WO2019097602A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2019097602A1
WO2019097602A1 PCT/JP2017/041066 JP2017041066W WO2019097602A1 WO 2019097602 A1 WO2019097602 A1 WO 2019097602A1 JP 2017041066 W JP2017041066 W JP 2017041066W WO 2019097602 A1 WO2019097602 A1 WO 2019097602A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
switching element
mosfet
detection unit
current detection
Prior art date
Application number
PCT/JP2017/041066
Other languages
English (en)
French (fr)
Inventor
智 一木
章斗 田中
俊介 久保田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP17909662.3A priority Critical patent/EP3514937A4/en
Priority to CN201780094766.2A priority patent/CN111357184A/zh
Priority to AU2017440157A priority patent/AU2017440157B2/en
Priority to PCT/JP2017/041066 priority patent/WO2019097602A1/ja
Priority to US16/623,029 priority patent/US11070142B2/en
Priority to JP2019554090A priority patent/JP6779388B2/ja
Publication of WO2019097602A1 publication Critical patent/WO2019097602A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power converter that converts alternating current power into direct current power.
  • an active converter circuit configured of a reactor, a reverse blocking diode, and a semiconductor switching element is used.
  • the active converter circuit there is an interleaved power factor adjustment circuit.
  • the power factor adjustment circuit of the interleave system includes a plurality of step-up chopper circuits each composed of a reactor, a reverse blocking diode, and a semiconductor switching element.
  • the semiconductor switching elements of each boost chopper circuit are driven out of phase.
  • the conventional power factor adjustment circuit using the MOSFET detects the current flowing in each reactor, and performs control to turn on the MOSFET when the current flows from the reactor to the electrolytic capacitor.
  • the conventional power factor adjustment circuit when the MOSFET is turned on at a timing other than the above control due to a malfunction due to a short circuit failure or noise of the MOSFET, an overcurrent flows in the internal components.
  • a protection circuit is additionally required to prevent a fault such as a semiconductor switching element or an abnormal overheat such as a reactor due to an overcurrent. It becomes. Therefore, the power conversion device provided with the conventional power factor adjustment circuit has a problem that the number of parts increases, the substrate size increases, and the device becomes larger.
  • This invention is made in view of the above, Comprising: It aims at obtaining the power converter device which can protect an internal component, suppressing the increase in used components.
  • a power conversion device includes a rectifier that converts an alternating voltage to a direct voltage, and a capacitor connected in parallel to the rectifier.
  • the power conversion device is disposed between the rectifier and the capacitor, each of which is a reactor connected to the positive output terminal of the rectifier, a first switching element connected in parallel with the rectifier, and a capacitor at one end And a second switching element connected to the positive terminal of the second terminal and the other end connected to the reactor and the first switching element.
  • the power converter is disposed between the reactor and a connection point disposed between the first switching element and the second switching element, and detects the current flowing in the reactor bi-directionally.
  • a current detection unit is provided.
  • the power conversion device is characterized by including a control unit that controls the operation of the first switching element using the detection result of the first current detection unit.
  • the power converter device which concerns on this invention is effective in the ability to protect an internal component, suppressing increase of used components.
  • FIG. 1 A diagram showing an example of configuration of a power conversion device according to a first embodiment
  • Flowchart showing the operation of the current detection unit of the power conversion device according to the first embodiment Flow chart showing the operation of the control unit of the power conversion device according to the first embodiment
  • FIG. 10 is a diagram showing a method of detecting an abnormality by the current detection unit of the power conversion device according to the second embodiment. Flowchart showing the operation of the current detection unit of the power conversion device according to the second embodiment Flow chart showing the operation of the control unit of the power conversion device according to the second embodiment
  • FIG. 1 is a diagram showing a configuration example of a power conversion device 200 according to Embodiment 1 of the present invention.
  • the power conversion device 200 according to the first embodiment includes a single-phase full-wave rectifier 2, reactors 31 and 32, first MOSFETs 41 and 51, and second MOSFETs 42 and 52.
  • An electrolytic capacitor 6, a voltage detection unit 7, current detection units 81 and 82, and a control unit 9 are provided.
  • the power conversion device 200 converts an AC voltage supplied from the single-phase AC power supply 1 into a DC voltage, improves the power factor of the DC voltage, and supplies the DC voltage after the power factor improvement to the output load 10.
  • the single-phase alternating current power supply 1 and the output load 10 which are connected to the power converter device 200 are also illustrated in FIG.
  • the single-phase full-wave rectifying unit 2 is a rectifier that rectifies an alternating voltage output from the single-phase alternating current power supply 1 and converts it into a direct-current voltage.
  • the single-phase full-wave rectifier 2 has a positive side output terminal and a negative side output terminal (not shown).
  • the reactor 31, the first MOSFET 41, and the second MOSFET 42 constitute a first chopper circuit 111.
  • the reactor 32, the first MOSFET 51, and the second MOSFET 52 constitute a second chopper circuit 112.
  • the first chopper circuit 111 and the second chopper circuit 112 are disposed between the single-phase full-wave rectifier 2 and the electrolytic capacitor 6.
  • the first chopper circuit 111, the second chopper circuit 112, and the electrolytic capacitor 6 operate as a power factor improvement circuit of a so-called interleave system under the control of the control unit 9. Therefore, the first MOSFET 41 and the first MOSFET 51 are driven 180 degrees out of phase.
  • the first MOSFET 41 and the first MOSFET 51 are each a first switching element driven in an interleaved manner in the power factor correction circuit.
  • the second MOSFET 42 and the second MOSFET 52 are second switching elements each functioning as a backflow prevention element in the power factor correction circuit.
  • the first chopper circuit 111 and the second chopper circuit 112 may be collectively referred to simply as a chopper circuit.
  • One end of the reactor 31 is connected to the positive-side output terminal of the single-phase full-wave rectifier 2, and the other end is connected to the current detector 81.
  • One end of the reactor 32 is connected to the positive-side output terminal of the single-phase full-wave rectifier 2, and the other end is connected to the current detector 82.
  • One end of the first MOSFET 41 is connected to the reactor 31 via the current detection unit 81, and the other end is connected to the negative-side output terminal of the single-phase full-wave rectifier 2.
  • One end of the first MOSFET 51 is connected to the reactor 32 via the current detection unit 82, and the other end is connected to the negative-side output terminal of the single-phase full-wave rectifier 2.
  • the first MOSFETs 41 and 51 are connected in parallel to the single-phase full-wave rectifier 2.
  • One end of the second MOSFET 42 is connected to the electrolytic capacitor 6, and the other end is connected to the reactor 31 via the current detection unit 81.
  • One end of the second MOSFET 52 is connected to the electrolytic capacitor 6, and the other end is connected to the reactor 32 via the current detection unit 82.
  • the first MOSFET 41 and the second MOSFET 42 are connected in series, and one end of the first MOSFET 41 and the other end of the second MOSFET 42 are connected at a connection point 121.
  • the first MOSFET 51 and the second MOSFET 52 are connected in series, and one end of the first MOSFET 51 and the other end of the second MOSFET 52 are connected at a connection point 122.
  • the first MOSFETs 41 and 51 are collectively referred to as a first MOSFET section 101.
  • the second MOSFETs 42 and 52 are collectively referred to as a second MOSFET section 102.
  • the first MOSFETs 41 and 51 and the second MOSFETs 42 and 52 may be collectively referred to simply as MOSFETs.
  • An electrolytic capacitor 6 which is an example of a capacitor has a positive side terminal and a negative side terminal, the positive side terminal is connected to one end of each of the second MOSFETs 42 and 52, and the negative side terminal is single phase It is connected to the negative side output terminal of the full wave rectification unit 2.
  • the electrolytic capacitor 6 is connected in parallel to the single-phase full-wave rectifier 2 and smoothes the DC voltage output from the chopper circuit described above.
  • the voltage detection unit 7 detects a DC voltage between the terminals of the electrolytic capacitor 6.
  • the current detection unit 81 is disposed between the reactor 31 and the connection point 121, and detects the current flowing in the reactor 31 in both directions.
  • the bidirectional current is a current flowing from the reactor 31 in the direction of the second MOSFET 42 and a current flowing in the direction from the second MOSFET 42 to the reactor 31.
  • the current detection unit 82 is disposed between the reactor 32 and the connection point 122, and detects the current flowing through the reactor 32 in both directions.
  • the bidirectional current is a current flowing from the reactor 32 in the direction of the second MOSFET 52 and a current flowing in the direction from the second MOSFET 52 to the reactor 32.
  • the current detection units 81 and 82 are collectively referred to as a first current detection unit 80.
  • Control unit 9 detects the detection results of voltage detection unit 7 and current detection units 81 and 82, that is, the DC voltage value which is the detection value detected by voltage detection unit 7, and the detection values detected by current detection units 81 and 82. To obtain the current value.
  • the control unit 9 uses the acquired detection result to operate the first MOSFET unit 101 and the second MOSFET unit 102, specifically, turns on the first MOSFETs 41 and 51 and the second MOSFETs 42 and 52. It is a microcontroller that controls off.
  • the controller 9 turns off the first MOSFET 41 during the next t ON period, outputs a drive signal to turn on the second MOSFET 42, and charges the electrolytic capacitor 6 with the charge accumulated in the reactor 31.
  • the control unit 9 changes the length of the above-mentioned period according to the detection value of the voltage detection unit 7 and repeats the above processing, whereby the detection value of the voltage detection unit 7, that is, the DC voltage output to the output load 10 Is controlled to be the target voltage.
  • the control unit 9 performs control to alternately turn on the first MOSFET 51 and the second MOSFET 52 at normal times.
  • the controller 9 turns off the second MOSFET 52 while the first MOSFET 51 is on, and turns off the first MOSFET 51 while the second MOSFET 52 is on. Further, the control unit 9 sets a period in which the first MOSFET 41 is turned on to a period in which the first MOSFET 51 is turned on. As described later, the same control is performed when the number of chopper circuits is three or more.
  • the direction of the current Ip flowing through the reactors 31, 32 is one direction from the reactors 31, 32 toward the electrolytic capacitor 6.
  • the current detection units 81 and 82 detect only the current I p flowing from the reactors 31 and 32 in one direction of the electrolytic capacitor 6 and output the detection value to the control unit 9.
  • the control unit 9 uses the detection results obtained from the current detection units 81 and 82, that is, the current values flowing to the current detection units 81 and 82, to control the operations of the first MOSFETs 41 and 51 and the second MOSFETs 42 and 52. .
  • FIG. 3 is a diagram showing an operation of the power conversion device 200 according to the first embodiment when the second MOSFET 42 is turned on due to a malfunction.
  • broken lines indicating the first chopper circuit 111 and the second chopper circuit 112 are omitted to simplify the description.
  • the current detection unit 81 detects a reverse current which does not occur in the normal operation shown in FIG. 2, that is, a current flowing from the second MOSFET 42 to the reactor 31.
  • the current detection unit 81 determines that the power converter 200 has an abnormal operation.
  • the current detection unit 81 outputs, to the control unit 9, a first abnormality detection signal indicating that the abnormality of the power conversion device 200 has been detected.
  • the control unit 9 performs control to stop the operation of the first MOSFETs 41 and 51.
  • the current detection unit 82 detects the current flowing from the second MOSFET 52 to the reactor 32.
  • the current detection unit 82 determines that the power converter 200 has an abnormal operation.
  • the current detection unit 82 outputs a first abnormality detection signal to the control unit 9.
  • the control unit 9 performs control to stop the operation of the first MOSFETs 41 and 51.
  • FIG. 4 is a flowchart showing the operation of the current detection units 81 and 82 of the power conversion device 200 according to the first embodiment. Since the operations of the current detection units 81 and 82 are the same, the current detection unit 81 will be described as an example.
  • the current detection unit 81 detects the current flowing between the reactor 31 and the second MOSFET 42 (step S1). When the current flowing from the second MOSFET 42 to the reactor 31 is not detected (step S2: No), the current detection unit 81 returns to step S1 and continues detection of the current. When the current flowing from the second MOSFET 42 to the reactor 31 is detected (step S2: Yes), the current detection unit 81 outputs a first abnormality detection signal to the control unit 9 (step S3).
  • FIG. 5 is a flowchart showing the operation of the control unit 9 of the power conversion apparatus 200 according to the first embodiment.
  • the control unit 9 continues the normal operation (step S12), and returns to step S11. .
  • the control unit 9 performs control to stop the operation of the first MOSFETs 41 and 51 (step S13) .
  • semiconductors made of silicon are generally used as diodes constituting MOSFETs.
  • a wide gap semiconductor made of silicon carbide (SiC), gallium nitride (GaN), diamond or the like may be used.
  • a MOSFET formed of such a wide band gap semiconductor has high voltage resistance and a high allowable current density. Therefore, miniaturization of MOSFETs is possible, and by using these miniaturized MOSFETs, it becomes possible to miniaturize semiconductor modules incorporating these elements.
  • a MOSFET formed of such a wide band gap semiconductor has high heat resistance. Therefore, since the miniaturization of parts for heat dissipation is possible, the further miniaturization of a semiconductor module is attained.
  • MOSFETs formed by such wide band gap semiconductors have low power loss. Therefore, high efficiency of the MOSFET can be achieved, which in turn enables high efficiency of the semiconductor module. In addition, since switching at high frequency is possible, it is possible to flow high frequency current to the output load 10.
  • both of the MOSFETs be formed of wide band gap semiconductors, one of the elements may be formed of wide band gap semiconductors, and the effects described in this embodiment can be obtained. it can.
  • the control unit 9 when the current detection units 81 and 82 detect an abnormality in the second MOSFETs 42 and 52 according to the flow direction of the current, the control unit 9 The first abnormality detection signal is output, and the control unit 9 stops the operation of the first MOSFETs 41 and 51. Thereby, it can suppress that an overcurrent flows into the power converter device 200.
  • FIG. In a general power converter having a power factor correction circuit, the current flowing through the first MOSFETs 41 and 51 is detected using a current detector connected to the negative output terminal of the rectifier circuit, and This detected value is used for control.
  • the current detection units 81 and 82 are provided between the reactor 31 and the second MOSFET 42 and between the reactor 32 and the second MOSFET 52, respectively, to provide a current for normal current measurement.
  • the detection unit can also be used as a current detection unit for protection from over current. That is, the current detection units 81 and 82 share the function of the current detection unit in a general power conversion device and the function of the protection circuit.
  • the power conversion device 200 can prevent abnormal heat generation of the reactors 31 and 32 due to the overcurrent and can prevent failure of the first MOSFETs 41 and 51.
  • the power conversion device 200 can protect internal components when an overcurrent occurs while suppressing an increase in the number of components used.
  • the power converter 200 can suppress the increase in cost due to the increase in the number of parts.
  • current detection units 81 and 82 determine the presence or absence of occurrence of an abnormal operation, and output a first abnormality detection signal to control unit 9 when it is determined that an abnormal operation has occurred.
  • control unit 9 performs control according to the presence or absence of the acquisition of the first abnormality detection signal, the present invention is not limited to this.
  • the current detection units 81 and 82 output detection results of the current value and the flow direction of the current to the control unit 9, and the control unit 9 generates an abnormal operation based on the detection results acquired from the current detection units 81 and 82. The presence or absence of may be determined.
  • Embodiment 1 demonstrated the power converter device 200 which has two chopper circuits, it is an example and the number of chopper circuits may be three or more.
  • power conversion device 200 includes a current detection unit having the same function as current detection units 81 and 82 for each chopper circuit.
  • Second Embodiment In the first embodiment, the operation in the case where the second MOSFET is turned on due to a malfunction and the first MOSFETs of different chopper circuits are turned on has been described. In the second embodiment, an operation when the second MOSFET is turned on due to a malfunction and the first MOSFET in the same chopper circuit is turned on will be described. The parts different from the first embodiment will be described.
  • FIG. 6 is a diagram showing an example of configuration of a power conversion device 200a according to the second embodiment.
  • the power conversion device 200a according to the second embodiment is obtained by adding a current detection unit 11 to the power conversion device 200 according to the first embodiment shown in FIG.
  • the current detection unit 11 is disposed between the other ends of the first MOSFETs 41 and 51 and the negative output terminal of the single-phase full-wave rectifier 2 and detects the current output from the first MOSFETs 41 and 51. It is a second current detection unit.
  • the current detection unit 11 may detect the current of two of the first MOSFETs 41 and 51 with one configuration, or has a dedicated current detection unit for each first MOSFET, that is, each chopper circuit. It may be a configuration.
  • FIG. 7 is a diagram showing an operation of the power conversion device 200a according to the second embodiment when the second MOSFET 42 is turned on due to a malfunction.
  • broken lines indicating the first chopper circuit 111 and the second chopper circuit 112 are omitted to simplify the description.
  • FIG. 8 is a diagram showing a method of detecting an abnormality by the current detection unit 11 of the power conversion device 200a according to the second embodiment.
  • the current detection unit 11 outputs a second abnormality detection signal, that is, a threshold value that is larger than the maximum value of the current output from the first MOSFET 41 during normal operation and smaller than the current level that causes the MOSFET to break. Set as.
  • the current detection unit 11 instructs the control unit 9 to detect a second abnormality of the power conversion device 200 a. Output
  • the control part 9 will perform control which stops operation
  • the current detection unit 11 detects a current larger than that during normal operation.
  • the current detection unit 11 determines that an abnormal operation occurs in the power conversion device 200a.
  • the current detection unit 11 outputs a second abnormality detection signal to the control unit 9.
  • the control part 9 will perform control which stops operation
  • FIG. 9 is a flowchart showing the operation of the current detection unit 11 of the power conversion device 200a according to the second embodiment.
  • the current detection unit 11 detects the current output from the first MOSFETs 41 and 51 (step S21). If the current value of the current output from the first MOSFETs 41 and 51 is less than or equal to the threshold (step S22: No), the current detection unit 11 returns to step S21 and continues detection of the current. When the current value of the current output from the first MOSFETs 41 and 51 is larger than the threshold (step S22: Yes), the current detection unit 11 outputs a second abnormality detection signal to the control unit 9 (step S23).
  • FIG. 10 is a flowchart showing the operation of the control unit 9 of the power conversion device 200a according to the second embodiment.
  • the control unit 9 continues the normal operation (step S32), and returns to step S31.
  • the control unit 9 performs control to stop the operation of the first MOSFETs 41 and 51 (step S33).
  • the second MOSFET 42 is turned on by abnormality and the first MOSFET 41 is turned on, or the second MOSFET 52 is abnormal.
  • the current detection unit 11 detects a current value larger than the current value flowing during normal operation, that is, an overcurrent, the second abnormality to the control unit 9
  • the detection signal is output, and the control unit 9 stops the operation of the first MOSFETs 41 and 51.
  • the power conversion device 200a can protect internal components when an overcurrent occurs.
  • the current detection units 81 and 82 detect an abnormality in the second MOSFETs 42 and 52, thereby causing an abnormality in the reactors 31 and 32 due to an overcurrent. Heat generation can be prevented, and failure of the first MOSFETs 41 and 51 can be prevented.
  • the current detection unit 11 determines the presence or absence of occurrence of the abnormal operation, and outputs the second abnormality detection signal to the control unit 9 when it is determined that the abnormal operation is occurring.
  • the control part 9 was controlling by the presence or absence of acquisition of a 2nd abnormality detection signal, it is not limited to this.
  • the current detection unit 11 may output the detection result of the current value to the control unit 9, and the control unit 9 may determine the occurrence of the abnormal operation based on the detection result acquired from the current detection unit 11.
  • Embodiment 2 demonstrated the power converter device 200a which has two chopper circuits, it is an example and three or more may be sufficient as the number of chopper circuits.
  • the current detection unit 11 detects the current output from the first MOSFET of each chopper circuit.
  • the current detection unit 11 may be configured to include a dedicated current detection unit for each first MOSFET, that is, each chopper circuit.
  • the configuration shown in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and one of the configurations is possible within the scope of the present invention. Parts can be omitted or changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

単相全波整流部(2)と、電解コンデンサ(6)と、単相全波整流部(2)と電解コンデンサ(6)との間に設置され、各々が、リアクタ(31,32)と、単相全波整流部(2)と並列に接続される第1のMOSFET(41,51)と、一端が電解コンデンサ(6)のプラス側の端子に接続し、他端がリアクタ(31,32)および第1のMOSFET(41,51)と接続する第2のMOSFET(42,52)とを有する、複数のチョッパ回路と、リアクタ(31,32)に流れる電流を双方向で検出する第1の電流検出部(80)と、第1の電流検出部(80)の検出結果を用いて、第1のMOSFET(41,51)の動作を制御する制御部(9)と、を備える。

Description

電力変換装置
 本発明は、交流電力を直流電力に変換する電力変換装置に関する。
 従来、交流電力を直流電力に変換する電力変換装置において、リアクタ、逆阻止ダイオード、および半導体スイッチング素子から構成されるアクティブコンバータ回路が使用されている。アクティブコンバータ回路の一例として、インターリーブ方式の力率調整回路がある。インターリーブ方式の力率調整回路は、リアクタ、逆阻止ダイオード、および半導体スイッチング素子から構成される昇圧チョッパ回路を、複数備える。インターリーブ方式の力率調整回路では、各昇圧チョッパ回路の半導体スイッチング素子は、位相をずらして駆動される。また、近年の半導体デバイスの進化をふまえて、損失の少ない力率調整回路として、逆阻止ダイオードの替わりに低損失半導体であるMOSFET(Metal Oxide Semiconductor Field Effect Transistor)を用いた同期整流方式の力率調整回路が提案されている(特許文献1参照)。
特開2015-23606号公報
 MOSFETを用いた上記従来の力率調整回路は、各リアクタに流れる電流を検知し、リアクタから電解コンデンサに電流が流れる際にMOSFETをオンする制御を行う。しかしながら、上記従来の力率調整回路では、MOSFETの短絡故障またはノイズなどによる誤動作によって前述の制御以外のタイミングでMOSFETがオンになった場合、内部の部品に過電流が流れる。このため、上記従来の力率調整回路を備える電力変換装置では、過電流による半導体スイッチング素子などの故障またはリアクタなどの異常過熱を防ぐため、すなわち内部の部品を保護するために保護回路が別途必要となる。そのため、上記従来の力率調整回路を備える電力変換装置は、部品点数が増大して基板サイズが拡大し、装置が大型化してしまう、という問題があった。
 本発明は、上記に鑑みてなされたものであって、使用部品の増加を抑えつつ、内部の部品を保護することが可能な電力変換装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る電力変換装置は、交流電圧を直流電圧に変換する整流器と、整流器と並列に接続されるコンデンサと、を備える。また、電力変換装置は、整流器とコンデンサとの間に設置され、各々が、整流器のプラス側の出力端子に接続するリアクタと、整流器と並列に接続される第1のスイッチング素子と、一端がコンデンサのプラス側の端子に接続し、他端がリアクタおよび第1のスイッチング素子と接続する第2のスイッチング素子とを有する、複数のチョッパ回路を備える。また、電力変換装置は、リアクタと、第1のスイッチング素子と第2のスイッチング素子との間に配される接続点との間に設置され、リアクタに流れる電流を双方向で検出する第1の電流検出部を備える。また、電力変換装置は、第1の電流検出部の検出結果を用いて、第1のスイッチング素子の動作を制御する制御部を備えることを特徴とする。
 本発明に係る電力変換装置は、使用部品の増加を抑えつつ、内部の部品を保護することができる、という効果を奏する。
実施の形態1に係る電力変換装置の構成例を示す図 実施の形態1に係る電力変換装置において、平常時に制御部に入力される各検出値および制御部から出力される駆動信号の例を示す図 実施の形態1に係る電力変換装置において、第2のMOSFETが誤動作でオン状態になったときの動作を示す図 実施の形態1に係る電力変換装置の電流検出部の動作を示すフローチャート 実施の形態1に係る電力変換装置の制御部の動作を示すフローチャート 実施の形態2に係る電力変換装置の構成例を示す図 実施の形態2に係る電力変換装置において、第2のMOSFETが誤動作でオン状態になったときの動作を示す図 実施の形態2に係る電力変換装置の電流検出部による異常検知方法を示す図 実施の形態2に係る電力変換装置の電流検出部の動作を示すフローチャート 実施の形態2に係る電力変換装置の制御部の動作を示すフローチャート
 以下に、本発明の実施の形態に係る電力変換装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1に係る電力変換装置200の構成例を示す図である。図1に示すように、実施の形態1に係る電力変換装置200は、単相全波整流部2と、リアクタ31,32と、第1のMOSFET41,51と、第2のMOSFET42,52と、電解コンデンサ6と、電圧検出部7と、電流検出部81,82と、制御部9と、を備える。電力変換装置200は、単相交流電源1から供給される交流電圧を直流電圧に変換し、直流電圧の力率を改善し、力率改善後の直流電圧を出力負荷10に供給する。図1には、電力変換装置200とともに、電力変換装置200に接続される単相交流電源1および出力負荷10も図示している。
 単相全波整流部2は、単相交流電源1から出力された交流電圧を整流して直流電圧に変換する整流器である。単相全波整流部2は、図示しないプラス側の出力端子とマイナス側の出力端子とを有する。
 リアクタ31、第1のMOSFET41、および第2のMOSFET42によって第1のチョッパ回路111が構成される。同様に、リアクタ32、第1のMOSFET51、および第2のMOSFET52によって第2のチョッパ回路112が構成される。第1のチョッパ回路111および第2のチョッパ回路112は、単相全波整流部2と電解コンデンサ6との間に設置される。第1のチョッパ回路111、第2のチョッパ回路112および電解コンデンサ6は、制御部9の制御に基づいて、いわゆるインターリーブ方式の力率改善回路として動作する。したがって、第1のMOSFET41と第1のMOSFET51とは、180度ずれた位相で駆動される。第1のMOSFET41および第1のMOSFET51は、各々が力率改善回路においてインターリーブ方式により駆動される第1のスイッチング素子である。第2のMOSFET42および第2のMOSFET52は、各々が力率改善回路において逆流防止素子として機能する第2のスイッチング素子である。なお、第1のチョッパ回路111および第2のチョッパ回路112をまとめて、単にチョッパ回路と称することがある。
 リアクタ31は、一端が単相全波整流部2のプラス側の出力端子に接続され、他端が電流検出部81に接続される。リアクタ32は、一端が単相全波整流部2のプラス側の出力端子に接続され、他端が電流検出部82に接続される。
 第1のMOSFET41は、一端が電流検出部81を介してリアクタ31に接続され、他端が単相全波整流部2のマイナス側の出力端子に接続される。第1のMOSFET51は、一端が電流検出部82を介してリアクタ32に接続され、他端が単相全波整流部2のマイナス側の出力端子に接続される。第1のMOSFET41,51は単相全波整流部2と並列に接続される。第2のMOSFET42は、一端が電解コンデンサ6に接続され、他端が電流検出部81を介してリアクタ31に接続される。第2のMOSFET52は、一端が電解コンデンサ6に接続され、他端が電流検出部82を介してリアクタ32に接続される。第1のMOSFET41と第2のMOSFET42とは直列接続され、第1のMOSFET41の一端と第2のMOSFET42の他端とは接続点121で接続されている。第1のMOSFET51と第2のMOSFET52とは直列接続され、第1のMOSFET51の一端と第2のMOSFET52の他端とは接続点122で接続されている。
 なお、第1のMOSFET41,51をまとめて第1のMOSFET部101とする。同様に、第2のMOSFET42,52をまとめて第2のMOSFET部102とする。また、第1のMOSFET41,51および第2のMOSFET42,52を総称して、単にMOSFETと称することがある。
 コンデンサの一例である電解コンデンサ6は、プラス側の端子とマイナス側の端子とを有し、プラス側の端子が第2のMOSFET42,52のそれぞれの一端に接続され、マイナス側の端子が単相全波整流部2のマイナス側の出力端子に接続される。電解コンデンサ6は、単相全波整流部2と並列に接続され、前述のチョッパ回路から出力される直流電圧を平滑化する。電圧検出部7は、電解コンデンサ6の端子間の直流電圧を検出する。
 電流検出部81は、リアクタ31と接続点121との間に設置され、リアクタ31に流れる電流を双方向で検出する。双方向の電流とは、リアクタ31から第2のMOSFET42の向きに流れる電流、および第2のMOSFET42からリアクタ31の向きに流れる電流のことである。電流検出部82は、リアクタ32と接続点122との間に設置され、リアクタ32に流れる電流を双方向で検出する。双方向の電流とは、リアクタ32から第2のMOSFET52の向きに流れる電流、および第2のMOSFET52からリアクタ32の向きに流れる電流のことである。なお、電流検出部81,82をまとめて第1の電流検出部80とする。
 制御部9は、電圧検出部7および電流検出部81,82の検出結果、すなわち電圧検出部7で検出された検出値である直流電圧値、および電流検出部81,82で検出された検出値である電流値を取得する。制御部9は、取得した検出結果を用いて、第1のMOSFET部101および第2のMOSFET部102の動作、具体的には、第1のMOSFET41,51および第2のMOSFET42,52のオンおよびオフを制御するマイクロコントローラである。
 つづいて、電力変換装置200の動作について説明する。まず、電力変換装置200において、故障が発生していない平常時の動作について説明する。図2は、実施の形態1に係る電力変換装置200において、平常時に制御部9に入力される各検出値および制御部9から出力される駆動信号の例を示す図である。制御部9は、電圧検出部7で検出される直流電圧値が目標電圧になるよう第1のMOSFET41,51および第2のMOSFET42,52をスイッチング制御する。具体的には、制御部9は、tONの期間、駆動信号を出力して第1のMOSFET41をオンし、第2のMOSFET42をオフし、リアクタ31に電荷を蓄積させる。制御部9は、つぎのtONの期間、第1のMOSFET41をオフし、駆動信号を出力して第2のMOSFET42をオンし、リアクタ31に蓄積された電荷を電解コンデンサ6にチャージする。制御部9は、電圧検出部7の検出値に応じて前述の期間の長さを変更し、上記処理を繰り返し行うことで、電圧検出部7の検出値すなわち出力負荷10に出力される直流電圧が目標電圧になるように制御している。
 制御部9は、平常時には、第1のMOSFET51および第2のMOSFET52についても、交互にオンする制御を行う。制御部9は、第1のMOSFET51をオンしている間は第2のMOSFET52をオフし、第2のMOSFET52をオンしている間は第1のMOSFET51をオフする。また、制御部9は、第1のMOSFET41をオンする期間と第1のMOSFET51をオンする期間とは異なる期間とする。後述するように、チョッパ回路の数が3つ以上の場合も同様の制御となる。電力変換装置200において、リアクタ31,32に流れる電流Ipの向きは、リアクタ31,32から電解コンデンサ6へ向かう一方向である。そのため、平常動作時では、電流検出部81,82は、リアクタ31,32から電解コンデンサ6の一方向に流れる電流Ipのみ検出し、検出値を制御部9に出力する。制御部9は、電流検出部81,82から取得した検出結果、すなわち電流検出部81,82に流れる電流値を、第1のMOSFET41,51および第2のMOSFET42,52の動作の制御に利用する。
 つぎに、電力変換装置200において、一例として、1つのMOSFETが故障またはノイズなどの影響によって誤動作してオン状態になったときの動作について説明する。図3は、実施の形態1に係る電力変換装置200において、第2のMOSFET42が誤動作でオン状態になったときの動作を示す図である。図3では、記載を簡潔にするため、第1のチョッパ回路111および第2のチョッパ回路112を示す破線を省略している。
 電力変換装置200では、第2のMOSFET42が誤動作によりオン状態となっているときに、第1のMOSFET51がオン状態になると、図3の破線の矢印で示すような電流が流れる。このとき、電流検出部81は、図2に示す平常動作時では発生しない逆向きの電流、すなわち第2のMOSFET42からリアクタ31に流れる電流を検出する。電流検出部81は、平常動作時と逆向きの電流を検出した場合、電力変換装置200において異常動作が発生していると判定する。電流検出部81は、制御部9に対して、電力変換装置200の異常を検知したことを示す第1の異常検知信号を出力する。制御部9は、第1の異常検知信号を取得すると、第1のMOSFET41,51の動作を停止させる制御を行う。
 同様に、第2のMOSFET52が誤動作によりオン状態となっているときに、第1のMOSFET41がオン状態になると、電流検出部82は、第2のMOSFET52からリアクタ32に流れる電流を検出する。電流検出部82は、平常動作時と逆向きの電流を検出した場合、電力変換装置200において異常動作が発生していると判定する。電流検出部82は、制御部9に対して第1の異常検知信号を出力する。制御部9は、第1の異常検知信号を取得すると、第1のMOSFET41,51の動作を停止させる制御を行う。
 図4は、実施の形態1に係る電力変換装置200の電流検出部81,82の動作を示すフローチャートである。電流検出部81,82の動作は同様のため、電流検出部81を例にして説明する。電流検出部81は、リアクタ31と第2のMOSFET42との間に流れる電流を検出する(ステップS1)。第2のMOSFET42からリアクタ31に流れる電流を検出していない場合(ステップS2:No)、電流検出部81は、ステップS1に戻って電流の検出を継続する。第2のMOSFET42からリアクタ31に流れる電流を検出した場合(ステップS2:Yes)、電流検出部81は、制御部9に対して、第1の異常検知信号を出力する(ステップS3)。
 図5は、実施の形態1に係る電力変換装置200の制御部9の動作を示すフローチャートである。電流検出部81または電流検出部82から第1の異常検知信号を取得していない場合(ステップS11:No)、制御部9は、平常時の動作を継続し(ステップS12)、ステップS11に戻る。電流検出部81または電流検出部82から第1の異常検知信号を取得した場合(ステップS11:Yes)、制御部9は、第1のMOSFET41,51の動作を停止させる制御を行う(ステップS13)。
 なお、MOSFETを構成するダイオードには、現在一般的には珪素(Si)を材料とする半導体を用いるのが主流である。しかし、これに代えて、炭化珪素(SiC)、窒化ガリウム(GaN)、ダイヤモンドなどを材料とするワイドギャップ半導体を用いてもよい。
 このようなワイドバンドギャップ半導体によって形成されたMOSFETは、耐電圧性が高く、許容電流密度も高い。そのため、MOSFETの小型化が可能であり、これら小型化されたMOSFETを用いることにより、これらの素子を組み込んだ半導体モジュールの小型化が可能となる。また、このようなワイドバンドギャップ半導体によって形成されたMOSFETは、耐熱性も高い。そのため、放熱用部品の小型化が可能であるので、半導体モジュールの一層の小型化が可能になる。さらに、このようなワイドバンドギャップ半導体によって形成されたMOSFETは、電力損失が低い。そのため、MOSFETの高効率化が可能であり、延いては半導体モジュールの高効率化が可能になる。また、高周波数でのスイッチングが可能となるため、出力負荷10に高周波数の電流を流すことが可能となる。なお、MOSFETの両方がワイドバンドギャップ半導体によって形成されていることが望ましいが、いずれか一方の素子がワイドバンドギャップ半導体によって形成されていてもよく、この実施の形態に記載の効果を得ることができる。
 以上説明したように、本実施の形態によれば、電力変換装置200では、電流検出部81,82は、電流の流れる方向によって第2のMOSFET42,52の異常を検知すると、制御部9に対して第1の異常検知信号を出力し、制御部9が、第1のMOSFET41,51の動作を停止させることとした。これにより、電力変換装置200に過電流が流れることを抑制することができる。力率改善回路を備える一般的な電力変換装置においては、第1のMOSFET41,51に流れる電流を、整流回路のマイナス側の出力端子に接続される電流検出器を用いて検出し、平常時の制御にこの検出値を用いている。本実施の形態では、リアクタ31と第2のMOSFET42との間、およびリアクタ32と第2のMOSFET52との間にそれぞれ電流検出部81,82を設けることにより、平常時の電流計測のための電流検出部と過電流からの保護のための電流検出部とを兼用することができる。すなわち、電流検出部81,82は、一般的な電力変換装置における電流検出部の機能と、保護回路の機能とを兼用している。これにより、電力変換装置200は、過電流によるリアクタ31,32の異常発熱を防ぐとともに、第1のMOSFET41,51の故障を防止することができる。このように、電力変換装置200は、使用部品の増加を抑えつつ、過電流発生時に内部の部品を保護することができる。また、電力変換装置200は、部品点数の増大によるコストの増大を抑えることができる。
 なお、実施の形態1では、電流検出部81,82が、異常動作の発生の有無を判定し、異常動作が発生していると判定した場合に第1の異常検知信号を制御部9へ出力し、制御部9が、第1の異常検知信号の取得の有無によって制御を行っていたが、これに限定されるものではない。電流検出部81,82は、電流値および電流の流れる向きの検出結果を制御部9へ出力し、制御部9が、電流検出部81,82から取得した検出結果に基づいて、異常動作の発生の有無を判定してもよい。
 また、実施の形態1では、2つのチョッパ回路を有する電力変換装置200について説明したが、一例であり、チョッパ回路の数は3つ以上であってもよい。この場合、電力変換装置200は、チョッパ回路毎に、電流検出部81,82と同様の機能を有する電流検出部を備える。
実施の形態2.
 実施の形態1では、第2のMOSFETが誤動作によってオンし、かつ異なるチョッパ回路の第1のMOSFETがオンした場合の動作について説明した。実施の形態2では、第2のMOSFETが誤動作によってオンし、かつ同じチョッパ回路内の第1のMOSFETがオンした場合の動作について説明する。実施の形態1と異なる部分について説明する。
 図6は、実施の形態2に係る電力変換装置200aの構成例を示す図である。図6に示すように、実施の形態2に係る電力変換装置200aは、図1に示す実施の形態1に係る電力変換装置200に対して、電流検出部11を追加したものである。電流検出部11は、第1のMOSFET41,51の他端と単相全波整流部2のマイナス側の出力端子との間に設置され、第1のMOSFET41,51から出力される電流を検出する第2の電流検出部である。なお、電流検出部11については、1つの構成で第1のMOSFET41,51の2つ分の電流を検出してもよいし、第1のMOSFET毎すなわちチョッパ回路毎に専用の電流検出部を備える構成であってもよい。
 つづいて、電力変換装置200aにおいて、一例として、1つのMOSFETが故障またはノイズなどの影響によって誤動作してオン状態になったときの動作について説明する。図7は、実施の形態2に係る電力変換装置200aにおいて、第2のMOSFET42が誤動作でオン状態になったときの動作を示す図である。図7では、記載を簡潔にするため、第1のチョッパ回路111および第2のチョッパ回路112を示す破線を省略している。
 電力変換装置200aでは、第2のMOSFET42が誤動作によりオン状態となっているときに、第1のMOSFET41がオン状態になると、図7の破線の矢印で示すような電流が流れる。この電流は、電流検出部81,82の方には流れず、第2のMOSFET42から第1のMOSFET41の方に流れる。このとき、電流検出部11には、第1のMOSFET41から平常動作時に流れる電流よりも大きな電流が流れることになる。電流検出部11は、平常動作時よりも大きな電流を検出した場合、電力変換装置200aにおいて異常動作が発生していると判定する。図8は、実施の形態2に係る電力変換装置200aの電流検出部11による異常検知方法を示す図である。電流検出部11は、第1のMOSFET41から平常動作時に出力される電流の最大値よりも大きく、MOSFETが破損に至る電流レベルよりも小さい値を、第2の異常検知信号を出力するレベルすなわち閾値として設定する。電流検出部11は、第1のMOSFET41から出力される電流の電流値が閾値を超えた場合、制御部9に対して、電力変換装置200aの異常を検知したことを示す第2の異常検知信号を出力する。制御部9は、第2の異常検知信号を取得すると、第1のMOSFET41,51の動作を停止させる制御を行う。
 同様に、第2のMOSFET52が誤動作によりオン状態となっているときに、第1のMOSFET51がオン状態になると、電流検出部11は、平常動作時よりも大きな電流を検出する。電流検出部11は、閾値を超える電流を検出した場合、電力変換装置200aにおいて異常動作が発生していると判定する。電流検出部11は、制御部9に対して、第2の異常検知信号を出力する。制御部9は、第2の異常検知信号を取得すると、第1のMOSFET41,51の動作を停止させる制御を行う。
 図9は、実施の形態2に係る電力変換装置200aの電流検出部11の動作を示すフローチャートである。電流検出部11は、第1のMOSFET41,51から出力された電流を検出する(ステップS21)。第1のMOSFET41,51から出力された電流の電流値が閾値以下の場合(ステップS22:No)、電流検出部11は、ステップS21に戻って電流の検出を継続する。第1のMOSFET41,51から出力された電流の電流値が閾値より大きい場合(ステップS22:Yes)、電流検出部11は、制御部9に対して、第2の異常検知信号を出力する(ステップS23)。
 図10は、実施の形態2に係る電力変換装置200aの制御部9の動作を示すフローチャートである。電流検出部11から第2の異常検知信号を取得していない場合(ステップS31:No)、制御部9は、平常時の動作を継続し(ステップS32)、ステップS31に戻る。電流検出部11から第2の異常検知信号を取得した場合(ステップS31:Yes)、制御部9は、第1のMOSFET41,51の動作を停止させる制御を行う(ステップS33)。
 以上説明したように、本実施の形態によれば、電力変換装置200aでは、第2のMOSFET42が異常によってオン状態となり、第1のMOSFET41がオンになった場合、または、第2のMOSFET52が異常によってオン状態となり、第1のMOSFET51がオンになった場合、電流検出部11は、平常動作時に流れる電流値よりも大きい電流値すなわち過電流を検出すると、制御部9に対して第2の異常検知信号を出力し、制御部9が、第1のMOSFET41,51の動作を停止させることとした。これにより、電力変換装置200aは、過電流発生時に内部の部品を保護することができる。また、電力変換装置200aは、実施の形態1の電力変換装置200と同様、電流検出部81,82において第2のMOSFET42,52の異常を検知することによって、過電流によるリアクタ31,32の異常発熱を防ぐとともに、第1のMOSFET41,51の故障を防止することができる。
 なお、実施の形態2では、電流検出部11が、異常動作の発生の有無を判定し、異常動作が発生していると判定した場合に第2の異常検知信号を制御部9へ出力し、制御部9が、第2の異常検知信号の取得の有無によって制御を行っていたが、これに限定されるものではない。電流検出部11は、電流値の検出結果を制御部9へ出力し、制御部9が、電流検出部11から取得した検出結果に基づいて、異常動作の発生の有無を判定してもよい。
 また、実施の形態2では、2つのチョッパ回路を有する電力変換装置200aについて説明したが、一例であり、チョッパ回路の数は3つ以上であってもよい。この場合、電力変換装置200aでは、電流検出部11が、各チョッパ回路の第1のMOSFETから出力される電流を検出する。前述のように、電流検出部11については、第1のMOSFET毎すなわちチョッパ回路毎に専用の電流検出部を備える構成であってもよい。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 単相交流電源、2 単相全波整流部、6 電解コンデンサ、7 電圧検出部、9 制御部、10 出力負荷、11,81,82 電流検出部、31,32 リアクタ、41,51 第1のMOSFET、42,52 第2のMOSFET、80 第1の電流検出部、101 第1のMOSFET部、102 第2のMOSFET部、111 第1のチョッパ回路、112 第2のチョッパ回路、121,122 接続点。

Claims (6)

  1.  交流電圧を直流電圧に変換する整流器と、
     前記整流器と並列に接続されるコンデンサと、
     前記整流器と前記コンデンサとの間に設置され、各々が、前記整流器のプラス側の出力端子に接続するリアクタと、前記整流器と並列に接続される第1のスイッチング素子と、一端が前記コンデンサのプラス側の端子に接続し、他端が前記リアクタおよび前記第1のスイッチング素子と接続する第2のスイッチング素子とを有する、複数のチョッパ回路と、
     前記リアクタと、前記第1のスイッチング素子と前記第2のスイッチング素子との間に配される接続点との間に設置され、前記リアクタに流れる電流を双方向で検出する第1の電流検出部と、
     前記第1の電流検出部の検出結果を用いて、前記第1のスイッチング素子の動作を制御する制御部と、
     を備えることを特徴とする電力変換装置。
  2.  前記第1の電流検出部は、前記第2のスイッチング素子から前記リアクタに流れる電流を検出した場合、前記電力変換装置の異常を検知したことを示す第1の異常検知信号を前記制御部に出力し、
     前記制御部は、前記第1の異常検知信号を取得した場合、全ての前記第1のスイッチング素子の動作を停止させる、
     ことを特徴とする請求項1に記載の電力変換装置。
  3.  前記第1のスイッチング素子の他端と前記整流器のマイナス側の出力端子との間に設置され、前記第1のスイッチング素子から出力される電流を検出する第2の電流検出部、
     を備えることを特徴とする請求項1または2に記載の電力変換装置。
  4.  前記第2の電流検出部は、前記第1のスイッチング素子から流れる電流の電流値が閾値を超えた場合、前記電力変換装置の異常を検知したことを示す第2の異常検知信号を前記制御部に出力し、
     前記制御部は、前記第2の異常検知信号を取得した場合、全ての前記第1のスイッチング素子の動作を停止させる、
     ことを特徴とする請求項3に記載の電力変換装置。
  5.  前記第1のスイッチング素子および前記第2のスイッチング素子を構成するダイオードを、ワイドバンドギャップ半導体によって形成する、
     ことを特徴とする請求項1から4のいずれか1つに記載の電力変換装置。
  6.  前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム、またはダイヤモンドである、
     ことを特徴とする請求項5に記載の電力変換装置。
PCT/JP2017/041066 2017-11-15 2017-11-15 電力変換装置 WO2019097602A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP17909662.3A EP3514937A4 (en) 2017-11-15 2017-11-15 POWER CONVERSION DEVICE
CN201780094766.2A CN111357184A (zh) 2017-11-15 2017-11-15 电力转换装置
AU2017440157A AU2017440157B2 (en) 2017-11-15 2017-11-15 Power conversion device
PCT/JP2017/041066 WO2019097602A1 (ja) 2017-11-15 2017-11-15 電力変換装置
US16/623,029 US11070142B2 (en) 2017-11-15 2017-11-15 Power conversion device with control of switching element based on current detection
JP2019554090A JP6779388B2 (ja) 2017-11-15 2017-11-15 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/041066 WO2019097602A1 (ja) 2017-11-15 2017-11-15 電力変換装置

Publications (1)

Publication Number Publication Date
WO2019097602A1 true WO2019097602A1 (ja) 2019-05-23

Family

ID=66538588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041066 WO2019097602A1 (ja) 2017-11-15 2017-11-15 電力変換装置

Country Status (6)

Country Link
US (1) US11070142B2 (ja)
EP (1) EP3514937A4 (ja)
JP (1) JP6779388B2 (ja)
CN (1) CN111357184A (ja)
AU (1) AU2017440157B2 (ja)
WO (1) WO2019097602A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11735995B2 (en) * 2018-06-18 2023-08-22 Hitachi Astemo, Ltd. Multi-phase power converter with drift current

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011239630A (ja) * 2010-05-13 2011-11-24 Toyota Industries Corp 電源回路
JP2015023606A (ja) 2013-07-16 2015-02-02 新電元工業株式会社 力率改善回路
JP2015122835A (ja) * 2013-12-20 2015-07-02 三菱電機株式会社 電源装置およびそれを備えた空気調和装置ならびにヒートポンプ給湯装置
JP2016144353A (ja) * 2015-02-04 2016-08-08 三菱電機株式会社 電力変換装置
WO2017009950A1 (ja) * 2015-07-14 2017-01-19 サンケン電気株式会社 多相力率改善回路

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3784893A (en) 1973-01-10 1974-01-08 Bell Telephone Labor Inc High voltage shutdown protection circuit with bias arrangement to decrease the voltage shutdown point with increasing load
JPS51104105A (ja) * 1975-03-10 1976-09-14 Hitachi Ltd Sainetsushikitaabinno chuatsukeeshingukozo
JP2002186258A (ja) 2000-12-15 2002-06-28 Hitachi Ltd 並列電源システム
US7365525B2 (en) * 2005-02-08 2008-04-29 Linear Technology Corporation Protection for switched step up/step down regulators
JP4972142B2 (ja) 2009-10-26 2012-07-11 日立コンピュータ機器株式会社 力率改善装置及びその制御方法
JP5570338B2 (ja) 2010-07-26 2014-08-13 三菱電機株式会社 多重チョッパ装置
JP5780074B2 (ja) * 2011-09-09 2015-09-16 ダイキン工業株式会社 スイッチング電源回路の制御装置およびヒートポンプユニット
WO2013038512A1 (ja) * 2011-09-14 2013-03-21 三菱電機株式会社 多重チョッパ装置
JP2013179805A (ja) * 2012-02-29 2013-09-09 Toyota Industries Corp 双方向電力変換回路
US8879217B2 (en) 2012-06-29 2014-11-04 Infineon Technologies Austria Ag Switching regulator with negative current limit protection
JP2015080314A (ja) 2013-10-16 2015-04-23 ダイキン工業株式会社 電力変換装置及び空気調和装置
JP6181578B2 (ja) * 2014-02-27 2017-08-16 京セラ株式会社 パワーコンディショナ
WO2015140867A1 (ja) * 2014-03-15 2015-09-24 三菱電機株式会社 モータ駆動制御装置、圧縮機、送風機、及び空気調和機
CN104135002B (zh) * 2014-07-11 2017-06-06 邯郸美的制冷设备有限公司 交错式功率因数校正器
US10141848B2 (en) 2014-07-11 2018-11-27 Midea Group Co., Ltd. Interleaved power factor corrector
US10177572B2 (en) * 2015-03-31 2019-01-08 Fujitsu General Limited DC/AC system interconnection device and AC/AC system interconnection device
KR101734215B1 (ko) 2015-10-30 2017-05-11 엘에스오토모티브 주식회사 안정성이 향상된 양방향 비절연 dc-dc 컨버터
KR101759739B1 (ko) * 2016-10-28 2017-07-21 주식회사 경신 양방향 dc-dc 컨버터의 스위치 고장 판단 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011239630A (ja) * 2010-05-13 2011-11-24 Toyota Industries Corp 電源回路
JP2015023606A (ja) 2013-07-16 2015-02-02 新電元工業株式会社 力率改善回路
JP2015122835A (ja) * 2013-12-20 2015-07-02 三菱電機株式会社 電源装置およびそれを備えた空気調和装置ならびにヒートポンプ給湯装置
JP2016144353A (ja) * 2015-02-04 2016-08-08 三菱電機株式会社 電力変換装置
WO2017009950A1 (ja) * 2015-07-14 2017-01-19 サンケン電気株式会社 多相力率改善回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3514937A4

Also Published As

Publication number Publication date
US20200403526A1 (en) 2020-12-24
JP6779388B2 (ja) 2020-11-04
US11070142B2 (en) 2021-07-20
JPWO2019097602A1 (ja) 2020-02-27
AU2017440157B2 (en) 2020-12-10
AU2017440157A1 (en) 2020-01-16
EP3514937A4 (en) 2019-10-23
EP3514937A1 (en) 2019-07-24
CN111357184A (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
JP5282855B2 (ja) 交流−交流変換装置
JP6009651B2 (ja) 電力変換装置
US20120099345A1 (en) Soft-start control system and method for an isolated dc-dc converter with secondary controller
WO2018042937A1 (ja) スイッチング電源装置および半導体装置
KR20120022860A (ko) 전력 변환 회로
US11233453B2 (en) Power conversion device including a boosting converter for boosting output voltage from a DC power supply
JP6049468B2 (ja) 電力変換装置
WO2019097602A1 (ja) 電力変換装置
JP6239024B2 (ja) 電力変換装置
US20140268963A1 (en) Dc voltage conversion circuit
US9419548B2 (en) Method and control circuit for controlling a brushless electric motor
JP2014050166A (ja) 直流電源装置
JP4217979B2 (ja) 入出力絶縁型dc−dcコンバータ
JP2014161195A (ja) 直流電源装置
CN107370369B (zh) 升压斩波电路
JP6288202B2 (ja) 定出力電圧を得るための改善されたdc−dc変圧装置
US6577485B2 (en) Ultra-wide input range power supply for circuit protection devices
JP6792820B2 (ja) 太陽光発電システム
JP2007181357A (ja) 過電流検出機能を備えたコンデンサ入力型整流回路及びそれを用いたインバータ装置
JP7158611B2 (ja) スイッチングコンバータ
WO2018225220A1 (ja) 電力低下検知装置、運転制御装置、及び空気調和機
JP4466346B2 (ja) 半導体電力変換装置の地絡検出回路
JP2017034869A (ja) 交流−直流変換回路
JP2020025419A (ja) 電力変換装置
JP2011024326A (ja) 電力変換装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017909662

Country of ref document: EP

Effective date: 20181123

ENP Entry into the national phase

Ref document number: 2019554090

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017440157

Country of ref document: AU

Date of ref document: 20171115

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE