WO2019092880A1 - 故障検出装置、故障検出方法及び故障検出プログラム - Google Patents
故障検出装置、故障検出方法及び故障検出プログラム Download PDFInfo
- Publication number
- WO2019092880A1 WO2019092880A1 PCT/JP2017/040741 JP2017040741W WO2019092880A1 WO 2019092880 A1 WO2019092880 A1 WO 2019092880A1 JP 2017040741 W JP2017040741 W JP 2017040741W WO 2019092880 A1 WO2019092880 A1 WO 2019092880A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- peripheral
- detection
- sensor
- detection data
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 126
- 230000002093 peripheral effect Effects 0.000 claims description 105
- 238000000034 method Methods 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 14
- 238000012545 processing Methods 0.000 claims description 14
- 238000004891 communication Methods 0.000 description 18
- 230000006870 function Effects 0.000 description 16
- 230000005856 abnormality Effects 0.000 description 11
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 230000002159 abnormal effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- GFNANZIMVAIWHM-OBYCQNJPSA-N triamcinolone Chemical compound O=C1C=C[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@]([C@H](O)C4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 GFNANZIMVAIWHM-OBYCQNJPSA-N 0.000 description 2
- 238000012937 correction Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/02—Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
- B60W50/0205—Diagnosing or detecting failures; Failure detection models
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/497—Means for monitoring or calibrating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/42—Simultaneous measurement of distance and other co-ordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/93—Lidar systems specially adapted for specific applications for anti-collision purposes
- G01S17/931—Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/02—Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
- B60W50/0205—Diagnosing or detecting failures; Failure detection models
- B60W2050/021—Means for detecting failure or malfunction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/02—Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
- B60W50/0205—Diagnosing or detecting failures; Failure detection models
- B60W2050/0215—Sensor drifts or sensor failures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2420/00—Indexing codes relating to the type of sensors based on the principle of their operation
- B60W2420/40—Photo, light or radio wave sensitive means, e.g. infrared sensors
- B60W2420/408—Radar; Laser, e.g. lidar
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/497—Means for monitoring or calibrating
- G01S2007/4975—Means for monitoring or calibrating of sensor obstruction by, e.g. dirt- or ice-coating, e.g. by reflection measurement on front-screen
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/40—Means for monitoring or calibrating
- G01S7/4004—Means for monitoring or calibrating of parts of a radar system
- G01S7/4039—Means for monitoring or calibrating of parts of a radar system of sensor or antenna obstruction, e.g. dirt- or ice-coating
Definitions
- the present invention relates to a technology for detecting a failure of a sensor mounted on a mobile body.
- a driving support function such as an emergency automatic braking function.
- a sensor that emits radio waves or light such as a millimeter wave radar and a light detection and ranging (LiDAR) may be used. If the sensor for realizing the driving support function completely fails, the driving support function can not be used. However, as in the case where dirt or dust adheres to the sensor, when an abnormality occurs in only part of the sensing range of the sensor, it is possible to obtain the detection result that the obstacle is present but not present There is sex. If such a detection result is obtained, there is a possibility that the driving support function operates incorrectly.
- Patent Document 1 describes that a sensor's abnormality is detected by comparing a model of a normal sensing result generated based on advance traveling data with an actual sensing result.
- Patent Document 1 can not detect an abnormality of a sensor except in a situation similar to a model generated in advance.
- An object of the present invention is to make it possible to detect an abnormality of a sensor without generating a model in advance.
- the failure detection device is A detection data acquisition unit that acquires detection data that is sensor data output in a past reference period by a sensor mounted on a mobile object; A peripheral data acquisition unit for acquiring peripheral data detected in a peripheral existing around the mobile object; The detection data acquired by the detection data acquisition unit includes detection data specifying a detection content in which a difference from the peripheral content specified from the peripheral data acquired by the peripheral data acquisition unit is within a reference range And a failure determination unit that determines whether or not the sensor is broken based on whether the sensor is broken or not.
- the detection data for the past reference period includes detection data for specifying the detection content whose difference from the peripheral content specified from the peripheral data detected in the peripheral body is within the reference range. , Determine whether the sensor is broken. Thereby, the sensor abnormality can be detected without generating a model in advance.
- FIG. 1 is a configuration diagram of a failure detection device 10 according to a first embodiment.
- 6 is a flowchart showing the operation of the failure detection device 10 according to the first embodiment.
- FIG. 2 is a diagram showing an example of a mobile unit 100 and surrounding conditions according to the first embodiment. Explanatory drawing of the sensing in the condition of FIG. 3 which concerns on Embodiment 1.
- FIG. Explanatory drawing of the detection data obtained in the condition of FIG. 4 which concerns on Embodiment 1.
- FIG. Explanatory drawing of the periphery data which concern on Embodiment 1.
- FIG. 6 is a flowchart of failure determination processing according to the first embodiment.
- FIG. 2 is an explanatory view of a divided area 58 according to the first embodiment.
- FIG. 7 shows an example in which the operation of the sensor 31 according to the first embodiment is determined to be normal.
- FIG. 7 shows an example in which the operation of the sensor 31 according to the first embodiment is determined to be abnormal.
- FIG. 7 is a configuration diagram of a failure detection device 10 according to a second modification. Explanatory drawing of correction
- Embodiment 1 *** Description of the configuration *** The configuration of the failure detection device 10 according to the first embodiment will be described with reference to FIG.
- the moving body 100 is a vehicle, a ship, a train or the like.
- the mobile unit 100 is described as a vehicle.
- the failure detection device 10 may be implemented in an integrated or non-separable form with the moving body 100 or the other components illustrated. Also, the failure detection device 10 may be implemented in a removable or detachable form.
- the failure detection device 10 is a computer.
- the failure detection device 10 includes hardware of a processor 11, a memory 12, a storage 13, and a communication interface 14.
- the processor 11 is connected to other hardware via a signal line to control these other hardware.
- the processor 11 is an IC (Integrated Circuit) that performs arithmetic processing.
- the processor 11 is configured by a register that stores an instruction and information, a peripheral circuit, and the like.
- the processor 11 is, as a specific example, a central processing unit (CPU), a digital signal processor (DSP), or a graphics processing unit (GPU).
- the memory 12 is a storage device that temporarily stores data.
- the memory 12 is, as a specific example, a static random access memory (SRAM) or a dynamic random access memory (DRAM).
- SRAM static random access memory
- DRAM dynamic random access memory
- the storage 13 is a storage device for storing data.
- the storage 13 is, as a specific example, a ROM, a flash memory, or an HDD (Hard Disk Drive).
- the storage 13 is a portable storage such as an SD (registered trademark, Secure Digital) memory card, a CF (Compact Flash), a NAND flash, a flexible disk, an optical disk, a compact disk, a Blu-ray (registered trademark) disk, and a DVD (Digital Versatile Disk). It may be a medium.
- the communication interface 14 is an interface for communicating with an external device.
- the communication interface 14 is an interface for communicating via the network 30 such as CAN (Controller Area Network) mounted on the mobile unit 100 or in-vehicle Ethernet (registered trademark).
- the communication interface 14 is, as a specific example, a port of CAN (Controller Area Network), Ethernet (registered trademark), RS232C, or USB (Universal Serial Bus).
- the communication interface 14 is connected to the sensor 31, the map storage device 32, the display device 33, and the communication device 34 via the network 30.
- the sensor 31 is a device such as a millimeter wave radar and LiDAR that emits radio waves, light, sound or the like and detects the reflection on the object to specify the position and velocity of the object.
- the map storage device 32 is a storage device such as a ROM that stores map data, a flash memory, or an HDD. Map data indicates road boundaries and the like.
- the display device 33 is a device that displays information such as an LCD (Liquid Crystal Display).
- the display device 33 is installed on the mobile unit 100 so as to be seen by a passenger such as a driver of the mobile unit 100.
- the communication device 34 is a device that communicates with the peripheral 200 existing around the mobile unit 100.
- the peripheral body 200 is a vehicle, a ship or the like moving around the mobile body 100.
- the peripheral body 200 is a roadside device or the like existing around the mobile body 100.
- the failure detection device 10 includes a detection data acquisition unit 21, a peripheral data acquisition unit 22, a failure determination unit 23, and a notification unit 24 as functional components.
- the functions of the functional components of the failure detection apparatus 10 are realized by software.
- the storage 13 stores a program for realizing the function of the functional component of the failure detection device 10.
- the program is read into the memory 12 by the processor 11 and executed by the processor 11. Thereby, the functions of the functional components of the failure detection device 10 are realized.
- the failure detection apparatus 10 may include a plurality of processors that replace the processor 11.
- the plurality of processors share execution of a program that realizes the function of the functional component of the failure detection device 10.
- the operation of the failure detection apparatus 10 according to the first embodiment will be described with reference to FIGS. 2 to 10.
- the operation of the failure detection apparatus 10 according to the first embodiment corresponds to the failure detection method according to the first embodiment.
- the operation of the failure detection apparatus 10 according to the first embodiment corresponds to the failure detection program according to the first embodiment.
- the detection data acquisition unit 21 acquires detection data which is sensor data output in the past reference period by the sensor 31 mounted on the mobile unit 100 via the communication interface 14.
- the detection data is data in which the relative position of the detection object with respect to the moving body 100, the moving direction, and the moving speed can be specified as the detection content.
- the detection data acquisition unit 21 specifies the relative position, the moving direction, and the moving speed of each detected object based on the detection data.
- the detection data acquisition unit 21 converts the relative position of each detection object into the position of the absolute coordinate system. Specifically, the detection data acquisition unit 21 specifies the position of the absolute coordinate system of the mobile unit 100 by receiving the positioning signal from the satellite, and relative to each detected object with reference to the specified position. Convert a position to a position in an absolute coordinate system.
- the detection data will be specifically described with reference to FIGS. 3 to 5.
- the moving body 100 travels at the speed v1 and the peripheral body 200 travels at the speed v2 on the opposite lane 52 of the lane 51 in which the moving body 100 travels.
- a post 54 and a tree 55 are present at the side of the road outside the road 53.
- the sensor 31 is a type of sensor such as a millimeter wave radar and LIDAR that irradiates radio waves or a laser toward an object and obtains its reflection to detect the presence or absence of an obstacle. Therefore, in the case of FIG. 3, as shown in FIG.
- the sensor 31 radiates radio waves or lasers radially toward the range of the angle X in front of the moving body 100, and a detected object within the sensing range 56 Receive a radio wave or a reflected wave reflected by a laser.
- the sensor 31 receives a reflected wave reflected by a radio wave or a laser at a reflection point 57 indicated by “x”. Due to the structure of the sensor 31, a reflection point 57 exists in a range visible from the moving body 100, and no reflection point 57 exists on the back side of the detection object not visible from the moving body 100.
- the detection data acquisition unit 21 acquires the reflected wave reflected at the reflection point 57 as detection data.
- the detection data acquisition unit 21 specifies the relative position of the reflection point 57 with respect to the movable body 100 based on the time from the irradiation of the radio wave or the laser until the reflection wave is obtained and the direction of the irradiation of the radio wave or the laser. It is possible. In addition, the detection data acquisition unit 21 analyzes the change of the position of the reflection point 57 in time series and differentiates it, or analyzes the change of the Doppler frequency of the reflected wave, thereby relative to the moving object 100 and the detected object. Speed and relative movement direction can be identified. In the case of FIG. 4, as shown in FIG.
- the post 54 and the tree 55 do not move, so the reflection point 57 in the post 54 and the tree 55 has the same velocity v1 as the mobile 100 with respect to the mobile 100. Looks like it's coming.
- the reflection point 57 of the peripheral body 200 which is a moving object, is a combination of the speeds of the moving body 100 and the peripheral body 200, and appears to be directed to the moving body 100 at a speed v1 + v2.
- Step S2 in FIG. 2 peripheral data acquisition process
- the peripheral data acquisition unit 22 acquires peripheral data detected by the peripheral 200 existing around the mobile unit 100 via the communication interface 14.
- the peripheral data is data in which the position, moving direction, and moving speed of the peripheral body 200 can be specified as peripheral contents.
- peripheral data is data indicating the position, moving direction, and moving speed of the peripheral body 200.
- the peripheral data will be specifically described with reference to FIG. 6 shows the case where the peripheral data acquisition unit 22 acquires peripheral data detected by the peripheral 200 shown in FIG.
- the peripheral body 200 can specify the position, moving direction, and moving speed of the peripheral body 200 by a sensor mounted on the peripheral body 200.
- the peripheral body 200 specifies a position by receiving a positioning signal from a satellite.
- the peripheral body 200 also specifies movement direction and movement speed by analyzing changes in position in time series and performing differentiation.
- the peripheral body 200 transmits peripheral data indicating the position, moving direction, and moving speed of the identified peripheral body 200 to the moving body 100 by wireless communication.
- Wireless communication is, for example, 802.11p. However, the wireless communication may be of another type as long as communication of peripheral data is possible.
- the peripheral 200 transmits peripheral data indicating the position to the mobile 100 by wireless communication.
- the peripheral data acquiring unit 22 specifies the moving direction and the moving speed by analyzing the change in the position of the transmitted peripheral body 200 in time series and performing differentiation.
- the failure determination unit 23 includes, in the detection data acquired in step S1, detection data in which the detection content whose difference from the peripheral content specified from the peripheral data acquired in step S2 is within the reference range is specified. It is determined whether or not. The failure determination unit 23 determines that the sensor 31 is not broken if it is included, and determines that the sensor 31 is broken if it is not included.
- the failure determination process (step S3 in FIG. 2) according to the first embodiment will be described with reference to FIG.
- the failure determination unit 23 executes the following processing from step S31 to step S34 for each divided area 58 obtained by dividing the sensing range 56.
- the division area 58 is an area in which the sensing range 56 is divided into sectors at arbitrary angles based on the sensor 31.
- the sensing range 56 is divided into two divided areas 58 of the divided area 58 of the angle Y and the divided area 58 of the angle Z.
- the angle Y and the angle Z may be the same angle or different angles.
- Step S31 of FIG. 7 data determination process
- the failure determination unit 23 determines whether there is peripheral data in which the specified position falls within the target divided area 58. If the failure determination unit 23 exists, the process proceeds to step S32. On the other hand, if there is not, the failure determination unit 23 advances the process to step S33.
- Step S32 in FIG. 7 Object Determination Processing
- the fault determination unit 23 identifies the detection content whose value is within the reference range by weighting and adding the difference between the position specified from the detection data and the peripheral data, the movement direction, and the movement speed to the detection data. To determine if it contains any detected data.
- the failure determination unit 23 calculates TOTALdiff for each detected object as shown in Equation 1 with respect to the detected object of interest and surrounding data.
- LATdiff
- LONdiff
- Vdiff
- DIRdiff
- TOTALdiff ⁇ ⁇ LATdiff + ⁇ ⁇ LONdiff + ⁇ ⁇ Vdiff + ⁇ ⁇ DIRdiff
- LONe is the longitude of the detected object
- LONo is the longitude of the peripheral 200
- Ve is the moving speed of the detected object
- Vo is the moving speed of the peripheral body 200.
- DIRe is the movement direction of the detected object
- DIRo is the movement direction of the peripheral body 200.
- ⁇ , ⁇ , ⁇ , ⁇ are weighting coefficients.
- the failure determining unit 23 determines whether there is a detected object whose calculated TOTALdiff is within the reference range. That is, the failure determination unit 23 determines whether or not there is a detected object in which TOTALdiff ⁇ reference range TOTALth. If the failure determination unit 23 exists, the process proceeds to step S33. On the other hand, when the failure determination unit 23 does not exist, the process proceeds to step S34.
- Step S33 in FIG. 7 normality determination processing
- the failure determination unit 23 determines that the operation of the sensor 31 is normal for the target divided area 58. That is, as in area 1 of FIG. 9, the operation of the sensor 31 is normal for the divided area 58 determined that there is no peripheral data in which the position specified in step S31 falls within the target divided area 58. It is determined that Further, as in area 2 of FIG. 9, the operation of the sensor 31 is determined to be normal also for the divided area 58 determined in step S32 that there is a detected object in which TOTALdiff ⁇ reference range TOTALth.
- Step S34 in FIG. 7 abnormality determination processing
- the failure determination unit 23 determines that the operation of the sensor 31 is abnormal for the target divided area 58. That is, as in area 2 of FIG. 10, it is determined that the operation of the sensor 31 is abnormal for the divided area 58 determined in step S32 that there is no detected object with TOTALdiff ⁇ reference range TOTALth.
- Step S4 in FIG. 2 Notification Process
- the notification unit 24 outputs the result determined in step S33 or step S34 to the display device 33 via the communication interface 14 for display.
- the notification unit 24 displays the divided area 58 or the like determined to have an abnormality by displaying it in a graphic or a character.
- the passenger such as the driver of the mobile unit 100 is notified of the state of the sensor 31.
- the notification unit 24 may notify a device that realizes that function the presence or absence of an abnormality in the sensor 31.
- it is possible to take measures such as stopping part or all of the driving support function.
- the difference between the detection data for the past reference period and the peripheral content specified from the peripheral data detected by the peripheral body 200 is within the reference range. It is determined whether or not detection data specifying the detection content is included.
- the failure detection device 10 according to the first embodiment determines whether the sensor is broken. Therefore, the sensor abnormality can be detected without generating a model in advance.
- the failure determination unit 23 moves the detection data for the past reference period in the opposite direction to the moving direction of the moving object 100 for the divided area 58 where there is no peripheral data in which the specified position falls within the target divided area 58. Whether or not the sensor 31 is operating normally may be determined based on whether or not there is detection data that indicates a direction and indicates the same moving speed as the moving speed of the moving body 100.
- each functional component is realized by software.
- each functional component may be realized by hardware. The difference between this modification 2 and the first embodiment will be described.
- the failure detection device 10 includes an electronic circuit 15 instead of the processor 11, the memory 12, and the storage 13.
- the electronic circuit 15 is a dedicated electronic circuit that implements the respective functional components and the functions of the memory 12 and the storage 13.
- the electronic circuit 15 is assumed to be a single circuit, a complex circuit, a programmed processor, a processor programmed in parallel, a logic IC, a gate array (GA), an application specific integrated circuit (ASIC), and a field-programmable gate array (FPGA). Be done. Each functional component may be realized by one electronic circuit 15, or each functional component may be distributed to a plurality of electronic circuits 15.
- ⁇ Modification 3> As a third modification, some functional components may be realized by hardware, and other functional components may be realized by software.
- the processor 11, the memory 12, the storage 13, and the electronic circuit 15 are collectively referred to as a processing circuit. That is, the function of each functional component is realized by the processing circuit.
- the second embodiment differs from the first embodiment in that the determination is performed in consideration of the time difference between the times when the detection data and the peripheral data are output. In the second embodiment, this difference will be described, and the description of the same point will be omitted.
- the operation of the failure detection apparatus 10 according to the second embodiment will be described with reference to FIGS. 7 and 12.
- the operation of the failure detection apparatus 10 according to the second embodiment corresponds to the failure detection method according to the second embodiment.
- the operation of the failure detection apparatus 10 according to the second embodiment corresponds to a failure detection program according to the second embodiment.
- step S3 in FIG. 2 The failure determination process (step S3 in FIG. 2) according to the second embodiment will be described with reference to FIG.
- the processes of step S31, step S33 and step S34 are the same as in the first embodiment.
- the detection data indicates the time output by the sensor 31 mounted on the mobile object 100.
- the peripheral data is data obtained from sensor data output by a sensor mounted on the peripheral body 200, and indicates time output by the sensor mounted on the peripheral body 200.
- Failure determination unit 23 calculates the position of peripheral body 200 at the time indicated by the detection data from the time difference between the time indicated by the detection data and the time indicated by the peripheral data, and the movement direction and movement speed specified from the peripheral data. . Then, the failure determination unit 23 treats the calculated position as a position identified from the peripheral data. Then, as in the first embodiment, failure determination unit 23 sums up detection data by weighting each difference between the position specified from the detection data and the peripheral data, the moving direction, and the moving speed. It is determined whether or not detection data whose detection content within the reference range is specified is included.
- the failure determination unit 23 calculates the position of the peripheral body 200 at the time indicated by the detection data of the target detected object, as shown in Expression 2, for each detected object.
- Volat LONo ' LONo + TIMEdiff ⁇ Volon
- TIMEe is the time indicated by the detection data
- TIMEo is the time indicated by the peripheral data
- Volat is the velocity of the peripheral body 200 in the latitudinal direction
- Volon is the velocity of the peripheral body 200 in the longitudinal direction.
- LATo ' is the latitude of the peripheral body 200 at the time indicated by the detection data
- LONo' is the longitude of the peripheral body 200 at the time indicated by the detection data.
- the failure determination unit 23 calculates TOTALdiff according to Expression 1 using the position of the peripheral body 200 at the time indicated by the detection data, and determines whether or not there is a detected object whose TOTALdiff is within the reference range.
- the failure detection apparatus 10 corrects the position specified from the peripheral data in consideration of the time difference between the time indicated by the detection data and the time indicated by the peripheral data. Thus, for example, even if it takes a long time to obtain peripheral data due to a communication delay, it is possible to accurately determine whether or not the sensor 31 is broken.
- SYMBOLS 10 fault detection apparatus 11 processor, 12 memory, 13 storage, 14 communication interface, 15 electronic circuit, 21 detection data acquisition part, 22 peripheral data acquisition part, 23 failure determination part, 24 notification part, 31 sensor, 32 map storage device 33 display devices, 34 communication devices, 51 lanes, 52 oncoming lanes, 53 roads, 54 posts, 55 trees, 56 sensing ranges, 57 reflection points, 58 division areas.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Automation & Control Theory (AREA)
- Mechanical Engineering (AREA)
- Human Computer Interaction (AREA)
- Transportation (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- Traffic Control Systems (AREA)
- Radar Systems Or Details Thereof (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
検出データ取得部(21)は、移動体(100)に搭載されたセンサ(31)によって過去基準期間に出力された検出データを取得する。周辺データ取得部(22)は、移動体(100)の周辺に存在する周辺体で検出された周辺データを取得する。故障判定部(23)は、検出データに、周辺データから特定される周辺内容との差異が基準範囲内である検出内容を特定する検出データが含まれるか否かにより、センサ(31)が故障しているか否かを判定する。
Description
この発明は、移動体に搭載されたセンサの故障を検出する技術に関する。
安全意識の高まりと利便性の追求とから、緊急自動ブレーキ機能といった運転支援機能が搭載された自動車が増加している。運転支援機能を実現するために、ミリ波レーダーとLiDAR(Light Detection And Ranging)といった、電波又は光を放射するセンサが用いられる場合がある。
運転支援機能を実現するためのセンサが完全に故障した場合には、運転支援機能を使用することができなくなる。しかし、センサに汚れやゴミが付着した場合のように、センサのセンシング範囲の一部のみに異常が発生した場合には、本来は障害物が存在するのに存在しないという検出結果が得られる可能性がある。このような検出結果が得られた場合には、運転支援機能が誤った動作をしてしまう可能性がある。
運転支援機能を実現するためのセンサが完全に故障した場合には、運転支援機能を使用することができなくなる。しかし、センサに汚れやゴミが付着した場合のように、センサのセンシング範囲の一部のみに異常が発生した場合には、本来は障害物が存在するのに存在しないという検出結果が得られる可能性がある。このような検出結果が得られた場合には、運転支援機能が誤った動作をしてしまう可能性がある。
特許文献1には、事前の走行データに基づき生成された正常なセンシングの結果のモデルと、実際のセンシング結果とを比較してセンサの異常を検出することが記載されている。
特許文献1に記載された技術では、事前に生成しておいたモデルと同様の状況以外では、センサの異常を検出することができない。
この発明は、事前にモデルを生成しておくことなく、センサの異常を検出可能にすることを目的とする。
この発明は、事前にモデルを生成しておくことなく、センサの異常を検出可能にすることを目的とする。
この発明に係る故障検出装置は、
移動体に搭載されたセンサによって過去基準期間に出力されたセンサデータである検出データを取得する検出データ取得部と、
前記移動体の周辺に存在する周辺体で検出された周辺データを取得する周辺データ取得部と、
前記検出データ取得部によって取得された前記検出データに、前記周辺データ取得部によって取得された前記周辺データから特定される周辺内容との差異が基準範囲内である検出内容を特定する検出データが含まれるか否かにより、前記センサが故障しているか否かを判定する故障判定部と
を備える。
移動体に搭載されたセンサによって過去基準期間に出力されたセンサデータである検出データを取得する検出データ取得部と、
前記移動体の周辺に存在する周辺体で検出された周辺データを取得する周辺データ取得部と、
前記検出データ取得部によって取得された前記検出データに、前記周辺データ取得部によって取得された前記周辺データから特定される周辺内容との差異が基準範囲内である検出内容を特定する検出データが含まれるか否かにより、前記センサが故障しているか否かを判定する故障判定部と
を備える。
この発明では、過去基準期間分の検出データに、周辺体で検出された周辺データから特定される周辺内容との差異が基準範囲内である検出内容を特定する検出データが含まれるか否かにより、センサが故障しているか否かを判定する。これにより、事前にモデルを生成しておくことなく、センサの異常を検出可能である。
実施の形態1.
***構成の説明***
図1を参照して、実施の形態1に係る故障検出装置10の構成を説明する。
図1では、故障検出装置10が移動体100に搭載された状態が示されている。移動体100は、車両、船舶、電車等である。実施の形態1では、移動体100は、車両であるとして説明する。
なお、故障検出装置10は、移動体100又は図示した他の構成要素と、一体化した形態又は分離不可能な形態で実装されてもよい。また、故障検出装置10は、取り外し可能な形態又は分離可能な形態で実装されてもよい。
***構成の説明***
図1を参照して、実施の形態1に係る故障検出装置10の構成を説明する。
図1では、故障検出装置10が移動体100に搭載された状態が示されている。移動体100は、車両、船舶、電車等である。実施の形態1では、移動体100は、車両であるとして説明する。
なお、故障検出装置10は、移動体100又は図示した他の構成要素と、一体化した形態又は分離不可能な形態で実装されてもよい。また、故障検出装置10は、取り外し可能な形態又は分離可能な形態で実装されてもよい。
故障検出装置10は、コンピュータである。
故障検出装置10は、プロセッサ11と、メモリ12と、ストレージ13と、通信インタフェース14とのハードウェアを備える。プロセッサ11は、信号線を介して他のハードウェアと接続され、これら他のハードウェアを制御する。
故障検出装置10は、プロセッサ11と、メモリ12と、ストレージ13と、通信インタフェース14とのハードウェアを備える。プロセッサ11は、信号線を介して他のハードウェアと接続され、これら他のハードウェアを制御する。
プロセッサ11は、演算処理を行うIC(Integrated Circuit)である。プロセッサ11は、命令及び情報を記憶するレジスタと周辺回路と等により構成される。プロセッサ11は、具体例としては、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)である。
メモリ12は、データを一時的に記憶する記憶装置である。メモリ12は、具体例としては、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)である。
ストレージ13は、データを保管する記憶装置である。ストレージ13は、具体例としては、ROM、フラッシュメモリ、又は、HDD(Hard Disk Drive)である。また、ストレージ13は、SD(登録商標,Secure Digital)メモリカード、CF(CompactFlash)、NANDフラッシュ、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVD(Digital Versatile Disk)といった可搬記憶媒体であってもよい。
通信インタフェース14は、外部の装置と通信するためのインタフェースである。実施の形態1では、通信インタフェース14は、移動体100に搭載されたCAN(Controller Area Network)又は車載Ethernet(登録商標)といったネットワーク30を介して通信するためのインタフェースである。通信インタフェース14は、具体例としては、CAN(Controller Area Network)、Ethernet(登録商標)、RS232C、USB(Universal Serial Bus)のポートである。
実施の形態1では、通信インタフェース14は、ネットワーク30を介して、センサ31と、地図記憶装置32と、表示装置33と、通信装置34と接続されている。
実施の形態1では、通信インタフェース14は、ネットワーク30を介して、センサ31と、地図記憶装置32と、表示装置33と、通信装置34と接続されている。
センサ31は、ミリ波レーダーとLiDARといった、電波、光又は音等を放射し、物体での反射を検出することにより、物体の位置及び速度を特定する装置である。
地図記憶装置32は、地図データを記憶したROM、フラッシュメモリ、又は、HDDといった記憶装置である。地図データは、道路の境界線等を示す。
表示装置33は、LCD(Liquid Crystal Display)といった情報を表示する装置である。表示装置33は、移動体100の運転手等の搭乗者から見えるように移動体100に設置されている。
通信装置34は、移動体100の周辺に存在する周辺体200と通信する装置である。周辺体200は、移動体100の周辺を移動する車両、船舶等である。あるいは、周辺体200は、移動体100の周辺に存在する路側機等である。
故障検出装置10は、機能構成要素として、検出データ取得部21と、周辺データ取得部22と、故障判定部23と、通知部24とを備える。故障検出装置10の機能構成要素の機能はソフトウェアにより実現される。
ストレージ13には、故障検出装置10の機能構成要素の機能を実現するプログラムが記憶されている。このプログラムは、プロセッサ11によりメモリ12に読み込まれ、プロセッサ11によって実行される。これにより、故障検出装置10の機能構成要素の機能が実現される。
ストレージ13には、故障検出装置10の機能構成要素の機能を実現するプログラムが記憶されている。このプログラムは、プロセッサ11によりメモリ12に読み込まれ、プロセッサ11によって実行される。これにより、故障検出装置10の機能構成要素の機能が実現される。
図1では、プロセッサ11は、1つだけ示されている。しかし、故障検出装置10は、プロセッサ11を代替する複数のプロセッサを備えていてもよい。これら複数のプロセッサは、故障検出装置10の機能構成要素の機能を実現するプログラムの実行を分担する。
***動作の説明***
図2から図10を参照して、実施の形態1に係る故障検出装置10の動作を説明する。
実施の形態1に係る故障検出装置10の動作は、実施の形態1に係る故障検出方法に相当する。また、実施の形態1に係る故障検出装置10の動作は、実施の形態1に係る故障検出プログラムに相当する。
図2から図10を参照して、実施の形態1に係る故障検出装置10の動作を説明する。
実施の形態1に係る故障検出装置10の動作は、実施の形態1に係る故障検出方法に相当する。また、実施の形態1に係る故障検出装置10の動作は、実施の形態1に係る故障検出プログラムに相当する。
(図2のステップS1:検出データ取得処理)
検出データ取得部21は、通信インタフェース14を介して、移動体100に搭載されたセンサ31によって過去基準期間に出力されたセンサデータである検出データを取得する。検出データは、移動体100に対する検出物体の相対的な位置と、移動方向と、移動速度とが検出内容として特定可能なデータである。
検出データ取得部21は、検出データに基づき、各検出物体について、相対的な位置と、移動方向と、移動速度とを特定する。検出データ取得部21は、各検出物体の相対的な位置を、絶対座標系の位置に変換する。具体的には、検出データ取得部21は、衛星から測位信号を受信することにより、移動体100の絶対座標系の位置を特定し、特定された位置を基準として、各検出物体の相対的な位置を絶対座標系の位置に変換する。
検出データ取得部21は、通信インタフェース14を介して、移動体100に搭載されたセンサ31によって過去基準期間に出力されたセンサデータである検出データを取得する。検出データは、移動体100に対する検出物体の相対的な位置と、移動方向と、移動速度とが検出内容として特定可能なデータである。
検出データ取得部21は、検出データに基づき、各検出物体について、相対的な位置と、移動方向と、移動速度とを特定する。検出データ取得部21は、各検出物体の相対的な位置を、絶対座標系の位置に変換する。具体的には、検出データ取得部21は、衛星から測位信号を受信することにより、移動体100の絶対座標系の位置を特定し、特定された位置を基準として、各検出物体の相対的な位置を絶対座標系の位置に変換する。
図3から図5を参照して検出データについて具体的に説明する。
図3では、移動体100は、速度v1で走行しており、移動体100が走行する車線51の対向車線52を周辺体200が速度v2で走行している。また、道路53外の道路脇には、ポスト54と、樹木55とが存在する。
センサ31は、ミリ波レーダーとLIDARといった、対象物に向けて電波又はレーザを照射しその反射を得ることで障害物の有無を検出するタイプのセンサである。そのため、図3の場合には、図4に示すように、センサ31は、移動体100の前方の角度Xの範囲に向かって放射状に電波又はレーザを放射し、センシング範囲56内にある検出物体で電波又はレーザが反射した反射波を受信する。図4では、センサ31は、“×”で示す反射点57で電波又はレーザが反射した反射波を受信している。センサ31の構造上、移動体100から見える範囲に反射点57が存在しており、移動体100から見えない検出物体の裏側には反射点57は存在しない。
検出データ取得部21は、反射点57で反射した反射波を検出データとして取得する。検出データ取得部21は、電波又はレーザを照射してから、反射波が得られるまでの時間と、電波又はレーザを照射した方向とから、移動体100に対する反射点57の相対的な位置を特定可能である。また、検出データ取得部21は、反射点57の位置の変化を時系列で解析し微分を行う、又は、反射波のドップラ周波数変化を解析することにより、移動体100と検出物体との相対的な速度及び相対的な移動方向を特定可能である。図4の場合には、図5に示すように、ポスト54及び樹木55は移動しないため、ポスト54及び樹木55における反射点57は、あたかも移動体100に対して移動体100と同じ速度v1で向かってくるように見える。また、移動物体である周辺体200の反射点57は、移動体100と周辺体200との速度の合成となり、速度v1+v2で移動体100に向かってくるように見える。
図3では、移動体100は、速度v1で走行しており、移動体100が走行する車線51の対向車線52を周辺体200が速度v2で走行している。また、道路53外の道路脇には、ポスト54と、樹木55とが存在する。
センサ31は、ミリ波レーダーとLIDARといった、対象物に向けて電波又はレーザを照射しその反射を得ることで障害物の有無を検出するタイプのセンサである。そのため、図3の場合には、図4に示すように、センサ31は、移動体100の前方の角度Xの範囲に向かって放射状に電波又はレーザを放射し、センシング範囲56内にある検出物体で電波又はレーザが反射した反射波を受信する。図4では、センサ31は、“×”で示す反射点57で電波又はレーザが反射した反射波を受信している。センサ31の構造上、移動体100から見える範囲に反射点57が存在しており、移動体100から見えない検出物体の裏側には反射点57は存在しない。
検出データ取得部21は、反射点57で反射した反射波を検出データとして取得する。検出データ取得部21は、電波又はレーザを照射してから、反射波が得られるまでの時間と、電波又はレーザを照射した方向とから、移動体100に対する反射点57の相対的な位置を特定可能である。また、検出データ取得部21は、反射点57の位置の変化を時系列で解析し微分を行う、又は、反射波のドップラ周波数変化を解析することにより、移動体100と検出物体との相対的な速度及び相対的な移動方向を特定可能である。図4の場合には、図5に示すように、ポスト54及び樹木55は移動しないため、ポスト54及び樹木55における反射点57は、あたかも移動体100に対して移動体100と同じ速度v1で向かってくるように見える。また、移動物体である周辺体200の反射点57は、移動体100と周辺体200との速度の合成となり、速度v1+v2で移動体100に向かってくるように見える。
(図2のステップS2:周辺データ取得処理)
周辺データ取得部22は、通信インタフェース14を介して、移動体100の周辺に存在する周辺体200で検出された周辺データを取得する。周辺データは、周辺体200の位置と移動方向と移動速度とが周辺内容として特定可能なデータである。ここでは、周辺データは、周辺体200の位置と移動方向と移動速度とを示すデータであるとする。
周辺データ取得部22は、通信インタフェース14を介して、移動体100の周辺に存在する周辺体200で検出された周辺データを取得する。周辺データは、周辺体200の位置と移動方向と移動速度とが周辺内容として特定可能なデータである。ここでは、周辺データは、周辺体200の位置と移動方向と移動速度とを示すデータであるとする。
図6を参照して周辺データについて具体的に説明する。
図6では、周辺データ取得部22は、図3に示す周辺体200で検出された周辺データを取得する場合が示されている。
周辺体200は、周辺体200に搭載されたセンサにより、周辺体200の位置と移動方向と移動速度とを特定可能である。例えば、周辺体200は、衛星から測位信号を受信することにより位置を特定する。また、周辺体200は、位置の変化を時系列で解析し微分を行うことにより、移動方向及び移動速度を特定する。周辺体200は、特定された周辺体200の位置と移動方向と移動速度とを示す周辺データを移動体100に無線通信により送信する。
無線通信は、例えば、802.11pである。しかし、無線通信は、周辺データの通信が可能であれば、他の方式でもよい。
図6では、周辺データ取得部22は、図3に示す周辺体200で検出された周辺データを取得する場合が示されている。
周辺体200は、周辺体200に搭載されたセンサにより、周辺体200の位置と移動方向と移動速度とを特定可能である。例えば、周辺体200は、衛星から測位信号を受信することにより位置を特定する。また、周辺体200は、位置の変化を時系列で解析し微分を行うことにより、移動方向及び移動速度を特定する。周辺体200は、特定された周辺体200の位置と移動方向と移動速度とを示す周辺データを移動体100に無線通信により送信する。
無線通信は、例えば、802.11pである。しかし、無線通信は、周辺データの通信が可能であれば、他の方式でもよい。
なお、周辺体200が移動方向及び移動速度を特定できない場合には、周辺体200は、位置を示す周辺データを移動体100に無線通信により送信する。この場合には、周辺データ取得部22は、送信された周辺体200の位置の変化を時系列で解析し微分を行うことにより、移動方向及び移動速度を特定する。
(図2のステップS3:故障判定処理)
故障判定部23は、ステップS1で取得された検出データに、ステップS2で取得された周辺データから特定される周辺内容との差異が基準範囲内である検出内容が特定される検出データが含まれるか否かを判定する。故障判定部23は、含まれる場合には、センサ31が故障していないと判定し、含まれない場合には、センサ31が故障していると判定する。
故障判定部23は、ステップS1で取得された検出データに、ステップS2で取得された周辺データから特定される周辺内容との差異が基準範囲内である検出内容が特定される検出データが含まれるか否かを判定する。故障判定部23は、含まれる場合には、センサ31が故障していないと判定し、含まれない場合には、センサ31が故障していると判定する。
図7を参照して、実施の形態1に係る故障判定処理(図2のステップS3)を説明する。
故障判定部23は、以下のステップS31からステップS34の処理を、センシング範囲56を分割した各分割エリア58を対象として実行する。
図8に示すように、分割エリア58は、センシング範囲56がセンサ31を基準に任意の角度毎に扇形に分割されたエリアである。図8では、センシング範囲56が角度Yの分割エリア58と、角度Zの分割エリア58との2つの分割エリア58に分割されている。なお、角度Yと角度Zとは同一の角度であってもよいし、異なる角度であってもよい。
故障判定部23は、以下のステップS31からステップS34の処理を、センシング範囲56を分割した各分割エリア58を対象として実行する。
図8に示すように、分割エリア58は、センシング範囲56がセンサ31を基準に任意の角度毎に扇形に分割されたエリアである。図8では、センシング範囲56が角度Yの分割エリア58と、角度Zの分割エリア58との2つの分割エリア58に分割されている。なお、角度Yと角度Zとは同一の角度であってもよいし、異なる角度であってもよい。
(図7のステップS31:データ判定処理)
故障判定部23は、特定される位置が対象の分割エリア58内に入る周辺データが存在するか否かを判定する。
故障判定部23は、存在する場合には処理をステップS32に進める。一方、故障判定部23は、存在しない場合には処理をステップS33に進める。
故障判定部23は、特定される位置が対象の分割エリア58内に入る周辺データが存在するか否かを判定する。
故障判定部23は、存在する場合には処理をステップS32に進める。一方、故障判定部23は、存在しない場合には処理をステップS33に進める。
(図7のステップS32:物体判定処理)
故障判定部23は、検出データに、検出データ及び周辺データから特定される位置と移動方向と移動速度とのそれぞれの差異を重み付けして合計した値が、基準範囲内である検出内容が特定される検出データが含まれるか否かを判定する。
故障判定部23は、検出データに、検出データ及び周辺データから特定される位置と移動方向と移動速度とのそれぞれの差異を重み付けして合計した値が、基準範囲内である検出内容が特定される検出データが含まれるか否かを判定する。
具体的には、故障判定部23は、各検出物体を対象として、対象の検出物体と周辺データとについて、式1に示すようにTOTALdiffを計算する。
<式1>
LATdiff=|LATe-LATo|
LONdiff=|LONe-LONo|
Vdiff=|Ve-Vo|
DIRdiff=|DIRe-DIRo|
TOTALdiff=α×LATdiff+β×LONdiff+γ×Vdiff+δ×DIRdiff
ここで、検出物体及び周辺体200の位置は、緯度及び経度で示されるとする。LATeは検出物体の緯度であり、LAToは周辺体200の緯度である。LONeは検出物体の経度であり、LONoは周辺体200の経度である。Veは検出物体の移動速度であり、Voは周辺体200の移動速度である。DIReは検出物体の移動方向であり、DIRoは周辺体200の移動方向である。α,β,γ、δは、重み付け係数である。
<式1>
LATdiff=|LATe-LATo|
LONdiff=|LONe-LONo|
Vdiff=|Ve-Vo|
DIRdiff=|DIRe-DIRo|
TOTALdiff=α×LATdiff+β×LONdiff+γ×Vdiff+δ×DIRdiff
ここで、検出物体及び周辺体200の位置は、緯度及び経度で示されるとする。LATeは検出物体の緯度であり、LAToは周辺体200の緯度である。LONeは検出物体の経度であり、LONoは周辺体200の経度である。Veは検出物体の移動速度であり、Voは周辺体200の移動速度である。DIReは検出物体の移動方向であり、DIRoは周辺体200の移動方向である。α,β,γ、δは、重み付け係数である。
故障判定部23は、計算されたTOTALdiffが基準範囲内である検出物体が存在するか否かを判定する。つまり、故障判定部23は、TOTALdiff≦基準範囲TOTALthである検出物体が存在するか否かを判定する。
故障判定部23は、存在する場合には、処理をステップS33に進める。一方、故障判定部23は、存在しない場合には、処理をステップS34に進める。
故障判定部23は、存在する場合には、処理をステップS33に進める。一方、故障判定部23は、存在しない場合には、処理をステップS34に進める。
(図7のステップS33:正常判定処理)
故障判定部23は、対象の分割エリア58について、センサ31の動作は正常であると判定する。
つまり、図9のエリア1のように、ステップS31で特定される位置が対象の分割エリア58内に入る周辺データが存在しないと判定された分割エリア58については、センサ31の動作は正常であると判定される。また、図9のエリア2のように、ステップS32でTOTALdiff≦基準範囲TOTALthである検出物体が存在すると判定された分割エリア58についても、センサ31の動作は正常であると判定される。
故障判定部23は、対象の分割エリア58について、センサ31の動作は正常であると判定する。
つまり、図9のエリア1のように、ステップS31で特定される位置が対象の分割エリア58内に入る周辺データが存在しないと判定された分割エリア58については、センサ31の動作は正常であると判定される。また、図9のエリア2のように、ステップS32でTOTALdiff≦基準範囲TOTALthである検出物体が存在すると判定された分割エリア58についても、センサ31の動作は正常であると判定される。
(図7のステップS34:異常判定処理)
故障判定部23は、対象の分割エリア58について、センサ31の動作は異常であると判定する。
つまり、図10のエリア2のように、ステップS32でTOTALdiff≦基準範囲TOTALthである検出物体が存在しないと判定された分割エリア58については、センサ31の動作は異常であると判定される。
故障判定部23は、対象の分割エリア58について、センサ31の動作は異常であると判定する。
つまり、図10のエリア2のように、ステップS32でTOTALdiff≦基準範囲TOTALthである検出物体が存在しないと判定された分割エリア58については、センサ31の動作は異常であると判定される。
(図2のステップS4:通知処理)
通知部24は、ステップS33又はステップS34で判定された結果を、通信インタフェース14を介して表示装置33に出力して、表示させる。例えば、通知部24は、ステップS34で異常があると判定された場合には、異常があると判定された分割エリア58等を図形あるいは文字によって表して表示する。これにより、移動体100の運転手等の搭乗者に、センサ31の状態を通知する。
また、通知部24は、センサ31が緊急自動ブレーキ機能といった運転支援機能で用いられている場合は、その機能を実現する装置にセンサ31の異常の有無を通知してもよい。これにより、センサ31に異常がある場合に、運転支援機能の一部又は全てを停止させるといった処置が可能になる。
通知部24は、ステップS33又はステップS34で判定された結果を、通信インタフェース14を介して表示装置33に出力して、表示させる。例えば、通知部24は、ステップS34で異常があると判定された場合には、異常があると判定された分割エリア58等を図形あるいは文字によって表して表示する。これにより、移動体100の運転手等の搭乗者に、センサ31の状態を通知する。
また、通知部24は、センサ31が緊急自動ブレーキ機能といった運転支援機能で用いられている場合は、その機能を実現する装置にセンサ31の異常の有無を通知してもよい。これにより、センサ31に異常がある場合に、運転支援機能の一部又は全てを停止させるといった処置が可能になる。
***実施の形態1の効果***
以上のように、実施の形態1に係る故障検出装置10は、過去基準期間分の検出データに、周辺体200で検出された周辺データから特定される周辺内容との差異が基準範囲内である検出内容を特定する検出データが含まれるか否かを判定する。これにより、実施の形態1に係る故障検出装置10は、センサが故障しているか否かを判定する。
そのため、事前にモデルを生成しておくことなく、センサの異常を検出可能である。
以上のように、実施の形態1に係る故障検出装置10は、過去基準期間分の検出データに、周辺体200で検出された周辺データから特定される周辺内容との差異が基準範囲内である検出内容を特定する検出データが含まれるか否かを判定する。これにより、実施の形態1に係る故障検出装置10は、センサが故障しているか否かを判定する。
そのため、事前にモデルを生成しておくことなく、センサの異常を検出可能である。
***他の構成***
<変形例1>
実施の形態1では、特定される位置が対象の分割エリア58内に入る周辺データが存在しない分割エリア58については、センサ31の動作は正常であると判定された。
特定される位置が対象の分割エリア58内に入る周辺データが存在しない分割エリア58については、過去基準期間分の検出データに、センサ31が正常な場合に出力される正常データが示す検出物体の特徴を示す検出データが含まれているか否かにより、センサ31の動作は正常であるか否かを判定してもよい。上述した通り、ポスト54及び樹木55といった移動しない物体は、あたかも移動体100に対して移動体100と同じ速度v1で向かってくるように見える。そこで、故障判定部23は特定される位置が対象の分割エリア58内に入る周辺データが存在しない分割エリア58については、過去基準期間分の検出データに、移動体100の移動方向と逆の移動方向を示し、かつ、移動体100の移動速度と同じ移動速度を示す検出データがあるか否かにより、センサ31が正常に動作しているか否かを判定してもよい。
<変形例1>
実施の形態1では、特定される位置が対象の分割エリア58内に入る周辺データが存在しない分割エリア58については、センサ31の動作は正常であると判定された。
特定される位置が対象の分割エリア58内に入る周辺データが存在しない分割エリア58については、過去基準期間分の検出データに、センサ31が正常な場合に出力される正常データが示す検出物体の特徴を示す検出データが含まれているか否かにより、センサ31の動作は正常であるか否かを判定してもよい。上述した通り、ポスト54及び樹木55といった移動しない物体は、あたかも移動体100に対して移動体100と同じ速度v1で向かってくるように見える。そこで、故障判定部23は特定される位置が対象の分割エリア58内に入る周辺データが存在しない分割エリア58については、過去基準期間分の検出データに、移動体100の移動方向と逆の移動方向を示し、かつ、移動体100の移動速度と同じ移動速度を示す検出データがあるか否かにより、センサ31が正常に動作しているか否かを判定してもよい。
<変形例2>
実施の形態1では、各機能構成要素がソフトウェアで実現された。しかし、変形例2として、各機能構成要素はハードウェアで実現されてもよい。この変形例2について、実施の形態1と異なる点を説明する。
実施の形態1では、各機能構成要素がソフトウェアで実現された。しかし、変形例2として、各機能構成要素はハードウェアで実現されてもよい。この変形例2について、実施の形態1と異なる点を説明する。
図11を参照して、変形例2に係る故障検出装置10の構成を説明する。
各機能構成要素がハードウェアで実現される場合には、故障検出装置10は、プロセッサ11とメモリ12とストレージ13とに代えて、電子回路15を備える。電子回路15は、各機能構成要素と、メモリ12とストレージ13との機能とを実現する専用の電子回路である。
各機能構成要素がハードウェアで実現される場合には、故障検出装置10は、プロセッサ11とメモリ12とストレージ13とに代えて、電子回路15を備える。電子回路15は、各機能構成要素と、メモリ12とストレージ13との機能とを実現する専用の電子回路である。
電子回路15は、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ロジックIC、GA(Gate Array)、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)が想定される。
各機能構成要素を1つの電子回路15で実現してもよいし、各機能構成要素を複数の電子回路15に分散させて実現してもよい。
各機能構成要素を1つの電子回路15で実現してもよいし、各機能構成要素を複数の電子回路15に分散させて実現してもよい。
<変形例3>
変形例3として、一部の各機能構成要素がハードウェアで実現され、他の各機能構成要素がソフトウェアで実現されてもよい。
変形例3として、一部の各機能構成要素がハードウェアで実現され、他の各機能構成要素がソフトウェアで実現されてもよい。
プロセッサ11とメモリ12とストレージ13と電子回路15とを、総称して処理回路という。つまり、各機能構成要素の機能は、処理回路により実現される。
実施の形態2.
実施の形態2は、検出データと周辺データとが出力された時刻の時間差を考慮して判定を行う点が実施の形態1と異なる。実施の形態2では、この異なる点を説明し、同一の点については説明を省略する。
実施の形態2は、検出データと周辺データとが出力された時刻の時間差を考慮して判定を行う点が実施の形態1と異なる。実施の形態2では、この異なる点を説明し、同一の点については説明を省略する。
***動作の説明***
図7と、図12とを参照して、実施の形態2に係る故障検出装置10の動作を説明する。
実施の形態2に係る故障検出装置10の動作は、実施の形態2に係る故障検出方法に相当する。また、実施の形態2に係る故障検出装置10の動作は、実施の形態2に係る故障検出プログラムに相当する。
図7と、図12とを参照して、実施の形態2に係る故障検出装置10の動作を説明する。
実施の形態2に係る故障検出装置10の動作は、実施の形態2に係る故障検出方法に相当する。また、実施の形態2に係る故障検出装置10の動作は、実施の形態2に係る故障検出プログラムに相当する。
図7を参照して、実施の形態2に係る故障判定処理(図2のステップS3)を説明する。
ステップS31とステップS33とステップS34との処理は、実施の形態1と同じである。
なお、実施の形態2では、検出データは、移動体100に搭載されたセンサ31によって出力された時刻を示すものとする。また、周辺データは、周辺体200に搭載されたセンサによって出力されたセンサデータから得られるデータであり、周辺体200に搭載されたセンサによって出力された時刻を示すものとする。ここで、移動体100と周辺体200とにおける時刻は、測位信号等を介して同期しているものとする。
ステップS31とステップS33とステップS34との処理は、実施の形態1と同じである。
なお、実施の形態2では、検出データは、移動体100に搭載されたセンサ31によって出力された時刻を示すものとする。また、周辺データは、周辺体200に搭載されたセンサによって出力されたセンサデータから得られるデータであり、周辺体200に搭載されたセンサによって出力された時刻を示すものとする。ここで、移動体100と周辺体200とにおける時刻は、測位信号等を介して同期しているものとする。
(図7のステップS32:物体判定処理)
故障判定部23は、検出データが示す時刻と周辺データが示す時刻との時間差と、周辺データから特定される移動方向及び移動速度とから、検出データが示す時刻における周辺体200の位置を計算する。そして、故障判定部23は、計算された位置を周辺データから特定される位置として扱う。
その上で、故障判定部23は、実施の形態1と同様に、検出データに、検出データ及び周辺データから特定される位置と移動方向と移動速度とのそれぞれの差異を重み付けして合計した値が、基準範囲内である検出内容が特定される検出データが含まれるか否かを判定する。
故障判定部23は、検出データが示す時刻と周辺データが示す時刻との時間差と、周辺データから特定される移動方向及び移動速度とから、検出データが示す時刻における周辺体200の位置を計算する。そして、故障判定部23は、計算された位置を周辺データから特定される位置として扱う。
その上で、故障判定部23は、実施の形態1と同様に、検出データに、検出データ及び周辺データから特定される位置と移動方向と移動速度とのそれぞれの差異を重み付けして合計した値が、基準範囲内である検出内容が特定される検出データが含まれるか否かを判定する。
具体的には、故障判定部23は、各検出物体を対象として、式2に示すように、対象の検出物体についての検出データが示す時刻における周辺体200の位置を計算する。
<式2>
TIMEdiff=TIMEo-TIMEe
LATo’=LATo+TIMEdiff×Volat
LONo’=LONo+TIMEdiff×Volon
ここで、TIMEeは検出データが示す時刻であり、TIMEoは周辺データが示す時刻である。Volatは、周辺体200の緯度方向の速度であり、Volonは周辺体200の経度方向の速度である。LATo’は検出データが示す時刻における周辺体200の緯度であり、LONo’は検出データが示す時刻における周辺体200の経度である。
これにより、図12に示すように、検出データが出力された時刻と、周辺データが出力された時刻とに時間差があることによる、検出データから得られる周辺体200の位置と、周辺データから得られる周辺体200の位置とのずれを補正できる。
<式2>
TIMEdiff=TIMEo-TIMEe
LATo’=LATo+TIMEdiff×Volat
LONo’=LONo+TIMEdiff×Volon
ここで、TIMEeは検出データが示す時刻であり、TIMEoは周辺データが示す時刻である。Volatは、周辺体200の緯度方向の速度であり、Volonは周辺体200の経度方向の速度である。LATo’は検出データが示す時刻における周辺体200の緯度であり、LONo’は検出データが示す時刻における周辺体200の経度である。
これにより、図12に示すように、検出データが出力された時刻と、周辺データが出力された時刻とに時間差があることによる、検出データから得られる周辺体200の位置と、周辺データから得られる周辺体200の位置とのずれを補正できる。
そして、故障判定部23は、検出データが示す時刻における周辺体200の位置を用いて、式1によりTOTALdiffを計算し、TOTALdiffが基準範囲内である検出物体が存在するか否かを判定する。
***実施の形態2の効果***
以上のように、実施の形態2に係る故障検出装置10は、検出データが示す時刻と周辺データが示す時刻との時間差を考慮して、周辺データから特定される位置を補正する。これにより、例えば、通信遅延が発生して、周辺データが得られるまでに時間がかかるような場合であっても、精度よくセンサ31が故障しているか否かを判定することが可能である。
以上のように、実施の形態2に係る故障検出装置10は、検出データが示す時刻と周辺データが示す時刻との時間差を考慮して、周辺データから特定される位置を補正する。これにより、例えば、通信遅延が発生して、周辺データが得られるまでに時間がかかるような場合であっても、精度よくセンサ31が故障しているか否かを判定することが可能である。
10 故障検出装置、11 プロセッサ、12 メモリ、13 ストレージ、14 通信インタフェース、15 電子回路、21 検出データ取得部、22 周辺データ取得部、23 故障判定部、24 通知部、31 センサ、32 地図記憶装置、33 表示装置、34 通信装置、51 車線、52 対向車線、53 道路、54 ポスト、55 樹木、56 センシング範囲、57 反射点、58 分割エリア。
Claims (7)
- 移動体に搭載されたセンサによって過去基準期間に出力されたセンサデータである検出データを取得する検出データ取得部と、
前記移動体の周辺に存在する周辺体で検出された周辺データを取得する周辺データ取得部と、
前記検出データ取得部によって取得された前記検出データに、前記周辺データ取得部によって取得された前記周辺データから特定される周辺内容との差異が基準範囲内である検出内容が特定される検出データが含まれるか否かにより、前記センサが故障しているか否かを判定する故障判定部と
を備える故障検出装置。 - 前記検出データは、前記移動体に対する前記移動体の周辺に存在する物体の位置と移動方向と移動速度とが前記検出内容として特定可能なデータであり、
前記周辺データは、前記周辺体の位置と移動方向と移動速度とが前記周辺内容として特定可能なデータである
請求項1に記載の故障検出装置。 - 前記故障判定部は、前記検出データに、前記検出データ及び前記周辺データから特定される位置と移動方向と移動速度とのそれぞれの差異を重み付けして合計した値が、前記基準範囲内である検出内容が特定される検出データが含まれるか否かにより、前記センサが故障しているか否かを判定する
請求項2に記載の故障検出装置。 - 前記検出データは、前記移動体に搭載されたセンサによって出力された時刻を示し、
前記周辺データは、前記周辺体に搭載されたセンサによって出力されたセンサデータから得られるデータであり、前記周辺体に搭載されたセンサによって出力された時刻を示し、
前記故障判定部は、前記検出データが示す時刻と前記周辺データが示す時刻との時間差と、前記周辺データから特定される移動方向及び移動速度とから、前記検出データが示す時刻における前記周辺体の位置を計算して、計算された位置を前記周辺データから特定される位置として扱う
請求項3に記載の故障検出装置。 - 前記故障判定部は、前記センサのセンシング範囲を分割して得られる分割エリア毎に、前記センサが故障しているか否かを判定する
請求項1から4までのいずれか1項に記載の故障検出装置。 - コンピュータが、移動体に搭載されたセンサによって過去基準期間に出力されたセンサデータである検出データを取得し、
コンピュータが、前記移動体の周辺に存在する周辺体で検出された周辺データを取得し、
コンピュータが、取得された前記検出データに、取得された前記周辺データから特定される周辺内容との差異が基準範囲内である検出内容が特定される検出データが含まれるか否かにより、前記センサが故障しているか否かを判定する故障検出方法。 - 移動体に搭載されたセンサによって過去基準期間に出力されたセンサデータである検出データを取得する検出データ取得処理と、
前記移動体の周辺に存在する周辺体で検出された周辺データを取得する周辺データ取得処理と、
前記検出データ取得処理によって取得された前記検出データに、前記周辺データ取得処理によって取得された前記周辺データから特定される周辺内容との差異が基準範囲内である検出内容が特定される検出データが含まれるか否かにより、前記センサが故障しているか否かを判定する故障判定処理と
をコンピュータに実行させる故障検出プログラム。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/644,674 US11220272B2 (en) | 2017-11-13 | 2017-11-13 | Failure detection apparatus, failure detection method, and computer readable medium |
PCT/JP2017/040741 WO2019092880A1 (ja) | 2017-11-13 | 2017-11-13 | 故障検出装置、故障検出方法及び故障検出プログラム |
DE112017008078.9T DE112017008078B4 (de) | 2017-11-13 | 2017-11-13 | Fehlererfassungsvorrichtung, fehlererfassungsverfahren und fehlererfassungsprogramm |
CN201780096386.2A CN111316118B (zh) | 2017-11-13 | 2017-11-13 | 故障检测装置、故障检测方法和计算机能读取的存储介质 |
JP2019551859A JP6647466B2 (ja) | 2017-11-13 | 2017-11-13 | 故障検出装置、故障検出方法及び故障検出プログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/040741 WO2019092880A1 (ja) | 2017-11-13 | 2017-11-13 | 故障検出装置、故障検出方法及び故障検出プログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019092880A1 true WO2019092880A1 (ja) | 2019-05-16 |
Family
ID=66439119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/040741 WO2019092880A1 (ja) | 2017-11-13 | 2017-11-13 | 故障検出装置、故障検出方法及び故障検出プログラム |
Country Status (5)
Country | Link |
---|---|
US (1) | US11220272B2 (ja) |
JP (1) | JP6647466B2 (ja) |
CN (1) | CN111316118B (ja) |
DE (1) | DE112017008078B4 (ja) |
WO (1) | WO2019092880A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022033927A (ja) * | 2021-02-19 | 2022-03-02 | アポロ インテリジェント コネクティビティ (ベイジン) テクノロジー カンパニー リミテッド | 車両感知システムのテスト方法、装置、機器及び電子機器 |
US12131598B2 (en) | 2021-02-19 | 2024-10-29 | Apollo Intelligent Connectivity (Beijing) Technology Co., Ltd. | Testing method and apparatus for vehicle perception system, device, and storage medium |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11851088B2 (en) * | 2020-03-11 | 2023-12-26 | Baidu Usa Llc | Method for determining capability boundary and associated risk of a safety redundancy autonomous system in real-time |
CN112255621B (zh) * | 2020-10-09 | 2022-08-30 | 中国第一汽车股份有限公司 | 一种车辆传感器的标定方法、装置、电子设备及存储介质 |
CN115166646B (zh) * | 2022-09-02 | 2022-11-11 | 深圳朗驰科技有限公司 | 一种基于可信体系的雷达识别控制系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007178310A (ja) * | 2005-12-28 | 2007-07-12 | Alpine Electronics Inc | 車載システムおよびレーダ故障診断方法 |
JP2010237022A (ja) * | 2009-03-31 | 2010-10-21 | Nec Corp | レーダ装置、目標同化判定処理方法およびプログラム |
JP2015087354A (ja) * | 2013-11-01 | 2015-05-07 | 三菱電機株式会社 | 目標追尾装置及び目標追尾方法 |
JP2016162204A (ja) * | 2015-03-02 | 2016-09-05 | 株式会社デンソー | 汚れ判定装置 |
JP2016197081A (ja) * | 2015-04-06 | 2016-11-24 | 日立建機株式会社 | 運搬車両 |
WO2017129185A1 (de) * | 2016-01-28 | 2017-08-03 | Conti Temic Microelectronic Gmbh | Verfahren und vorrichtung zur reichweitenbestimmung eines sensors für ein kraftfahrzeug |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4045041B2 (ja) * | 1999-02-05 | 2008-02-13 | 本田技研工業株式会社 | レーダ装置及びレーダ装置の異常検出方法 |
DE10149115A1 (de) * | 2001-10-05 | 2003-04-17 | Bosch Gmbh Robert | Objekterfassungsvorrichtung |
JP4079739B2 (ja) * | 2002-10-08 | 2008-04-23 | 富士通テン株式会社 | 車載用レーダ装置 |
JP2008060874A (ja) | 2006-08-31 | 2008-03-13 | Hitachi Ltd | 車載カメラ及び車載カメラ用付着物検出装置 |
JP5018444B2 (ja) | 2007-12-13 | 2012-09-05 | 株式会社豊田中央研究所 | 車両故障診断予測装置 |
US8725327B2 (en) * | 2008-04-22 | 2014-05-13 | Exelis Inc. | Navigation system and method of obtaining accurate navigational information in signal challenging environments |
JP5610847B2 (ja) * | 2010-05-26 | 2014-10-22 | 三菱電機株式会社 | 角速度推定装置及びコンピュータプログラム及び角速度推定方法 |
DE102010049093A1 (de) * | 2010-10-21 | 2012-04-26 | Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) | Verfahren zum Betreiben zumindest eines Sensors eines Fahrzeugs und Fahrzeug mit zumindest einem Sensor |
WO2014010546A1 (ja) * | 2012-07-10 | 2014-01-16 | 本田技研工業株式会社 | 故障判定装置 |
JP5651642B2 (ja) * | 2012-07-18 | 2015-01-14 | 本田技研工業株式会社 | 物体位置検知装置 |
KR102118464B1 (ko) * | 2014-03-26 | 2020-06-03 | 얀마 가부시키가이샤 | 자율 주행 작업 차량 |
EP3534174B1 (en) * | 2016-10-27 | 2022-09-28 | Hitachi Astemo, Ltd. | Malfunction detecting device |
-
2017
- 2017-11-13 JP JP2019551859A patent/JP6647466B2/ja active Active
- 2017-11-13 DE DE112017008078.9T patent/DE112017008078B4/de active Active
- 2017-11-13 US US16/644,674 patent/US11220272B2/en active Active
- 2017-11-13 WO PCT/JP2017/040741 patent/WO2019092880A1/ja active Application Filing
- 2017-11-13 CN CN201780096386.2A patent/CN111316118B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007178310A (ja) * | 2005-12-28 | 2007-07-12 | Alpine Electronics Inc | 車載システムおよびレーダ故障診断方法 |
JP2010237022A (ja) * | 2009-03-31 | 2010-10-21 | Nec Corp | レーダ装置、目標同化判定処理方法およびプログラム |
JP2015087354A (ja) * | 2013-11-01 | 2015-05-07 | 三菱電機株式会社 | 目標追尾装置及び目標追尾方法 |
JP2016162204A (ja) * | 2015-03-02 | 2016-09-05 | 株式会社デンソー | 汚れ判定装置 |
JP2016197081A (ja) * | 2015-04-06 | 2016-11-24 | 日立建機株式会社 | 運搬車両 |
WO2017129185A1 (de) * | 2016-01-28 | 2017-08-03 | Conti Temic Microelectronic Gmbh | Verfahren und vorrichtung zur reichweitenbestimmung eines sensors für ein kraftfahrzeug |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022033927A (ja) * | 2021-02-19 | 2022-03-02 | アポロ インテリジェント コネクティビティ (ベイジン) テクノロジー カンパニー リミテッド | 車両感知システムのテスト方法、装置、機器及び電子機器 |
US12131598B2 (en) | 2021-02-19 | 2024-10-29 | Apollo Intelligent Connectivity (Beijing) Technology Co., Ltd. | Testing method and apparatus for vehicle perception system, device, and storage medium |
Also Published As
Publication number | Publication date |
---|---|
US20200283006A1 (en) | 2020-09-10 |
DE112017008078T5 (de) | 2020-06-25 |
US11220272B2 (en) | 2022-01-11 |
JPWO2019092880A1 (ja) | 2020-04-02 |
JP6647466B2 (ja) | 2020-02-14 |
DE112017008078B4 (de) | 2022-03-17 |
CN111316118B (zh) | 2023-07-04 |
CN111316118A (zh) | 2020-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6289767B1 (ja) | 故障検出装置、故障検出方法及び故障検出プログラム | |
WO2019092880A1 (ja) | 故障検出装置、故障検出方法及び故障検出プログラム | |
JP2015155878A (ja) | 車両用障害物検出装置 | |
GB2554503A (en) | Pedestrian detection when a vehicle is reversing | |
US10885353B2 (en) | Information processing apparatus, moving object, information processing method, and computer program product | |
CN113227804A (zh) | 基于检测组件退化的增强的系统内测试覆盖 | |
JP2019091412A5 (ja) | ||
KR102598089B1 (ko) | 컨텐츠를 표시하기 위한 장치 및 방법 | |
US20210001883A1 (en) | Action selection device, computer readable medium, and action selection method | |
CN111352074B (zh) | 用于相对于车辆对声源进行定位的方法和系统 | |
EP3260878B1 (en) | Moving object detection device, program, and recording medium | |
US9908525B2 (en) | Travel control apparatus | |
US20140071282A1 (en) | Alert systems and methods using real-time lane information | |
US11979803B2 (en) | Responding to a signal indicating that an autonomous driving feature has been overridden by alerting plural vehicles | |
JP2023035822A (ja) | 高ダイナミック・レンジ・センサのための画像信号処理パイプライン | |
JP2019185640A (ja) | 運転支援システムおよび方法 | |
US20190213885A1 (en) | Driving assistance device, driving assistance method, and computer readable medium | |
US11465625B2 (en) | Traffic safety control method, vehicle-mounted device and readable storage medium | |
US20210065553A1 (en) | Information processing device, information processing method, and computer readable medium | |
US20220327317A1 (en) | Apparatus and method for predicting trajectory of surrounding vehicle | |
US11754417B2 (en) | Information generating device, vehicle control system, information generation method, and computer program product | |
US20190385456A1 (en) | Driving assistance device, map providing device, driving assistance program, map providing program, and driving assistance system | |
WO2020129247A1 (ja) | 情報処理装置、情報処理方法及び情報処理プログラム | |
CN114527735A (zh) | 用于控制自动驾驶车辆的方法和装置、车辆及存储介质 | |
WO2024180652A1 (ja) | 物体検知装置及び物体検知方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17931688 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019551859 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17931688 Country of ref document: EP Kind code of ref document: A1 |