WO2019095501A1 - 一种oled器件及制备方法 - Google Patents

一种oled器件及制备方法 Download PDF

Info

Publication number
WO2019095501A1
WO2019095501A1 PCT/CN2017/117360 CN2017117360W WO2019095501A1 WO 2019095501 A1 WO2019095501 A1 WO 2019095501A1 CN 2017117360 W CN2017117360 W CN 2017117360W WO 2019095501 A1 WO2019095501 A1 WO 2019095501A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electron
hole
hole injection
film thickness
Prior art date
Application number
PCT/CN2017/117360
Other languages
English (en)
French (fr)
Inventor
李先杰
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US15/748,586 priority Critical patent/US10777765B2/en
Publication of WO2019095501A1 publication Critical patent/WO2019095501A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/611Charge transfer complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]

Definitions

  • the present application relates to the field of electroluminescence technology, and in particular, to an OLED device and a preparation method thereof.
  • OLED organic electroluminescent device
  • the organic electroluminescent device has great application prospects in the field of display and illumination because of its simple manufacturing process, wide material selection, controllable structure, ultra-thin, and curlability.
  • OLED display is a promising flat panel display technology, which has the characteristics of self-illumination, simple structure, ultra-thin, fast response, wide viewing angle, low power consumption and flexible display. It is known as “dream display”. .
  • the electron injecting layer (cathode modifying layer) of the OLED is mostly a metal oxide and a polymer material.
  • the inventor of the present application found in the long-term research and development process that the electron injection capability of the above technology is not good enough, and the preparation cost is high, and the luminous efficiency of the device is not high.
  • the technical problem to be solved by the present application is to provide an OLED device and a preparation method thereof, which can make the internal electron injection of the device more effective, the device has higher luminous efficiency, and the manufacturing process is simple, the stability is high, and the film forming quality is good.
  • an OLED device comprising: an electron injection layer, wherein the electron injection layer is a surfactant-embedded polyacid complex;
  • the electron injecting layer is tetraoctyl ammonium-encapsulated silicotungstic acid;
  • the device further comprises:
  • the electron injection layer is formed on the electron transport layer.
  • an OLED device comprising: an electron injection layer, which is a surfactant-embedded polyacid complex.
  • another technical solution adopted by the present application is to provide a method for preparing an OLED device, the method comprising: providing a substrate; depositing an anode on the substrate by magnetron sputtering a material to form the anode; a material of the hole injection layer, a material of the hole transport layer, a material of the light-emitting layer, and an electron are sequentially deposited on the anode by vacuum evaporation using a multi-source organic molecular vapor deposition system a material of the transport layer to sequentially form the hole injection layer, the hole transport layer, the light-emitting layer, and the electron transport layer; embedding the surfactant in a manner of spin coating of the material in an inert gas atmosphere A polyacid complex solution is deposited on the electron transport layer to form an electron injecting layer; a cathode is formed on the electron injecting layer by vacuum evaporation to prepare the OLED device.
  • the OLED device provided by the present application includes: an electron injection layer, which is a surfactant-embedded polyacid complex.
  • Surfactant-embedded polyacid complexes are a class of materials with excellent optoelectronic properties, which have a tunable work function and are suitable for use as electrode modification layers; and such materials are low cost, green, environmentally friendly, and highly transparent. Light, wet process, no return processing; in this way, the internal electron injection of the device can be more effective, the device luminous efficiency is higher, and the manufacturing process is simple, the stability is high, and the film forming quality is good.
  • FIG. 1 is a schematic structural view of an embodiment of an OLED device of the present application.
  • FIG. 2 is a schematic structural view of another embodiment of an OLED device of the present application.
  • FIG. 3 is a schematic structural view of a specific embodiment of an OLED device of the present application.
  • FIG. 5 is a schematic diagram of an electroluminescence spectrum of the OLED device of FIG. 3;
  • FIG. 6 is a voltage-luminance curve of the OLED device of FIG. 3;
  • FIG. 1 is a schematic structural diagram of an embodiment of an OLED device according to the present application.
  • the device 100 includes an electron injection layer 10 .
  • the electron injecting layer 10 is a surfactant-embedded polyacid complex.
  • the Electron Injection Layer can improve the carrier injection capability and can further improve device performance, usually introduced between the cathode layer and the electron transport layer (ETL).
  • ETL electron transport layer
  • Surfactant-embedded polyacid complexes are a class of materials with excellent optoelectronic properties, which have a tunable work function and are well suited for use as electrode modification layers; and these materials are low cost (less than $1 per gram) Green, environmentally friendly, high light transmission (more than 90% visible light transmission) can be processed wet and does not require return processing; it is very suitable for industrial production of low cost, large area and flexible substrate devices.
  • a cationic surfactant such as cetylpyridinium bromide, cetyltrimethylammonium bromide or tetrabutylammonium nitrate is prepared by embedding phosphotungstic acid and silicotungstic acid by electrostatic action to prepare a surfactant embedding solution.
  • the OLED device provided by the embodiments of the present application includes an electron injection layer which is a surfactant-embedded polyacid complex.
  • Surfactant-embedded polyacid complexes are a class of materials with excellent optoelectronic properties, which have a tunable work function and are suitable for use as electrode modification layers; and such materials are low cost, green, environmentally friendly, and highly transparent. Light, wet process, no return processing; in this way, the internal electron injection of the device can be more effective, the device luminous efficiency is higher, and the manufacturing process is simple, the stability is high, and the film forming quality is good.
  • the electron injecting layer is tetraoctyl ammonium-encapsulated silicotungstic acid.
  • surfactants include, but are not limited to, tetraoctyl ammonium bromide, tetraoctyl ammonium chloride, and the like.
  • the molecular formula of tetraoctyl ammonium-encapsulated silicotungstic acid is [(C 8 H 17 ) 4 N] 4 [SiW 12 O 40 ].
  • the electron injecting layer can be prepared by a wet film forming method, and the method has the advantages of simple preparation process, high stability and good film forming quality. For example, inkjet printing (Ink-jet Printing, IJP), nozzle printing (Nozzle Printing), etc., the thickness of the electron injecting layer may be between 0.5 nm and 10 nm.
  • FIG. 2 is a schematic structural diagram of another embodiment of an OLED device according to the present application.
  • the OLED device 200 includes: a substrate 1, an anode 2, a hole injection layer 3, a hole transport layer 4, and a light emitting layer. Layer 5, electron transport layer 6, electron injection layer 10, and cathode 7.
  • the electron injecting layer 10 is formed on the electron transporting layer 6.
  • the electron injecting layer 10 is any of the above electron injecting layers. For details of the related content, refer to the above section, which is not described herein.
  • the substrate 1 is a glass substrate or a flexible substrate having a high visible light transmittance.
  • the anode 2 is formed on the substrate 1; wherein the material of the anode is a transparent conductive metal oxide material, such as Indium Tin Oxide (ITO), Indium Zinc Oxide (IZO), or the like, or a high work function. Metal materials such as Au, Pt, Ag or alloys of these metals. These anode materials may be used singly or in combination of two or more. Wherein, the film thickness of the anode is between 20 nm and 200 nm.
  • the hole injection layer 3 is formed on the anode 2, and the hole injection layer 3 is for assisting injection of holes from the anode 2 to the hole transport layer 4.
  • the material of the hole injection layer 3 may be an organic small molecule hole injection material, such as : HATCN, namely Dipyrazino [2,3-f: 2', 3'-h] quinoxaline-2, 3, 6, 7, 10, 11-hexacarbonitrile, etc.; the material of the hole injection layer 3 may also be a polymer empty
  • the hole injecting material such as PEDOT:PSS, or the like, or the material of the hole injecting layer 3 may also be a metal oxide hole injecting material such as MoO3 or the like.
  • the hole injection layer 3 is prepared by a vacuum deposition film formation method or a wet film formation method such as an inkjet printing method, nozzle printing, or the like.
  • the film thickness of the hole injection layer 3 is between 1 nm and 100 nm.
  • the hole transport layer 4 is formed on the hole injection layer 3; the hole transport layer 4 serves to transport holes from the hole injection layer 3 into the light-emitting layer 5, and the material of the hole transport layer 4 may be an organic small molecule A hole transporting material, such as NPB, ie N, N'-Bis-(1-naphthalenyl)-N, N'-bis-phenyl-(1,1'-biphenyl)-4,4'-diamine; or TAPC, ie 4,4'-yclohexylidenebis[N,N-bis(p-tolyl)aniline], etc., the material of the hole transport layer 4 may also be a polymer hole transport material, such as Poly-TPD, ie Poly[bis(4- Phenyl) (4-butylphenyl)amine].
  • NPB ie N, N'-Bis-(1-naphthalenyl)-N, N'-bis-phenyl-(1,1'-biphen
  • the hole transport layer 4 is prepared by a vacuum evaporation film formation method or a wet film formation method such as an inkjet printing method, nozzle printing, or the like.
  • the film thickness of the hole transport layer 4 is between 10 nm and 200 nm.
  • the light-emitting layer 5 is formed on the hole transport layer 4; the light-emitting layer 5 is used for composite light emission of electrons and holes in the light-emitting layer 5.
  • the material of the light-emitting layer 5 may be an organic small molecule fluorescent material or a polymer fluorescent material, or may be a small molecule phosphorescent material or a polymer phosphorescent material.
  • the luminescent layer 5 may be formed in a host-guest doped form or in an undoped form.
  • the light-emitting layer 5 is prepared by a vacuum deposition film formation method or a wet film formation method such as an inkjet printing method, nozzle printing, or the like.
  • the film thickness of the light-emitting layer 5 is between 5 nm and 50 nm.
  • An electron transport layer 6 is formed on the light-emitting layer 5; the electron transport layer is an organic electron transport material, and the organic electron transport material may be a metal complex material such as Alq3 (ie, tris(8-quinolinolato)aluminum); or It is an imidazole electron transporting material such as TPBi (i.e., 1,3,5-Tris(1-phenyl-1H-benzimidazol-2-yl)benzene). It is prepared by a wet film formation method and has a film thickness of between 10 nm and 100 nm.
  • the cathode 7 is formed on the electron injection layer 10; the material of the cathode 7 is a low work function metal material such as Li, Mg, Ca, Sr, La, Ce, Eu, Yb, Al, Cs, Rb or an alloy of these metals, These cathode materials may be used singly or in combination of two or more.
  • the cathode 7 is prepared by a vacuum evaporation film formation method, and the cathode 7 has a film thickness of between 10 nm and 1000 nm.
  • the present application also provides a method for preparing an OLED device. It should be noted that the preparation method of the present embodiment can be used to prepare the OLED device described above. For details of the related content, please refer to the above OLED device part, and no further description is provided herein. .
  • the method includes:
  • A providing a substrate
  • the material of the hole injection layer, the material of the hole transport layer, the material of the light-emitting layer, and the material of the electron transport layer are sequentially deposited on the anode by vacuum evaporation to form sequentially.
  • a cathode is formed on the electron injecting layer by vacuum evaporation to prepare an OLED device.
  • the electron injecting layer is tetraoctyl ammonium-encapsulated silicotungstic acid; the molecular formula of tetraoctyl ammonium-encapsulated silicotungstic acid is [(C 8 H 17 ) 4 N] 4 [SiW 12 O 40 ];
  • the film thickness is between 0.5 nm and 10 nm; the material of the anode is at least one of a transparent conductive metal oxide material and a high work function metal material; the film thickness of the anode is between 20 nm and 200 nm; the material of the hole injection layer
  • the organic small molecule hole injecting material, the polymer hole injecting material, or the metal oxide hole injecting material; the hole injecting layer is prepared by a vacuum evaporation film forming method or a wet film forming method; the hole injecting layer
  • the film thickness is between 1 nm and 100 nm; the material of the hole transport layer is an organic small molecule hole transport material or a poly
  • the film thickness of the hole injection layer is between 10 nm and 200 nm; the material of the light-emitting layer is an organic small molecule fluorescent material, a polymer fluorescent material, a small molecule phosphorescent material or a polymer phosphorescent material; and the light-emitting layer is vacuum-deposited.
  • the film thickness of the light-emitting layer is between 5 nm and 50 nm; the material of the electron transport layer is an organic electron transport material or an imidazole electron transport material; the electron transport layer is prepared by a wet film formation method; the film of the electron transport layer The thickness is between 10 nm and 100 nm; the material of the cathode is a metal material with a low work function; the cathode is prepared by a vacuum evaporation film forming method; and the film thickness of the cathode is between 10 nm and 1000 nm.
  • FIG. 3 is a schematic structural diagram of a specific device of the OLED device of the present application.
  • the device 300 uses a glass substrate 11 as a substrate, and a 70 nm ITO transparent conductive film 12 (anode) is deposited on the glass substrate 11 by magnetron sputtering, followed by a multi-source organic molecular vapor deposition system.
  • MoO 3 layer 13 (3 nm, hole injection layer), NPB layer 14 (40 nm, hole transport layer), Alq 3 layer 15 (20 nm, light-emitting layer), TPBi layer 16 (40 nm) were sequentially deposited by vacuum evaporation. , electronic transport layer).
  • tetraoctyl ammonium-embedded silicotungstic acid is dissolved in a methanol solution, and a tetraoctyl ammonium-encapsulated silicotungstic acid solution is deposited on the TPBi layer 16 by spin coating in a nitrogen atmosphere, and after drying, 10 nm is obtained.
  • Tetra-octyl ammonium-encapsulated silicotungstic acid film 17 (electron injection layer).
  • a 200 nm thick Al layer 18 (cathode) was grown on the tetraoctyl ammonium-encapsulated silicotungstic acid film 17 by vacuum evaporation to prepare an OLED device.
  • Table 1 shows the abbreviations and Chinese names used in the examples, and the preparation methods.
  • FIG. 4 shows the molecular structural formula of the organic material in the OLED device of the present embodiment.
  • Figure 5 shows the electroluminescence spectrum of the OLED device of the present embodiment, the peak wavelength of which is located at 520 nm.
  • FIG. 6 is a voltage-luminance curve of the OLED device of the present embodiment. As can be seen from the figure, the maximum brightness of the OLED device of the embodiment can reach 37300 cd/m 2 . 7 is a current efficiency curve of the OLED device of the present embodiment. As can be seen from the figure, the maximum current efficiency of the OLED device of the present embodiment reaches 4.3 cd/A.
  • the OLED device provided by the embodiments of the present application includes an electron injection layer which is a surfactant-embedded polyacid complex.
  • Surfactant-embedded polyacid complexes are a class of materials with excellent optoelectronic properties, which have a tunable work function and are suitable for use as electrode modification layers; and such materials are low cost, green, environmentally friendly, and highly transparent. Light, wet process, no return processing; in this way, the internal electron injection of the device can be more effective, the device luminous efficiency is higher, and the manufacturing process is simple, the stability is high, and the film forming quality is good.

Abstract

提供了一种OLED器件及制备方法。其中OLED器件包括:电子注入层(10),电子注入层(10)为表面活性剂包埋的多酸复合物。能够使器件内部电子注入更为有效,器件发光效率更高,且制作工艺较简单、稳定性高、成膜质量好。

Description

一种OLED器件及制备方法 【技术领域】
本申请涉及电致发光技术领域,特别是涉及一种OLED器件及制备方法。
【背景技术】
有机电致发光器件(OLED)因其具有制作工艺简单,取材广泛,结构可控,并且超薄、可卷曲等诸多优点,在显示和照明领域显示出极大的应用前景。OLED显示器是一种极具发展前景的平板显示技术,它具有自发光、结构简单、超轻薄、响应速度快、宽视角、低功耗及可实现柔性显示等特性,被誉为“梦幻显示器”。
值得注意的是,虽然OLED已经实现了商业生产,但其器件发光效率还有较大的提升空间。在现有技术中,OLED的电子注入层(阴极修饰层)多为金属氧化物和高分子材料。本申请的发明人在长期的研发过程中发现,上述技术电子注入能力不够好,且制备成本较高,器件发光效率不高。
【发明内容】
本申请主要解决的技术问题是提供一种OLED器件及制备方法,能够使器件内部电子注入更为有效,器件发光效率更高,且制作工艺较简单、稳定性高、成膜质量好。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种OLED器件,所述器件包括:电子注入层,所述电子注入层为表面活性剂包埋的多酸复合物;其中,所述电子注入层为四辛基铵包埋硅钨酸;
其中,所述器件还包括:
基板;
阳极,形成在所述基板上;
空穴注入层,形成在所述阳极上;
空穴传输层,形成在所述空穴注入层上;
发光层,形成在所述空穴传输层上;
电子传输层,形成在所述发光层上;
阴极,形成在所述电子注入层上;
其中,所述电子注入层形成在所述电子传输层上。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种OLED器件,所述器件包括:电子注入层,所述电子注入层为表面活性剂包埋的多酸复合物。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种OLED器件的制备方法,所述方法包括:提供基板;利用磁控溅射的方式在所述基板上沉积一层阳极的材料,以形成所述阳极;采用多源有机分子气相沉积系统,利用真空蒸镀的方式在所述阳极上依次沉积空穴注入层的材料、空穴传输层的材料、发光层的材料、电子传输层的材料,以依次形成所述空穴注入层、所述空穴传输层、所述发光层、所述电子传输层;在惰性气体环境中以材料旋涂的方式将表面活性剂包埋的多酸复合物溶液沉积在所述电子传输层上,以形成电子注入层;采用真空蒸镀的方式在所述电子注入层上形成阴极,进而制备得到所述OLED器件。
本申请的有益效果是:区别于现有技术的情况,本申请提供的OLED器件包括:电子注入层,所述电子注入层为表面活性剂包埋的多酸复合物。由于表面活性剂包埋的多酸复合物是一类具有卓越光电性能的材料,其具有可调控的功函数,适合用作电极修饰层;且这类材料低成本、绿色、环境友好、高透光性、可湿法加工、不需要退货处理;通过这种方式,能够使器件内部电子注入更为有效,器件发光效率更高,且制作工艺较简单、稳定性高、成膜质量好。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是本申请OLED器件一实施方式的结构示意图;
图2是本申请OLED器件另一实施方式的结构示意图;
图3是本申请OLED器件一具体实施方式的结构示意图;
图4是图3的OLED器件中有机材料的分子结构式;
图5是图3的OLED器件的电致发光光谱示意图;
图6是图3的OLED器件的电压-亮度曲线;
图7是图3的OLED器件的电流效率曲线。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性的劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参阅图1,图1是本申请OLED器件一实施方式的结构示意图,该器件100包括:电子注入层10。其中,电子注入层10为表面活性剂包埋的多酸复合物。
电子注入层(Electron Injection Layer,EIL),可以提高载流子注入能力,可以进一步改善器件性能,通常在阴极层与电子传输层(ETL)之间引入。
表面活性剂包埋的多酸复合物是一类具有卓越光电性能的材料,其具有可调控的功函数,十分适合用作电极修饰层;且这类材料低成本(低于1美元每克)、绿色、环境友好、高透光性(大于90%的可见光透过率)可湿法加工、不需要退货处理;非常适合低成本、大面积及柔性基底器件的工业化生产。
例如:选取溴代十六烷吡啶、十六烷基三甲基溴化铵及四丁基硝酸铵等阳离子型表面活性剂通过静电作用包埋磷钨酸和硅钨酸制备表面活性剂包埋的多酸复合物;表面活性剂包埋杂多酸复合物;表面活性剂包埋的稀土杂多酸复合材料;等等。
本申请实施方式提供的OLED器件包括电子注入层,所述电子注入层为表面活性剂包埋的多酸复合物。由于表面活性剂包埋的多酸复合物是一类具有卓越光电性能的材料,其具有可调控的功函数,适合用作电极修饰层;且这类材料低成本、绿色、环境友好、高透光性、可湿法加工、不需要退货处理;通过这种方式,能够使器件内部电子注入更为有效,器件发光效率更高,且制作工艺较简单、稳定性高、成膜质量好。
在一实施方式中,电子注入层为四辛基铵包埋硅钨酸。其中,表面活性剂包括但不限于:四辛基溴化铵,四辛基氯化铵,等等。进一步地,四辛基铵包埋硅钨酸的分子式为[(C 8H 17) 4N] 4[SiW 12O 40]。其中,该电子注入层可以通过湿法成膜法制备得到的,该方法制作工艺较简单、稳定性高、成膜质量好。例如:喷墨打印法(Ink-jet Printing,IJP),喷嘴打印(Nozzle Printing),等等制备而成,电子注入层的膜厚可以在0.5nm到10nm之间。
参见图2,图2是本申请OLED器件另一实施方式的结构示意图,在本实施方式中,该OLED器件200包括:基板1、阳极2、空穴注入层3、空穴传输层4、发光层5、电子传输层6、电子注入层10以及阴极7。其中,电子注入层10形成在电子传输层6上,电子注入层10为上述的任一电子注入层,相关内容的详细说明请参见上述部分,在此不再赘叙。
基板1为可见光透过率高的玻璃基板或者柔性基板。
阳极2形成在基板1上;其中,阳极的材料为透明导电金属氧化物材料,如氧化铟锡(Indium Tin Oxide,ITO),氧化铟锌(Indium Zinc Oxide,IZO)等,或者,高功函数的金属材料,如Au,Pt,Ag或者这些金属的合金。这些阳极材料可以单独使用,也可两种或者更多组合使用。其中,阳极的膜厚在20nm到200nm之间。
空穴注入层3形成在阳极2上,空穴注入层3用于帮助空穴从阳极2注入到空穴传输层4,空穴注入层3的材料可以是有机小分子空穴注入材料,如:HATCN,即Dipyrazino[2,3-f:2′,3′-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile等;空穴注入层3的材料也可以是聚合物空穴注入材料,如PEDOT:PSS等,或者,空穴注入层3的材料也可以是金属氧化物空穴注入材料,如MoO3等。在一实施方式中,空穴注入层3通过采用真空蒸镀成膜法或者湿法成膜法制备而成,如喷墨打印法,喷嘴打印,等。空穴注入层3的膜厚在1nm到100nm之间。
空穴传输层4形成在空穴注入层3上;空穴传输层4用于将空穴从空穴注入层3传输到发光层5中,空穴传输层4的材料可以是有机小分子空穴传输材料,如NPB,即N,N‘-Bis-(1-naphthalenyl)-N,N’-bis-phenyl-(1,1‘-biphenyl)-4,4’-diamine;或TAPC,即4,4′-yclohexylidenebis[N,N-bis(p-tolyl)aniline]等,空穴传输层4的材料也可以是聚合物空穴传输材料,如Poly-TPD,即Poly[bis(4-phenyl)(4-butylphenyl)amine]等。在一实施方式中,空穴传输层4采用真空蒸镀成膜法或者湿法成膜法制备而成,如喷墨打印法,喷嘴打印,等。空穴传输层4的膜厚在10nm到200nm之间。
发光层5形成在空穴传输层4上;发光层5用于电子和空穴在发光层5中复合发光。发光层5的材料可以是有机小分子荧光材料或者聚合物荧光材料,也可以是小分子磷光材料或者聚合物磷光材料。发光层5可以是主客体掺杂形式构成或者是非掺杂形式构成。在一实施方式中,发光层5采用真空蒸镀成膜 法或者湿法成膜法制备而成,如喷墨打印法,喷嘴打印,等。发光层5的膜厚在5nm到50nm之间。
电子传输层6形成在发光层5上;所述电子传输层为有机电子传输材料,所述有机电子传输材料可以是金属配合物材料,例如Alq3(即tris(8-quinolinolato)aluminum)等;或者是咪唑类电子传输材料,如TPBi(即1,3,5-Tris(1-phenyl-1H-benzimidazol-2-yl)benzene)等。采用湿法成膜法制备,膜厚在10nm到100nm之间。
阴极7形成在电子注入层10上;阴极7的材料为低功函数的金属材料,如Li,Mg,Ca,Sr,La,Ce,Eu,Yb,Al,Cs,Rb或者这些金属的合金,这些阴极材料可以单独使用,也可两种或者更多组合使用。在一实施方式中,阴极7通过真空蒸镀成膜法制备得到的,阴极7的膜厚在10nm到1000nm之间。
本申请还提供一种OLED器件的制备方法,需要说明的是,本实施方式的制备方法可以用于制备上述的OLED器件,相关内容的详细说明请参见上述OLED器件部分,在此不再赘叙。
该方法包括:
A、提供基板;
B、利用磁控溅射的方式在基板上沉积一层阳极的材料,以形成阳极;
C、采用多源有机分子气相沉积系统,利用真空蒸镀的方式在阳极上依次沉积空穴注入层的材料、空穴传输层的材料、发光层的材料、电子传输层的材料,以依次形成空穴注入层、空穴传输层、发光层、电子传输层;
D、在惰性气体环境中以材料旋涂的方式将表面活性剂包埋的多酸复合物溶液沉积在电子传输层上,以形成电子注入层;
E、采用真空蒸镀的方式在电子注入层上形成阴极,进而制备得到OLED器件。
其中,电子注入层为四辛基铵包埋硅钨酸;四辛基铵包埋硅钨酸的分子式为[(C 8H 17) 4N] 4[SiW 12O 40];电子注入层的膜厚在0.5nm到10nm之间;阳极的材料为透明导电金属氧化物材料、高功函数的金属材料中的至少一种;阳极的膜厚在20nm到200nm之间;空穴注入层的材料为有机小分子空穴注入材料、聚合物空穴注入材料、或金属氧化物空穴注入材料;空穴注入层通过真空蒸镀成膜法或者湿法成膜法制备得到的;空穴注入层的膜厚在1nm到100nm之间;空穴传输层的材料为有机小分子空穴传输材料、或聚合物空穴传输材料;空穴传 输层通过真空蒸镀成膜法或者湿法成膜法制备得到的;空穴注入层的膜厚在10nm到200nm之间;发光层的材料为有机小分子荧光材料、聚合物荧光材料、小分子磷光材料或者聚合物磷光材料;发光层通过真空蒸镀成膜法或者湿法成膜法制备得到的;发光层的膜厚在5nm到50nm之间;电子传输层的材料为有机电子传输材料或者咪唑类电子传输材料;电子传输层通过湿法成膜法制备得到的;电子传输层的膜厚在10nm到100nm之间;阴极的材料为低功函数的金属材料;阴极通过真空蒸镀成膜法制备得到的;阴极的膜厚在10nm到1000nm之间。
下面以一个具体的实施例来说明本申请上述的OLED器件。
参见图3,图3是本申请OLED器件一具体器件的结构示意图。在本实施例中,该器件300选用玻璃基板11作为基板,利用磁控溅射的方式在玻璃基板11上沉积70nm的ITO透明导电薄膜12(阳极),接下来采用多源有机分子气相沉积系统,利用真空蒸镀的方式依次沉积MoO 3层13(3nm,空穴注入层)、NPB层14(40nm,空穴传输层)、Alq 3层15(20nm,发光层)、TPBi层16(40nm,电子传输层)。其次将四辛基铵包埋硅钨酸溶于甲醇溶液,在氮气环境中采用材料旋涂的方式将四辛基铵包埋硅钨酸溶液沉积在TPBi层16上,待干燥之后得到10nm的四辛基铵包埋硅钨酸薄膜17(电子注入层)。之后再采用真空蒸镀的方式在四辛基铵包埋硅钨酸薄膜17上生长200nm厚的Al层18(阴极),从而制备得到OLED器件。参见表1,表1所示为本实施例中所用材料简称和中文名称,以及制备方法。
表1本实施例中所用材料简称和中文名称
Figure PCTCN2017117360-appb-000001
Figure PCTCN2017117360-appb-000002
图4所示为本实施例OLED器件中有机材料的分子结构式。图5所示为本实施例OLED器件的电致发光光谱,其峰值波长位于520nm处。图6为本实施例OLED器件的电压-亮度曲线,从图中可以得知,本实施例OLED器件的最大亮度可以达到37300cd/m 2。图7为本实施例OLED器件的电流效率曲线,从图中可以得知,本实施例OLED器件的最大电流效率达到4.3cd/A。
本申请实施方式提供的OLED器件包括电子注入层,所述电子注入层为表面活性剂包埋的多酸复合物。由于表面活性剂包埋的多酸复合物是一类具有卓越光电性能的材料,其具有可调控的功函数,适合用作电极修饰层;且这类材料低成本、绿色、环境友好、高透光性、可湿法加工、不需要退货处理;通过这种方式,能够使器件内部电子注入更为有效,器件发光效率更高,且制作工艺较简单、稳定性高、成膜质量好。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (16)

  1. 一种OLED器件,其中,所述器件包括:
    电子注入层,所述电子注入层为表面活性剂包埋的多酸复合物;其中,所述电子注入层为四辛基铵包埋硅钨酸;
    其中,所述器件还包括:
    基板;
    阳极,形成在所述基板上;
    空穴注入层,形成在所述阳极上;
    空穴传输层,形成在所述空穴注入层上;
    发光层,形成在所述空穴传输层上;
    电子传输层,形成在所述发光层上;
    阴极,形成在所述电子注入层上;
    其中,所述电子注入层形成在所述电子传输层上。
  2. 根据权利要求1所述的器件,其中,所述四辛基铵包埋硅钨酸的分子式为[(C 8H 17) 4N] 4[SiW 12O 40]。
  3. 根据权利要求1所述的器件,其中,所述电子注入层是通过湿法成膜法制备得到的。
  4. 根据权利要求1所述的器件,其中,所述电子注入层的膜厚在0.5nm到10nm之间。
  5. 根据权利要求1所述的器件,其中,所述阳极的材料为透明导电金属氧化物材料、高功函数的金属材料中的至少一种;所述阳极的膜厚在20nm到200nm之间;所述空穴注入层的材料为有机小分子空穴注入材料、聚合物空穴注入材料、或金属氧化物空穴注入材料;所述空穴注入层通过真空蒸镀成膜法或者湿法成膜法制备得到的;所述空穴注入层的膜厚在1nm到100nm之间;所述空穴传输层的材料为有机小分子空穴传输材料、或聚合物空穴传输材料;所述空穴传输层通过真空蒸镀成膜法或者湿法成膜法制备得到的;所述空穴注入层的膜厚在10nm到200nm之间。
  6. 根据权利要求1所述的器件,其中,所述发光层的材料为有机小分子荧光材料、聚合物荧光材料、小分子磷光材料或者聚合物磷光材料;所述发光层通过真空蒸镀成膜法或者湿法成膜法制备得到的;所述发光层的膜厚在5nm到 50nm之间;所述电子传输层的材料为有机电子传输材料或者咪唑类电子传输材料;所述电子传输层通过湿法成膜法制备得到的;所述电子传输层的膜厚在10nm到100nm之间;所述阴极的材料为低功函数的金属材料;所述阴极通过真空蒸镀成膜法制备得到的;所述阴极的膜厚在10nm到1000nm之间。
  7. 一种OLED器件,其中,所述器件包括:
    电子注入层,所述电子注入层为表面活性剂包埋的多酸复合物。
  8. 根据权利要求7所述的器件,其中,所述电子注入层为四辛基铵包埋硅钨酸。
  9. 根据权利要求8所述的器件,其中,所述四辛基铵包埋硅钨酸的分子式为[(C 8H 17) 4N] 4[SiW 12O 40]。
  10. 根据权利要求7所述的器件,其中,所述电子注入层是通过湿法成膜法制备得到的。
  11. 根据权利要求7所述的器件,其中,所述电子注入层的膜厚在0.5nm到10nm之间。
  12. 根据权利要求7所述的器件,其中,所述器件还包括:
    基板;
    阳极,形成在所述基板上;
    空穴注入层,形成在所述阳极上;
    空穴传输层,形成在所述空穴注入层上;
    发光层,形成在所述空穴传输层上;
    电子传输层,形成在所述发光层上;
    阴极,形成在所述电子注入层上;
    其中,所述电子注入层形成在所述电子传输层上。
  13. 根据权利要求12所述的器件,其中,所述阳极的材料为透明导电金属氧化物材料、高功函数的金属材料中的至少一种;所述阳极的膜厚在20nm到200nm之间;所述空穴注入层的材料为有机小分子空穴注入材料、聚合物空穴注入材料、或金属氧化物空穴注入材料;所述空穴注入层通过真空蒸镀成膜法或者湿法成膜法制备得到的;所述空穴注入层的膜厚在1nm到100nm之间;所述空穴传输层的材料为有机小分子空穴传输材料、或聚合物空穴传输材料;所述空穴传输层通过真空蒸镀成膜法或者湿法成膜法制备得到的;所述空穴注入层的膜厚在10nm到200nm之间。
  14. 根据权利要求12所述的器件,其中,所述发光层的材料为有机小分子荧光材料、聚合物荧光材料、小分子磷光材料或者聚合物磷光材料;所述发光层通过真空蒸镀成膜法或者湿法成膜法制备得到的;所述发光层的膜厚在5nm到50nm之间;所述电子传输层的材料为有机电子传输材料或者咪唑类电子传输材料;所述电子传输层通过湿法成膜法制备得到的;所述电子传输层的膜厚在10nm到100nm之间;所述阴极的材料为低功函数的金属材料;所述阴极通过真空蒸镀成膜法制备得到的;所述阴极的膜厚在10nm到1000nm之间。
  15. 一种OLED器件的制备方法,其中,所述方法包括:
    提供基板;
    利用磁控溅射的方式在所述基板上沉积一层阳极的材料,以形成所述阳极;
    采用多源有机分子气相沉积系统,利用真空蒸镀的方式在所述阳极上依次沉积空穴注入层的材料、空穴传输层的材料、发光层的材料、电子传输层的材料,以依次形成所述空穴注入层、所述空穴传输层、所述发光层、所述电子传输层;
    在惰性气体环境中以材料旋涂的方式将表面活性剂包埋的多酸复合物溶液沉积在所述电子传输层上,以形成电子注入层;
    采用真空蒸镀的方式在所述电子注入层上形成阴极,进而制备得到所述OLED器件。
  16. 根据权利要求15所述的方法,其中,所述电子注入层为四辛基铵包埋硅钨酸;所述四辛基铵包埋硅钨酸的分子式为[(C 8H 17) 4N] 4[SiW 12O 40];所述电子注入层的膜厚在0.5nm到10nm之间;所述阳极的材料为透明导电金属氧化物材料、高功函数的金属材料中的至少一种;所述阳极的膜厚在20nm到200nm之间;所述空穴注入层的材料为有机小分子空穴注入材料、聚合物空穴注入材料、或金属氧化物空穴注入材料;所述空穴注入层通过真空蒸镀成膜法或者湿法成膜法制备得到的;所述空穴注入层的膜厚在1nm到100nm之间;所述空穴传输层的材料为有机小分子空穴传输材料、或聚合物空穴传输材料;所述空穴传输层通过真空蒸镀成膜法或者湿法成膜法制备得到的;所述空穴注入层的膜厚在10nm到200nm之间;所述发光层的材料为有机小分子荧光材料、聚合物荧光材料、小分子磷光材料或者聚合物磷光材料;所述发光层通过真空蒸镀成膜法或者湿法成膜法制备得到的;所述发光层的膜厚在5nm到50nm之间;所述电子传输层的材料为有机电子传输材料或者咪唑类电子传输材料;所述电子传输层 通过湿法成膜法制备得到的;所述电子传输层的膜厚在10nm到100nm之间;所述阴极的材料为低功函数的金属材料;所述阴极通过真空蒸镀成膜法制备得到的;所述阴极的膜厚在10nm到1000nm之间。
PCT/CN2017/117360 2017-11-20 2017-12-20 一种oled器件及制备方法 WO2019095501A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/748,586 US10777765B2 (en) 2017-11-20 2017-12-20 OLED device and method for fabricating thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711177820.8A CN107968153B (zh) 2017-11-20 2017-11-20 一种oled器件及制备方法
CN201711177820.8 2017-11-20

Publications (1)

Publication Number Publication Date
WO2019095501A1 true WO2019095501A1 (zh) 2019-05-23

Family

ID=61999875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117360 WO2019095501A1 (zh) 2017-11-20 2017-12-20 一种oled器件及制备方法

Country Status (3)

Country Link
US (1) US10777765B2 (zh)
CN (1) CN107968153B (zh)
WO (1) WO2019095501A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI740036B (zh) * 2018-05-03 2021-09-21 國立陽明交通大學 有機發光裝置及其製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1418045A (zh) * 2001-08-01 2003-05-14 三星Sdi株式会社 有机电致发光显示器及其制造方法
CN102276831A (zh) * 2011-07-08 2011-12-14 东北师范大学 一种聚苯胺纳米带状复合物及其制备方法
CN102460765A (zh) * 2009-06-19 2012-05-16 大日本印刷株式会社 有机电子器件及其制造方法
CN105390293A (zh) * 2015-12-15 2016-03-09 哈尔滨工业大学 一种基于杂多酸SiW11Ni修饰TiO2的染料敏化太阳能电池光阳极的制备方法
CN105623673A (zh) * 2016-02-26 2016-06-01 山西大学 一种含多酸的手性液晶复合物及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4343653B2 (ja) * 2003-11-10 2009-10-14 キヤノン株式会社 金属ホウ素酸塩あるいは金属有機ホウ素化物を有する有機発光素子
CN102630670B (zh) * 2012-03-30 2014-04-02 山东大学 一种抗菌抗病毒的生物兼容薄膜的制备方法、产品及其应用
CN102935381A (zh) * 2012-11-19 2013-02-20 北京化工大学 一种两亲型稀土多酸催化材料、制备方法及应用
CN104183774A (zh) * 2013-05-23 2014-12-03 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
US9797573B2 (en) * 2013-08-09 2017-10-24 Performance Indicator, Llc Luminous systems
CN104001544A (zh) * 2014-06-13 2014-08-27 哈尔滨工业大学 一种催化氧化脱硫催化剂及其制备方法
CN104689850A (zh) * 2015-02-08 2015-06-10 北京化工大学 一种两亲性含钒多酸催化剂及其氧化催化脱硫的应用
EP3313150A4 (en) * 2015-06-22 2019-03-06 Sumitomo Chemical Company Limited METHOD FOR PRODUCING AN ORGANIC ELECTRONIC ELEMENT AND METHOD FOR DRYING A SUBSTRATE
JP6796065B2 (ja) * 2015-07-15 2020-12-02 コニカミノルタ株式会社 有機薄膜積層体及び有機エレクトロルミネッセンス素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1418045A (zh) * 2001-08-01 2003-05-14 三星Sdi株式会社 有机电致发光显示器及其制造方法
CN102460765A (zh) * 2009-06-19 2012-05-16 大日本印刷株式会社 有机电子器件及其制造方法
CN102276831A (zh) * 2011-07-08 2011-12-14 东北师范大学 一种聚苯胺纳米带状复合物及其制备方法
CN105390293A (zh) * 2015-12-15 2016-03-09 哈尔滨工业大学 一种基于杂多酸SiW11Ni修饰TiO2的染料敏化太阳能电池光阳极的制备方法
CN105623673A (zh) * 2016-02-26 2016-06-01 山西大学 一种含多酸的手性液晶复合物及其制备方法

Also Published As

Publication number Publication date
US20200091455A1 (en) 2020-03-19
US10777765B2 (en) 2020-09-15
CN107968153A (zh) 2018-04-27
CN107968153B (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
EP3370273B1 (en) Organic electrophosphorescence devices
CN109378392B (zh) 一种有机电致发光器件及显示装置
US10147898B2 (en) Organic light-emitting device and display device
JP2004288619A (ja) 高効率の有機電界発光素子
CN109585668B (zh) Oled显示器件、显示面板、oled显示器件的制备方法
WO2022062700A1 (zh) 有机电致发光器件、显示面板及显示装置
US10256417B2 (en) Organic electroluminescent and preparation method thereof
CN102157703B (zh) 一种提高亮度的oled器件
JP5094781B2 (ja) 有機el装置及びその製造方法
CN112117388B (zh) 有机电致发光器件、显示面板及显示装置
KR101973207B1 (ko) 금속 산화물이 함유된 양극 및 상기 양극을 포함하는 유기발광소자
US20110031476A1 (en) Organic electroluminescence element
WO2022062702A1 (zh) 有机电致发光器件、显示面板及显示装置
WO2021213144A1 (zh) 有机发光二极管器件及其制作方法、和显示面板
CN111740020B (zh) 一种高效长寿命的蓝光器件
CN111384257A (zh) 量子点电致发光器件及显示器
CN105870350B (zh) 有机发光器件
WO2019095501A1 (zh) 一种oled器件及制备方法
WO2022255178A1 (ja) 電荷発生構造及び有機el素子
CN112467058B (zh) 一种三元激基复合物复合材料主体及其oled器件制备
TWI406441B (zh) 白光有機發光二極體構造
US11245084B2 (en) Electroluminescent device and method of manufacturing same, and electronic device
CN111384252A (zh) 一种oled器件结构
TWI472057B (zh) 有機發光二極體製造方法及其構造
CN115835673A (zh) 一种白光有机电致发光器件及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931914

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17931914

Country of ref document: EP

Kind code of ref document: A1