RU2709688C1 - Способ получения функционального покрытия на основе алюминий-углеродных нановолокон - Google Patents

Способ получения функционального покрытия на основе алюминий-углеродных нановолокон Download PDF

Info

Publication number
RU2709688C1
RU2709688C1 RU2018144508A RU2018144508A RU2709688C1 RU 2709688 C1 RU2709688 C1 RU 2709688C1 RU 2018144508 A RU2018144508 A RU 2018144508A RU 2018144508 A RU2018144508 A RU 2018144508A RU 2709688 C1 RU2709688 C1 RU 2709688C1
Authority
RU
Russia
Prior art keywords
powder
carbon
aluminum
layer
composite
Prior art date
Application number
RU2018144508A
Other languages
English (en)
Inventor
Александра Николаевна Скворцова
Борис Владимирович Фармаковский
Дмитрий Анатольевич Геращенков
Александр Михайлович Макаров
Original Assignee
Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт конструкционных материалов "Прометей" имени И.В. Горынина Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ЦНИИ КМ "Прометей")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт конструкционных материалов "Прометей" имени И.В. Горынина Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ЦНИИ КМ "Прометей") filed Critical Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт конструкционных материалов "Прометей" имени И.В. Горынина Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ЦНИИ КМ "Прометей")
Priority to RU2018144508A priority Critical patent/RU2709688C1/ru
Application granted granted Critical
Publication of RU2709688C1 publication Critical patent/RU2709688C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Изобретение относится к способу получения композиционного материала для изготовления функциональных покрытий из сплава алюминия и углеродного нановолокна и может быть использовано в авиационной, космической, судостроительной и других областях промышленности. Способ получения композиционного покрытия на основе алюминия и углерода включает подачу порошка с использованием двух дозаторов в сверхзвуковой поток подогретого газа с образованием гетерофазного потока и нанесение порошковой композиции на поверхность изделия. В упомянутый сверхзвуковой поток из первого дозатора вводят порошок Al2O3 для обработки изделия до образования ювенильной поверхности, затем наносят последовательно методом холодного газодинамического напыления порошковую композицию. Для нанесения первого износостойкого слоя в упомянутый сверхзвуковой поток из второго дозатора вводят композиционный порошковый материал, содержащий углерод и алюминий, для нанесения второго связующего слоя – алюминиевый порошок ПА-4, для нанесения третьего упрочняющего слоя – композиционный порошковый материал, содержащий углерод и алюминий, для нанесения четвертого связующего слоя – алюминиевый порошок ПА-4 и для нанесения пятого износостойкого слоя – композиционный порошковый материал, содержащий углерод и алюминий. Содержание углерода в первом слое составляет 0,4-0,6 мас. %, Аl и неизбежные примеси остальное, содержание углерода в третьем слое составляет 0,5-1 мас. %, Аl и неизбежные примеси остальное, содержание углерода в пятом слое составляет 0,6-1,6 мас. %, Аl и неизбежные примеси остальное, в качестве углерода в композиционном порошковом материале используют углеродное нановолокно. Обеспечивается получение композиционного материала для износостойкого покрытия, имеющего более высокую твердость, составляющую более 1,9 ГПа, низкий коэффициент трения до 0,4, высокую устойчивость к разрушению во время эксплуатации при одновременном сохранении низкого износа, необходимой прочности и ударной вязкости. 4 з.п. ф-лы, 7 табл., 3 пр.

Description

Изобретение относится к способу получения функционального покрытия из сплава алюминия и углеродного нановолокна и может быть использовано в авиационной, космической, судостроительной и других областях промышленности.
Разработка новых способов получения с существенно улучшенным комплексом свойств обусловлена необходимостью защиты инновационных изделий при ужесточении условий их эксплуатации.
Известны способы нанесения защитных покрытий с высокой износостойкостью на основе порошка системы Ti-Ni-Al (патент РФ №2039125, №2055936). Недостатком этих способов является то, что покрытие, полученное при плазменном напылении, обладает пористостью до 10% и имеет сложный фазовый состав. В покрытии присутствуют сплавы титан-никель, окись титана (ТiO2) и сложные окислы (NiTiO3). Покрытие из порошка Ti-Ni используется, в основном, в качестве износостойкого покрытия, работающего в условиях износа без ударных нагрузок. Кроме того, покрытие обладает низкой теплостойкостью и при нагреве выше 350°С происходит его интенсивное окисление.
Известен также способ получения композиционных порошковых материалов, содержащих частицы хрома в матрице из железа, включающий механическое смешивание порошков железа и хрома и создание на основе полученной смеси износостойкого газотермического покрытия (патент РФ №2262554).
Недостатком такого способа является то, что при прямом смешивании исходных компонентов частицы имеют склонность к сегрегации агломератов в процессе напыления. Это приводит к неоднородности структуры, а следовательно, низкой когезионной и адгезионной стойкости покрытия. Кроме того, износостойкость такого покрытия не превышает 4 мг/ч, что недостаточно для инновационных конкурентноспособных изделий.
Известен также способ получения порошкового материала для нанесения износостойкого газотермического покрытия (патент RU 2475463). Этот способ выбран в качестве прототипа.
В прототипе указано, что изобретение относится к модифицированию поверхности неорганического волокна для создания прочной связи между компонентами композиционного материала путем формирования высокоразвитой поверхности неорганического волокна, используемого в качестве наполнителя, посредством формирования на волокнах углеродных наноструктур (УНС) и находит применение в производстве высокопрочных и износостойких волокнистых композиционных материалов. Способ модифицирования поверхности неорганического волокна включает следующие стадии: (а) пропитку неорганического волокна раствором α2 фракции пека в органических растворителях; (б) последующую сушку пропитанного волокна; (в) термообработку пропитанного неорганического волокна при 300-600°С; (г) нанесение на поверхность термообработанного в соответствии со стадией (в) волокна соли переходного металла; (д) восстановление соли переходного металла с получением наночастиц переходного металла; (е) осаждение углерода на наночастицы переходного металла с получением углеродных наноструктур на поверхности волокна. Композиционный материал содержит модифицированное волокно, изготовленное вышеизложенным способом, и матрицу из полимера или углерода.
В прототипе технический результат изобретения: повышение прочности композиционного материала в поперечном направлении относительно плоскости армирования за счет предотвращения разрушения поверхности волокон при модификации углеродными наноструктурами.
Недостатком способа является то, что изготовление волокнисто-порошковой смеси достаточно трудоемко и энергозатратно.
Общим недостатком известных технических решений является ограниченный диапазон применения, особенно в условиях интенсивного динамического износа при повышенных температурах и воздействии агрессивных химических реагентов, а так же недостаточная прочность сцепления покрытий с их основой, необходимость в дополнительной термической обработки покрытий (закалке), требующей значительных энергетических затрат, дороговизна метода.
Задачей изобретения является повышение прочности, твердости и износостойкости композиционного материала, а также упрочнение функционального покрытия с помощью добавки нановолокон в алюминиевую матрицу.
Техническим результатом настоящего изобретения является получение функционального покрытия, отличающегося более высокой твердостью (более 1,9 ГПа), имеющего низкий коэффициент трения (до 0,4), высокую устойчивость к разрушению во время эксплуатации при одновременном сохранении низкого износа, необходимой прочности и ударной вязкости.
Технический результат достигается за счет того, что при изготовлении функционального покрытия из 5 слоев: проводят отработку изделия до образования ювенильной поверхности порошком Аl2O3; наносят послойно методом «холодного» газодинамического напыления порошковую композицию, для нанесения первого слоя (износостойкого) используют композиционный порошковый материал содержащий С и Al; для нанесения второго слоя (связующего) используют алюминиевый порошок ПА-4; для нанесения третьего слоя (упрочняющего) используют композиционный порошковый материал содержащий С и Аl; для нанесения четвертого слоя (связующего) используют алюминиевый порошок ПА-4; для нанесения пятого слоя (износостойкого) используют композиционный порошковый материал содержащий С и Аl.
Получение композиционного порошкового материала осуществляется способом внедрения в поверхность алюминия углеродных нановолокон при армировании композиционных материалов, включающим следующие стадии:
(а) нанесение на поверхность порошка алюминия никелевого раствора (Ni(NO3)2;
(б) последующую сушку пропитанного порошка в среде аргона;
(в) термообработку пропитанного органического нановолокна при 100-400°С;
(г) восстановление до чистого никеля;
(д) осаждение углерода (синтез) на наночастицы переходного металла с получением углеродных наноструктур на поверхности порошка при температуре синтеза 500-550°С.
Напыление полученного композиционного материала на объемные материалы осуществляется методом «холодного» газодинамического напыления (ХГДН) на изделие с ювенильной поверхностью.
Функциональное покрытие изготавливают с использованием метода холодного газодинамического напыления (ХГДН) на основе порошка алюминия марки ПА-4 (ГОСТ 6058) и углеродных нановолокон. Функциональное покрытие с заранее заданными параметрами пористости и шероховатости наносится послойно, для его нанесения осуществляют подачу порошка из двух дозаторов в сверхзвуковой поток подогретого газа с образованием гетерофазного потока и нанесение порошковой композиции на поверхность изделия.
Из первого дозатора вводят армирующие ультрадисперсные частицы Аl2O3 фракцией от 0,1 до 1,0 мкм и проводят обработку поверхности изделия до образования ювенильной поверхности.
Затем на поверхность изделия наносят порошковую композицию на основе алюминия с заранее выбранным соотношением компонентов путем подачи порошка из второго дозатора. Для нанесения первого слоя (износостойкого) используют композиционный порошковый материал с фракционным составом 0,2 мкм. Для нанесения второго слоя (связующего) использовался алюминиевый порошок ПА-4. Для нанесения третьего слоя (упрочняющего) используют композиционный порошковый материал с фракционным составом 0,062 мкм. Для нанесения четвертого слоя (связующего) используют алюминиевый порошок ПА-4. Для нанесения пятого слоя (износостойкого) используют композиционный порошковый материал с фракционным составом 0,032 мкм.
Содержание углерода в композиционном порошковом материале может варьироваться от 0,4 масс. % до 1,6 масс. %. При увеличении содержания углерода в композиционном порошковом материале более 1,6% масс. %, ухудшаются свойства композиционного материала, а именно, низкая твердость при достаточно высоком модуле упругости, делает полученное покрытие непригодным для эксплуатации. При уменьшении содержания углерода в композиционном материале менее 0,4 масс. % увеличивается интенсивность изнашивания, увеличивается коэффициент трения покрытия и твердость покрытия, следовательно, уменьшается срок службы покрытия. Оптимальное содержание углерода в первом слое составляет (0,4-0,6)масс. %, в третьем слое составляет (0,5-1)масс. %, в пятом слое составляет (0,6-1,6)масс. %.
ПРИМЕР 1
Для реализации предлагаемого технического решения провели обработку изделия до образования ювенильной поверхности порошком Al2O3 и подготовку порошков.
Для реализации предлагаемого технического решения был предварительно подготовлен порошок для нанесения износостойкого покрытия с помощью метода ХГДН: порошок на основе сплава Аl-С. Порошки были взяты в следующих пропорциях (таблица 1). Полученный порошковый материал после предварительного синтеза механолегировали в планетарной мельнице.
Figure 00000001
Подготовка порошков осуществлялась следующим образом:
1) сушка порошков-компонентов при Т=150-200°С 1,5-2 часа в печи;
2) просев порошка на основе сплава Аl-С проводили через сито 0,2 мкм, 0,032 мкм и 0,062 мкм; порошок марки ПА-4 просеивали через сито фракцией 0,2 мкм, 0,032 мкм и 0,062 мкм; порошок Аl2O3 с фракционным составом 0,032 мкм.
3) смешивание порошков в вышеуказанных пропорциях в планетарной мельнице. С помощью размольных шаров и частично трением между шарами и стенкой размольного стакана проводится измельчение композиционного материала при 400 об/мин в течении 20 минут, охлаждением 10-15 мин и двумя повторными опытами.
Нанесение покрытий осуществлялось на установке холодного газодинамического напыления ДИМЕТ-403.
Для нанесения первого слоя (износостойкого) использовался композиционный порошковый материал с фракционным составом 0,2 мкм, в котором содержание углерода составляет 0,4 мас. %, Аl и неизбежные примеси остальное. Для нанесения второго слоя (связующего) использовался алюминиевый порошок ПА-4. Для нанесения третьего слоя (упрочняющего) использовался композиционный порошковый материал с фракционным составом 0,062 мкм, в котором содержание углерода составляет 0,5 мас. %, Аl и неизбежные примеси остальное. Для нанесения четвертого слоя (связующего) использовался алюминиевый порошок ПА-4. Для нанесения пятого слоя (износостойкого) использовался композиционный порошковый материал с фракционным составом 0,032 мкм, в котором содержание углерода составляет 0,6 мас. %, Аl и неизбежные примеси остальное.
Результаты сравнительных исследований приведены в таблице 2. Результаты показывают: наилучшими характеристиками обладает покрытие, полученное из механической смеси, при следующем соотношении компонентов, масс. %:
Figure 00000002
Полученный композиционный порошок использовался в качестве композиционного порошка для нанесения покрытий на металлическую подложку марки Ст3 методом ХГДН. Толщина полученного покрытия составляла 584 мкм.
ПРИМЕР 2
Для реализации предлагаемого технического решения провели обработку изделия до образования ювенильной поверхности порошком Аl2О3 и подготовку порошков.
Был предварительно подготовлен порошок для нанесения износостойкого покрытия с помощью метода ХГДН: порошок на основе сплава Аl-С. Порошки были взяты в следующих пропорциях (таблица 3). Полученный порошковый материал после предварительного синтеза механолегировали в планетарной мельнице.
Figure 00000003
Подготовка порошков осуществлялась следующим образом:
1) сушка порошков-компонентов при Т=150-200°С 1,5-2 часа в печи;
2) просев порошка на основе сплава Аl-С проводили через сито 0,2 мкм, 0,032 мкм и 0,062 мкм; порошок марки ПА-4 просеивали через сито фракцией 0,2 мкм, 0,032 мкм и 0,062 мкм; порошок Al2O3 с фракционным составом 0,032 мкм.
3) смешивание порошков в вышеуказанных пропорциях в планетарной мельнице. С помощью размольных шаров и частично трением между шарами и стенкой размольного стакана проводится измельчение композиционного материала при 400 об/мин в течении 20 минут, охлаждением 10-15 мин и двумя повторными опытами.
Нанесение покрытий осуществлялось послойно на установке холодного газодинамического напыления ДИМЕТ-403.
Для нанесения первого слоя (износостойкого) использовался композиционный порошковый материал с фракционным составом 0,2 мкм, в котором содержание углерода составляет 0,4 мас. %, Аl и неизбежные примеси остальное. Для нанесения второго слоя (связующего) использовался алюминиевый порошок ПА-4. Для нанесения третьего слоя (упрочняющего) использовался композиционный порошковый материал с фракционным составом 0,062 мкм, в котором содержание углерода составляет 0,9 мас. %, Аl и неизбежные примеси остальное. Для нанесения четвертого слоя (связующего) использовался алюминиевый порошок ПА-4. Для нанесения пятого слоя (износостойкого) использовался композиционный порошковый материал с фракционным составом 0,032 мкм, в котором содержание углерода составляет 1,4 мас. %, Аl и неизбежные примеси остальное.
Полученное покрытие представляет собой многослойную структуру.
Результаты сравнительных исследований приведены в таблице 4. Результаты показывают: наилучшими характеристиками обладает покрытие, полученное из механической смеси, при следующем соотношении компонентов, масс. %:
Figure 00000004
Полученный композиционный порошок использовался в качестве композиционного порошка для нанесения покрытий на металлическую подложку марки Ст3 методом ХГДН. Толщина полученного покрытия составляла 542 мкм, пористость 1,1%.
ПРИМЕР 3
Для реализации предлагаемого технического решения провели обработку изделия до образования ювенильной поверхности порошком Al2O3 и подготовку порошков.
Был предварительно подготовлен порошок для нанесения износостойкого покрытия с помощью метода ХГДН: порошок на основе сплава Аl-С. Порошки были взяты в следующих пропорциях (таблица 5). Полученный порошковый материал после предварительного синтеза механолегировали в планетарной мельнице.
Figure 00000005
Подготовка порошков осуществлялась следующим образом:
1) сушка порошков-компонентов при Т=150-200°С 1,5-2 часа в печи;
2) просев порошка на основе сплава Al-С проводили через сито 0,2 мкм, 0,032 мкм и 0,062 мкм; порошок марки ПА-4 просеивали через сито фракцией 0,2 мкм, 0,032 мкм и 0,062 мкм; порошок Аl2O3 с фракционным составом 0,032 мкм.
3) смешивание порошков в вышеуказанных пропорциях в планетарной мельнице. С помощью размольных шаров и частично трением между шарами и стенкой размольного стакана проводится измельчение композиционного материала при 400 об/мин в течении 20 минут, охлаждением 10-15 мин и двумя повторными опытами.
Нанесение покрытий осуществлялось на установке холодного газодинамического напыления ДИМЕТ-403.
Для нанесения первого слоя (износостойкого) использовался композиционный порошковый материал с фракционным составом 0,2 мкм, в котором содержание углерода составляет 0,6 мас. %, Аl и неизбежные примеси остальное. Для нанесения второго слоя (связующего) использовался алюминиевый порошок
ПА-4. Для нанесения третьего слоя (упрочняющего) использовался композиционный порошковый материал с фракционным составом 0,062 мкм, в котором содержание углерода составляет 1,1 мас.%, Аl и неизбежные примеси остальное. Для нанесения четвертого слоя (связующего) использовался алюминиевый порошок ПА-4. Для нанесения пятого слоя (износостойкого) использовался композиционный порошковый материал с фракционным составом 0,032 мкм, в котором содержание углерода составляет 1,6 мас. %, Аl и неизбежные примеси остальное.
Результаты сравнительных исследований приведены в таблице 6. Результаты показывают: наилучшими характеристиками обладает покрытие, полученное из механической смеси, при следующем соотношении компонентов, масс. %:
Figure 00000006
Полученный композиционный порошок использовался в качестве композиционного порошка для нанесения покрытий на металлическую подложку марки Ст3 методом ХГДН. Толщина полученного покрытия составляла 480 мкм.
Результаты анализа представлены в таблице 7.
Figure 00000007
На основании приведенных данных видно, что порошок позволяет
получить покрытие с более высокой износостойкостью при t=600°C, чем у покрытия, изготовленного из порошка по прототипу.
Предложенный способ можно использовать при нанесении покрытий на функциональные элементы, работающие в режиме пар трения без существенного перегрева конструкции, так как напыляемый материал (алюминий с углеродными нановолокнами) образует единый монолитный слой с деталью и имеет функциональные свойства по всей поверхности полученного композита.
Изобретение относится к технологии управляемых процессов формирования функциональной поверхности и может быть использовано в судостроении для различных элементов корпусов, судовой арматуры, элементов насосов, в авиастроении, для облегченных конструкций корпуса самолета, в обшивке и обтекателе самолета, при изготовления деталей для пар трения (насосы).

Claims (5)

1. Способ получения композиционного покрытия на основе алюминия и углерода, включающий подачу порошка с использованием двух дозаторов в сверхзвуковой поток подогретого газа с образованием гетерофазного потока и нанесение порошковой композиции на поверхность изделия, отличающийся тем, что в упомянутый сверхзвуковой поток из первого дозатора вводят порошок Al2O3 для обработки изделия до образования ювенильной поверхности, затем наносят последовательно методом холодного газодинамического напыления порошковую композицию, при этом для нанесения первого износостойкого слоя в упомянутый сверхзвуковой поток из второго дозатора вводят композиционный порошковый материал, содержащий углерод и алюминий, для нанесения второго связующего слоя – алюминиевый порошок ПА-4, для нанесения третьего упрочняющего слоя – композиционный порошковый материал, содержащий углерод и алюминий, для нанесения четвертого связующего слоя – алюминиевый порошок ПА-4 и для нанесения пятого износостойкого слоя – композиционный порошковый материал, содержащий углерод и алюминий.
2. Способ по п. 1, отличающийся тем, что содержание углерода в первом слое составляет 0,4-0,6 мас. %, Аl и неизбежные примеси остальное.
3. Способ по п. 1, отличающийся тем, что содержание углерода в третьем слое составляет 0,5-1 мас. %, Аl и неизбежные примеси остальное.
4. Способ по п. 1, отличающийся тем, что содержание углерода в пятом слое составляет 0,6-1,6 мас. %, Аl и неизбежные примеси остальное.
5. Способ по п. 1, отличающийся тем, что в качестве углерода в композиционном порошковом материале используют углеродное нановолокно.
RU2018144508A 2018-12-14 2018-12-14 Способ получения функционального покрытия на основе алюминий-углеродных нановолокон RU2709688C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018144508A RU2709688C1 (ru) 2018-12-14 2018-12-14 Способ получения функционального покрытия на основе алюминий-углеродных нановолокон

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018144508A RU2709688C1 (ru) 2018-12-14 2018-12-14 Способ получения функционального покрытия на основе алюминий-углеродных нановолокон

Publications (1)

Publication Number Publication Date
RU2709688C1 true RU2709688C1 (ru) 2019-12-19

Family

ID=69006691

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018144508A RU2709688C1 (ru) 2018-12-14 2018-12-14 Способ получения функционального покрытия на основе алюминий-углеродных нановолокон

Country Status (1)

Country Link
RU (1) RU2709688C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1942209B1 (en) * 2006-12-20 2011-08-03 United Technologies Corporation Cold sprayed metal matrix composites
RU2475463C1 (ru) * 2011-11-23 2013-02-20 Закрытое акционерное общество "ГрАВИОНИКС-К" (ЗАО "ГрАВИОНИКС-К") Способ модифицирования поверхности неорганического волокна, модифицированное волокно и композиционный материал
RU2476616C1 (ru) * 2011-11-18 2013-02-27 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Износостойкий сплав на основе никеля для нанесения износо- и коррозионно-стойких покрытий на конструкционные элементы микроплазменным или сверхзвуковым газодинамическим напылением
RU2544219C1 (ru) * 2013-09-05 2015-03-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Алмазное покрытие и способ его получения
US20170204920A1 (en) * 2014-06-06 2017-07-20 National Research Council Of Canada Bi-layer iron coating of lightweight metallic substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1942209B1 (en) * 2006-12-20 2011-08-03 United Technologies Corporation Cold sprayed metal matrix composites
RU2476616C1 (ru) * 2011-11-18 2013-02-27 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Износостойкий сплав на основе никеля для нанесения износо- и коррозионно-стойких покрытий на конструкционные элементы микроплазменным или сверхзвуковым газодинамическим напылением
RU2475463C1 (ru) * 2011-11-23 2013-02-20 Закрытое акционерное общество "ГрАВИОНИКС-К" (ЗАО "ГрАВИОНИКС-К") Способ модифицирования поверхности неорганического волокна, модифицированное волокно и композиционный материал
RU2544219C1 (ru) * 2013-09-05 2015-03-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Алмазное покрытие и способ его получения
US20170204920A1 (en) * 2014-06-06 2017-07-20 National Research Council Of Canada Bi-layer iron coating of lightweight metallic substrate

Similar Documents

Publication Publication Date Title
Knowles et al. Microstructure and mechanical properties of 6061 Al alloy based composites with SiC nanoparticles
Al-Hamdani et al. Cold sprayed metal-ceramic coatings using satellited powders
Huang et al. Modification of a cold sprayed SiCp/Al5056 composite coating by friction stir processing
Akbarpour et al. The influence of CNTs on the microstructure and strength of Al-CNT composites produced by flake powder metallurgy and hot pressing method
RU2696113C1 (ru) Способ получения нанокомпозиционного материала на основе меди, упрочненного углеродными нановолокнами
CN102308115A (zh) 车辆制动盘及其制造方法
DE102011012142B3 (de) Aluminium-Matrixverbundwerkstoff, Halbzeug aus dem Aluminium-Matrixverbundwerkstoff und Verfahren zu dessen Herstellung
KR20210060437A (ko) 하이브리드 알루미늄 복합 코팅의 형성을 위한 방법 및 조성물
US10214801B2 (en) Nanoparticle-reinforced composites and methods of manufacture and use
Carvalho et al. Mechanisms governing the mechanical behavior of an AlSi–CNTs–SiCp hybrid composite
Canakci et al. New Coating Technique for Al–B 4 C Composite Coatings by Mechanical Milling and Composite Coating
Huang et al. Effect of tool rotation speed on microstructure and microhardness of friction-stir-processed cold-sprayed SiCp/Al5056 composite coating
RU2709688C1 (ru) Способ получения функционального покрытия на основе алюминий-углеродных нановолокон
CN109554564B (zh) 一种非晶合金颗粒与碳纳米管增强铝基复合材料的制备方法
CN104264099B (zh) 一种Fe-Gr-Si纳米涂层及其制备方法
CN108251835B (zh) 一种钛合金表面原位生成的Ti5Si3弥散增强Al3Ti基复合梯度涂层及制备方法
Zhang et al. Synthesis of TiN/Ti3Al composite coatings on Ti6Al4V alloy by plasma spraying and laser nitriding
US20150217373A1 (en) Method for producing components from mmcs (metal matrix composites) using a powder that has been melt-atomised in an inert gas atmosphere
US10047014B2 (en) Plasma-sprayed tin coating having excellent hardness and toughness, the preparation method therefor, and a mold coated with said tin coating
WO2019095715A1 (zh) 一种高温敏感纳米材料及其制备方法
Reddappa et al. Effect of aging on mechanical and wear properties of beryl particulate reinforced metal matrix composites
Li et al. Influence of annealing on the microstructure and wear performance of diamond/NiCrAl composite coating deposited through cold spraying
Aborkin et al. Effect of Al 2 O 3 on the Microhardness of AMg2/Graphite Nanocomposite Powder Gas Dynamic Coatings on Aluminum Alloys
JP5308035B2 (ja) アルミニウム基合金複合材料
RU2553763C2 (ru) Композиционный наноструктурированный порошок для нанесения покрытий