製作所 回転電動機
JP6300035B2 (ja) * 2015-06-23 2018-03-28 マツダ株式会社 電動モータの冷却構造
JP6332289B2 (ja) * 2016-01-18 2018-05-30 マツダ株式会社 電力制御機器の冷却構造
CN106849468B (zh) * 2017-03-01 2024-03-29 宁波沃伏龙机电有限公司 液冷伺服马达及其制造工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11240706A (ja) * 1997-12-18 1999-09-07 Matsushita Electric Ind Co Ltd グラファイトシートの作製方法及びグラファイトシート積層体
US6798094B2 (en) 2000-10-06 2004-09-28 Valeo Equipements Electriques Moteur Rotary electric machine, and in particular motor vehicle alternator, comprising a stator elastically mounted in a heat-conductive resin
JP2007507195A (ja) * 2003-06-26 2007-03-22 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング プレス嵌めを介して互いに結合された構成部分を備えた装置、特に電気機械
JP2008043133A (ja) * 2006-08-09 2008-02-21 Hitachi Via Mechanics Ltd 揺動アクチュエータ装置およびレーザ加工装置
WO2009025093A1 (ja) * 2007-08-23 2009-02-26 Kabushiki Kaisha Toshiba 外被冷却型回転電機およびその固定子
JP2010038470A (ja) * 2008-08-06 2010-02-18 Kaneka Corp 暖房床構造および床暖房パネル
JP2013106366A (ja) * 2011-11-10 2013-05-30 Yaskawa Electric Corp 回転電機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3605805A4

Also Published As

Publication number Publication date
US11509190B2 (en) 2022-11-22
EP3605805A1 (en) 2020-02-05
CN110612657A (zh) 2019-12-24
US20200177050A1 (en) 2020-06-04
EP3605805A4 (en) 2020-06-17
EP3605805B1 (en) 2021-09-01
JP6955578B2 (ja) 2021-10-27
JPWO2019097710A1 (ja) 2020-04-09

Similar Documents

Publication Publication Date Title
US7986068B2 (en) Motor
JP5216038B2 (ja) 回転電動機
JP5904827B2 (ja) 回転電機
JP2013090405A (ja) 回転電機
US20180337572A1 (en) Rotary electric machine
JP4542916B2 (ja) レゾルバユニット、それを用いたレゾルバ
WO2019097710A1 (ja) モータ及びその製造方法
WO2014087734A1 (ja) アキシャルギャップモータ
JP2010075027A (ja) ステータコア及びモータ
JP2013126292A (ja) 電動機
WO2015063882A1 (ja) 電動機および軸受構造
JP6194877B2 (ja) 回転電機
KR101907877B1 (ko) Bldc 모터의 스테이터 구조
WO2021065586A1 (ja) モータ
JP2009177957A (ja) 永久磁石界磁型モータ
JP2007259581A (ja) ステータ、ステータコア及びステータコア保持部材
JP6319416B1 (ja) 永久磁石式回転電機
JP2007124742A (ja) 永久磁石付ロータおよびこれを用いた電動機
JP2009060754A (ja) ステータ用コア、ステータ、その組立方法およびモータ
JP6332431B1 (ja) 永久磁石式回転電機
WO2024080143A1 (ja) 鉄心ユニット、および、回転子
WO2023112396A1 (ja) ステータ及びモータ
JP2014212582A (ja) 回転電機
JP2013102579A (ja) 回転電機
JP6898886B2 (ja) 回転電機および固定子制振構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932413

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017932413

Country of ref document: EP

Effective date: 20191028

ENP Entry into the national phase

Ref document number: 2019553660

Country of ref document: JP

Kind code of ref document: A