WO2019093862A1 - 겔 폴리머 전해질용 조성물, 이로부터 제조된 겔 폴리머 전해질 및 이를 포함하는 리튬 이차 전지 - Google Patents

겔 폴리머 전해질용 조성물, 이로부터 제조된 겔 폴리머 전해질 및 이를 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
WO2019093862A1
WO2019093862A1 PCT/KR2018/013817 KR2018013817W WO2019093862A1 WO 2019093862 A1 WO2019093862 A1 WO 2019093862A1 KR 2018013817 W KR2018013817 W KR 2018013817W WO 2019093862 A1 WO2019093862 A1 WO 2019093862A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
linear
carbon atoms
group
substituted
Prior art date
Application number
PCT/KR2018/013817
Other languages
English (en)
French (fr)
Inventor
오정우
안경호
이철행
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/607,206 priority Critical patent/US11411248B2/en
Priority to CN201880029401.6A priority patent/CN110603681B/zh
Priority to EP18876065.6A priority patent/EP3605706A4/en
Publication of WO2019093862A1 publication Critical patent/WO2019093862A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a composition for a gel polymer electrolyte, a gel polymer electrolyte prepared therefrom, and a lithium secondary battery comprising the gel polymer electrolyte. More particularly, the present invention relates to a gel polymer electrolyte having improved stability of a lithium secondary battery by suppressing side reactions induced from anions of a lithium salt during charging Gel polymer electrolytes, gel polymer electrolytes prepared therefrom, and lithium secondary batteries.
  • the lithium secondary battery can be divided into a lithium ion battery using a liquid electrolyte and a lithium polymer battery using a polymer electrolyte according to an applied electrolyte.
  • the lithium secondary battery has a problem in that decomposition of a carbonate organic solvent and / or a side reaction between an organic solvent and an electrode occur during charging / discharging, gas is generated inside the battery, thereby expanding the thickness of the battery. Therefore, the performance and safety of the battery deteriorate.
  • the safety of a battery is improved in the order of liquid electrolyte ⁇ gel polymer electrolyte > solid polymer electrolyte, while battery performance is known to decrease.
  • solid polymer electrolyte is not yet commercialized due to inferior battery performance.
  • the gel polymer electrolyte is excellent in electrochemical stability, so that the thickness of the cell can be kept constant, and the contact between the electrode and the electrolyte is excellent due to the inherent adhesive force of the gel, so that the thin film battery can be manufactured.
  • the method further includes a non-aqueous organic solvent, it is unsatisfactory in terms of the thermal stability as well as the performance of the secondary battery.
  • a gel-forming composition prepared by mixing a polymerizable monomer and a polymerization initiator in a liquid electrolyte obtained by dissolving a salt in a non-aqueous organic solvent is injected into a battery containing an electrode assembly in which a positive electrode, a negative electrode and a separator are wound or laminated
  • gelation crosslinking
  • the method has a disadvantage in that safety is low during a heating process for wetting and gelation.
  • the salt may undergo a chemical reaction to generate an anion of the salt.
  • a chemical reaction to generate an anion of the salt.
  • the ionic conductivity is high and the side reaction does not occur well in the electrode.
  • the anion generated through the chemical reaction By-products such as HF may be generated. This may cause degradation of the electrolyte solvent or electrode side reaction, thereby continuously deteriorating the performance of the battery.
  • Patent Document 1 Korean Patent Laid-Open Publication No. 10-2010-0056581
  • an object of the present invention is to provide a composition for a gel polymer electrolyte in which the stability of a lithium secondary battery is improved by suppressing side reactions caused by anions of lithium salts during charging, a gel polymer electrolyte, .
  • the present invention provides an oligomer comprising: an oligomer represented by Formula 1; Anion stabilizing additives; A polymerization initiator; Lithium salts; And a non-aqueous solvent, wherein the anion stabilizing additive comprises at least one selected from the group consisting of a phosphite-based compound represented by the following formula (2) and a boron-based compound represented by the following formula (3) to provide.
  • Each of A and A ' is independently a unit containing a (meth) acrylate group
  • Each of C and C ' is independently a unit containing an oxyalkylene group
  • D is a unit containing a siloxane group
  • k is an integer of 1 to 100;
  • R 1 , R 2 and R 3 are each independently a substituted or unsubstituted linear or non-linear alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted linear or non-linear alkoxy group having 1 to 10 carbon atoms, A substituted or unsubstituted C6 to C20 aryl group substituted or unsubstituted with a substituted or unsubstituted C1 to C10 alkyl group, and a substituted or unsubstituted linear or non-linear alkylsilyl group having 1 to 10 carbon atoms. to be.
  • R 4 , R 5, and R 6 each independently represent a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, a substituted or unsubstituted linear or non-linear alkyl group having 1 to 10 carbon atoms, Linear or non-linear alkoxy groups having 1 to 10 carbon atoms.
  • R 1 , R 2, and R 3 in Formula 2 may be a fluorine-substituted linear or non-linear alkyl group having 1 to 10 carbon atoms.
  • R 4 , R 5 and R 6 in Formula 3 may be a fluorine-substituted aryl group having 6 to 20 carbon atoms.
  • the anion stabilizing additive may include a phosphite-based compound represented by the following formula (2-1).
  • the anion stabilizing additive may include a boron compound represented by the following formula (3-1).
  • the present invention provides a gel polymer electrolyte prepared using the gel polymer electrolyte composition according to the present invention as described above, and a lithium secondary battery comprising the gel polymer electrolyte.
  • the gel polymer electrolyte according to the present invention can be produced by using an additive capable of stabilizing anions generated from a lithium salt, decomposing the non-aqueous solvent by the anion, suppressing side reactions with the electrode, and improving the performance, stability, An improved battery can be realized.
  • Example 1 is a graph showing measured resistance values of a secondary battery according to Experimental Example 1 of the present invention.
  • FIG. 2 is a graph showing measured voltages of a secondary battery according to Experimental Example 1 of the present invention.
  • FIG 3 is a graph showing AC impedance of a secondary battery according to Experimental Example 2 of the present invention.
  • FIG. 4 is a graph showing the results of measurement of resistance change rate with time after storage at a high temperature of a secondary battery according to Experimental Example 3 of the present invention.
  • composition for a gel polymer electrolyte comprises an oligomer; Anion stabilizing additives; A polymerization initiator; Lithium salts; And non-aqueous solvents.
  • the oligomer includes a (meth) acrylate group, an amide group, an oxyalkylene group, and a siloxane group.
  • the gel polymer electrolyte used is generally weak in safety and mechanical properties as compared with the solid polymer electrolyte, and has a disadvantage that ion conductivity is lower than that of the liquid electrolyte. Recently, studies have been made to improve mechanical properties and ionic conductivity by using an oligomer copolymer.
  • the oligomer when used alone as an electrolyte, it is not easy to control physical properties, and it is difficult to form a uniform polymer in the battery, so that it may be difficult to apply the oligomer to a high capacity large battery.
  • the present invention aims to solve these problems by using an oligomer having a functional group capable of complementing electrochemical and mechanical properties.
  • the oligomer is represented by the following general formula (1).
  • D is a unit containing a siloxane group
  • k is an integer of 1 to 100.
  • k is preferably an integer of 1 to 50, more preferably an integer of 1 to 30.
  • the oligomer represented by Formula 1 has an appropriate weight average molecular weight (Mw).
  • the weight average molecular weight in the present specification may mean a value converted to standard polystyrene measured by GPC (Gel Permeation Chromatograph), and unless otherwise specified, the molecular weight may mean a weight average molecular weight.
  • the weight average molecular weight is measured using an Agilent 1200 series.
  • the column used herein may be a PL mixed B column of Agilent, and THF (TETRAHYDROFURAN) may be used as a solvent.
  • the weight average molecular weight (Mw) of the oligomer represented by the formula (1) can be controlled by the number of repeating units and is about 1,000 g / mol to 20,000 g / mol, specifically 1,000 g / mol to 15,000 g / Specifically from 1,000 g / mol to 10,000 g / mol.
  • Mw weight average molecular weight
  • the units A and A ' are units containing a (meth) acrylate group so that oligomers are combined in a three-dimensional structure to form a polymer network.
  • the units A and A ' may be derived from monomers comprising at least one monofunctional or multifunctional (meth) acrylate or (meth) acrylic acid in the molecular structure.
  • the units A and A ' may each independently include at least one unit selected from units represented by the following formulas (A-1) to (A-5).
  • the units B and B ' may each independently include a unit represented by the following formula (B-1).
  • R ' is a linear or non-linear alkylene group having 1 to 10 carbon atoms, a substituted or unsubstituted cycloalkylene group having 3 to 10 carbon atoms, a substituted or unsubstituted bicycloalkylene group having 6 to 20 carbon atoms, An unsubstituted aryl group, a unit represented by the following formula: R'-1 and a unit represented by the following formula: R'-2.
  • the R ' may include at least one or more units represented by the following formulas: R'-3 to R'-8.
  • the units C and C ' are each independently an oxyalkylene group-containing unit to increase dissociation of salts in the polymer network and increase affinity with a surface having a high polarity in a battery. More specifically, it is used to control the impregnation ability of the solvent, the electrode affinity and the ion transporting ability.
  • the units C and C ' may each independently include a unit represented by the following formula (C-1).
  • R " is a linear or non-linear alkylene group having 1 to 10 carbon atoms substituted or unsubstituted, and l is an integer of 1 to 30.
  • R may be -CH 2 CH 2 - or -CHCH 3 CH 2 -.
  • the unit D is for controlling the mechanical properties including the siloxane group and the affinity with the separator. Specifically, a structure for securing flexibility other than the solid structural region due to the amide bond in the polymer network can be formed, and the affinity with the polyolefin separator membrane fabric can be increased by utilizing the low polarity. In particular, when the affinity with the polyolefin-based separator membrane is improved, the effect of reducing the resistance and further improving the ionic conductivity can be realized at the same time.
  • the unit D may include a unit represented by the formula D-1.
  • R 7 and R 8 are linear or non-linear alkylene groups having 1 to 5 carbon atoms
  • R 9, R 10, R 11 and R 12 are each independently hydrogen, an alkyl group having 1 to 5 carbon atoms, An aryl group having 6 to 12 carbon atoms, and m is an integer of 1 to 500.
  • the above-mentioned m may more preferably be an integer of 10 to 500.
  • the polarity of the oligomer can be lowered, so that the wetting of the battery can be improved and the lithium dendrite (Li dendrite) is formed on the electrode by controlling the chemical reaction with the lithium metal So that the safety of the battery can be improved.
  • the unit D may be a unit represented by the following formula (D-2).
  • R 9, R 10, R 11 and R 12 are each independently hydrogen, an alkyl group having 1 to 5 carbon atoms or an aryl group having 6 to 12 carbon atoms, and m is an integer of 1 to 500.
  • the unit D-2 may be one of the units represented by the following formulas (D-3) and (D-4).
  • m is an integer of 1 to 500, respectively. And more preferably an integer of 10 to 500.
  • the oligomer may be at least one compound selected from the group consisting of the following formulas (1-1) to (1-5).
  • n, o and p are each independently an integer of 1 to 30, and q is an integer of 1 to 100.
  • q may preferably be an integer of 1 to 50, more preferably an integer of 1 to 30.
  • the oligomer may be contained in an amount of 0.5 to 20 parts by weight, preferably 1.0 to 20 parts by weight, more preferably 1.5 to 20 parts by weight based on 100 parts by weight of the composition for a gel polymer electrolyte.
  • the amount of the oligomer is less than 0.5 part by weight, a network reaction between oligomers for forming a gel polymer electrolyte is not formed.
  • the amount of the oligomer is more than 20 parts by weight, the viscosity of the gel polymer electrolyte exceeds a certain level, Impregnation, wetting degradation and electrochemical stability may be impaired.
  • the anion stabilizing additive includes at least one or more selected from the group consisting of a phosphite-based compound and a boron-based compound.
  • the gel polymer electrolyte composition contains a lithium salt and a non-aqueous solvent in addition to an oligomer.
  • the lithium salts fluoride-based lithium salts are generally used because of their high ionic conductivity.
  • the anions generated by the chemical reaction of the fluoride-based lithium salts react with a trace amount of water to produce by-products such as HF, and such by-products cause decomposition of the organic solvent and electrode side reactions, have.
  • the high temperature storability of the secondary battery may be deteriorated due to the negative ions and by-products.
  • PF 6 - which is an anion may lose electrons on the cathode side and PF 5 may be generated. At this time, the following chemical reactions can proceed in a cascade.
  • the decomposition of the organic solvent or the side reaction with the electrode may occur due to HF or other by-products generated, and the performance of the battery may be continuously deteriorated.
  • the anion or by-product formed from the lithium salt acts as a Lewis base
  • the phosphite-based compound or boron-based compound acts as Lewis acid. Accordingly, the anions are stabilized by the Lewis acid-base reaction, and the following chain reaction does not occur, thereby solving the above problems.
  • the anion stabilizing additive may include a phosphite-based compound represented by the following general formula (2).
  • R 1 , R 2 and R 3 are each independently a substituted or unsubstituted linear or non-linear alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted linear or non-linear alkoxy group having 1 to 10 carbon atoms, A substituted or unsubstituted C6 to C20 aryl group substituted or unsubstituted with a substituted or unsubstituted C1 to C10 alkyl group, and a substituted or unsubstituted linear or non-linear alkylsilyl group having 1 to 10 carbon atoms. to be.
  • R 1 , R 2 and R 3 may be a fluorine-substituted linear or non-linear alkyl group having 1 to 10 carbon atoms.
  • the anion stabilizing additive may include a phosphite-based compound represented by the following formula (2-1).
  • the anion stabilizing additive may include a boron-based compound represented by the following general formula (3).
  • R 4 , R 5, and R 6 each independently represent a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, a substituted or unsubstituted linear or non-linear alkyl group having 1 to 10 carbon atoms, Linear or non-linear alkoxy groups having 1 to 10 carbon atoms.
  • R 4 , R 5 and R 6 may be a fluorine-substituted aryl group having 6 to 20 carbon atoms.
  • the anion stabilizing additive may include a boron-based compound represented by the following Formula 3-1.
  • the anion stabilizing additive is contained in an amount of 0.1 to 20 parts by weight, preferably 0.5 to 20 parts by weight, more preferably 1.0 to 20 parts by weight based on 100 parts by weight of the composition for a gel polymer electrolyte .
  • the content of the anion stabilizing additive is within the above range, the anion stabilization reaction is effectively generated, and battery performance deterioration can be minimized.
  • the effect of stabilizing the anion is insignificant. If the content is too large, the dielectric constant is lowered and the dissolution of the lithium salt can be inhibited, which may cause an increase in resistance in the battery.
  • the polymerization initiator is an additive that enables the oligomer contained in the gel polymer electrolyte composition of the present invention to bind in a three-dimensional structure to form a polymer network to form a gel polymer electrolyte.
  • Non-limiting examples of the polymerization initiator include benzoyl peroxide, acetyl peroxide, dilauryl peroxide, di-tert-butyl peroxide, organic peroxides such as t-butyl peroxy-2-ethyl-hexanoate, cumyl hydroperoxide and hydrogen peroxide, and hydroperoxides such as hydroperoxide, Azobis (isobutyronitrile) and AMVN (2-cyanobutane), 2,2'-azobis (methylbutyronitrile), AIBN , 2'-azobisdimethyl-valeronitrile), and the like, but the present invention is not limited thereto.
  • the polymerization initiator may be decomposed by heat in a secondary cell at 30 ° C to 100 ° C or decomposed at room temperature (5 ° C to 30 ° C) to form radicals in a non-limiting example of the secondary cell, and oligomers are formed by free radical polymerization Can be reacted with the compound to form a gel polymer electrolyte.
  • the polymerization initiator may be used in an amount of 0.01 to 5 parts by weight, preferably 0.05 to 5 parts by weight, more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the oligomer.
  • gelation can be properly caused during the pouring of the composition for a gel polymer electrolyte into the battery, and the amount of the unreacted polymerization initiator which may adversely affect battery performance can be minimized.
  • a polymerization initiator is contained within the above range, gelation can be appropriately performed.
  • the lithium salt is used as an electrolyte salt in a lithium secondary battery and is used as an agent for transferring ions.
  • the lithium salt is selected from the group consisting of LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , CF 3 SO 3 Li, LiC 3 SO 2 ) 3 , LiC 4 BO 8 , LiTFSI, LiFSI, and LiClO 4 , preferably LiPF 6.
  • the present invention is not limited thereto.
  • the lithium salt may be included in an amount of 5 parts by weight to 30 parts by weight, preferably 10 parts by weight to 30 parts by weight, more preferably 15 parts by weight to 30 parts by weight, based on 100 parts by weight of the composition for a gel polymer electrolyte have.
  • the content of the lithium salt is less than the above range, the lithium ion concentration in the electrolyte is low, so that the charging and discharging of the battery may not be performed properly. If the content exceeds the above range, the viscosity of the gel polymer electrolyte is increased, So that the battery performance can be deteriorated.
  • the nonaqueous solvent is, for example, an ether compound, an ester (Acetate or Propionate) compound, an amide compound, a linear carbonate or a cyclic carbonate compound, a nitrile compound, or the like as an electrolyte solvent commonly used in a lithium secondary battery They may be used alone or in combination of two or more.
  • a carbonate-based electrolyte solvent containing a carbonate compound which is typically a cyclic carbonate, a linear carbonate, or a mixture thereof, may be used.
  • cyclic carbonate compound examples include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, Carbonate, vinylene carbonate, and halides thereof, or a mixture of at least two or more thereof.
  • linear carbonate compound examples include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), ethyl methyl carbonate (EMC), methyl propyl carbonate (MPC) and ethyl propyl carbonate (EPC) , Or a mixture of at least two of these compounds may be used.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • DPC dipropyl carbonate
  • EMC ethyl methyl carbonate
  • MPC methyl propyl carbonate
  • EPC ethyl propyl carbonate
  • EPC ethyl propyl carbonate
  • EPC e
  • propylene carbonate and ethylene carbonate which are cyclic carbonates in the carbonate electrolyte solution, are highly viscous organic solvents having a high dielectric constant and can dissociate the lithium salt in the electrolytic solution well.
  • cyclic carbonates such as ethylmethyl carbonate, diethyl carbonate Or a low viscosity, low dielectric constant linear carbonate such as dimethyl carbonate in an appropriate ratio can be used to more advantageously use an electrolytic solution having a high electrical conductivity.
  • esters in the electrolyte solvent examples include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate,? -Butyrolactone,? -Valerolactone,? -Caprolactone,? -Valerolactone And? -Caprolactone, or a mixture of at least two of them, but the present invention is not limited thereto.
  • composition for a gel polymer electrolyte according to an exemplary embodiment of the present invention may further include other additives capable of realizing such properties known in the art to increase the efficiency of polymer network formation reaction and reduce the resistance of the oligomer , Inorganic particles, and the like.
  • Examples of the other additives include VC (vinylene carbonate), vinyl ethylene carbonate (VEC), propane sultone, succinonitrile, AdN (adiponitrile), ESa (ethylene sulfate), PRS (3-trimethoxysilanyl-propyl-N-aniline), TMSPi (Tris (trimethylsilyl) Phosphite), and other additives such as LiPO 2 F 2 , lithium difluorooxaloborate (LiODFB), lithium bis Can be applied.
  • VC vinyllene carbonate
  • VEC vinyl ethylene carbonate
  • AdN adiponitrile
  • ESa ethylene sulfate
  • PRS 3-trimethoxysilanyl-propyl-N-aniline
  • TMSPi Tris (trimethylsilyl) Phosphite
  • LiPO 2 F 2 lithium difluorooxaloborate (LiODFB), lithium bis Can be applied.
  • the inorganic particles may be BaTiO 3 , BaTiO 3 , Pb (Zr, Ti) O 3 (PZT), Pb 1 -a La a Zr 1-b Ti b O 3 (PLZT, Pb (Mg 1/3 Nb 2/3 ) O 3 -PbTiO 3 (PMN-PT), hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , TiO 2 , SiC and mixtures thereof, or a mixture of at least two or more thereof .
  • inorganic particles having lithium ion transferring ability that is, lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li c Ti d (PO 4 ) 3 , 0 ⁇ d ⁇ 2, 0 ⁇ d ⁇ 3) as phosphate (Li a1 Al b1 Ti c1 ( PO 4) 3, 0 ⁇ a1 ⁇ 2, 0 ⁇ b1 ⁇ 1, 0 ⁇ c1 ⁇ 3), 14Li 2 O-9Al 2 O 3 -38TiO 2 -39P 2 O 5 like (LiAlTiP) a2 O b2 series glass (glass) (0 ⁇ a2 ⁇ 4, 0 ⁇ b2 ⁇ 13), lithium lanthanum titanate (Li a3 La b3 TiO 3, 0 ⁇ a3 ⁇ 2, 0 ⁇ b3 ⁇ 3) (Li a4 Ge b4 P c2 S d , 0 ⁇ a4 ⁇ 4, 0 ⁇ b
  • the gel polymer electrolyte is prepared using the gel polymer electrolyte composition.
  • the gel polymer electrolyte according to the present invention is characterized in that each of the units A and A 'each independently containing a (meth) acrylate group, the units B and B' each independently containing an amide group,
  • the polymer network can be formed with the oligomer represented by the formula (1) including the units C and C 'and the unit D containing the siloxane group, thereby improving the ionic conductivity and mechanical properties.
  • the gel polymer electrolyte composition of the present invention includes an anion stabilizing additive, it is possible to prevent the decomposition reaction of the non-aqueous solvent generated by the anion of the lithium salt generated during the production of the electrolyte with the gel polymer electrolyte composition, The side reaction can be controlled and the life characteristics and performance of the battery can be improved.
  • the gel polymer electrolyte according to the present invention is formed by polymerizing a composition for a gel polymer electrolyte according to a conventional method known in the art.
  • the gel polymer electrolyte may be formed by in-situ polymerization of the composition for gel polymer electrolyte inside the secondary battery.
  • the in-situ polymerization reaction in the lithium secondary battery can be performed by E-BEAM, gamma ray, room temperature / high temperature aging process, and may be performed through thermal polymerization according to one embodiment of the present invention.
  • the polymerization time is about 2 minutes to 12 hours
  • the thermal polymerization temperature is 30 to 100 ° C.
  • an in-situ polymerization reaction in a lithium secondary battery is performed by adding a predetermined amount of a polymerization initiator and the oligomer to an electrolyte solution containing a lithium salt, mixing the solution, and injecting the solution into a battery cell.
  • a gel polymer electrolyte contained in the form of gel is prepared .
  • a predetermined amount of a polymerization initiator and the oligomer are added to an electrolyte solution containing the lithium salt, and the mixture is coated on one surface of an electrode and a separator, and cured (gelled) using heat or UV ,
  • An electrode assembly having a gel polymer electrolyte formed thereon, and / or a separation membrane may be wound or laminated to prepare an electrode assembly, inserting the same into a battery case, and reusing a conventional liquid electrolyte.
  • a secondary battery according to another embodiment of the present invention includes a cathode, an anode, a separator interposed between the anode and the cathode, and a gel polymer electrolyte. Since the gel polymer electrolyte is the same as described above, a detailed description thereof will be omitted.
  • the anode may be prepared by coating a cathode mixture slurry containing a cathode active material, a binder, a conductive material, and a solvent on a cathode collector.
  • the positive electrode collector is not particularly limited as long as it has electrical conductivity without causing chemical change in the battery.
  • the positive electrode collector may be formed of a metal such as carbon, stainless steel, aluminum, nickel, titanium, sintered carbon, , Nickel, titanium, silver, or the like may be used.
  • the cathode active material is a compound capable of reversibly intercalating and deintercalating lithium, and may specifically include a lithium composite metal oxide including lithium and at least one metal such as cobalt, manganese, nickel, or aluminum have. More specifically, the lithium composite metal oxide may be at least one selected from the group consisting of lithium-manganese-based oxides (for example, LiMnO 2 and LiMn 2 O 4 ), lithium-cobalt oxides (for example, LiCoO 2 ), lithium- (for example, LiNiO 2 and the like), lithium-nickel-manganese-based oxide (for example, LiNi 1-Y1 Mn Y1 O 2 (here, 0 ⁇ Y1 ⁇ 1), LiMn 2-z1 Ni z1 O 4 ( here, 0 ⁇ Z1 ⁇ 2) and the like), lithium-nickel-cobalt oxide (e.
  • LiMnO 2 and LiMn 2 O 4 lithium-cobalt oxides
  • LiCoO 2 lithium-
  • lithium-manganese-cobalt oxide e. g., LiCo 1-Y3 Mn Y3 O 2 (here, 0 ⁇ Y3 ⁇ 1), LiMn 2-z2 Co z2 O 4 ( here, 0 ⁇ z2 ⁇ 2) and the like
  • the lithium composite metal oxide may be LiCoO 2 , LiMnO 2 , LiNiO 2 , lithium nickel manganese cobalt oxide (for example, Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 , Li (Ni 0.5 Mn 0.3 Co 0.2) O 2 or Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2 ), or lithium nickel cobalt aluminum oxide (e.g., LiNi 0.8 Co 0.15 Al 0.05 O 2 , etc.) or the like Considering the remarkable improvement effect according to the kind and content ratio of constituent elements forming the lithium composite metal oxide, the lithium composite metal oxide is Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 , Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2, Li (Ni 0.7 Mn 0.15 Co 0.15) O 2 or Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2 and the like, any one or a mixture of two or more may be used of which have.
  • the positive electrode active material may include 80 wt% to 99 wt%, preferably 85 wt% to 99 wt%, and more preferably 90 wt% to 98 wt% based on the total weight of the solids excluding the solvent in the positive electrode material mixture slurry have.
  • the binder is a component that assists in bonding of the active material to the conductive material and bonding to the current collector.
  • the binder generally contains 1 to 20% by weight, preferably 1 to 20% by weight, based on the total weight of the solids excluding the solvent, % To 15 wt%, and more preferably 1 wt% to 10 wt%.
  • binders examples include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene (PE) , Ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers and the like.
  • CMC carboxymethylcellulose
  • EPDM Ethylene-propylene-diene terpolymer
  • EPDM Ethylene-propylene-diene terpolymer
  • EPDM Ethylene-propylene-diene terpolymer
  • sulfonated EPDM styrene-butadiene rubber
  • fluorine rubber various copolymers and the like.
  • the conductive material is a component for further enhancing the conductivity of the positive electrode active material and is 1% by weight to 20% by weight, preferably 1% by weight to 15% by weight based on the total weight of the solids excluding the solvent in the positive electrode mixture slurry, May be included in an amount of 1 wt% to 10 wt%.
  • the conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, for example, graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black
  • Conductive fibers such as carbon fiber and metal fiber
  • Metal powders such as carbon fluoride, aluminum, and nickel powder
  • Conductive whiskey such as zinc oxide and potassium titanate
  • Conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives and the like can be used.
  • acetylene black series such as Chevron Chemical Company, Denka Singapore Private Limited, Gulf Oil Company, etc.
  • Ketjenblack EC (Armak Company)
  • Vulcan XC-72 Cabot Company
  • Super P Tucal
  • the solvent may include an organic solvent such as N-methyl-2-pyrrolidone (NMP), and may be used in an amount that is preferred to contain the cathode active material, and optionally, a binder and a conductive material.
  • NMP N-methyl-2-pyrrolidone
  • the concentration of the solid content including the positive electrode active material, and optionally the binder and the conductive material is 50 wt% to 95 wt%, preferably 70 wt% to 95 wt%, more preferably 70 wt% to 90 wt% %.
  • NMP N-methyl-2-pyrrolidone
  • the negative electrode may be manufactured by coating a negative electrode current collector with a negative electrode mixture slurry including a negative electrode active material, a binder, a conductive material, and a solvent.
  • the negative electrode collector generally has a thickness of 3 to 500 mu m.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • Examples of the negative electrode current collector include copper, stainless steel, aluminum, nickel, titanium, sintered carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver or the like, aluminum-cadmium alloy, or the like can be used.
  • fine unevenness can be formed on the surface to enhance the bonding force of the negative electrode active material, and it can be used in various forms such as films, sheets, foils, nets, porous bodies, foams and nonwoven fabrics.
  • Examples of the negative electrode active material include natural graphite, artificial graphite, carbonaceous material; Lithium-containing titanium composite oxide (LTO), metals (Me) with Si, Sn, Li, Zn, Mg, Cd, Ce, Ni or Fe; An alloy composed of the metal (Me); An oxide of the metal (Me) (MeOx); And a composite of the metal (Me) and carbon.
  • LTO Lithium-containing titanium composite oxide
  • Me metals with Si, Sn, Li, Zn, Mg, Cd, Ce, Ni or Fe
  • An alloy composed of the metal (Me) An oxide of the metal (Me) (MeOx)
  • a composite of the metal (Me) and carbon a composite of the metal (Me) and carbon.
  • the negative electrode active material may include 80 wt% to 99 wt%, preferably 85 wt% to 99 wt%, and more preferably 90 wt% to 98 wt% based on the total weight of the solid material excluding the solvent in the negative electrode material mixture slurry have.
  • the binder is a component that assists in the bonding between the conductive material, the active material and the current collector.
  • the binder usually contains 1 to 20% by weight, preferably 1 to 15% by weight, based on the total weight of the solids excluding the solvent, %, More preferably from 1 wt% to 10 wt%.
  • binders examples include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers thereof and the like.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethylcellulose
  • EPDM ethylene-propylene-diene polymer
  • sulfonated-EPDM styrene-butadiene rubber
  • fluorine rubber various copolymers thereof and the like.
  • the conductive material is a component for further enhancing the conductivity of the negative electrode active material and is 1% by weight to 20% by weight, preferably 1% by weight to 15% by weight based on the total weight of the solid material excluding the solvent in the negative electrode material mixture slurry, May be included in an amount of 1 wt% to 10 wt%.
  • Such a conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, for example, graphite such as natural graphite or artificial graphite; Carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • graphite such as natural graphite or artificial graphite
  • Carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black
  • Conductive fibers such as carbon fiber and metal fiber
  • Metal powders such as carbon fluoride, aluminum, and nickel powder
  • Conductive whiskey such as zinc oxide and potassium titanate
  • Conductive metal oxides such as titanium oxide
  • Conductive materials such as polypheny
  • the solvent may include water or an organic solvent such as N-methyl-2-pyrrolidone (NMP), and may be used in an amount that makes it desirable to contain the negative electrode active material, and optionally, a binder and a conductive material .
  • NMP N-methyl-2-pyrrolidone
  • the negative electrode active material, and optionally, the concentration of the solid content including the binder and the conductive material may be 50 wt% to 95 wt%, preferably 70 wt% to 90 wt%.
  • a conventional porous polymer film conventionally used as a separator for example, a polyolefin such as an ethylene homopolymer, a propylene homopolymer, an ethylene / butene copolymer, an ethylene / hexene copolymer, and an ethylene / methacrylate copolymer
  • a porous polymer film made of a high molecular weight polymer may be used alone or in a laminated manner, or a nonwoven fabric made of a conventional porous nonwoven fabric such as a glass fiber having a high melting point, a polyethylene terephthalate fiber or the like may be used. It is not.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape, a square shape, a pouch shape, a coin shape, or the like using a can.
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same. Since the battery module and the battery pack include the lithium secondary battery having a high capacity, a high rate-limiting characteristic, and a cycling characteristic, the battery module and the battery pack can be suitably used as a middle- or large- And can be used as a power source of the device.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • AIBN polymerization initiator
  • NCM LiNi 1/3 Co 1/3 Mn 1/3 O 2 ; NCM
  • carbon black as a conductive material
  • PVDF polyvinylidene fluoride
  • NMP solvent N-methyl-2-pyrrolidone
  • the positive electrode material mixture slurry was applied to an aluminum (Al) thin film having a thickness of about 20 mu m and dried to produce a positive electrode, followed by roll pressing to prepare a positive electrode.
  • a negative electrode mixture slurry was prepared by mixing carbon powder as a negative active material, PVDF as a binder, and carbon black as a conductive material in a weight ratio of 96: 3: 1.
  • the negative electrode mixture slurry was applied to a copper (Cu) thin film as an anode current collector having a thickness of 10 mu m and dried to prepare a negative electrode, followed by roll pressing to produce a negative electrode.
  • Cu copper
  • the battery was assembled by using the separator composed of the anode, the cathode and the three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP).
  • the prepared gel polymer electrolyte composition was injected into the assembled battery, And the mixture was heated at 70 DEG C for 5 hours to prepare a lithium secondary battery including a gel polymer electrolyte.
  • a composition for a gel polymer electrolyte and a lithium secondary battery using the composition were prepared in the same manner as in Example 1, except that the anion stabilizing additive represented by Formula 3-1 was used in place of the anion stabilizing additive represented by Formula 2-1 .
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • NCM LiNi 1/3 Co 1/3 Mn 1/3 O 2 ; NCM
  • carbon black as a conductive material
  • PVDF polyvinylidene fluoride
  • NMP solvent N-methyl-2-pyrrolidone
  • a negative electrode mixture slurry was prepared by mixing carbon powder as a negative active material, PVDF as a binder, and carbon black as a conductive material in a weight ratio of 96: 3: 1.
  • the negative electrode mixture slurry was applied to a copper (Cu) thin film as an anode current collector having a thickness of 10 mu m and dried to prepare a negative electrode, followed by roll pressing to produce a negative electrode.
  • Cu copper
  • the battery was assembled using the separator composed of the anode, the cathode, and three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP).
  • the non-aqueous electrolyte was injected into the assembled battery and stored at room temperature for 2 days to prepare a lithium secondary battery.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • a monomer represented by the following formula (4) was added to 100 parts by weight of the composition for a gel polymer electrolyte
  • 2 parts by weight of an anion stabilizing additive represented by the following formula (3-1) to 100 parts by weight of a composition for a gel polymer electrolyte, AIBN) was contained in an amount of 0.4 part by weight based on 100 parts by weight of the monomer, and the electrolyte was mixed so as to contain the remainder, thereby preparing a gel polymer electrolyte composition.
  • a composition for a gel polymer electrolyte was prepared in the same manner as in Example 1, except that the anion stabilizing additive represented by the general formula (2-1) was not used, A lithium secondary battery was produced in the same manner as in the method for producing a lithium secondary battery in Example 1.
  • a nonaqueous electrolyte solution of Comparative Example 1 was prepared in the same manner as the nonaqueous electrolyte of Comparative Example 1, except that 2 parts by weight of an anion stabilizing additive represented by the general formula (2-1) was added to 100 parts by weight of the nonaqueous electrolyte solution
  • a nonaqueous electrolytic solution was prepared, and a lithium secondary battery was produced in the same manner as in the method for producing a lithium secondary battery in Comparative Example 1.
  • Comparative Example 2 except for using 2 parts by weight of an anion stabilizing additive represented by the general formula (2-1) instead of the anion stabilizing additive represented by the general formula (3-1) in 100 parts by weight of the non-aqueous electrolyte, A composition for a gel polymer electrolyte was prepared in the same manner as in the preparation of the composition, and a lithium secondary battery was prepared in the same manner as in the preparation of the lithium secondary battery in Comparative Example 2.
  • the secondary battery produced according to Examples 1 and 2 and Comparative Examples 1 to 5 was charged with 50% of SOC (state of charge) at 25 DEG C, discharged at a discharge rate of 5 C for 10 seconds, The resistance value of each lithium secondary battery was confirmed through the voltage drop.
  • the measured resistance values are shown in FIG. 1, and the measured voltage values are shown in FIG.
  • the intersection point with the X axis means the Ohm resistance of the battery
  • the half circle at the back side means resistance by the SEI formed on the surface of the electrode plate. That is, the smaller the diameter of the semicircle, the smaller the resistance caused by the SEI. At this time, in the case of the embodiments, it is confirmed that the resistance is smaller than that of the comparative examples.
  • Each of the lithium secondary batteries prepared according to Examples 1 and 2 and Comparative Examples 1 to 5 was stored at 60 ° C. and SOC 100% state (4.15 V) at a high temperature for 10 weeks. Thereafter, SOC 50% was set at 25 ° C per week for each week, and the resistance value was measured by discharging for 10 seconds with a discharge pulse at 5C rate. Based on the resistance value measured at the initial (0 week) The rate of change in resistance was measured. The results are shown in Fig.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 상기 화학식 1로 표시되는 올리고머; 음이온 안정화 첨가제; 중합개시제; 리튬염; 및 비수계 용매를 포함하고, 상기 음이온 안정화 첨가제는 상기 화학식 2로 표시되는 포스파이트계 화합물 및 화학식 3으로 표시되는 보론계 화합물로 이루어진 군에서 선택되는 적어도 하나 이상을 포함하는 겔 폴리머 전해질용 조성물, 이를 이용하여 제조된 겔 폴리머 전해질 및 리튬 이차 전지에 관한 것이다.

Description

겔 폴리머 전해질용 조성물, 이로부터 제조된 겔 폴리머 전해질 및 이를 포함하는 리튬 이차 전지
관련출원과의 상호인용
본 출원은 2017년 11월 13일자 한국특허출원 제10-2017-0150919호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 겔 폴리머 전해질용 조성물, 이로부터 제조된 겔 폴리머 전해질 및 이를 포함하는 리튬 이차전지에 관한 것으로, 보다 상세하게는 충전시 리튬염의 음이온으로부터 유발되는 부반응을 억제시켜 리튬 이차전지의 안정성이 향상된 겔 폴리머 전해질용 조성물, 이로부터 제조된 겔 폴리머 전해질 및 리튬 이차전지에 관한 것이다.
최근 전기, 전자, 통신 및 컴퓨터 산업이 급속히 발전함에 따라 고성능, 고안정성의 이차전지에 대한 수요가 점차 증가되고 있다. 특히, 이들 전자(통신)기기의 소형화, 경량화 추세에 따라 이 분야의 핵심부품인 리튬 이차전지의 박막화 및 소형화가 요구되고 있다.
리튬 이차전지는 적용되는 전해질에 따라 액체 전해질을 사용하는 리튬 이온전지와 폴리머 전해질을 사용하는 리튬 폴리머 전지로 나눌 수 있다.
그러나 액체 상태의 전해질을 사용하면, 전극 물질이 퇴화되고 유기 용매가 휘발될 가능성이 클 뿐만 아니라, 주변 온도 및 전지 자체의 온도 상승에 의한 연소 등과 같은 안전성에 문제가 있다. 특히, 리튬 이차전지는 충방전 진행 시 카보네이트 유기 용매의 분해 및/또는 유기 용매와 전극과의 부반응에 의해 전지 내부에 가스가 발생하여 전지 두께를 팽창시키는 문제점이 있다. 따라서 전지의 성능과 안전성 저하가 초래되게 된다.
일반적으로, 전지의 안전성은 액체 전해질 < 겔 폴리머 전해질 < 고체 고분자 전해질 순서로 향상되나, 이에 반해 전지 성능은 감소하는 것으로 알려져 있다. 현재 상기 고체 고분자 전해질은 열등한 전지 성능에 의하여, 아직 상업화되지 않은 것으로 알려져 있다.
반면에, 상기 겔 폴리머 전해질은 전기화학적 안전성이 우수하여 전지의 두께를 일정하게 유지할 수 있을 뿐 아니라, 겔상 고유의 접착력으로 인해 전극과 전해질 사이의 접촉이 우수하여 박막형 전지를 제조할 수 있다. 이러한 겔 폴리머 전해질을 적용한 이차전지의 제조 방법은 다음과 같이 2 가지 방법이 알려져 있다.
우선, 양극, 음극 분리막 표면에 겔 폴리머 전해질용 조성물을 코팅한 다음, 열이나 UV를 이용하여 겔 화시킨 다음, 이를 조합하여 전지를 제조하고, 기존 액체 전해액을 추가 주액하는 방법이 있다.
그러나, 상기 방법은 비수계 유기 용매를 추가로 포함하기 때문에 열적 안정성뿐만 아니라 이차전지의 성능 면에서 만족하지 못하고 있는 실정이다.
또 다른 방법은, 비수계 유기 용매에 염을 용해한 액체 전해액에 중합 가능한 단량체나 및 중합 개시제를 혼합한 겔 형성용 조성물을 양극, 음극 및 분리막이 권취 또는 적층된 전극 조립체가 들어 있는 전지에 주액한 후, 적절한 온도와 시간 조건에서 겔 화(가교)시켜 겔형 폴리머 전해질을 함유하는 전지를 제조하는 방법이 있다. 하지만, 상기 방법은 젖음 공정(wetting) 및 겔 화(gelation)를 위한 가열 공정 시에 안전성 등이 낮다는 단점이 있다.
또한, 상기 방법의 경우, 상기 염이 화학적 반응을 거쳐 상기 염의 음이온이 발생할 수 있다. 특히, 리튬염 중에서도 불화물 루이스산(fluorinated Lewis acid)을 기본으로 하는 LiBF4, LiPF6 등을 사용하는 경우, 이온 전도도가 높고 전극 내에서도 부반응을 잘 일으키지 않는다는 특성이 있지만, 화학적 반응을 거쳐 발생되는 음이온에 의하여 HF등과 같은 부산물이 생성될 수 있는데, 이는 전해액 용매를 분해시키거나 전극 부반응을 일으켜 전지의 성능이 지속적으로 저하시킬 수 있다.
이에, 전지의 성능 및 안정성 등의 제반 성능이 이차전지를 제조하기 위한 겔 폴리머 전해질에 대한 기술 개발이 필요한 실정이다.
(특허문헌 1) 대한민국 공개특허공보 제10-2010-0056581호
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 충전시 리튬염의 음이온으로부터 유발되는 부반응을 억제시켜 리튬 이차전지의 안정성이 향상된 겔 폴리머 전해질용 조성물, 이로부터 제조된 겔 폴리머 전해질 및 리튬 이차 전지를 제공하기 위한 것이다.
일 측면에서, 본 발명은 하기 화학식 1로 표시되는 올리고머; 음이온 안정화 첨가제; 중합개시제; 리튬염; 및 비수계 용매를 포함하고, 상기 음이온 안정화 첨가제는 하기 화학식 2로 표시되는 포스파이트계 화합물 및 화학식 3으로 표시되는 보론계 화합물로 이루어진 군에서 선택되는 적어도 하나 이상을 포함하는 겔 폴리머 전해질용 조성물을 제공한다.
[화학식 1]
Figure PCTKR2018013817-appb-I000001
상기 화학식 1에서,
상기 A 및 A'는 각각 독립적으로 (메타)아크릴레이트기를 포함하는 단위이고,
상기 B 및 B'는 각각 독립적으로 아마이드 기를 포함하는 단위이며,
상기 C 및 C'는 각각 독립적으로 옥시알킬렌 기를 포함하는 단위이고,
상기 D는 실록산 기를 포함하는 단위이며,
k는 1 내지 100의 정수이다.
[화학식 2]
Figure PCTKR2018013817-appb-I000002
상기 화학식 2에서, R1, R2 및 R3는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 10의 선형 또는 비선형의 알킬기, 치환 또는 비치환된 탄소수 1 내지 10의 선형 또는 비선형의 알콕시기, 치환 또는 비치환된 탄소수 1 내지 10의 알킬기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 및 치환 또는 비치환된 탄소수 1 내지 10의 선형 또는 비선형의 알킬 실릴기로 이루어진 군에서 선택되는 적어도 하나 이상이다.
[화학식 3]
Figure PCTKR2018013817-appb-I000003
상기 화학식 3에서, R4, R5 및 R6는 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 치환 또는 비치환된 탄소수 1 내지 10의 선형 또는 비선형의 알킬기 및 치환 또는 비치환된 탄소수 1 내지 10의 선형 또는 비선형의 알콕시기로 이루어진 군에서 선택되는 적어도 하나 이상이다.
바람직하게는, 상기 화학식 2에서 R1, R2 및 R3는 불소 치환된 탄소수 1 내지 10의 선형 또는 비선형의 알킬기일 수 있다.
바람직하게는, 상기 화학식 3에서 R4, R5 및 R6는 불소 치환된 탄소수 6 내지 20의 아릴기일 수 있다.
보다 구체적으로는, 상기 음이온 안정화 첨가제는 하기 화학식 2-1로 표시되는 포스파이트계 화합물을 포함하는 것일 수 있다.
[화학식 2-1]
Figure PCTKR2018013817-appb-I000004
또한, 상기 음이온 안정화 첨가제는 하기 화학식 3-1로 표시되는 보론계 화합물을 포함하는 것일 수 있다.
[화학식 3-1]
Figure PCTKR2018013817-appb-I000005
다른 측면에서, 본 발명은 상기와 같은 본 발명에 따른 겔 폴리머 전해질용 조성물을 이용하여 제조되는 겔 폴리머 전해질과, 상기 겔 폴리머 전해질을 포함하는 리튬 이차전지를 제공한다.
본 발명에 따른 겔 폴리머 전해질은 리튬염으로부터 발생하는 음이온을 안정화할 수 있는 첨가제를 사용하여 상기 음이온에 의해 비수계 용매가 분해되거나, 전극과의 부반응을 억제시켜 전지의 성능, 안정성 및 고온 안정성이 향상된 전지를 구현할 수 있다.
본 명세서에 첨부되는 다음의 도면은 본 발명의 구체적인 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.
도 1은 본 발명의 실험예 1에 따른 이차 전지의 측정된 저항 값을 나타낸 그래프이다.
도 2는 본 발명의 실험예 1에 따른 이차 전지의 측정된 전압을 나타낸 그래프이다.
도 3은 본 발명의 실험예 2에 따른 이차 전지의 AC 임피던스를 나타낸 그래프이다.
도 4는 본 발명의 실험예 3에 따른 이차 전지의 고온저장 후의 시간에 따른 저항 변화율을 측정한 결과를 나타낸 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 구현 예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
한편, 본 발명에서 특별한 언급이 없는 한 " * "는 동일하거나, 상이한 원자 또는 화학식의 말단부 간의 연결된 부분을 의미한다.
<겔 폴리머 전해질용 조성물>
본 발명에 따른 겔 폴리머 전해질용 조성물은 올리고머; 음이온 안정화 첨가제; 중합개시제; 리튬염; 및 비수계 용매를 포함한다.
올리고머
먼저, 상기 올리고머에 대하여 설명한다.
상기 올리고머는 (메타)아크릴레이트 기, 아마이드 기, 옥시알킬렌 기 및 실록산 기를 포함한다.
일반적으로 사용되는 겔 폴리머 전해질은 안전성 및 기계적 물성이 고체 고분자 전해질에 비하여 취약하고, 액체 전해질에 비하여 이온전도도 등이 낮다는 단점이 있다. 이에 최근에는 올리고머 공중합체를 사용하여 기계적인 물성이나 이온 전도도를 향상시키려는 연구가 진행되고 있다.
그러나, 올리고머를 단독으로 전해질로 사용하는 경우 물성의 조절이 용이하지 않을 뿐만 아니라, 전지 내에 균일한 고분자 형성이 어려워 고용량 대형 전지에 적용하기 어려울 수 있다.
따라서, 본 발명에서는 전기화학적 특성과 기계적 특성을 상호 보완할 수 있는 작용기를 포함하는 올리고머를 사용하여 이러한 문제들을 해결하고자 하였다.
이때, 상기 올리고머는 하기 화학식 1로 표시된다.
[화학식 1]
Figure PCTKR2018013817-appb-I000006
상기 화학식 1에서,
상기 A 및 A'는 각각 독립적으로 (메타)아크릴레이트기를 포함하는 단위이고, 상기 B 및 B'는 각각 독립적으로 아마이드 기를 포함하는 단위이며, 상기 C 및 C'는 각각 독립적으로 옥시알킬렌 기를 포함하는 단위이고, 상기 D는 실록산 기를 포함하는 단위이며, k는 1 내지 100의 정수이다.
한편, 상기 k는 바람직하게는 1 내지 50의 정수, 보다 바람직하게는, 1 내지 30의 정수 일 수 있다. 상기 k가 상기 범위 내인 경우, 상기 화학식 1로 표시되는 올리고머가 적절한 중량평균분자량(Mw)을 갖는다.
이때, 본 명세서에서 중량평균분자량은, GPC(Gel Permeation Chromatograph)로 측정한 표준 폴리스티렌에 대한 환산 수치를 의미할 수 있고, 특별하게 달리 규정하지 않는 한, 분자량은 중량평균분자량을 의미할 수 있다. 예컨대, 본 발명에서 상기 중량평균분자량은 Agilent社 1200시리즈를 이용하여 측정하며, 이때 사용된 컬럼은 Agilent社 PL mixed B 컬럼을 이용할 수 있고, 용매는 THF(TETRAHYDROFURAN)를 사용할 수 있다.
상기 화학식 1로 표시되는 올리고머의 중량평균분자량(Mw)는 반복 단위의 개수에 의하여 조절될 수 있으며, 약 1,000 g/mol 내지 20,000 g/mol, 구체적으로 1,000 g/mol 내지 15,000 g/mol, 보다 구체적으로 1,000 g/mol 내지 10,000 g/mol 일 수 있다. 상기 올리고머의 중량평균분자량이 상기 범위 내인 경우, 이를 포함하는 전지의 기계적 강도를 효과적으로 개선할 수 있고, 가공성(성형성) 및 전지 안정성 등이 향상된 겔 폴리머 전해질을 제조할 수 있다.
한편, 상기 단위 A 및 A'는 올리고머가 3차원 구조로 결합되어 폴리머 네트워크를 형성할 수 있도록 (메타)아크릴레이트기를 포함하는 단위이다. 상기 단위 A 및 A'는 분자 구조 내에 적어도 하나의 단관능성 또는 다관능성 (메타)아크릴레이트 또는 (메타)아크릴산을 포함하는 단량체로부터 유도될 수 있다.
예를 들어, 상기 단위 A 및 A'는 각각 독립적으로 하기 화학식 A-1 내지 A-5로 표시되는 단위 중 선택되는 적어도 하나 이상의 단위를 포함할 수 있다.
[화학식 A-1]
Figure PCTKR2018013817-appb-I000007
[화학식 A-2]
Figure PCTKR2018013817-appb-I000008
[화학식 A-3]
Figure PCTKR2018013817-appb-I000009
[화학식 A-4]
Figure PCTKR2018013817-appb-I000010
[화학식 A-5]
Figure PCTKR2018013817-appb-I000011
또한, 상기 단위 B 및 B'는 각각 독립적으로 아마이드 기를 포함하는 단위로, 겔 폴리머 전해질을 구현함에 있어서, 이온 전달 특성을 조절하고, 기계적 물성 및 밀착력을 조절하는 기능을 부여하기 위한 것이다.
예를 들어, 상기 단위 B 및 B'는 각각 독립적으로 하기 화학식 B-1로 표시되는 단위를 포함할 수 있다.
[화학식 B-1]
Figure PCTKR2018013817-appb-I000012
상기 화학식 B-1에서,
R'은 탄소수 1 내지 10의 선형 또는 비선형 알킬렌기, 탄소수 3 내지 10의 치환 또는 비치환된 사이클로알킬렌기, 탄소수 6 내지 20의 치환 또는 비치환된 바이사이클로알킬렌기, 탄소수 6 내지 20의 치환 또는 비치환된 아릴기, 하기 화학식 R'-1로 표시되는 단위 및 하기 화학식 R'-2로 표시되는 단위로 이루어진 군에서 선택되는 적어도 하나 이상이다.
[화학식 R'-1]
Figure PCTKR2018013817-appb-I000013
[화학식 R'-2]
Figure PCTKR2018013817-appb-I000014
또 다른 예를 들어, 상기 화학식 B-1에서,
상기 R'은 하기 화학식 R'-3 내지 R'-8로 표시되는 단위 중 적어도 하나 이상을 포함할 수 있다.
[화학식 R'-3]
Figure PCTKR2018013817-appb-I000015
[화학식 R'-4]
Figure PCTKR2018013817-appb-I000016
[화학식 R'-5]
Figure PCTKR2018013817-appb-I000017
[화학식 R'-6]
Figure PCTKR2018013817-appb-I000018
[화학식 R'-7]
Figure PCTKR2018013817-appb-I000019
[화학식 R'-8]
Figure PCTKR2018013817-appb-I000020
또한, 상기 단위 C 및 C'는 각각 독립적으로 옥시알킬렌 기를 포함하는 단위로서, 폴리머 네트워크 내에서의 염의 해리 및 전지내의 극성이 높은 표면과의 친화력을 증가시키기 위한 것이다. 보다 구체적으로, 용매의 함침 능력, 전극 친화력 및 이온전달 능력을 조절하기 위하여 사용된다.
상기 단위 C 및 C'는 각각 독립적으로 하기 화학식 C-1로 표시되는 단위를 포함할 수 있다.
[화학식 C-1]
Figure PCTKR2018013817-appb-I000021
상기 화학식 C-1에서, R"은 탄소수 1 내지 10 치환 또는 비치환된 선형 또는 비선형 알킬렌기이고, l은 1 내지 30의 정수이다.
구체적으로, 상기 화학식 C-1에서, 상기 R"은 -CH2CH2- 또는 -CHCH3CH2- 일 수 있다.
또한, 상기 단위 D는 실록산 기를 포함하는 기계적 물성과 분리막과의 친화력을 조절하기 위한 것이다. 구체적으로 폴리머 네트워크 내에서 아마이드 결합에 의한 단단한 구조 영역 이외의 유연성을 확보하기 위한 구조를 형성함과 동시에, 낮은 극성을 이용하여 폴리올레핀계 분리막 원단과의 친화력을 높일 수 있다. 특히, 폴리올레핀계 분리막 원단과의 친화력이 향상되는 경우, 저항이 감소되어 이온전도도가 보다 향상되는 효과를 동시에 구현할 수 있다.
예를 들어, 상기 단위 D는 화학식 D-1로 표시되는 단위를 포함할 수 있다.
[화학식 D-1]
Figure PCTKR2018013817-appb-I000022
상기 화학식 D-1에서, R7 및 R8은 탄소수 1 내지 5의 선형 또는 비선형 알킬렌기이고, R9, R10, R11 및 R12는 각각 독립적으로 수소, 탄소수 1 내지 5의 알킬기 또는 탄소수 6 내지 12인 아릴기이며, m은 1 내지 500의 정수이다.
한편, 상기 m은 보다 바람직하게는 10 내지 500의 정수일 수 있다. 상기 m이 상기 범위를 만족할 경우 올리고머의 극성(polarity)을 낮출 수 있으므로 전지의 젖음성(wetting)이 향상될 수 있고, 리튬 금속과의 화학반응을 조절하여 전극 상에 리튬 덴드라이트(Li dendrite)가 형성되는 것을 억제하여 전지의 안전성이 향상될 수 있다.
구체적으로는, 상기 단위 D는 하기 화학식 D-2로 표시되는 단위일 수 있다.
[화학식 D-2]
Figure PCTKR2018013817-appb-I000023
상기 화학식 D-2에서, R9, R10, R11 및 R12는 각각 독립적으로 수소, 탄소수 1 내지 5의 알킬기 또는 탄소수 6 내지 12인 아릴기이며, m은 1 내지 500의 정수이다.
더 구체적으로는, 상기 단위 D-2는 하기 화학식 D-3 및 D-4으로 표시되는 단위 중 하나일 수 있다.
[화학식 D-3]
Figure PCTKR2018013817-appb-I000024
[화학식 D-4]
Figure PCTKR2018013817-appb-I000025
상기 화학식 D-3 및 상기 화학식 D-4에서 m은 각각 1 내지 500의 정수이다. 보다 바람직하게는 10 내지 500의 정수일 수 있다. 상기 m이 상기 범위를 만족하는 경우, 상기 단위가 포함된 올리고머를 사용하여 제조되는 겔 폴리머 전해질의 난연 특성을 개선할 수 있고, 리튬 메탈 전극과의 화학반응을 제어할 수 있어 전지의 안정성이 향상될 수 있다.
예를 들어, 본 발명의 일 구현예에 따르면, 상기 올리고머는 하기 화학식 1-1 내지 1-5으로 이루어진 군에서 선택된 적어도 하나 이상의 화합물일 수 있다.
[화학식 1-1]
Figure PCTKR2018013817-appb-I000026
[화학식 1-2]
Figure PCTKR2018013817-appb-I000027
[화학식 1-3]
Figure PCTKR2018013817-appb-I000028
[화학식 1-4]
Figure PCTKR2018013817-appb-I000029
[화학식 1-5]
Figure PCTKR2018013817-appb-I000030
상기 화학식 1-1 내지 1-5에서, n, o, p는 각각 독립적으로 1 내지 30의 정수이고, q는 1 내지 100의 정수이다.
한편, 상기 q는 바람직하게는 1 내지 50의 정수, 보다 바람직하게는, 1 내지 30의 정수 일 수 있다.
한편, 상기 올리고머는 겔 폴리머 전해질용 조성물 100 중량부에 대하여 0.5 중량부 내지 20 중량부, 바람직하게는 1.0 내지 20 중량부, 보다 바람직하게는 1.5 중량부 내지 20 중량부의 함량으로 포함될 수 있다. 상기 올리고머의 함량이 0.5 중량부 미만일 경우 겔 폴리머 전해질을 형성하기 위한 올리고머 간의 네트워크 반응이 형성되지 못하고, 상기 올리고머의 함량이 20 중량부를 초과하는 경우 겔 폴리머 전해질의 점도가 일정 수준을 초과하여 전지 내 함침성, 젖음성(wetting) 저하 및 전기화학적 안정성이 저해될 수 있다.
음이온 안정화 첨가제
다음으로, 상기 음이온 안정화 첨가제에 대하여 설명한다.
본 발명에서, 상기 음이온 안정화 첨가제는 포스파이트(Phosphite)계 화합물 및 보론계 화합물로 이루어진 군에서 선택되는 적어도 하나 이상을 포함한다.
상기 겔 폴리머 전해질 조성물에는 올리고머 이외에, 리튬염 및 비수계 용매가 포함되어 있는데, 리튬염 중 특히 불화물계 리튬염의 경우, 일반적으로 이온전도도가 높아서 많이 사용되고 있다. 그러나, 불화물계 리튬염의 화학적 반응에 의해 발생되는 음이온은 미량의 수분과 반응하면서 HF와 같은 부산물을 생성하고, 이와 같은 부산물은 유기 용매의 분해와 전극 부반응을 일으켜 전지의 성능이 지속적으로 저하될 수 있다. 또한, 상기와 음이온 및 부산물들에 의하여 이차 전지의 고온 저장성 또한 저하될 수 있다.
보다 구체적으로, 예를 들어, 리튬염으로서 LiPF6를 사용하는 경우, 음이온인 PF6 -가 음극 쪽에서 전자를 잃게 되며 PF5 가 생성될 수 있다. 이때, 하기와 같은 화학반응이 연쇄적으로 진행될 수 있다.
Figure PCTKR2018013817-appb-I000031
상기 연쇄적인 반응이 진행되는 경우, 발생되는 HF를 비롯한 다른 부산물에 의하여 유기 용매의 분해나 전극과의 부반응이 발생되어 전지의 성능이 지속적으로 저하될 수 있다.
이때, 본 발명에 따른 포스파이트(Phosphite)계 화합물 또는 보론계 화합물로 이루어진 군에서 선택되는 적어도 하나 이상을 음이온 안정화 첨가제로서 사용하게 되면, 상기 리튬염으로부터 생성되는 음이온 또는 부산물(예를 들어, PF6 - 또는 PF5)이 루이스 염기(Lewis base)로 작용하고, 상기 포스파이트계 화합물 또는 보론계 화합물이 루이스 산(Lewsi acid)으로 작용하게 된다. 따라서, 상기 음이온들이 루이스 산-염기 반응에 따라 안정화되어 하기 연쇄 반응 또한 발생하지 않아 상기의 문제점을 해소할 수 있다.
구체적으로는, 본 발명에서, 음이온 안정화 첨가제는 하기 화학식 2로 표시되는 포스파이트계 화합물을 포함할 수 있다.
[화학식 2]
Figure PCTKR2018013817-appb-I000032
상기 화학식 2에서, R1, R2 및 R3는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 10의 선형 또는 비선형의 알킬기, 치환 또는 비치환된 탄소수 1 내지 10의 선형 또는 비선형의 알콕시기, 치환 또는 비치환된 탄소수 1 내지 10의 알킬기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 및 치환 또는 비치환된 탄소수 1 내지 10의 선형 또는 비선형의 알킬 실릴기로 이루어진 군에서 선택되는 적어도 하나 이상이다.
바람직하게는, 상기 R1, R2 및 R3는 불소 치환된 탄소수 1 내지 10의 선형 또는 비선형의 알킬기일 수 있다.
보다 구체적으로, 상기 음이온 안정화 첨가제는 하기 화학식 2-1로 표시되는 포스파이트계 화합물을 포함할 수 있다.
[화학식 2-1]
Figure PCTKR2018013817-appb-I000033
또한, 본 발명에서, 음이온 안정화 첨가제는 하기 화학식 3으로 표시되는 보론계 화합물을 포함할 수 있다.
[화학식 3]
Figure PCTKR2018013817-appb-I000034
상기 화학식 3에서, R4, R5 및 R6는 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 치환 또는 비치환된 탄소수 1 내지 10의 선형 또는 비선형의 알킬기 및 치환 또는 비치환된 탄소수 1 내지 10의 선형 또는 비선형의 알콕시기로 이루어진 군에서 선택되는 적어도 하나 이상이다.
바람직하게는, 상기 R4, R5 및 R6는 불소 치환된 탄소수 6 내지 20의 아릴기일 수 있다.
보다 구체적으로, 본 발명에서, 음이온 안정화 첨가제는 하기 화학식 3-1으로 표시되는 보론계 화합물을 포함할 수 있다.
[화학식 3-1]
Figure PCTKR2018013817-appb-I000035
한편, 상기 음이온 안정화 첨가제는 겔 폴리머 전해질용 조성물 100 중량부에 대하여 0.1 중량부 내지 20 중량부, 바람직하게는 0.5 중량부 내지 20 중량부, 보다 바람직하게는 1.0 중량부 내지 20 중량부의 함량으로 포함될 수 있다. 음이온 안정화 첨가제의 함량이 상기 범위를 만족할 경우, 음이온 안정화 반응이 효과적으로 발생하고, 전지 성능 저하를 최소화할 수 있다. 구체적으로는, 음이온 안정화 첨가제의 함량이 너무 작으면, 음이온 안정화 효과가 미미하고, 함량이 너무 많으면, 유전율이 낮아져 리튬염 해리를 저해할 수 있고, 전지 내 저항 증가의 원인이 될 수 있다.
중합개시제
다음으로, 상기 중합개시제에 대하여 설명한다.
중합개시제는 본 발명의 겔 폴리머 전해질용 조성물에 포함된 올리고머가 3차원 구조로 결합되어 폴리머 네트워크를 형성하여 겔 폴리머 전해질을 형성할 수 있도록 하는 첨가제이다.
상기 중합개시제의 비제한적인 예로는 벤조일 퍼옥사이드(benzoyl peroxide), 아세틸 퍼옥사이드(acetyl peroxide), 디라우릴 퍼옥사이드(dilauryl peroxide), 디-tert-부틸 퍼옥사이드(di-tert-butyl peroxide), t-부틸 퍼옥시-2-에틸-헥사노에이트(t-butyl peroxy-2-ethyl-hexanoate), 큐밀 하이드로퍼옥사이드(cumyl hydroperoxide) 및 하이드로겐 퍼옥사이드(hydrogen peroxide) 등의 유기과산화물류나 히드로과산화물류와 2,2'-아조비스(2-시아노부탄), 2,2'-아조비스(메틸부티로니트릴), AIBN(2,2'-Azobis(iso-butyronitrile)) 및 AMVN(2,2'-Azobisdimethyl-Valeronitrile) 등의 아조 화합물류 등이 있으나, 이에 한정하지 않는다.
상기 중합개시제는 이차전지 내에서 열, 비제한적인 예로 30℃ 내지 100℃의 열에 의해 분해되거나 상온(5℃ 내지 30℃)에서 분해되어 라디칼을 형성하고, 자유라디칼 중합에 의해 올리고머가 아크릴레이트계 화합물과 반응하여 겔 폴리머 전해질을 형성할 수 있다.
한편, 상기 중합개시제는 올리고머 100 중량부에 대하여, 0.01 중량부 내지 5 중량부, 바람직하게는 0.05 중량부 내지 5 중량부, 보다 바람직하게는 0.1 중량부 내지 5 중량부의 양으로 사용될 수 있다. 중합개시제의 함량이 상기 범위 내로 사용되면, 겔 폴리머 전해질용 조성물을 전지 내에 주액하는 도중 겔 화가 적정하게 일어날 수 있고, 전지 성능에 악영향을 미칠 수 있는 미반응 중합개시제의 양을 최소화할 수 있다. 또한, 상기 범위 내로 중합개시제가 포함되는 경우, 겔화가 적절하게 이루어질 수 있다.
리튬염
다음으로, 상기 리튬염에 대하여 설명한다.
리튬염은 리튬 이차전지 내에서 전해질 염으로서 사용되는 것으로서, 이온을 전달하기 위한 매개체로서 사용되는 것이다. 통상적으로, 리튬염은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiN(C2F5SO2)2, LiN(CF3SO2)2, CF3SO3Li, LiC(CF3SO2)3, LiC4BO8, LiTFSI, LiFSI 및 LiClO4로 이루어진 군에서 선택되는 적어도 하나 이상의 화합물을 포함할 수 있으며, 바람직하게는 LiPF6를 포함할 수 있으나, 이에 한정되는 것은 아니다.
한편, 상기 리튬염은 겔 폴리머 전해질용 조성물 100 중량부에 대하여 5 중량부 내지 30 중량부, 바람직하게는 10 중량부 내지 30 중량부, 보다 바람직하게는 15 중량부 내지 30 중량부의 함량으로 포함될 수 있다. 리튬염의 함량이 상기 범위 미만일 경우 전해질 내 리튬 이온의 농도가 낮아 전지의 충방전이 제대로 이루어지지 않을 수 있고, 상기 범위를 초과할 경우 겔 폴리머 전해질의 점도가 높아져 전지 내 젖음성(wetting)이 저하될 수 있어 전지 성능을 악화시킬 수 있다.
비수계 용매
다음으로, 비수계 용매에 대하여 설명한다.
본 발명에서, 비수계 용매는 리튬 이차전지에 통상적으로 사용되는 전해액 용매로서, 예를 들면 에테르 화합물, 에스테르(Acetate류, Propionate류) 화합물, 아미드 화합물, 선형 카보네이트 또는 환형 카보네이트 화합물, 니트릴 화합물 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.
그 중에서 대표적으로 환형 카보네이트, 선형 카보네이트 또는 이들의 혼합물인 카보네이트 화합물을 포함하는 카보네이트계 전해액 용매를 사용할 수 있다.
상기 환형 카보네이트 화합물의 구체적인 예로는 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트, 및 이들의 할로겐화물로 이루어진 군에서 선택되는 단일 화합물 또는 적어도 2종 이상의 혼합물이 있다. 또한, 상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트(MPC) 및 에틸프로필 카보네이트(EPC)로 이루어진 군에서 선택된 화합물 또는 적어도 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.
특히, 상기 카보네이트계 전해액 용매 중 환형 카보네이트인 프로필렌 카보네이트 및 에틸렌 카보네이트는 고점도의 유기 용매로서 유전율이 높아 전해액 내의 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 환형 카보네이트에 에틸메틸 카보네이트, 디에틸 카보네이트 또는 디메틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 가지는 전해액을 만들 수 있어서 더욱 바람직하게 사용될 수 있다.
또한, 상기 전해액 용매 중 에스테르로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, α-발레로락톤 및 ε-카프로락톤으로 이루어진 군에서 선택되는 단일 화합물 또는 적어도 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 실시예에 따른 겔 폴리머 전해질용 조성물은 상기 기재된 성분들 이외에, 올리고머의 폴리머 네트워크 형성 반응의 효율성 증대와 저항 감소 효과를 부여하기 위하여, 당 업계에 알려진 이러한 물성을 구현할 수 있는 기타 첨가제, 무기물 입자 등을 선택적으로 더 함유할 수 있다. 상기 기타 첨가제로는, 예를 들면, VC (Vinylene Carbonate), VEC(vinyl ethylene carbonate), Propane sultone, SN(succinonitrile), AdN(Adiponitrile), ESa(ethylene sulfate), PRS (Propene Sultone), FEC(fluoroethylene carbonate), LiPO2F2, LiODFB(Lithium difluorooxalatoborate), LiBOB(Lithium bis-(oxalato)borate), TMSPa(3-trimethoxysilanyl-propyl-N-aniline), TMSPi(Tris(trimethylsilyl) Phosphite) 등의 첨가제를 모두 적용 가능하다.
또한, 상기 무기물 입자로는, 유전율 상수가 5 이상인 BaTiO3, BaTiO3, Pb(Zr,Ti)O3 (PZT), Pb1-aLaaZr1-bTibO3 (PLZT, 여기서, 0<a<1, 0<b<1임), Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, TiO2, SiC 및 이들의 혼합체로부터 이루어진 군에서 선택되는 단일 화합물 또는 적어도 2종 이상의 혼합물 등이 사용될 수 있다.
이외에도 리튬 이온 전달 능력을 갖는 무기물 입자, 즉 리튬포스페이트 (Li3PO4), 리튬티타늄포스페이트 (LicTid(PO4)3, 0<d<2, 0<d<3), 리튬알루미늄티타늄포스페이트 (Lia1Alb1Tic1(PO4)3, 0<a1<2, 0<b1<1, 0<c1<3), 14Li2O-9Al2O3-38TiO2-39P2O5 등과 같은 (LiAlTiP)a2Ob2 계열 글래스(glass) (0<a2<4, 0<b2<13), 리튬란탄티타네이트 (Lia3Lab3TiO3, 0<a3<2, 0<b3<3), Li3.25Ge0.25P0.75S4 등과 같은 리튬게르마니움티오포스페이트 (Lia4Geb4Pc2Sd, 0<a4<4, 0<b4<1, 0<c2<1, 0<d<5), Li3N 등과 같은 리튬나이트라이드 (Lia5Nb5, 0<a5<4, 0<b5<2), Li3PO4-Li2S-SiS2 등과 같은 SiS2 계열 글래스 (Lia6Sib6Sc3, 0<a6<3, 0<b6<2, 0<c4<4), LiI-Li2S-P2S5 등과 같은 P2S5 계열 글래스 (Lia7Pb7Sc5, 0<a7<3, 0<b7<3, 0<c5<7) 또는 이들의 혼합물 등이 사용될 수 있다.
<겔 폴리머 전해질>
이하, 본 발명에 따른 겔 폴리머 전해질에 대하여 설명한다.
본 발명의 일 구현예에 따르면, 상기 겔 폴리머 전해질 조성물을 이용하여 제조되는 겔 폴리머 전해질이다.
종래 겔 폴리머 전해질은 액체 전해질에 비하여 이온전도도 등이 낮고, 고체 고분자 전해질과 비교하는 경우 안정성 및 기계적 물성이 상대적으로 취약하다는 문제점이 있다.
그러나, 본 발명에 따른 겔 폴리머 전해질은, 각각 독립적으로 (메타)아크릴레이트 기를 포함하는 단위 A 및 A', 각각 독립적으로 아마이드 기를 포함하는 단위 B 및 B', 각각 독립적으로 옥시알킬렌 기를 포함하는 단위 C 및 C', 실록산 기를 포함하는 단위 D를 포함하는 상기 화학식 1로 표시되는 올리고머로 폴리머 네트워크를 형성하여, 이온 전도성 및 기계적 물성을 개선할 수 있다.
또한, 본 발명의 겔 폴리머 전해질 조성물은 음이온 안정화 첨가제를 포함하므로, 상기 겔 폴리머 전해질 조성물로 전해질을 제조하는 동안, 발생되는 리튬염의 음이온에 의하여 발생되는 비수계 용매의 분해반응 또는 전극과 전해질과의 부반응을 조절할 수 있어 전지의 수명특성 및 성능을 개선할 수 있다.
예를 들어, 본 발명에 따른 겔 폴리머 전해질은, 당 업계에 알려진 통상적인 방법에 따라 겔 폴리머 전해질용 조성물을 중합시켜 형성된 것이다. 예를 들면, 겔 폴리머 전해질은 이차 전지의 내부에서 상기 겔 폴리머 전해질용 조성물을 in-situ 중합하여 형성될 수 있다.
보다 구체적으로, (a) 양극, 음극, 및 상기 양극과 음극 사이에 개재(介在)된 분리막으로 이루어진 전극 조립체를 전지 케이스에 삽입하는 단계 및 (b) 상기 전지 케이스에 본 발명에 따른 겔 폴리머 전해질용 조성물을 주입한 후 중합시켜 겔 폴리머 전해질을 형성하는 단계를 거쳐 제조될 수 있다.
리튬 이차 전지 내 in-situ 중합 반응은 E-BEAM, 감마선, 상온/고온 에이징 공정을 통하여 가능하며, 본 발명의 일 실시예에 따르면 열 중합을 통해 진행될 수 있다. 이때, 중합 시간은 대략 2분 내지 12시간 정도 소요되며, 열 중합 온도는 30 내지 100℃ 가 될 수 있다.
보다 구체적으로 리튬 이차 전지 내 in-situ 중합 반응은 리튬염이 포함되어 있는 전해액에 중합 개시제와 상기 올리고머를 소정량 첨가하여 혼합한 후 전지셀에 주액한다. 그러한 전지셀의 주액구를 밀봉한 후, 40℃ 내지 80℃로 1 시간 내지 20 시간 동안 가열하여 중합을 행하면, 리튬염 함유 전해액이 겔화를 거치게 되면 겔의 형태로 포함된 겔 폴리머 전해질이 제조된다.
또 다른 방법으로는, 상기 리튬염이 포함되어 있는 전해액에 중합 개시제와 상기 올리고머를 소정량 첨가하여 혼합한 후 이를 전극 및 분리막 일 표면에 코팅하고, 열이나 UV를 이용하여 경화(겔화)시킨 다음, 겔 폴리머 전해질이 형성된 전극 및/또는 분리막을 권취 또는 적층하여 전극 조립체를 제조하고, 이를 전지 케이스에 삽입하고 기존 액체 전해액을 재주액하여 제조할 수도 있다.
<리튬 이차 전지>
다음으로, 본 발명에 따른 리튬 이차전지에 대해 설명한다. 본 발명의 또 다른 실시예에 따른 이차 전지는, 음극, 양극, 상기 양극 및 음극 사이에 개재된 분리막 및 겔 폴리머 전해질을 포함한다. 상기 겔 폴리머 전해질은 상술한 내용과 동일하므로, 구체적인 설명을 생략한다.
양극
상기 양극은 양극 집전체 상에 양극 활물질, 바인더, 도전재 및 용매 등을 포함하는 양극 합제 슬러리를 코팅하여 제조할 수 있다.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적으로는 코발트, 망간, 니켈 또는 알루미늄과 같은 1종 이상의 금속과 리튬을 포함하는 리튬 복합금속 산화물을 포함할 수 있다. 보다 구체적으로, 상기 리튬 복합금속 산화물은 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1-Y1MnY1O2(여기에서, 0<Y1<1), LiMn2-z1Niz1O4(여기에서, 0<Z1<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1-Y2CoY2O2(여기에서, 0<Y2<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y3MnY3O2(여기에서, 0<Y3<1), LiMn2-z2Coz2O4(여기에서, 0<Z2<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(Nip1Coq1Mnr1)O2(여기에서, 0<p1<1, 0<q1<1, 0<r1<1, p1+q1+r1=1) 또는 Li(Nip2Coq2Mnr2)O4(여기에서, 0<p2<2, 0<q2<2, 0<r2<2, p2+q2+r2=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(Nip3Coq3Mnr3MS1)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, p3, q3, r3 및 s1은 각각 독립적인 원소들의 원자분율로서, 0<p3<1, 0<q3<1, 0<r3<1, 0<s1<1, p3+q3+r3+s1=1이다) 등) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다.
이중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 리튬 복합금속 산화물은 LiCoO2, LiMnO2, LiNiO2, 리튬 니켈망간코발트 산화물(예를 들면, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, 또는 Li(Ni0.8Mn0.1Co0.1)O2 등), 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, LiNi0.8Co0.15Al0.05O2 등) 등일 수 있으며, 리튬 복합금속 산화물을 형성하는 구성원소의 종류 및 함량비 제어에 따른 개선 효과의 현저함을 고려할 때 상기 리튬 복합금속 산화물은 Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 또는 Li(Ni0.8Mn0.1Co0.1)O2 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 양극 활물질은 양극 합제 슬러리 중 용매를 제외한 고형물 전체 중량을 기준으로 80 중량% 내지 99 중량%, 바람직하게는 85 중량% 내지 99 중량%, 보다 바람직하게는 90 중량% 내지 98 중량%로 포함될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 합제 슬러리 중 용매를 제외한 고형물 전체 중량을 기준으로 1 중량% 내지 20 중량%, 바람직하게는 1 중량% 내지 15 중량%, 보다 바람직하게는 1 중량% 내지 10 중량%로 포함될 수 있다.
이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌(PE), 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 도전재는 양극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 양극 합제 슬러리 중 용매를 제외한 고형물 전체 중량을 기준으로 1 중량% 내지 20 중량%, 바람직하게는 1 중량% 내지 15 중량%, 보다 바람직하게는 1 중량% 내지 10 중량%로 포함될 수 있다.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 그라파이트; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서멀 블랙 등의 탄소계 물질; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 시판되고 있는 도전재의 구체적인 예로는 아세틸렌 블랙 계열인 쉐브론 케미칼 컴퍼니(Chevron Chemical Company)나 덴카 블랙(Denka Singapore Private Limited), 걸프 오일 컴퍼니(Gulf Oil Company) 제품 등), 케트젠블랙(Ketjenblack), EC 계열(아르막 컴퍼니(Armak Company) 제품), 불칸(Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼(Super) P(Timcal 사 제품) 등이 있다.
상기 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기 용매를 포함할 수 있으며, 상기 양극 활물질, 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 양극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 고형분의 농도가 50 중량% 내지 95 중량%, 바람직하게는 70 중량% 내지 95 중량%, 보다 바람직하게는 70 중량% 내지 90 중량%가 되도록 포함될 수 있다.
음극
또한, 상기 음극은 예를 들어, 음극 집전체 상에 음극 활물질, 바인더, 도전재 및 용매 등을 포함하는 음극 합제 슬러리를 코팅하여 제조할 수 있다.
상기 음극 집전체는 일반적으로 3㎛ 내지 500㎛의 두께를 가진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질로는 천연흑연, 인조흑연, 탄소질재료; 리튬 함유 티타늄 복합 산화물(LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe인 금속류(Me); 상기 금속류(Me)로 구성된 합금류; 상기 금속류(Me)의 산화물(MeOx); 및 상기 금속류(Me)와 탄소와의 복합체로 이루어진 군으로부터 선택되는 적어도 1종 이상의 음극 활물질을 들 수 있다.
상기 음극 활물질은 음극 합제 슬러리 중 용매를 제외한 고형물 전체 중량을 기준으로 80 중량% 내지 99 중량%, 바람직하게는 85 중량% 내지 99 중량%, 보다 바람직하게는 90 중량% 내지 98 중량%로 포함될 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 합제 슬러리 중 용매를 제외한 고형물 전체 중량을 기준으로 1 중량% 내지 20 중량%, 바람직하게는 1 중량% 내지 15 중량%, 보다 바람직하게는 1 중량% 내지 10 중량%로 포함될 수 있다.
이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
상기 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 합제 슬러리 중 용매를 제외한 고형물 전체 중량을 기준으로 1 중량% 내지 20 중량%, 바람직하게는 1 중량% 내지 15 중량%, 보다 바람직하게는 1 중량% 내지 10 중량%로 포함될 수 있다.
이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 용매는 물 또는 NMP(N-methyl-2-pyrrolidone) 등의 유기 용매를 포함할 수 있으며, 상기 음극 활물질, 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 고형분의 농도가 50 중량% 내지 95 중량%, 바람직하게는 70 중량% 내지 90 중량%가 되도록 포함될 수 있다.
분리막
또한, 분리막으로는 종래에 분리막으로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
본 발명의 다른 실시예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지 팩을 제공한다. 상기 전지 모듈 및 전지 팩은 고용량, 높은 율속 특성 및 사이틀 특성을 갖는 상기 리튬 이차전지를 포함하므로, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 중대형 디바이스의 전원으로 이용될 수 있다.
이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 다만, 하기 실시예는 본 발명의 이해를 돕기 위한 예시일 뿐, 본 발명의 범위를 한정하는 것은 아니다. 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것은 당연한 것이다.
[실시예]
1. 실시예 1
(1) 겔 폴리머 전해질용 조성물 제조
에틸렌 카보네이트(EC):에틸메틸카보네이트(EMC) = 3:7 부피비의 조성을 갖는 비수 전해액 용매에 LiPF6를 1M 농도가 되도록 용해하여 전해액을 준비하였다. 이후, 겔 폴리머 전해질용 조성물 100 중량부 대비 상기 화학식1-5로 표시되는 올리고머 (분자량 약 9000, 상기 화학식1-5에서 n=10, o=15, p=10, q=7)를 5 중량부, 화학식 2-1로 표시되는 음이온 안정화 첨가제를 2 중량부, 중합개시제(AIBN)를 상기 올리고머 100 중량부 대비 0.4 중량부로 포함하고, 상기 전해액이 잔부로 포함되도록 혼합하여 겔 폴리머 전해질용 조성물을 제조하였다.
(2) 리튬 이차 전지 제조
양극 활물질 (LiNi1/3Co1/3Mn1/3O2; NCM), 도전재로 카본 블랙(carbon black), 바인더로 폴리비닐리덴플루오라이드(PVDF)를 94:3:3 중량비로 혼합한 후 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 합제 슬러리를 제조하였다. 상기 양극 합제 슬러리를 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
음극 활물질로 탄소 분말, 바인더로 PVDF, 도전재로 카본 블랙(carbon black)을 96:3:1 중량비로 혼합한 후 용매인 NMP에 첨가하여 음극 합제 슬러리를 제조하였다. 상기 음극 합제 슬러리를 두께가 10㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
상기 양극, 음극 및 폴리프로필렌/폴리에틸렌/폴리프로필렌 (PP/PE/PP) 3층으로 이루어진 분리막을 이용하여 전지를 조립하였으며, 상기 조립된 전지에 상기 제조된 겔 폴리머 전해질용 조성물을 주입한 후 2일 방치 후 70℃로 5시간 가열하여 겔 폴리머 전해질을 포함하는 리튬 이차 전지를 제조하였다.
2. 실시예 2
상기 실시예 1에서 화학식 2-1로 표시되는 음이온 안정화 첨가제 대신 화학식 3-1로 표시되는 음이온 안정화 첨가제를 사용한 것을 제외하고는 동일한 방법으로 겔 폴리머 전해질용 조성물 및 이를 이용하여 리튬 이차 전지를 제조하였다.
[비교예]
1. 비교예 1
(1) 전해액 제조
에틸렌 카보네이트(EC):에틸메틸카보네이트(EMC) = 3:7 부피비의 조성을 갖는 비수 전해액 용매에 LiPF6를 1M 농도가 되도록 용해하여 비수 전해액을 제조하였다.
(2) 리튬 이차 전지 제조
양극 활물질로 (LiNi1/3Co1/3Mn1/3O2; NCM), 도전재로 카본 블랙(carbon black), 바인더로 폴리비닐리덴플루오라이드(PVDF)를 94:3:3 중량비로 혼합한 후, 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 합제 슬러리를 제조하였다. 상기 양극 합제 슬러리를 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
음극 활물질로 탄소 분말, 바인더로 PVDF, 도전재로 카본 블랙(carbon black)을 96:3:1 중량비로 혼합한 후 용매인 NMP에 첨가하여 음극 합제 슬러리를 제조하였다. 상기 음극 합제 슬러리를 두께가 10㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
상기 양극, 음극 및 폴리프로필렌/폴리에틸렌/폴리프로필렌 (PP/PE/PP) 3층으로 이루어진 분리막을 이용하여 전지를 조립하였다. 상기 조립된 전지에 상기 비수 전해액을 주입한 후 2일 동안 상온에서 저장하여, 리튬 이차전지를 제조하였다.
2. 비교예 2
(1) 겔 폴리머 전해질용 조성물 제조
에틸렌 카보네이트(EC):에틸메틸카보네이트(EMC) = 3:7 부피비의 조성을 갖는 비수 전해액 용매에 LiPF6를 1M 농도가 되도록 용해하여 전해액을 준비하였다. 이후, 하기 화학식 4로 표시되는 모노머를 겔 폴리머 전해질용 조성물 100 중량부 대비 5 중량부, 화학식 3-1로 표시되는 음이온 안정화 첨가제를 겔 폴리머 전해질용 조성물 100 중량부 대비 2 중량부, 중합개시제(AIBN)를 상기 모노머 100 중량부 대비 0.4 중량부로 포함하고, 상기 전해액이 잔부로 포함되도록 혼합하여, 겔 폴리머 전해질용 조성물을 제조하였다.
[화학식 4]
Figure PCTKR2018013817-appb-I000036
(2) 리튬 이차 전지 제조
상기 실시예 1에서 제조된 겔 폴리머 전해질용 조성물 대신, 비교예 2에서 제조된 겔 폴리머 전해질용 조성물을 사용한 것을 제외하고는 실시예 1의 이차전지를 제조하는 방법과 동일한 방법으로 리튬 이차 전지를 제조하였다.
3. 비교예 3
상기 실시예 1에서 화학식 2-1로 표시되는 음이온 안정화 첨가제를 사용하지 않은 것을 제외하고는 실시예 1의 겔 폴리머 전해질용 조성물을 제조하는 방법과 동일한 방법으로 겔 폴리머 전해질용 조성물을 제조한 후, 실시예 1에서 리튬 이차 전지를 제조하는 방법과 동일한 방법으로 리튬 이차 전지를 제조하였다.
4. 비교예 4
상기 비교예 1의 비수 전해액에 화학식 2-1로 표시되는 음이온 안정화 첨가제를 비수 전해액 100 중량부에 대하여 2 중량부 첨가하여 사용한 것을 제외하고는 비교예 1의 비수 전해액을 제조하는 방법과 동일한 방법으로 비수 전해액을 제조한 후, 비교예 1에서 리튬 이차 전지를 제조하는 방법과 동일한 방법으로 리튬 이차 전지를 제조하였다.
5. 비교예 5
상기 비교예 2에서 화학식 3-1로 표시되는 음이온 안정화 첨가제 대신 화학식 2-1로 표시되는 음이온 안정화 첨가제를 비수 전해액 100 중량부에 대하여 2 중량부 사용한 것을 제외하고는 비교예 2의 겔 폴리머 전해질용 조성물을 제조하는 방법과 동일한 방법으로 겔 폴리머 전해질용 조성물을 제조한 후, 비교예 2에서 리튬 이차 전지를 제조하는 방법과 동일한 방법으로 리튬 이차 전지를 제조하였다.
실험예
1. 실험예 1
상기 실시예 1, 2 및 비교예 1 내지 5에 따라 제조된 이차전지에 대하여 25℃에서 SOC (state of charge) 50%를 맞춘 후, 5C rate로 방전 pulse로 10초 동안 방전을 진행하여, 그때 생기는 전압 강하량을 통해 각각의 리튬 이차 전지에 대한 저항값을 확인하였다. 그 결과를 측정된 저항 값을 도 1에 나타내었고, 측정된 전압 값을 도 2에 나타내었다.
먼저, 도 1의 그래프를 통해, 실시예 1, 2과 비교예 1 내지 5의 리튬 이차 전지의 저항값을 확인해보면, 비교예들의 저항값이 실시예들의 저항값 보다 높은 것을 확인할 수 있다.
또한, 도 2의 그래프를 통해, 실시예들은 3.53V 부근에서 전압 강하가 발생한 반면, 비교예들은 높은 저항 값에 의해 전압 강하가 각각 3.51V ~ 3.46V 부근에서 나타나는 것을 알 수 있다.
이것은, 실시예들의 경우, 비교예들에 비하여 리튬염에 의하여 발생되는 음이온이 안정화되어 전해질과 전극 간의 부반응이 억제되고, 비수계 용매의 분해 또한 억제되었기 때문으로 보여진다.
2. 실험예 2
상기 실시예 1, 2 및 비교예 1 내지 5에 따라 제조된 리튬 이차 전지에 대하여, 각각의 리튬 이차 전지를 SOC 50%, 25℃에서 1시간 동안 둔 후 1KHz-1mHz까지 스캔하면서 전지의 AC 임피던스를 측정하였다. 이때 교류 전류의 진폭은 10mV이었으며, 전지의 직류전위(DC potential)은 3.68V이었다. 그 결과를 도 3에 나타내었다.
도 3의 그래프에서 X축과의 교차점은 전지의 Ohm 저항을 의미하고, 뒷부분의 반원(half circle)은 극판 표면에 형성되는 SEI에 의한 저항을 의미한다. 즉 반원의 지름이 작을수록 SEI에 의해 유발되는 저항의 크기가 작다는 것을 의미한다. 이때, 실시예들의 경우, 비교예들에 비하여 저항의 크기가 작은 것을 확인할 수 있다.
이것은 실시예들은 비교예들에 비하여 리튬염에 의하여 발생되는 음이온이 안정한 상태로 존재하여 전해질과 전극 간의 부반응이 적고, 비수계 용매가 분해되는 정도가 낮기 때문인 것으로 보여진다.
3. 실험예 3
상기 실시예 1, 2 및 비교예 1 내지 5에 따라 제조된 리튬 이차 전지에 대하여, 각각의 리튬 이차 전지를 60 ℃에서 SOC 100% 상태(4.15 V)로 10주(10weeks) 동안 고온 저장하였다. 이후, 1주 단위로 각주마다 25℃에서 SOC 50%을 맞춰준 후, 5C rate로 방전 pulse로 10초 동안 방전시켜 저항값을 측정한 후, 초기(0주)에 측정된 저항값을 기준으로 저항 변화율을 측정하였다. 그 결과를 도 4에 나타내었다.
도 4의 결과, 상기 실시예 1, 2의 저항 값은 고온 저장된 이후에도 일정하게 유지되어, 저항 변화율이 큰 폭으로 상승하지 않는 것을 확인할 수 있다. 이와 달리 비교예들의 경우 저항 변화율이 큰 폭으로 상승하는 것을 확인할 수 있다. 이것은 실시예들과 비교예들을 비교할 때, 고온의 환경에서도 음이온이 안정화된 상태를 유지하여 열적 안정성이 우수하기 때문인 것으로 보여진다.

Claims (13)

  1. 하기 화학식 1로 표시되는 올리고머;
    음이온 안정화 첨가제;
    중합개시제;
    리튬염; 및
    비수계 용매를 포함하고,
    상기 음이온 안정화 첨가제는 하기 화학식 2로 표시되는 포스파이트계 화합물 및 화학식 3으로 표시되는 보론계 화합물로 이루어진 군에서 선택되는 적어도 하나 이상을 포함하는 겔 폴리머 전해질용 조성물:
    [화학식 1]
    Figure PCTKR2018013817-appb-I000037
    상기 화학식 1에서,
    상기 A 및 A'는 각각 독립적으로 (메타)아크릴레이트기를 포함하는 단위이고,
    상기 B 및 B'는 각각 독립적으로 아마이드 기를 포함하는 단위이며,
    상기 C 및 C'는 각각 독립적으로 옥시알킬렌 기를 포함하는 단위이고,
    상기 D는 실록산 기를 포함하는 단위이며,
    k는 1 내지 100의 정수이다.
    [화학식 2]
    Figure PCTKR2018013817-appb-I000038
    상기 화학식 2에서, R1, R2 및 R3는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 10의 선형 또는 비선형의 알킬기, 치환 또는 비치환된 탄소수 1 내지 10의 선형 또는 비선형의 알콕시기, 치환 또는 비치환된 탄소수 1 내지 10의 알킬기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 및 치환 또는 비치환된 탄소수 1 내지 10의 선형 또는 비선형의 알킬 실릴기로 이루어진 군에서 선택되는 적어도 하나 이상이다.
    [화학식 3]
    Figure PCTKR2018013817-appb-I000039
    상기 화학식 3에서, R4, R5 및 R6는 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 치환 또는 비치환된 탄소수 1 내지 10의 선형 또는 비선형의 알킬기 및 치환 또는 비치환된 탄소수 1 내지 10의 선형 또는 비선형의 알콕시기로 이루어진 군에서 선택되는 적어도 하나 이상이다.
  2. 청구항 1에 있어서,
    상기 R1, R2 및 R3는 불소 치환된 탄소수 1 내지 10의 선형 또는 비선형의 알킬기인 겔 폴리머 전해질용 조성물.
  3. 청구항 1에 있어서,
    상기 R4, R5 및 R6는 불소 치환된 탄소수 6 내지 20의 아릴기인 겔 폴리머 전해질용 조성물.
  4. 청구항 1에 있어서,
    상기 음이온 안정화 첨가제는 하기 화학식 2-1로 표시되는 포스파이트계 화합물을 포함하는 겔 폴리머 전해질용 조성물.
    [화학식 2-1]
    Figure PCTKR2018013817-appb-I000040
  5. 청구항 1에 있어서,
    상기 음이온 안정화 첨가제는 하기 화학식 3-1로 표시되는 보론계 화합물을 포함하는 겔 폴리머 전해질용 조성물.
    [화학식 3-1]
    Figure PCTKR2018013817-appb-I000041
  6. 청구항 1에 있어서,
    상기 A 및 A'는 각각 독립적으로 하기 화학식 A-1 내지 A-5로 표시되는 단위 중 적어도 하나 이상을 포함하는 겔 폴리머 전해질용 조성물:
    [화학식 A-1]
    Figure PCTKR2018013817-appb-I000042
    [화학식 A-2]
    Figure PCTKR2018013817-appb-I000043
    [화학식 A-3]
    Figure PCTKR2018013817-appb-I000044
    [화학식 A-4]
    Figure PCTKR2018013817-appb-I000045
    [화학식 A-5]
    Figure PCTKR2018013817-appb-I000046
  7. 청구항 1에 있어서,
    상기 단위 B 및 B'는 각각 독립적으로 하기 화학식 B-1로 표시되는 단위를 포함하는 겔 폴리머 전해질용 조성물:
    [화학식 B-1]
    Figure PCTKR2018013817-appb-I000047
    상기 화학식 B-1에서,
    R'은 치환 또는 비치환된 탄소수 1 내지 10의 선형 또는 비선형 알킬렌기, 치환 또는 비치환된 탄소수 3 내지 10의 사이클로알킬렌기, 치환 또는 비치환된 탄소수 6 내지 20의 바이사이클로알킬렌기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 하기 화학식 R'-1로 표시되는 단위 및 하기 화학식 R'-2로 표시되는 단위로 이루어진 군에서 선택되는 적어도 하나 이상이다.
    [화학식 R'-1]
    Figure PCTKR2018013817-appb-I000048
    [화학식 R'-2]
    Figure PCTKR2018013817-appb-I000049
  8. 청구항 1에 있어서,
    상기 단위 C 및 C'는 각각 독립적으로 화학식 C-1로 표시되는 단위를 포함하는 겔 폴리머 전해질용 조성물:
    [화학식 C-1]
    Figure PCTKR2018013817-appb-I000050
    상기 화학식 C-1에서, R"은 치환 또는 비치환된 탄소수 1 내지 10의 선형 또는 비선형 알킬렌기이고, l은 1 내지 30의 정수이다.
  9. 청구항 1에 있어서,
    상기 단위 D는 각각 독립적으로 화학식 D-1으로 표시되는 단위를 포함하는 겔 폴리머 전해질용 조성물:
    [화학식 D-1]
    Figure PCTKR2018013817-appb-I000051
    상기 식에서, R7 및 R8는 탄소수 1 내지 5의 선형 또는 비선형 알킬렌기이고, R9, R10, R11 및 R12는 각각 독립적으로 수소, 탄소수 1 내지 5의 알킬기 또는 탄소수 6 내지 12인 아릴기이며, m은 1 내지 500의 정수이다.
  10. 청구항 1에 있어서,
    상기 올리고머는 하기 화학식 1-5로 표시되는 화합물을 포함하는 겔 폴리머 전해질용 조성물:
    [화학식 1-5]
    Figure PCTKR2018013817-appb-I000052
    상기 식에서, n, o, p는 각각 1 내지 30의 정수이고, q는 1 내지 100의 정수이다.
  11. 청구항 1에 있어서,
    상기 음이온 안정화 첨가제는 상기 겔 폴리머 전해질용 조성물 100 중량부에 대하여, 0.1 중량부 내지 20 중량부로 포함되는 겔 폴리머 전해질용 조성물.
  12. 청구항 1의 겔 폴리머 전해질용 조성물을 이용하여 제조되는 겔 폴리머 전해질.
  13. 양극;
    음극;
    상기 양극과 음극 사이에 배치되는 분리막; 및
    청구항 12의 겔 폴리머 전해질을 포함하는 리튬 이차 전지.
PCT/KR2018/013817 2017-11-13 2018-11-13 겔 폴리머 전해질용 조성물, 이로부터 제조된 겔 폴리머 전해질 및 이를 포함하는 리튬 이차 전지 WO2019093862A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/607,206 US11411248B2 (en) 2017-11-13 2018-11-13 Composition for gel polymer electrolyte including siloxane oligomer, lithium salt, and phosphate or boron-based anion stabilizing additive, gel polymer electrolyte prepared therefrom, and lithium secondary battery including the gel polymer electrolyte
CN201880029401.6A CN110603681B (zh) 2017-11-13 2018-11-13 用于凝胶聚合物电解质的组合物、由该组合物制备的凝胶聚合物电解质和包括该凝胶聚合物电解质的锂二次电池
EP18876065.6A EP3605706A4 (en) 2017-11-13 2018-11-13 COMPOSITION FOR GELPOLYMER ELECTROLYTE, GELPOLYMER ELECTROLYTE MADE THEREOF AND LITHIUM SECONDARY BATTERY, INCLUDING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0150919 2017-11-13
KR20170150919 2017-11-13

Publications (1)

Publication Number Publication Date
WO2019093862A1 true WO2019093862A1 (ko) 2019-05-16

Family

ID=66437967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013817 WO2019093862A1 (ko) 2017-11-13 2018-11-13 겔 폴리머 전해질용 조성물, 이로부터 제조된 겔 폴리머 전해질 및 이를 포함하는 리튬 이차 전지

Country Status (5)

Country Link
US (1) US11411248B2 (ko)
EP (1) EP3605706A4 (ko)
KR (1) KR102270118B1 (ko)
CN (1) CN110603681B (ko)
WO (1) WO2019093862A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115882057B (zh) * 2022-09-23 2023-09-08 四川新能源汽车创新中心有限公司 一种电解质、固态电池及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100056581A (ko) 2008-11-20 2010-05-28 주식회사 엘지화학 전지특성이 향상된 리튬 이차전지
KR20110086513A (ko) * 2010-01-22 2011-07-28 가부시키가이샤 히타치세이사쿠쇼 리튬 이온 전지
JP2011222431A (ja) * 2010-04-14 2011-11-04 Tosoh Finechem Corp 二次電池用電解液
US20130029232A1 (en) * 2011-07-25 2013-01-31 Microvast New Materials (Huzhou) Co., LTD. Lithium ion secondary battery including ionic liquid electrolyte
KR20130058403A (ko) * 2011-11-25 2013-06-04 삼성전자주식회사 전해액 조성물, 겔 고분자 전해질 및 이를 포함하는 리튬 전지
KR20160040128A (ko) * 2014-10-02 2016-04-12 주식회사 엘지화학 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3591152B2 (ja) * 1996-08-28 2004-11-17 昭和電工株式会社 電解液及びそれを用いた高分子ゲル電解質、及びその用途
US6096453A (en) * 1998-06-19 2000-08-01 Adven Polymers, Inc. Polymeric thin-film reversible electrochemical charge storage devices
CN1197190C (zh) * 2000-01-27 2005-04-13 索尼株式会社 凝胶电解液电池的制造方法
KR100726891B1 (ko) * 2005-07-27 2007-06-14 한국과학기술원 유-무기 하이브리드형 나노입자 및 이를 포함하는리튬고분자 이차전지용 나노복합체 고분자 전해질
US9118088B2 (en) * 2009-06-10 2015-08-25 Asahi Kasei E-Materials Corporation Electrolyte solution and lithium ion secondary battery using the same
KR101147240B1 (ko) * 2009-11-10 2012-05-21 삼성에스디아이 주식회사 리튬 이차 전지
US8609287B2 (en) 2010-05-25 2013-12-17 Uchicago Argonne, Llc Polyether-functionalized redox shuttle additives for lithium ion batteries
JP5462949B2 (ja) 2010-09-24 2014-04-02 積水化学工業株式会社 電解質、電解液、ゲル電解質、電解質膜、ゲル電解質電池の製造方法及びリチウムイオン二次電池
EP2822082B1 (en) 2012-04-20 2017-12-20 LG Chem, Ltd. Electrolyte for secondary battery and lithium secondary battery including same
EP2908375B1 (en) 2013-10-28 2018-09-19 LG Chem, Ltd. Lithium secondary battery
TWI559597B (zh) 2013-10-31 2016-11-21 Lg化學股份有限公司 凝膠聚合物電解質與含彼之電化學裝置
CN106165179A (zh) * 2014-03-21 2016-11-23 巴斯夫欧洲公司 固体电解质
CN105390744B (zh) * 2014-08-29 2021-10-22 三星电子株式会社 复合物、其制备方法、包括其的电解质及锂二次电池
EP3001494B1 (en) * 2014-09-19 2018-08-15 Samsung Electronics Co., Ltd. Electrolyte, method of preparing the electrolyte, and lithium secondary battery comprising the electrolyte
EP3203564B1 (en) * 2014-10-02 2018-02-14 LG Chem, Ltd. Gel polymer electrolyte and lithium secondary battery comprising same
WO2016053065A1 (ko) * 2014-10-02 2016-04-07 주식회사 엘지화학 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지
WO2016053064A1 (ko) * 2014-10-02 2016-04-07 주식회사 엘지화학 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지
US10308587B2 (en) * 2015-02-03 2019-06-04 Blue Current, Inc. Functionalized fluoropolymers and electrolyte compositions
KR20170062256A (ko) 2015-11-27 2017-06-07 솔브레인 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
US10790541B2 (en) * 2017-07-28 2020-09-29 Lg Chem, Ltd. Composition for gel polymer electrolyte and lithium secondary battery comprising the gel polymer electrolyte formed therefrom

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100056581A (ko) 2008-11-20 2010-05-28 주식회사 엘지화학 전지특성이 향상된 리튬 이차전지
KR20110086513A (ko) * 2010-01-22 2011-07-28 가부시키가이샤 히타치세이사쿠쇼 리튬 이온 전지
JP2011222431A (ja) * 2010-04-14 2011-11-04 Tosoh Finechem Corp 二次電池用電解液
US20130029232A1 (en) * 2011-07-25 2013-01-31 Microvast New Materials (Huzhou) Co., LTD. Lithium ion secondary battery including ionic liquid electrolyte
KR20130058403A (ko) * 2011-11-25 2013-06-04 삼성전자주식회사 전해액 조성물, 겔 고분자 전해질 및 이를 포함하는 리튬 전지
KR20160040128A (ko) * 2014-10-02 2016-04-12 주식회사 엘지화학 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3605706A4

Also Published As

Publication number Publication date
CN110603681B (zh) 2023-05-05
EP3605706A1 (en) 2020-02-05
CN110603681A (zh) 2019-12-20
US11411248B2 (en) 2022-08-09
EP3605706A4 (en) 2020-07-01
KR20190054981A (ko) 2019-05-22
KR102270118B1 (ko) 2021-06-28
US20200373614A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
WO2019107921A1 (ko) 젤 폴리머 전해질용 조성물 및 이를 포함하는 젤 폴리머 전해질 및 리튬 이차 전지
WO2021235794A1 (ko) 이차전지
WO2019108031A1 (ko) 젤 폴리머 전해질용 조성물, 이로부터 제조되는 젤 폴리머 전해질 및 이를 포함하는 리튬 이차 전지
WO2018106078A1 (ko) 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지
WO2019013501A1 (ko) 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2019203622A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2020060295A1 (ko) 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지
WO2020096343A1 (ko) 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지
WO2021025521A1 (ko) 고분자 전해질용 공중합체, 이를 포함하는 겔 폴리머 전해질 및 리튬 이차전지
WO2020036336A1 (ko) 리튬 이차 전지용 전해질
WO2020036337A1 (ko) 리튬 이차 전지용 전해질
WO2019135624A1 (ko) 겔 폴리머 전해질 조성물, 이에 의해 제조된 겔 폴리머 전해질 및 이를 포함하는 리튬 이차전지
WO2017171449A1 (ko) 겔 폴리머 전해질용 조성물 및 겔 폴리머 전해질
WO2020060293A1 (ko) 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지
WO2022092831A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2021015535A1 (ko) 리튬 이차전지
WO2019039903A2 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019108024A1 (ko) 젤 폴리머 전해질용 조성물, 이로부터 제조되는 젤 폴리머 전해질 및 이를 포함하는 리튬 이차 전지
WO2019143155A1 (ko) 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
WO2019209089A1 (ko) 리튬 이차 전지 및 이의 제조방법
WO2019093862A1 (ko) 겔 폴리머 전해질용 조성물, 이로부터 제조된 겔 폴리머 전해질 및 이를 포함하는 리튬 이차 전지
WO2019088733A1 (ko) 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지
WO2019009594A1 (ko) 이차전지용 고분자 전해질 및 이를 포함하는 리튬 이차전지
WO2019108019A1 (ko) 젤 폴리머 전해질용 조성물, 이로부터 제조되는 젤 폴리머 전해질 및 이를 포함하는 리튬 이차 전지
WO2019108023A1 (ko) 젤 폴리머 전해질용 조성물, 이로부터 제조되는 젤 폴리머 전해질 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876065

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018876065

Country of ref document: EP

Effective date: 20191029

NENP Non-entry into the national phase

Ref country code: DE