WO2019095715A1 - 一种高温敏感纳米材料及其制备方法 - Google Patents

一种高温敏感纳米材料及其制备方法 Download PDF

Info

Publication number
WO2019095715A1
WO2019095715A1 PCT/CN2018/096287 CN2018096287W WO2019095715A1 WO 2019095715 A1 WO2019095715 A1 WO 2019095715A1 CN 2018096287 W CN2018096287 W CN 2018096287W WO 2019095715 A1 WO2019095715 A1 WO 2019095715A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
temperature sensitive
sensitive nano
vanadium
zirconium carbide
Prior art date
Application number
PCT/CN2018/096287
Other languages
English (en)
French (fr)
Inventor
倪程凯
Original Assignee
泰州市艾瑞斯克模具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泰州市艾瑞斯克模具有限公司 filed Critical 泰州市艾瑞斯克模具有限公司
Publication of WO2019095715A1 publication Critical patent/WO2019095715A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/126Detonation spraying

Definitions

  • the invention belongs to the field of powder metallurgy, and in particular relates to a high temperature sensitive nano material and a preparation method thereof.
  • the prior art has a zirconia high-temperature wear-resistant nano material, the main component is (wt%): zirconium 60-70% (known composite material), cobalt 20-23%, copper 10-15%, and ⁇ 1.0-15.0%, tungsten 1.0-15.0%, bismuth 1.0-15.0%, aluminum 18.0-26.0% and other components. Due to the limitations of thermal spraying conditions and various thermophysical properties, these materials have low bond strength and residual stress, have high flexural strength, but have insufficient plastic and wear resistance, especially under high impact loads. This defect is very significant.
  • powder material whose main component is (wt%): zirconium carbide 99.2-99.8%, nitrogen 0.8-0.2%.
  • the mechanical properties of the material are: microhardness of 16.3 GPa and a wear rate of up to 7.0 ⁇ m/km, which causes great friction during mechanical operation, resulting in severe mechanical wear. Especially under high load and alternating force conditions, its function and wear friction when protecting nodes are largely limited.
  • the object of the present invention is to provide a high temperature sensitive nano material and a preparation method thereof, and to improve the high temperature wear resistant nano material by adding vanadium and niobium to the high temperature wear resistant nano material of zirconium carbide for the above material defects. It provides high wear resistance and significantly reduces the coefficient of friction, giving it a wide range of load speeds with high hardness and thermal stability.
  • a high temperature sensitive nanomaterial consisting of the following parts by weight: 50-65 parts of zirconium carbide, 20-30 parts of vanadium, and 5-21 parts of bismuth.
  • a method for preparing a high temperature sensitive nano material is carried out according to the following steps:
  • the invention has the beneficial effects that the high temperature sensitive nano material provided by the invention has reduced friction coefficient and wear strength and enhanced microhardness, and can be used for manufacturing, and manufacturing of running parts under friction and coating formation, so as to have high hardness. And a wide range of load speeds for thermal stability.
  • a high temperature sensitive nanomaterial consisting of the following parts by weight: 65 parts of zirconium carbide, 30 parts of vanadium, and 5 parts of bismuth.
  • a method for preparing a high temperature sensitive nano material is carried out according to the following steps:
  • the initial powder of zirconium carbide, vanadium, niobium is mixed in the above ratio, and ground for 5h, the particle size of the milled powder is 40nm;
  • a high temperature sensitive nanomaterial consisting of the following parts by weight: 60 parts of zirconium carbide, 26 parts of vanadium, and 14 parts of rhodium.
  • a method for preparing a high temperature sensitive nano material is carried out according to the following steps:
  • a high temperature sensitive nanomaterial consisting of the following parts by weight: 56 parts of zirconium carbide, 23 parts of vanadium, and 21 parts of rhodium.
  • a method for preparing a high temperature sensitive nano material is carried out according to the following steps:
  • Example 2 has the highest abrasion resistance, but the microhardness is centered; the material obtained in Example 1 has the highest microhardness but the lowest wear resistance.
  • Example 2 is optimal, that is, the components are: zirconium carbide 60%, vanadium 26%, and rhodium 14%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

一种高温敏感纳米材料及其制备方法, 属于粉末冶金领域。所述高温敏感纳米材料由以下重量份数的组分组成:碳化锆50-65份,钒20-30份,铌5-21份。将碳化锆、钒、铌的初始粉末按上述比例混合,并研磨3-7h,研磨后的粉末粒径为40-50nm,经分解和喷气喷涂到底座或零件表面。提供的高温敏感纳米材料的摩擦系数和磨损强度降低、显微硬度增强,可用于机械制造、以及摩擦和涂层形成下其运行部件的制造,使其具备高硬度和热稳定性宽的负载速度范围。

Description

一种高温敏感纳米材料及其制备方法 技术领域
本发明属于粉末冶金领域,具体涉及一种高温敏感纳米材料及其制备方法。
背景技术
现有技术有一种碳化锆高温耐磨性纳米材料,主要成分为(wt%):锆60-70%(已知复合材料)、钴20-23%、铜10-15%,另外还含有钽1.0-15.0%、钨1.0-15.0%、铌1.0-15.0%、铝18.0-26.0%及其它成分。该类材料由于热喷涂条件和各种热物理性质的局限性,导致低粘合强度和残余应力的存在,具有高抗弯曲强度,但塑料和耐磨性不足,尤其在高冲击载荷条件下,该缺陷十分显著。
还有一种粉末材料,其主要成分为(wt%):碳化锆99.2-99.8%、氮0.8-0.2%。该材料的机械性能特征是:具有16.3GPa的显微硬度,且磨损率高达7.0μm/km,在机械运行过程中产生极大的摩擦,导致机械磨耗严重。特别是在高负荷和交变力条件下,在很大程度上限制了其在保护节点时的功能及磨损摩擦。
发明内容
本发明的目的在于提供一种高温敏感纳米材料及其制备方法,针对上述材料缺陷,本发明通过在碳化锆高温耐磨性纳米材料中添加钒和铌的方法,改善高温耐磨纳米材料,为其提供较高的耐磨性,显著降低摩擦系数,使其具备高硬度和热稳定性宽的负载速度范围。
一种高温敏感纳米材料,由以下重量份数的组分组成:碳化锆50-65份, 钒20-30份,铌5-21份。
一种高温敏感纳米材料的制备方法,按照如下步骤进行:
(1)按照重量份数,取碳化锆50-65份,钒20-30份,铌5-21份,混合,并研磨3-7h,研磨后的粉末粒径为40-50nm;
(2)进行材料的爆轰喷雾,按以下顺序进行:
①喷涂底座(启动零件表面)的准备;
②分解和喷气;
③喷涂层表面的机械处理。
本发明的有益效果:本发明提供的高温敏感纳米材料的摩擦系数和磨损强度降低、显微硬度增强,可用于机械制造、以及摩擦和涂层形成下其运行部件的制造,使其具备高硬度和热稳定性宽的负载速度范围。
具体实施方式
下面结合具体实施例对本发明做进一步说明。
实施例1
一种高温敏感纳米材料,由以下重量份数的组分组成:碳化锆65份,钒30份,铌5份。
一种高温敏感纳米材料的制备方法,按照如下步骤进行:
(1)将碳化锆、钒、铌的初始粉末按上述比例混合,并研磨5h,研磨后的粉末粒径为40nm;
(2)进行材料的爆轰喷雾,按以下顺序进行:
①喷涂底座(启动零件表面)的准备;
②分解和喷气;
③喷涂层表面的机械处理。
对所获得的样品确定其材料的物理/机械性能和岩土材料性质:摩擦系数、磨损强度、显微硬度,其中第1组实验使用原型材料,作为对比实验。具体实验数据见表1:
表1
Figure PCTCN2018096287-appb-000001
由上表可知,改善后材料的摩擦系数降低28%,磨损强度降低23%,显微硬度增加112%,提高了耐磨性和显微硬度。
实施例2
一种高温敏感纳米材料,由以下重量份数的组分组成:碳化锆60份,钒26份,铌14份。
一种高温敏感纳米材料的制备方法,按照如下步骤进行:
(1)将碳化锆、钒、铌的初始粉末按上述比例混合,并研磨5h,研磨后 的粉末粒径为40nm。
(2)进行材料的爆轰喷雾,按以下顺序进行:
①喷涂底座(启动零件表面)的准备;
②分解和喷气;
③喷涂层表面的机械处理。
对所获得的样品确定其材料的物理/机械性能和岩土材料性质:摩擦系数、磨损强度、显微硬度,其中第1组实验使用原型材料,作为对比实验。具体实验数据见表2:
表2
Figure PCTCN2018096287-appb-000002
由上表可知,改善后材料的摩擦系数降低57%,磨损强度降低45%,显微硬度增加61%,提高了耐磨性和显微硬度。
实施例3
一种高温敏感纳米材料,由以下重量份数的组分组成:碳化锆56份,钒23份,铌21份。
一种高温敏感纳米材料的制备方法,按照如下步骤进行:
(1)将碳化锆、钒、铌的初始粉末按上述比例混合,并研磨5h,研磨后的粉末粒径为40nm。
(2)进行材料的爆轰喷雾,按以下顺序进行:
①喷涂底座(启动零件表面)的准备;
②分解和喷气;
③喷涂层表面的机械处理。
对所获得的样品确定其材料的物理/机械性能和岩土材料性质:摩擦系数、磨损强度、显微硬度,其中第1组实验使用原型材料,作为对比实验。具体实验数据见表3:
表3
Figure PCTCN2018096287-appb-000003
由上表可知,改善后材料的摩擦系数降低43%,磨损强度降低38%,显微硬度增加27%,提高了耐磨性和显微硬度。
综上所述,可得出以下结论:
1、改善后材料的摩擦系数和磨损强度降低、显微硬度增强,即提高了耐磨性和显微硬度。
2、在三个实施例中,实施例2所得材料耐磨性最高,但显微硬度居中;实 施例1所得材料显微硬度最高,但耐磨性最低。
3、综合考量各实施例所得材料的物理/机械性能和岩土材料性质,实施例2为最佳,即各成分为:碳化锆60%、钒26%、铌14%。

Claims (2)

  1. 一种高温敏感纳米材料,其特征在于,由以下重量份数的组分组成:碳化锆50-65份,钒20-30份,铌5-21份。
  2. 根据权利要求1所述一种高温敏感纳米材料的制备方法,其特征在于,按照如下步骤进行:
    (1)按照重量份数,取碳化锆50-65份,钒20-30份,铌5-21份,混合,并研磨3-7h,研磨后的粉末粒径为40-50nm;
    (2)进行材料的爆轰喷雾,按以下顺序进行:
    ①喷涂底座的准备;
    ②分解和喷气;
    ③喷涂层表面的机械处理。
PCT/CN2018/096287 2017-11-15 2018-07-19 一种高温敏感纳米材料及其制备方法 WO2019095715A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711129750.9 2017-11-15
CN201711129750.9A CN108165858B (zh) 2017-11-15 2017-11-15 一种高温敏感纳米材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2019095715A1 true WO2019095715A1 (zh) 2019-05-23

Family

ID=62527424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096287 WO2019095715A1 (zh) 2017-11-15 2018-07-19 一种高温敏感纳米材料及其制备方法

Country Status (2)

Country Link
CN (1) CN108165858B (zh)
WO (1) WO2019095715A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108165858B (zh) * 2017-11-15 2022-03-25 常德永 一种高温敏感纳米材料及其制备方法
CN111575590A (zh) * 2020-06-24 2020-08-25 江苏利淮钢铁有限公司 一种三牙轮钻头牙掌用钢及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4230751A (en) * 1977-08-11 1980-10-28 Kabushiki Kaisha Toyota Treating composition, forming a mixed-carbide layer of Va-Group elements and of chromium on a ferrous-alloy surface and resulting product
CN1724469A (zh) * 2001-07-03 2006-01-25 本田技研工业株式会社 多元系陶瓷粉末的制造方法和烧结体的制造方法
CN101920958A (zh) * 2010-08-06 2010-12-22 刘昭晖 一种纳米碳化锆的制配方法
CN104227010A (zh) * 2013-06-14 2014-12-24 铜仁学院 一种固相反应合成碳化锆纳米粉的制备方法
CN107177825A (zh) * 2017-07-03 2017-09-19 济宁学院 ZrNbC/ZrNbCN叠层涂层刀具及其制备工艺
CN108165858A (zh) * 2017-11-15 2018-06-15 泰州市艾瑞斯克模具有限公司 一种高温敏感纳米材料及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1210195B (de) * 1960-08-10 1966-02-03 Philips Nv Verfahren zur Herstellung von Formkoerpern aus Karbiden oder Mischkarbiden von Vanadium, Niob und Tantal
SU451775A1 (ru) * 1972-04-13 1974-11-30 Предприятие П/Я В-2120 Износостойкий спеченный сплав
SU535365A1 (ru) * 1974-12-30 1976-11-15 Предприятие П/Я В-2120 Износостойкий спеченный сплав
CA2330352A1 (en) * 2001-01-05 2002-07-05 Groupe Minutia Inc. Refractory hard metals in powder form for use in the manufacture of electrodes
JP2003120685A (ja) * 2001-10-10 2003-04-23 Nsk Ltd 転動装置
US6911063B2 (en) * 2003-01-13 2005-06-28 Genius Metal, Inc. Compositions and fabrication methods for hardmetals
CN103769576A (zh) * 2014-01-08 2014-05-07 北矿新材科技有限公司 一种用于制备低孔隙率涂层的碳化钨基耐磨涂层材料及其制备方法
CN103962548A (zh) * 2014-05-12 2014-08-06 西安热工研究院有限公司 一种兼具抗磨损和空蚀损伤的涂层材料及其制备方法
CN107236889A (zh) * 2017-07-12 2017-10-10 常熟市虹桥铸钢有限公司 一种矿山机械旋转导向套用高硬度合金

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4230751A (en) * 1977-08-11 1980-10-28 Kabushiki Kaisha Toyota Treating composition, forming a mixed-carbide layer of Va-Group elements and of chromium on a ferrous-alloy surface and resulting product
CN1724469A (zh) * 2001-07-03 2006-01-25 本田技研工业株式会社 多元系陶瓷粉末的制造方法和烧结体的制造方法
CN101920958A (zh) * 2010-08-06 2010-12-22 刘昭晖 一种纳米碳化锆的制配方法
CN104227010A (zh) * 2013-06-14 2014-12-24 铜仁学院 一种固相反应合成碳化锆纳米粉的制备方法
CN107177825A (zh) * 2017-07-03 2017-09-19 济宁学院 ZrNbC/ZrNbCN叠层涂层刀具及其制备工艺
CN108165858A (zh) * 2017-11-15 2018-06-15 泰州市艾瑞斯克模具有限公司 一种高温敏感纳米材料及其制备方法

Also Published As

Publication number Publication date
CN108165858B (zh) 2022-03-25
CN108165858A (zh) 2018-06-15

Similar Documents

Publication Publication Date Title
CN104936727B (zh) 制备含氮化铬的喷涂粉末的方法
JP2016540883A (ja) 炭化モリブデンをベースにする焼結された溶射粉末
RU2696113C1 (ru) Способ получения нанокомпозиционного материала на основе меди, упрочненного углеродными нановолокнами
CN104233084A (zh) 一种Fe-Gr-B-Si纳米涂层及其制备方法
CN101985717A (zh) 高韧性超粗晶钨钴硬质合金的制备方法
CN104844178A (zh) 添加球形纳米二氧化硅包覆六方氮化硼复合粉体的自润滑陶瓷刀具材料的制备方法
WO2012133328A1 (ja) 硬質焼結合金
WO2019095715A1 (zh) 一种高温敏感纳米材料及其制备方法
CN104451514A (zh) 一种SiC-Al2O3纳米涂层及其制备方法
JP2016098393A (ja) 超硬合金
CN102690965A (zh) 一种耐磨钼合金的制备方法
CN102731094A (zh) 一种碳化硅-纳米碳管复合增韧密封磨环及其制备方法
CN113307628A (zh) 一种碳化硅-金刚石复相陶瓷磨环材料及其制备方法
CN103524134A (zh) 一种氮化硅-碳氮化钛微纳米复合材料的制备方法
JP2021528567A (ja) 代替バインダーを用いた超硬合金
CN113584367B (zh) 一种高硬高韧的硬质合金及其制备方法
CN104831125A (zh) 高强度Co-TiO2-Mo纳米涂层材料及其制备方法
CN112359241A (zh) 一种双晶非均匀硬质合金及其制备方法
Zhong et al. Nano-composite coatings with improved mechanical properties and corrosion resistance by thermal spraying
JPH11335769A (ja) 超硬合金、その製造方法および超硬工具
RU2709688C1 (ru) Способ получения функционального покрытия на основе алюминий-углеродных нановолокон
JPS6381053A (ja) 表面被覆微粒超硬合金製ドツトワイヤ−
CN106032322A (zh) 一种碳化硅-碳化钛-硼化钛复合材料的制备方法
JP6813364B2 (ja) 耐摩耗性及び耐食性に優れたライニング材
CN104947026A (zh) MnO2-Al2O3-Si纳米材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18878852

Country of ref document: EP

Kind code of ref document: A1