WO2019088148A1 - 音響整合層用樹脂組成物、硬化物、音響整合シート、音響波プローブ、音響波測定装置、音響波プローブの製造方法、及び音響整合層用材料セット - Google Patents

音響整合層用樹脂組成物、硬化物、音響整合シート、音響波プローブ、音響波測定装置、音響波プローブの製造方法、及び音響整合層用材料セット Download PDF

Info

Publication number
WO2019088148A1
WO2019088148A1 PCT/JP2018/040441 JP2018040441W WO2019088148A1 WO 2019088148 A1 WO2019088148 A1 WO 2019088148A1 JP 2018040441 W JP2018040441 W JP 2018040441W WO 2019088148 A1 WO2019088148 A1 WO 2019088148A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic
acoustic matching
resin
matching layer
resin composition
Prior art date
Application number
PCT/JP2018/040441
Other languages
English (en)
French (fr)
Inventor
中井 義博
和博 ▲濱▼田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201880070686.8A priority Critical patent/CN111295892A/zh
Priority to JP2019550441A priority patent/JP7022761B2/ja
Priority to EP18871994.2A priority patent/EP3706436B1/en
Publication of WO2019088148A1 publication Critical patent/WO2019088148A1/ja
Priority to US16/863,096 priority patent/US20200253582A1/en

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/02Mechanical acoustic impedances; Impedance matching, e.g. by horns; Acoustic resonators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4272Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue
    • A61B8/4281Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue characterised by sound-transmitting media or devices for coupling the transducer to the tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0662Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface
    • B06B1/067Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface which is used as, or combined with, an impedance matching layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers

Definitions

  • the present invention relates to a resin composition for acoustic matching layer, a cured product, an acoustic matching sheet, an acoustic wave probe, an acoustic wave measuring device, a method of manufacturing an acoustic wave probe, and a material set for acoustic matching layer.
  • an acoustic wave probe As an acoustic wave measurement apparatus, an acoustic wave probe is used which irradiates an acoustic wave to a test object such as a living body, receives a reflected wave (echo), and outputs a signal.
  • the reflected wave received by the acoustic wave probe is converted into an electrical signal and displayed as an image. Therefore, by using the acoustic wave probe, the inside of the test object can be imaged and observed.
  • an ultrasonic wave, an ultrasonic wave, a photoacoustic wave, etc. are suitably selected according to a test object and according to measurement conditions.
  • an ultrasonic diagnostic apparatus which is a type of acoustic wave measurement apparatus, transmits ultrasonic waves toward the inside of a subject, receives ultrasonic waves reflected by tissue inside the subject, and displays as an image.
  • the photoacoustic wave measurement apparatus receives an acoustic wave emitted from the inside of the test object by the photoacoustic effect, and displays the acoustic wave as an image.
  • the photoacoustic effect is that when a subject is irradiated with an electromagnetic wave pulse such as visible light, near-infrared light or microwave, the subject absorbs the electromagnetic wave, generates heat, and thermally expands. Typically, this is a phenomenon in which ultrasonic waves are generated.
  • an electromagnetic wave pulse such as visible light, near-infrared light or microwave
  • the acoustic wave probe Since the acoustic wave measuring apparatus transmits and receives acoustic waves to and from the test object, the acoustic wave probe is required to have the matching of the acoustic impedance with the test object. To meet this requirement, the acoustic wave probe is provided with an acoustic matching layer.
  • an ultrasonic diagnostic device probe also referred to as an ultrasonic probe
  • the ultrasonic probe includes a piezoelectric element for transmitting and receiving ultrasonic waves, and an acoustic lens in contact with a living body.
  • An acoustic matching layer is disposed between the piezoelectric element and the acoustic lens.
  • the ultrasonic wave oscillated from the piezoelectric element is transmitted through the acoustic matching layer, and further transmitted through the acoustic lens to be incident on the living body.
  • acoustic impedance density ⁇ sound velocity
  • an acoustic lens is required to have an acoustic impedance characteristic close to that of a living body.
  • the difference in acoustic impedance between the piezoelectric element and the living body is generally large.
  • the difference in acoustic impedance between the piezoelectric element and the acoustic lens is also usually large. Therefore, in the case of the laminated structure of the piezoelectric element and the acoustic lens, the ultrasonic wave emitted from the piezoelectric element is reflected at the interface between the piezoelectric element and the acoustic lens, and the incident efficiency of the ultrasonic wave to the living body decreases.
  • the above-mentioned acoustic matching layer is provided between the piezoelectric element and the acoustic lens.
  • the acoustic impedance of the acoustic matching layer is between the acoustic impedance of the living body or the acoustic lens and the acoustic impedance of the piezoelectric element, whereby the propagation of ultrasonic waves from the piezoelectric element to the living body is made efficient. Further, it is also known to make ultrasonic wave propagation more efficient by providing an acoustic matching layer with a multilayer structure and providing a gradual inclination in acoustic impedance from the piezoelectric element side to the acoustic lens side.
  • the acoustic wave probe is also required to have sufficient mechanical strength. That is, the mechanical strength directly affects the product life of the acoustic wave probe, since the acoustic wave probe is used by rubbing and sometimes pressing the living body.
  • Patent Document 1 describes a silicone resin for an acoustic wave probe in which inorganic oxide particles having a specific particle diameter are blended with a silicone resin having a specific structure.
  • Patent Document 1 it is possible to provide an acoustic wave probe which has an acoustic impedance close to that of a living body, suppresses acoustic wave attenuation, and is also excellent in mechanical strength.
  • Patent Document 2 uses, as an acoustic wave matching layer of an ultrasonic probe, metal nanoparticles of 1 ⁇ m or less and an inorganic polymer binder as a binder, and performs low-temperature firing on this. It is described to metal-bulk or all. According to the technique described in Patent Document 2, it is possible to produce an acoustic matching layer having desired acoustic impedance characteristics.
  • the acoustic matching layer of the acoustic wave probe employs a material whose acoustic impedance can be adjusted to a desired level between the acoustic impedance of the piezoelectric element and the acoustic impedance of the living body or the acoustic lens.
  • the acoustic matching layer described in Patent Document 2 is reported as such an acoustic matching layer, but the composition used to form the acoustic matching layer described in Patent Document 2 contains a large amount of metal nanoparticles, and the viscosity is It is highly inferior in handling and processing. In addition, metals are easily corroded under reducing conditions, and problems remain in terms of probe maintenance and life.
  • the acoustic matching layer has a multilayer structure as described above, it is necessary to perform secondary processing to a thickness level of several hundred ⁇ m or less by cutting, dicing or the like in the preparation process. Therefore, in addition to the mechanical characteristics usually required for the acoustic wave probe described above, high mechanical strength is required for the constituent material of the acoustic matching layer also from the viewpoint of secondary processing. However, it has been found that it is difficult to obtain a desired mechanical strength when the metal particles described in Patent Document 2 are used according to the study of the present inventors.
  • the present invention is a resin composition containing metal particles and a binder containing a resin, and when the resin is thermoplastic, the metal particles are contained in large amounts by melting the resin. Excellent fluidity (handling property) can be realized, and when the resin is thermosetting, excellent fluidity can be realized even if a large amount of metal particles is contained in the state before curing, which is desirable.
  • a resin composition for an acoustic matching layer capable of forming an acoustic matching layer having excellent mechanical strength and corrosion resistance and having less variation in acoustic characteristics in the layer by forming or processing into a sheet form of As an issue.
  • Another object of the present invention is to provide an acoustic matching layer material set suitable for the preparation of the composition.
  • Another object of the present invention is to provide an acoustic matching sheet excellent in corrosion resistance, excellent in mechanical strength and containing less variation in acoustic characteristics in the sheet while containing metal particles, and a cured product used therefor.
  • the present invention is an acoustic wave probe which is excellent in corrosion resistance, excellent in mechanical strength and small in variation of acoustic characteristics in the probe while containing metal particles in the acoustic matching layer, and acoustic wave measurement using the same. It is an object to provide an apparatus.
  • the present invention is an acoustic wave probe which enables manufacture of an acoustic wave probe which is excellent in corrosion resistance, excellent in mechanical strength and small in variation of acoustic characteristics in the probe while containing metal particles in the acoustic matching layer. It is an object of the present invention to provide a manufacturing method of
  • the present inventors made metal particles and a binder (also referred to as a base material or a dispersion medium) containing a resin as a composition for forming an acoustic matching layer.
  • a binder also referred to as a base material or a dispersion medium
  • the flowability of the composition can be enhanced to a desired level even in the case where the metal particles are contained in a large amount, which makes it easy to handle
  • an excellent composition can be obtained.
  • the sheet formed using this composition was excellent in corrosion resistance while containing metal particles, was excellent in mechanical strength, and had a small variation in acoustic characteristics in the sheet.
  • the present invention has been further studied based on these findings and has been completed.
  • a resin composition for an acoustic matching layer comprising a binder-containing resin and surface-treated metal particles.
  • the resin composition for acoustic matching layers according to [1], wherein the surface-treated metal particles contain at least one of iron, copper and nickel.
  • the binder is at least one of polyamide resin, acrylonitrile-butadiene-styrene copolymer, meta (acrylic) resin, polyacetal resin, polycarbonate resin, polyether sulfone resin, polyetherimide resin, and thermoplastic polyurethane resin.
  • the epoxy resin comprises at least one of a bisphenol A epoxy resin, a bisphenol F epoxy resin, and a phenol novolac epoxy resin.
  • the curing agent contains at least one of a primary amine and a secondary amine.
  • seat which consists of a hardened
  • An acoustic matching sheet formed of the resin composition for an acoustic matching layer according to any one of [1] to [11].
  • An acoustic wave probe comprising the acoustic matching sheet according to [13] or [14] as an acoustic matching layer.
  • An acoustic wave measurement device comprising the acoustic wave probe according to [15].
  • a method of manufacturing an acoustic wave probe comprising forming an acoustic matching layer on a piezoelectric element using the resin composition for an acoustic matching layer according to any one of [1] to [11].
  • a material set for an acoustic matching layer comprising: a main agent comprising a resin composition containing an epoxy resin and surface-treated metal particles; and a curing agent for the epoxy resin.
  • the resin composition for acoustic matching layer of the present invention and the material set for acoustic matching layer can realize excellent fluidity even when containing a large amount of metal particles, and using them, they can be molded or processed into a desired sheet shape. As a result, it is possible to obtain an acoustic matching sheet which is excellent in mechanical strength and corrosion resistance and in which variation in acoustic characteristics in the sheet is also small. Further, the acoustic matching sheet of the present invention is excellent in corrosion resistance while containing metal particles, is also excellent in mechanical strength, and has less variation in acoustic characteristics in the sheet.
  • the cured product of the present invention is also suitable as a constituent material of the acoustic matching layer of the present invention.
  • the acoustic wave probe of the present invention and the acoustic wave measurement device using the same have excellent corrosion resistance and mechanical strength while containing metal particles in the acoustic matching layer, and also have acoustic characteristics in the probe. There is also little variation. Further, according to the method of manufacturing an acoustic wave probe of the present invention, an acoustic wave is excellent in corrosion resistance, excellent in mechanical strength and small in variation of acoustic characteristics in the probe while containing metal particles in the acoustic matching layer. Probes can be obtained.
  • the resin composition for an acoustic matching layer of the present invention includes a binder containing a resin and surface-treated metal particles.
  • the binder contained in the composition of the present invention fills the gaps between the surface-treated metal particles, and functions as a dispersion medium for the surface-treated metal particles.
  • the binder preferably contains a thermoplastic resin or a thermosetting resin.
  • a thermoplastic resin is used as the binder, the melting point of the thermoplastic resin is preferably 100 to 350.degree.
  • the binder is a thermoplastic resin, when the composition of the present invention has a thermoplastic resin as a binder, it is solid in the temperature range below the melting point of the thermoplastic resin, and the surface treatment is carried out in the solidified resin It is in the form in which metal particles are dispersed.
  • the thermoplastic resin that can be used as the binder is not particularly limited.
  • thermoplastic resin examples include, for example, polyamide resin, acrylonitrile-butadiene-styrene copolymer, meta (acrylic) resin, polyacetal resin, polycarbonate resin, polyether sulfone resin, polyetherimide resin, thermoplastic polyurethane resin , Polyester resin (polyethylene terephthalate, polybutylene terephthalate etc), polyolefin resin (polyethylene, polypropylene etc), polyvinylidene resin (polyvinyl chloride etc), polyetheretherketone resin, polyphenylene sulfide resin, thermoplastic polyimide resin, polyamideimide resin And polystyrene resins, and fluorine resins (polytetrafluoroethylene, polyvinylidene fluoride, etc.), etc., and one or more of these may be used.
  • thermoplastic polyurethane resins are preferable.
  • the composition exhibits higher fluidity in the molten state of the resin, and excellent handling properties, processability, and the like can be realized at a higher level.
  • thermosetting resin used for the binder is not particularly limited.
  • epoxy resin, phenol resin, melamine resin, urea resin, unsaturated polyester resin, alkyd resin, thermosetting polyurethane resin, thermosetting polyimide resin and the like can be mentioned.
  • the binder preferably contains a curing agent together with the epoxy resin. That is, when the binder contains a thermosetting resin, the binder is preferably a combination of an epoxy resin and a curing agent.
  • an epoxy resin as a thermosetting resin it is preferable to contain 1 type, or 2 or more types of bisphenol A epoxy resin, bisphenol F type epoxy resin, and a phenol novolak epoxy resin.
  • the bisphenol A-type epoxy resin which can be used in the present invention is not particularly limited, and those generally used as the main component of the epoxy adhesive can be widely used.
  • Preferred specific examples include bisphenol A diglycidyl ether (jER 825, jER 828 and jER 834 (all trade names) manufactured by Mitsubishi Chemical Corporation) and bisphenol A propoxylate diglycidyl ether (manufactured by Sigma Aldrich).
  • the bisphenol F-type epoxy resin that can be used in the present invention is not particularly limited, and those generally used as the main component of epoxy adhesives can be widely used.
  • Preferred specific examples include bisphenol F diglycidyl ether (trade name: EPICLON 830, manufactured by DIC Corporation) and 4,4'-methylene bis (N, N-diglycidyl aniline).
  • the phenol novolac epoxy resin which can be used in the present invention is not particularly limited, and those generally used as the main component of epoxy adhesives can be widely used.
  • Such phenol novolac epoxy resin is commercially available, for example, from Sigma Aldrich under the product number 406775.
  • curing agent those known as curing agents for epoxy resins can be used without particular limitation.
  • aliphatic amines, aromatic amines, dicyandiamide, dihydrazide compounds, acid anhydrides, phenolic resins and the like can be mentioned.
  • a primary amine and a secondary amine From the viewpoint of increasing the crosslink density and further improving the mechanical strength of the obtained sheet, it is preferable to use at least one of a primary amine and a secondary amine.
  • a compound having a primary amine and a secondary amine in one molecule is preferable, and specific examples thereof include polyamidoamine, triethylenetetramine and the like.
  • the composition of the present invention contains an epoxy resin and a curing agent as a binder
  • the curing reaction of the epoxy resin may progress over time in the composition even under mild conditions. Therefore, the properties of this composition may change over time and may not be stable.
  • a composition in a state where each component is stably maintained can be obtained without causing or sufficiently suppressing a curing reaction.
  • an epoxy resin is used as a binder
  • a resin composition containing an epoxy resin and surface-treated metal particles is used as a main agent, and the form of a material set for acoustic matching layer in which the main agent and a curing agent are separately separated.
  • the acoustic matching layer can be formed by mixing the main agent and the curing agent to prepare the composition of the present invention and forming a layer using this composition.
  • the mass ratio of the epoxy resin to the curing agent is epoxy resin It is preferable to mix and use the main agent and the curing agent so that the amount of the curing agent is 99/1 to 20/80, and the main agent and the curing agent are mixed so as to be 90/10 to 40/60. It is more preferable to set it as the form to use.
  • the composition of the present invention contains surface-treated metal particles (surface-treated metal particles).
  • surface-treated metal particles By adjusting the content of the surface-treated metal particles, the density of the composition can be adjusted, and the acoustic impedance of the resulting acoustic matching layer can be adjusted to a desired level.
  • the composition can exhibit sufficient fluidity even when the metal particles are highly contained in the composition. As a result, excellent handling and processability can be realized.
  • the sheet formed using this composition is also excellent in mechanical strength.
  • the normal surface treatment technique is applicable.
  • oil agent treatment with hydrocarbon oil, ester oil, lanolin, etc. silicone treatment with dimethylpolysiloxane, methylhydrogenpolysiloxane, methylphenylpolysiloxane etc., perfluoroalkyl group-containing ester, perfluoroalkylsilane, perfluoropolyether Compound treatment with a polymer having a perfluoroalkyl group and the like, a silane coupling agent treatment with 3-methacryloxypropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane etc., isopropyltriisostearoyl titanate, isopropyltris ( Dioctyl pyrophosphate) Titanium coupling agent treatment with titanate etc., metal soap treatment, amino acid treatment with acyl glutamic acid etc., lecithin
  • the surface treatment is preferably a phosphoric acid compound treatment (treatment with a phosphoric acid compound).
  • a phosphoric acid compound treatment By applying a phosphoric acid compound treatment, a highly polar treated layer can be formed thick on the metal particle surface.
  • the surface of the metal particles can be effectively modified. That is, the corrosion resistance of the metal particles can be effectively enhanced, and the affinity to the binder is enhanced, or the aggregation due to the hydrophobic interaction between the metal particles is suppressed, and the composition The viscosity increase can be more effectively suppressed.
  • the mechanical strength of the sheet obtained by molding the composition can be further enhanced by, for example, the metal particles in the binder being dispersed uniformly, and the variation of the acoustic characteristics is also less likely to occur.
  • phosphoric acid compounds include phosphorous acid, hypophosphorous acid, pyrophosphoric acid, linear polyphosphoric acid, and cyclic metaphosphoric acid, and salts thereof.
  • metal salts are preferred. Examples include, but are not limited to, alkali metals, alkaline earth metals, and ammonium salts.
  • a chelating agent, a neutralizing agent and the like can be used as a surface treatment agent.
  • the aqueous solution of the phosphoric acid compound generally marketed can also be used as a surface treatment agent.
  • the phosphate compound treatment can be performed, for example, by mixing metal particles with the surface treatment agent containing the above-mentioned phosphate compound. Conditions such as mixing time and temperature may be appropriately set according to the purpose.
  • an insoluble phosphoric acid compound is deposited on the surface of the metal particles by utilizing a dissociation (equilibrium) reaction of the phosphoric acid compound.
  • a dissociation (equilibrium) reaction of the phosphoric acid compound.
  • surface treatment with a silane coupling agent silane coupling agent treatment
  • silane coupling agent treatment silane coupling agent treatment
  • the surface treatment with a silane coupling agent enhances the interaction between the metal and the binder and suppresses the reflection and scattering of ultrasonic waves at the interface between the metal particles and the binder. It is estimated that the attenuation value is smaller than that of other surface treatments.
  • the metal constituting the surface-treated metal particles is not particularly limited. It may be a metal atom alone, or may be a carbide, a nitride, an oxide or a boride of a metal.
  • an alloy may be formed. Types of alloys include high-strength steel (Fe-C), chromium molybdenum steel (Fe-Cr-Mo), manganese molybdenum steel (Fe-Mn-Mo), stainless steel (Fe-Ni-Cr), 42 alloy, Invar (Fe-Ni), Baendur (Fe-Co), Silicon steel (Fe-Si), Red iron, Tombuck (Cu-Zn), Western-White (Cu-Zn-Ni), Bronze (Cu-Sn) , White copper (Cu-Ni), red copper (Cu-Au), constantan (Cu-Ni), germalmin (Al-Cu), hastelloy (Ni-Mo-Cr-Fe), monel (Ni-Cu), in
  • the metal constituting the surface-treated metal particles preferably contains at least one metal of groups 4 to 12 of the periodic table (preferably, it consists of at least one metal of groups 4 to 12 of the periodic table).
  • the metal of Groups 4 to 12 of the periodic table is preferably a metal of Period 4 of the periodic table.
  • the metal more preferably contains at least one of iron, zinc, titanium, copper and nickel (preferably composed of at least one of iron, zinc, titanium, copper and nickel), at least one of iron, copper and nickel More preferably, it contains a species (preferably consisting of at least one of iron, copper and nickel). It is preferable that the above-mentioned metal does not include those in the oxide state.
  • the particle diameter of the surface-treated metal particles used in the present invention is preferably 0.01 to 100 ⁇ m, and more preferably 1 to 10 ⁇ m from the viewpoint of reducing the viscosity of the resin composition and reducing acoustic attenuation.
  • the "particle size" of the surface-treated metal particles means an average primary particle size.
  • the average primary particle size means a volume average particle size. The volume average particle size is determined as follows. The surface-treated metal particles are added to methanol so as to be 0.5% by mass, and ultrasonication is applied for 10 minutes to disperse the surface-treated metal particles.
  • the particle size distribution of the surface-treated metal particles thus treated is measured by a laser diffraction / scattering particle size distribution analyzer (trade name: LA950V2 manufactured by Horiba, Ltd.), and the volume based median diameter is taken as the volume average particle diameter.
  • the median diameter corresponds to a cumulative 50% when the particle size distribution is represented as a cumulative distribution.
  • the thickness of the surface treatment layer covering the metal particles is preferably 1 to 1000 nm, and more preferably 5 to 100 nm.
  • the surface treatment layer does not have to cover the entire surface of the metal particle, and a defect may partially occur within the range not impairing the effects of the present invention.
  • the contents of the surface-treated metal particles and the binder are appropriately adjusted in accordance with the desired acoustic impedance and the like.
  • the acoustic matching layer is a multilayer
  • the content of the surface-treated metal particles in the composition used for the acoustic matching layer on the piezoelectric element side is relatively increased
  • the composition used for the acoustic matching layer on the acoustic lens side The content of surface-treated metal particles can be relatively reduced.
  • the acoustic impedance can be inclined from the piezoelectric element side toward the acoustic lens side, and the propagation of acoustic waves can be made more efficient.
  • the content of each of the surface-treated metal particles and the binder in the composition of the present invention can be, for example, 10 to 80 parts by mass of the binder per 100 parts by mass of the surface-treated metal particles. 75 parts by mass is more preferable, and 20 to 70 parts by mass is more preferable.
  • the composition of the present invention may be composed of a binder and surface-treated metal particles. Moreover, you may contain components other than these in the range which does not impair the effect of this invention.
  • components other than the binder and other than the surface-treated metal particles for example, a curing retarder, a solvent, a dispersant, a pigment, a dye, an antistatic agent, an antioxidant, a flame retardant and / or a thermal conductivity improver, etc. It can be mentioned. 80 mass% or more is preferable, and, as for the sum total of each content of a binder and surface treatment metal particle in the composition of this invention, 90 mass% or more is more preferable.
  • the viscosity of the composition of the present invention is preferably 1 to 5000 Pa ⁇ s, more preferably 10 to 1000 Pa ⁇ s, at a temperature of “melting point of resin + 20 ° C.”.
  • “melting point of resin + 20 ° C.” means “melting point of resin with highest melting point + 20 ° C.”.
  • the binder is a thermosetting resin
  • the viscosity at 25 ° C is 1 to 5000 Pa ⁇ s before curing (within 60 minutes after uniformly mixing the thermosetting resin and the curing agent at 25 ° C)
  • 10 to 1000 Pa ⁇ s is more preferable.
  • the viscosity at 25 ° C. of the main agent is preferably in the above-mentioned preferable range.
  • the viscosity is measured using a cone-type rotary rheometer ("RheoStress RS6000" manufactured by HAAKE) under conditions of a temperature of 25 ° C., 1 rpm, and a measuring time of 60 seconds.
  • the resin composition for acoustic matching layers of the present invention can be obtained, for example, by mixing the components constituting the resin composition for acoustic matching layers.
  • the mixing method is not particularly limited as long as the components can be uniformly mixed.
  • kneading can be performed using a stirrer or using a kneader (kneader, pressure kneader, Banbury mixer (continuous kneader), two-roll kneader).
  • a thermoplastic resin is used as the binder, the resin is kneaded at a temperature equal to or higher than the melting point of the resin.
  • distributes in a binder can be obtained.
  • the binder is prepared by mixing the binder in the state before curing and the surface-treated metal particles, or by mixing the curing agent if necessary.
  • the composition for acoustic matching layers in which a surface treatment metal particle disperses can be obtained. In this case, mixing may be carried out with a kneader or the like as described above, but it is preferable to stir relatively gently so as not to generate much heat.
  • the epoxy resin and the surface-treated metal particles can be obtained by mixing.
  • the composition of the present invention is obtained by mixing the main agent with a curing agent.
  • An acoustic matching layer or a precursor sheet thereof can be formed by curing while molding the composition.
  • An acoustic matching sheet can be obtained by forming the composition of the present invention into a sheet, cutting it into a desired thickness or shape if necessary, dicing, and the like.
  • the acoustic matching sheet is used as an acoustic matching layer of the acoustic wave probe.
  • the configuration of the acoustic wave probe including the acoustic matching layer will be described later.
  • the composition of the present invention has a thermoplastic resin as a binder, the composition is heated to thermally melt the resin, molded into a desired sheet, cooled and solidified to obtain an acoustic matching sheet or a precursor thereof.
  • Body sheet can be formed.
  • the composition of the present invention has a thermosetting resin as a binder and, if necessary, a curing agent
  • the desired sheet can be obtained in a low temperature region where a curing reaction does not occur or a low temperature region where the curing rate is sufficiently slow.
  • the molded product is formed into a cross-linked structure by heating if necessary, and cured to form an acoustic matching sheet or a precursor sheet thereof. That is, when a composition having a thermosetting resin is used as a binder, the acoustic matching sheet to be formed is a cured product in which the composition of the present invention is cured to form a three-dimensional network structure.
  • the acoustic wave probe of the present invention has an acoustic matching sheet formed using the composition of the present invention as an acoustic matching layer.
  • An example of the configuration of the acoustic wave probe of the present invention is shown in FIG.
  • the acoustic wave probe shown in FIG. 1 is an ultrasonic probe in an ultrasonic diagnostic apparatus.
  • an ultrasonic probe is a probe which uses an ultrasonic wave especially as an acoustic wave in an acoustic wave probe. Therefore, the basic structure of the ultrasound probe can be applied to the acoustic wave probe as it is.
  • the ultrasonic probe 10 is a main component of an ultrasonic diagnostic apparatus, and has a function of generating an ultrasonic wave and transmitting and receiving an ultrasonic beam. As shown in FIG. 1, the configuration of the ultrasonic probe 10 is provided in the order of the acoustic lens 1, the acoustic matching layer 2, the piezoelectric element layer 3, and the backing material 4 from the tip (surface contacting the living body to be detected) ing. In recent years, in order to receive high-order harmonics, a transmitting ultrasonic transducer (piezoelectric element) and a receiving ultrasonic transducer (piezoelectric element) are made of different materials and have a laminated structure. Is also proposed.
  • the piezoelectric element layer 3 is a portion that generates an ultrasonic wave, and electrodes are attached to both sides of the piezoelectric element, and when a voltage is applied, the piezoelectric element repeatedly vibrates expansion and contraction to generate an ultrasonic wave. Do.
  • quartz, single crystals such as LiNbO 3 , LiTaO 3 and KNbO 3 , thin films such as ZnO and AlN, and sintered bodies such as Pb (Zr, Ti) O 3 based are subjected to polarization processing.
  • ceramic inorganic piezoelectric materials are widely used.
  • piezoelectric ceramics such as PZT: lead zirconate titanate having high conversion efficiency are used.
  • the piezoelectric element that detects the received wave on the high frequency side needs sensitivity with a wider bandwidth.
  • an organic piezoelectric material using an organic polymer substance such as polyvinylidene fluoride (PVDF) is used as a piezoelectric element suitable for high frequency and wide band.
  • PVDF polyvinylidene fluoride
  • Japanese Patent Application Laid-Open No. 2011-071842 or the like uses MEMS (Micro Electro Mechanical Systems) technology that exhibits excellent short pulse characteristics and wide band characteristics, provides excellent mass productivity, and obtains an array structure with less characteristic variation.
  • cMUT is described.
  • any piezoelectric element material can be preferably used.
  • the backing material 4 is provided on the back surface of the piezoelectric element layer 3 and suppresses the excessive vibration to shorten the pulse width of the ultrasonic wave, thereby contributing to the improvement of the distance resolution in the ultrasonic diagnostic image.
  • the acoustic matching layer 2 is provided to reduce the difference in acoustic impedance between the piezoelectric element layer 3 and the test object and to efficiently transmit and receive ultrasonic waves.
  • the acoustic lens 1 is provided to focus the ultrasound in the slice direction using refraction to improve resolution. In addition, it is in close contact with the living body to be examined, and the ultrasonic wave is matched with the acoustic impedance of the living body (in the human body, 1.4 to 1.7 ⁇ 10 6 kg / m 2 / sec); It is required that the ultrasonic attenuation amount of itself is small. That is, as the material of the acoustic lens 1, ultrasonic waves are transmitted / received by using a material whose sound velocity is sufficiently smaller than the sound velocity of the human body and attenuation of ultrasonic waves is small, and whose acoustic impedance is close to the value of human skin. The sensitivity is enhanced.
  • the operation of the ultrasonic probe 10 having such a configuration will be described.
  • a voltage is applied to electrodes provided on both sides of the piezoelectric element to cause the piezoelectric element layer 3 to resonate, and an ultrasonic signal is transmitted from the acoustic lens to the test object.
  • the piezoelectric element layer 3 is vibrated by a reflection signal (echo signal) from the test object, and the vibration is electrically converted into a signal to obtain an image.
  • the acoustic wave probe of the present invention can be produced by an ordinary method except using the resin composition for acoustic matching layer of the present invention. That is, the method of manufacturing an acoustic wave probe of the present invention includes forming an acoustic matching layer on a piezoelectric element using the resin composition for acoustic matching layer of the present invention.
  • the piezoelectric element can be provided on the backing material by a conventional method.
  • an acoustic lens is formed on the acoustic matching layer by a conventional method using a material for forming an acoustic lens.
  • the acoustic wave measurement device of the present invention has the acoustic wave probe of the present invention.
  • the acoustic wave measurement device has a function of displaying the signal strength of the signal received by the acoustic wave probe and imaging this signal.
  • the acoustic wave measurement device of the present invention is also preferably an ultrasonic measurement device using an ultrasonic probe.
  • an ultrasonic wave as an acoustic wave.
  • the present invention is not limited to ultrasonic waves, and audio waves of audio frequencies may be used as long as appropriate frequencies are selected according to an object to be detected, measurement conditions, and the like.
  • thermoplastic resin for Sound Matching Layer
  • the metal particles and the thermoplastic resin were mixed at blending amounts shown in the following table, and were kneaded using a twin-screw kneader (trade name: Labo Plastomill C model, manufactured by Toyo Seiki Seisaku-sho, Ltd.).
  • the kneading conditions were such that the temperature was “melting point of thermoplastic resin + 20 ° C.”, screw rotation speed was 15 rpm, and kneading time was 20 minutes.
  • a resin composition for acoustic matching layer having a thermoplastic resin as a binder was prepared.
  • ⁇ Viscosity measurement conditions Measuring device: cone type rotating rheometer ("RheoStress RS6000" made by HAAKE) Number of revolutions: 1 rpm Measurement time: 60 seconds ⁇ Viscosity evaluation criteria> A: Less than 500 Pa ⁇ s B: 500 Pa ⁇ s or more, less than 1000 Pa ⁇ s C: 1000 Pa ⁇ s or more, less than 5000 Pa ⁇ s D: 5000 Pa ⁇ s or more The results are shown in the table below.
  • Test Example 3 Mechanical Strength Each composition obtained in Preparation Example 1 was compression molded at a temperature of 10 ° C. of the melting point of the thermoplastic resin used as a binder, and then trimmed to a size of 50 mm ⁇ 50 mm.
  • X A 0.4 mm thick sheet was prepared. This sheet was punched into a length of 40 mm ⁇ width 5 mm ⁇ thickness 0.4 mm to obtain a strip-like test piece. This test piece was subjected to a tensile test using a tensile tester (trade name: Autograph AGS-X / 20N, manufactured by Shimadzu Corporation) at a tensile speed of 30 mm / min in the longitudinal direction of the test piece.
  • a tensile tester trade name: Autograph AGS-X / 20N, manufactured by Shimadzu Corporation
  • the energy (breaking energy) required for the test piece to break was determined and applied to the following evaluation criteria for evaluation.
  • the standard deviation of the acoustic impedance at five locations was determined, and the following evaluation criteria were applied to evaluate the variation in acoustic characteristics.
  • ⁇ Density> According to the density measurement method of method A (underwater substitution method) described in JIS K7112 (1999), the densities of five measurement parts at 25 ° C.
  • the density of the measurement part is the density (10 mm ⁇ 10 mm square) of the cut sheet (10 mm ⁇ 10 mm square) by cutting out a sheet piece into a square of 10 mm ⁇ 10 mm square in the sound velocity measurement part described above (circle of diameter 1.5 cm). Unit: g / cm 3 ).
  • Test Example 5 Corrosion Resistance
  • Each composition immediately after preparation obtained in Preparation Example 1 was molded into a sheet of 5 cm long ⁇ 5 cm wide ⁇ 2 mm thickness in the same manner as in Test Example 4 above. After leaving each sheet for 500 hours at 85 ° C. and 90% relative humidity in an environmental tester, the test piece is taken out and its surface condition is measured with a microscope BS-D 8000 II (manufactured by Sonic Corporation) at a magnification of 50 times Ten places were observed at random. The observation results were applied to the following criteria to evaluate the degree of corrosion.
  • A-1) Fe (average particle size 4.1 ⁇ m), iron phosphate treatment (A-2) Zn (average particle size 6.3 ⁇ m), iron phosphate treatment (A-3) Ti (average particle size 5. 1 ⁇ m), iron phosphate treatment (A-4) Cu (average particle size 3.6 ⁇ m), iron phosphate treatment (A-5) Ni (average particle size 2.6 ⁇ m), iron phosphate treatment (A-6) Zr (average particle size 6.1 ⁇ m), iron phosphate treatment (A-7) Mo (average particle size 4.4 ⁇ m), iron phosphate treatment (A-8) Ag (average particle size 5.6 ⁇ m), phosphoric acid Iron treatment (A-9) Pt (average particle size 6.8 ⁇ m), iron phosphate treatment (A-10) Au (average particle size 3.0 ⁇ m), iron phosphate treatment (A-11) Fe (average particle size 4.1 ⁇ m), phosphated (A-12) Fe (average particle size 4.1 ⁇ m), zinc phosphate treated (A-13) Fe (average
  • Thermoplastic resin (B-1) Polyamide 6 (PA 6) (B-2) High density polyethylene (HDPE) (B-3) Polypropylene (PP) (B-4) Polystyrene (GPPS) (B-5) Acrylonitrile-Butadiene-Styrene Copolymer (ABS) (B-6) Polymethyl methacrylate (PMMA) (B-7) Polyacetal (POM) (B-8) Polycarbonate (PC) (B-9) Polyphenylene ether (PPE) (B-10) Polybutylene terephthalate (PBT) (B-11) Polyether sulfone (PES) (B-12) Polyetherimide (PEI) (B-13) Polyphenylene sulfide (PPS) (B-14) Thermoplastic polyurethane (TPU) (B-15) Polyvinyl chloride (PVC) (B-16) Fluorine resin (PVDF)
  • Preparation Example 2 Preparation of Resin Composition for Acoustic Matching Layer (Binder: Combination of Thermosetting Resin and Curing Agent)
  • the metal particles, the epoxy resin, and the curing agent were mixed in the amounts shown in the following table. Specifically, the metal particles and the epoxy resin are stirred at 1800 rpm in a state where the pressure is reduced to 1.0 Pa at room temperature using a stirrer (trade name: lather Taro ARV-310, manufactured by Shinky). While degassing for 4 minutes. A curing agent was added there and stirred under the same conditions for degassing. Thus, a resin composition for an acoustic matching layer containing a thermosetting resin as a binder was prepared.
  • Test Example 6 Viscosity The viscosity (Pa ⁇ s) of each composition immediately after preparation obtained in Preparation Example 2 was measured. The measurement conditions of viscosity were made as follows, and the measured value of the obtained viscosity was applied to the following evaluation criteria, and the handling property of the composition was evaluated.
  • ⁇ Viscosity measurement conditions Measuring device: cone type rotating rheometer ("RheoStress RS6000" made by HAAKE) Measurement temperature: 25 ° C Number of revolutions: 1 rpm Measurement time: 60 seconds ⁇ Viscosity evaluation criteria> A: Less than 500 Pa ⁇ s B: 500 Pa ⁇ s or more, less than 1000 Pa ⁇ s C: 1000 Pa ⁇ s or more, less than 5000 Pa ⁇ s D: 5000 Pa ⁇ s or more The results are shown in the table below.
  • Test Example 8 Mechanical Strength Each composition immediately after preparation obtained in Preparation Example 2 was formed into a sheet, allowed to stand at a temperature of 80 ° C. for 18 hours, and then allowed to stand at a temperature of 150 ° C. for 1 hour. A sheet-like cured product of length 50 mm ⁇ width 50 mm ⁇ thickness 0.4 mm was produced. The sheet-like cured product was punched into a length of 40 mm ⁇ width 5 mm ⁇ thickness 0.4 mm to obtain a strip-like test piece. Break energy was evaluated in the same manner as in Test Example 3 using this test piece. The results are shown in the table below.
  • Test Example 9 Variation in Acoustic Impedance (AI) Each composition immediately after preparation obtained in Preparation Example 2 is formed into a sheet, allowed to stand at a temperature of 80 ° C. for 18 hours, and then at a temperature of 150 ° C. The mixture was allowed to stand for 1 hour to prepare a sheet-like cured product of 5 cm long x 5 cm wide x 2 mm thick. The variation in acoustic impedance (AI) was evaluated in the same manner as in Test Example 4 using this sheet-like cured product. The results are shown in the table below.
  • Test Example 10 Corrosion Resistance Each composition immediately after preparation obtained in Preparation Example 2 was formed into a sheet, allowed to stand at a temperature of 80 ° C. for 18 hours, and then allowed to stand at a temperature of 150 ° C. for 1 hour. Then, a sheet-like cured product of 5 cm long x 5 cm wide x 2 mm thick was prepared. The cured sheet was used to evaluate the corrosion resistance in the same manner as in Test Example 5. The results are shown in the table below.
  • Test Example 11 Ultrasonic Sensitivity Using each composition immediately after preparation obtained in Preparation Example 3, a sheet of 100 mm in length ⁇ 100 mm in width ⁇ 2 mm in thickness was obtained according to the method described in the above-mentioned Test Example.
  • a 5 MHz sine wave signal (one wave) output from an ultrasonic oscillator (for example, a function generator, trade name "FG-350" manufactured by Iwatsu Measurement Co., Ltd.) is converted to an ultrasonic probe (manufactured by Japan Probe Co., Ltd.)
  • An ultrasonic pulse wave with a center frequency of 5 MHz was generated in water from the ultrasonic probe.
  • the amplitude of the generated ultrasonic waves before and after passing through the sheet is measured by an ultrasonic wave receiver (for example, an oscilloscope manufactured by Matsushita Electric Industrial Co., Ltd., trade name "VP-5204A"), and the water temperature is 25 ° C. Measured in the environment. By comparing the acoustic wave (ultrasonic wave) sensitivity, the acoustic wave (ultrasonic wave) attenuation amount of each sheet was compared.
  • an ultrasonic wave receiver for example, an oscilloscope manufactured by Matsushita Electric Industrial Co., Ltd., trade name "VP-5204A”
  • the ultrasonic sensitivity is the ultrasonic wave generated by the ultrasonic wave generator, with respect to the voltage peak value Vin of the input wave having a half width of 50 nsec or less, the generated ultrasonic wave passes through the sheet and the acoustic wave (ultrasound) reflected from the opposite side of the sheet
  • Vs voltage value obtained when the ultrasonic oscillator is received
  • (Ultrasonic sensitivity) 20 x Log (Vs / Vin)
  • the obtained ultrasonic sensitivity was applied to the following criteria to evaluate the sensitivity. ⁇ Evaluation criteria for sensitivity> A: -66 dB or more B: -70 dB or more-less than -66 dB C: -70 dB or less
  • the results are shown in the table below.
  • the table below also shows the evaluation results of the density, energy to break, AI standard deviation (AI variation), and corrosion resistance, which were measured in the same manner as in the above-described test examples.
  • acoustic lens 1 acoustic lens 2 acoustic matching layer (acoustic matching sheet) Reference Signs List 3 piezoelectric element layer 4 backing material 7 housing 9 code 10 ultrasonic probe (probe)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Acoustics & Sound (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

樹脂を含む結着材と表面処理金属粒子とを含有する音響整合層用樹脂組成物、この組成物を用いた硬化物、音響整合シート、音響波プローブ、音響波測定装置、及び音響波プローブの製造方法。上記組成物の調製に好適な音響整合層用材料セット。

Description

音響整合層用樹脂組成物、硬化物、音響整合シート、音響波プローブ、音響波測定装置、音響波プローブの製造方法、及び音響整合層用材料セット
 本発明は、音響整合層用樹脂組成物、硬化物、音響整合シート、音響波プローブ、音響波測定装置、音響波プローブの製造方法、及び音響整合層用材料セットに関する。
 音響波測定装置には、音響波を生体等の被検対象に照射し、その反射波(エコー)を受信して信号を出力する音響波プローブが用いられる。この音響波プローブにより受信した反射波は電気信号に変換され、画像として表示される。したがって、音響波プローブを用いることにより、被検対象内部を映像化して観察することができる。
 音響波としては、超音波、光音響波などが、被検対象に応じて、また測定条件に応じて適宜に選択される。
 例えば、音響波測定装置の1種である超音波診断装置は、被検対象内部に向けて超音波を送信し、被検対象内部の組織で反射された超音波を受信し、画像として表示する。
 また、光音響波測定装置は、光音響効果によって被検対象内部から放射される音響波を受信し、画像として表示する。光音響効果とは、可視光、近赤外光またはマイクロ波等の電磁波パルスを被検対象に照射したときに、被検対象が電磁波を吸収して発熱し、熱膨張することにより音響波(典型的には超音波)が発生する現象である。
 音響波測定装置は、被検対象との間で音響波の送受信を行うため、音響波プローブには被検対象との音響インピーダンスの整合性が要求される。この要求を満たすために、音響波プローブには音響整合層が設けられる。このことを音響波プローブの1種である超音波診断装置用探触子(超音波プローブとも称される)を例に説明する。
 超音波プローブは、超音波を送受信する圧電素子と、生体に接触する音響レンズとを備え、圧電素子と音響レンズとの間には音響整合層が配されている。圧電素子から発振される超音波は音響整合層を透過し、さらに音響レンズを透過して生体に入射される。音響レンズと生体との間の音響インピーダンス(密度×音速)には通常は差がある。この差が大きいと、超音波が生体表面で反射されやすく、超音波の生体内への入射効率が低下してしまう。そのため、音響レンズには生体に近い音響インピーダンス特性が求められる。
 他方、圧電素子と生体との間の音響インピーダンスの差は一般に大きい。それゆえ、圧電素子と音響レンズとの間の音響インピーダンスの差も通常は大きなものとなる。したがって、圧電素子と音響レンズとの積層構造とした場合には、圧電素子から発せられた超音波は圧電素子と音響レンズとの界面で反射し、超音波の生体への入射効率は低下する。この界面での超音波の反射を抑制するために、圧電素子と音響レンズとの間には上記の音響整合層が設けられる。音響整合層の音響インピーダンスは生体又は音響レンズの音響インピーダンスと圧電素子の音響インピーダンスとの間にあり、これにより圧電素子から生体への超音波の伝播が効率化する。また、音響整合層を複層構造として、圧電素子側から音響レンズ側に向けて音響インピーダンスに段階的な傾斜を設けることにより、超音波の伝播をより効率化することも知られている。
 音響波プローブには上述した音響特性に加え、十分な機械強度も求められる。すなわち、音響波プローブは生体にこすり付け、ときには押圧して使用されるものであるため、機械強度は音響波プローブの製品寿命に直接影響する。
 音響レンズの構成材料としては、シリコーン樹脂を用いることが知られている。このシリコーン樹脂はそのままでは密度が低く、その音響インピーダンスと生体の音響インピーダンスとの差は大きい。また、シリコーン樹脂は単独では柔らかく、機械強度に劣る傾向がある。
 この問題に対処する技術として、例えば特許文献1には、特定構造を有するシリコーン樹脂に特定粒径の無機酸化物粒子を配合した音響波プローブ用シリコーン樹脂が記載されている。特許文献1記載の技術によれば、音響インピーダンスが生体の音響インピーダンスに近く、また、音響波減衰量も抑えられ、さらに機械強度にも優れた音響波プローブを提供することができるとされる。
 他方、音響整合層には、その構成材料としてシリコーン樹脂を用いる他、シリコーン樹脂以外の材料を用いることも知られている。例えば特許文献2には、超音波探触子の音響波整合層として、1ミクロン以下の金属ナノ粒子と結合材としての無機高分子結合材とを用いて、これを低温焼成することにより一部又は全部を金属バルク化することが記載されている。特許文献2記載の技術によれば、所望の音響インピーダンス特性を有する音響整合層の作製が可能になるとされる。
特開2017-12436号公報 特開2013-192113号公報
 音響波プローブの音響整合層には、その音響インピーダンスを、圧電素子の音響インピーダンスと生体または音響レンズの音響インピーダンスとの間で所望のレベルに調整可能な材料が採用される。
 このような音響整合層として上記特許文献2に記載の音響整合層が報告されているが、特許文献2記載の音響整合層の形成に用いる組成物は金属ナノ粒子を多量に含有し、粘度が高くハンドリング性、加工性等に劣る。また、金属は還元条件下では腐食しやすく、プローブのメンテナンス、寿命等の点でも課題が残る。
 また、音響整合層は、特に、上述のように複層構造とする場合には、その調製工程において切削、ダイシング等により数百μm以下の厚みレベルまで二次加工する必要がある。したがって、音響整合層の構成材料には、上述した音響波プローブに通常求められる機械特性に加え、二次加工の観点からも高い機械強度が求められる。しかし本発明者らの検討により、上記特許文献2記載の金属粒子を用いた場合には、所望の機械強度を得ることが難しいことが分かってきた。
 そこで本発明は、金属粒子と、樹脂を含む結着材とを含有する樹脂組成物であって、樹脂が熱可塑性の場合には樹脂を溶融させることにより、金属粒子が多量に含まれていても優れた流動性(ハンドリング性)を実現でき、また、樹脂が熱硬化性の場合には硬化前状態において、金属粒子が多量に含まれていても優れた流動性を実現でき、これを所望のシート状に成形又は加工することにより、機械強度と耐腐食性に優れ、また層内の音響特性のばらつきも少ない音響整合層を形成することができる音響整合層用樹脂組成物を提供することを課題とする。また本発明は、この組成物の調製に好適な音響整合層用材料セットを提供することを課題とする。
 また本発明は、金属粒子を含有しながらも耐腐食性に優れ、機械強度にも優れ、シート内の音響特性のばらつきも少ない音響整合シート、及びこれに用いる硬化物を提供することを課題とする。
 また本発明は、音響整合層に金属粒子を含有しながらも、耐腐食性に優れ、機械強度にも優れ、プローブ内における音響特性のばらつきも少ない音響波プローブ、及びこれを用いた音響波測定装置を提供することを課題とする。
 また本発明は、音響整合層に金属粒子を含有しながらも、耐腐食性に優れ、機械強度にも優れ、プローブ内における音響特性のばらつきも少ない音響波プローブの製造を可能とする音響波プローブの製造方法を提供することを課題とする。
 本発明者らは上記課題に鑑み鋭意検討を重ねた結果、音響整合層を形成するための組成物として、金属粒子と、樹脂を含む結着材(母材又は分散媒体ともいう。)との混合物を採用し、さらに、上記金属粒子として表面処理金属粒子を用いることにより、組成物の流動性を、金属粒子を多量に含む場合であっても所望のレベルに高めることができ、ハンドリング性に優れた組成物とすることができることを見出した。また、この組成物を用いて形成したシートは、金属粒子を含有しながらも耐腐食性に優れ、機械強度にも優れ、またシート内の音響特性のばらつきも小さなものであった。
 本発明はこれらの知見に基づきさらに検討を重ね、完成されるに至ったものである。
 すなわち、本発明の上記課題は下記の手段により解決された。
〔1〕
 樹脂を含む結着材と表面処理金属粒子とを含有する、音響整合層用樹脂組成物。
〔2〕
 上記表面処理金属粒子が、周期表第4~12族の金属の少なくとも1種を含む、〔1〕記載の音響整合層用樹脂組成物。
〔3〕
 上記の周期表第4~12族の金属が、周期表第4周期の金属である、〔2〕記載の音響整合層用樹脂組成物。
〔4〕
 上記表面処理金属粒子が、鉄、銅及びニッケルの少なくとも1種を含む、〔1〕記載の音響整合層用樹脂組成物。
〔5〕
 上記表面処理金属粒子が、表面にリン酸化合物処理が施された金属粒子である、〔1〕~〔4〕のいずれかに記載の音響整合層用樹脂組成物。
〔6〕
 上記表面処理金属粒子が、表面にシランカップリング剤処理が施された金属粒子である、〔1〕~〔4〕のいずれかに記載の音響整合層用樹脂組成物。
〔7〕
 上記結着材が熱可塑性樹脂を含む、〔1〕~〔6〕のいずれかに記載の音響整合層用樹脂組成物。
〔8〕
 上記結着材が、ポリアミド樹脂、アクリロニトリル-ブタジエン-スチレン共重合体、メタ(アクリル)樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリエーテルサルホン樹脂、ポリエーテルイミド樹脂、及び熱可塑性ポリウレタン樹脂の少なくとも1種である、〔1〕~〔7〕のいずれかに記載の音響整合層用樹脂組成物。
〔9〕
 上記結着材が、エポキシ樹脂と、このエポキシ樹脂の硬化剤とを含む、〔1〕~〔6〕のいずれかに記載の音響整合層用樹脂組成物。
〔10〕
 上記エポキシ樹脂がビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、及びフェノールノボラック型エポキシ樹脂の少なくとも1種を含む、〔9〕記載の音響整合層用樹脂組成物。
〔11〕
 上記硬化剤が、一級アミン及び二級アミンの少なくとも1種を含む、〔9〕又は〔10〕記載の音響整合層用樹脂組成物。
〔12〕
 〔9〕~〔11〕のいずれかに記載の音響整合層用樹脂組成物を硬化してなる硬化物。
〔13〕
 〔12〕記載の硬化物からなる音響整合シート。
〔14〕
 〔1〕~〔11〕のいずれかに記載の音響整合層用樹脂組成物により形成した音響整合シート。
〔15〕
 〔13〕又は〔14〕記載の音響整合シートを音響整合層として有する音響波プローブ。
〔16〕
 〔15〕記載の音響波プローブを備える音響波測定装置。
〔17〕
 上記音響波測定装置が超音波診断装置である、〔16〕記載の音響波測定装置。
〔18〕
 圧電素子上に、〔1〕~〔11〕のいずれかに記載の音響整合層用樹脂組成物を用いて音響整合層を形成することを含む、音響波プローブの製造方法。
〔19〕
 エポキシ樹脂と表面処理金属粒子とを含む樹脂組成物からなる主剤と、このエポキシ樹脂の硬化剤とを含む、音響整合層用材料セット。
 本発明の音響整合層用樹脂組成物及び音響整合層用材料セットは、金属粒子を多量に含む場合にも優れた流動性を実現でき、これらを用いて所望のシート状に成形又は加工することにより、機械強度と耐腐食性に優れ、またシート内の音響特性のばらつきも少ない音響整合シートを得ることができる。
 また本発明の音響整合シートは、金属粒子を含有しながらも耐腐食性に優れ、機械強度にも優れ、シート内の音響特性のばらつきも少ない。また本発明の硬化物は、本発明の音響整合層の構成材料として好適である。
 また本発明の音響波プローブ、及びこれを用いた音響波測定装置は、音響整合層に金属粒子を含有しながらも、耐腐食性に優れ、機械強度にも優れ、またプローブ内における音響特性のばらつきも少ない。
 また本発明の音響波プローブの製造方法によれば、音響整合層に金属粒子を含有しながらも、耐腐食性に優れ、機械強度にも優れ、またプローブ内における音響特性のばらつきも少ない音響波プローブを得ることができる。
音響波プローブの一態様であるコンベックス型超音波プローブの一例を示す斜視透過図である。
[音響整合層用樹脂組成物]
 本発明の音響整合層用樹脂組成物(以下、単に「本発明の組成物」とも称す。)は、樹脂を含む結着材と表面処理金属粒子とを含む。
<結着材>
 本発明の組成物に含まれる結着材は、表面処理金属粒子間の隙間を埋めるものであり、表面処理金属粒子の分散媒体として機能する。
 結着材は、熱可塑性樹脂又は熱硬化性樹脂を含むことが好ましい。
 結着材として熱可塑性樹脂を用いる場合、この熱可塑性樹脂の融点は100~350℃が好ましい。結着材が熱可塑性樹脂の場合、本発明の組成物が結着材として熱可塑性樹脂を有する場合は、熱可塑性樹脂の融点未満の温度領域では固体状であり、固化した樹脂中に表面処理金属粒子が分散した形態にある。
 結着材として用い得る熱可塑性樹脂は特に制限されない。熱可塑性樹脂の好ましい例としては、例えば、ポリアミド樹脂、アクリロニトリル-ブタジエン-スチレン共重合体、メタ(アクリル)樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリエーテルサルホン樹脂、ポリエーテルイミド樹脂、熱可塑性ポリウレタン樹脂、ポリエステル樹脂(ポリエチレンテレフタレート、ポリブチレンテレフタレート等)、ポリオレフィン樹脂(ポリエチレン、ポリプロピレン等)、ポリビニリデン樹脂(ポリ塩化ビニル等)、ポリエーテルエーテルケトン樹脂、ポリフェニレンサルファイド樹脂、熱可塑性ポリイミド樹脂、ポリアミドイミド樹脂、ポリスチレン樹脂、及びフッ素樹脂(ポリテトラフルオロエチレン、ポリフッ化ビニリデン等)等を挙げることができ、これらの1種又は2種以上を用いることができる。
 なかでも、ポリアミド樹脂、アクリロニトリル-ブタジエン-スチレン共重合体、メタ(アクリル)樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリエーテルサルホン樹脂、ポリエーテルイミド樹脂、及び熱可塑性ポリウレタン樹脂が好ましい。これらの熱可塑性樹脂を用いることにより、組成物が、樹脂の溶融状態においてより高い流動性を示し、優れたハンドリング性、加工性等をより高いレベルで実現することができる。
 結着材に用いる熱硬化性樹脂は特に制限されない。例えば、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、熱硬化性ポリウレタン樹脂、熱硬化性ポリイミド樹脂等を挙げることができる。
 なかでも、架橋密度を高めて、得られるシートの機械強度をより向上させる観点から、結着材を構成する熱硬化性樹脂としてはエポキシ樹脂を用いることが好ましい。この場合、結着材はエポキシ樹脂とともに硬化剤を含むことが好ましい。つまり、結着材が熱硬化性樹脂を含む場合、この結着材はエポキシ樹脂と硬化剤との組合せが好ましい。
 熱硬化性樹脂としてエポキシ樹脂を用いる場合、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、及びフェノールノボラック型エポキシ樹脂の1種又は2種以上を含むことが好ましい。
 本発明に用い得るビスフェノールA型エポキシ樹脂は特に制限されず、エポキシ系接着剤の主剤として一般的に用いられるものを広く用いることができる。好ましい具体例として、ビスフェノールAジグリシジルエーテル(jER825、jER828及びjER834(いずれも商品名)、三菱化学社製)及びビスフェノールAプロポキシレートジグリシジルエーテル(シグマアルドリッチ社製)が挙げられる。
 本発明に用い得るビスフェノールF型エポキシ樹脂は特に制限されず、エポキシ系接着剤の主剤として一般的に用いられるものを広く用いることができる。好ましい具体例として、ビスフェノールFジグリシジルエーテル(商品名:EPICLON830、DIC社製)及び4,4’-メチレンビス(N,N-ジグリシジルアニリン)が挙げられる。
 本発明に用い得るフェノールノボラック型エポキシ樹脂は特に制限されず、エポキシ系接着剤の主剤として一般的に用いられるものを広く用いることができる。このようなフェノールノボラック型エポキシ樹脂は、例えば、シグマアルドリッチ社から製品番号406775として販売されている。
 硬化剤は、エポキシ樹脂の硬化剤として知られているものを特に制限なく用いることができる。例えば、脂肪族アミン、芳香族アミン、ジシアンジアミド、ジヒドラジド化合物、酸無水物、フェノール樹脂などが挙げられる。
 架橋密度を高めて、得られるシートの機械強度をより向上させる観点からは、一級アミン及び二級アミンの少なくとも1種を用いることが好ましい。なかでも、1分子中に一級アミンと二級アミンを有する化合物が好ましく、その具体例としては、ポリアミドアミン、トリエチレンテトラミン等を挙げることができる。
 本発明の組成物が結着材としてエポキシ樹脂と硬化剤とを含む場合、おだやかな条件でも、組成物中において、経時的にエポキシ樹脂の硬化反応が進む場合がある。したがって、この組成物の性状は経時的に変化し安定でない場合がある。しかし、例えば、上記組成物を-10℃以下の温度で保存することにより、硬化反応を生じずに又は十分に抑制して各成分が安定に維持された状態の組成物とすることができる。
 また、結着材にエポキシ樹脂を用いる場合には、エポキシ樹脂と表面処理金属粒子とを含む樹脂組成物を主剤とし、この主剤と硬化剤とを別々により分けた音響整合層用材料セットの形態とすることも好ましい。音響整合層の形成に当たり、主剤と硬化剤とを混合して本発明の組成物を調製し、この組成物を用いて層を形成することにより、音響整合層を形成することができる。
 結着材を構成するエポキシ樹脂と硬化剤の質量比は、用いる硬化剤の種類等に応じて適宜に調整するればよい。例えば、エポキシ樹脂/硬化剤=99/1~20/80とすることができ、90/10~40/60が好ましい。
 また、上記の音響整合層用材料セットを用いて、層形成時に主剤と硬化剤とを混合して本発明の組成物を調製する場合においては、エポキシ樹脂と硬化剤との質量比がエポキシ樹脂/硬化剤=99/1~20/80となるように主剤と硬化剤とを混合して用いる形態とすることが好ましく、90/10~40/60となるように主剤と硬化剤とを混合して用いる形態とすることがより好ましい。
<表面処理金属粒子>
 本発明の組成物は表面処理が施された金属粒子(表面処理金属粒子)を含有する。この表面処理金属粒子の含有量を調整することにより、組成物の密度を調整することができ、得られる音響整合層の音響インピーダンスを所望のレベルに調整することが可能になる。
 また、表面処理が施された金属粒子を用いることにより、金属粒子を組成物中に高含有させた場合にも組成物は十分な流動性を示すことができる。結果、優れたハンドリング性と加工性を実現することができる。さらに、この組成物を用いて形成したシートは機械強度にも優れる。これらの理由は定かではないが、表面処理により金属粒子間の凝集力が弱められたり、金属粒子と樹脂との間の親和性が高められたりすることが、複合的に影響しているものと考えられる。
 金属粒子の表面処理に特に制限はなく、通常の表面処理技術を適用することができる。例えば、炭化水素油、エステル油、ラノリン等による油剤処理、ジメチルポリシロキサン、メチルハイドロジェンポリシロキサン、メチルフェニルポリシロキサン等によるシリコーン処理、パーフルオロアルキル基含有エステル、パーフルオロアルキルシラン、パーフルオロポリエーテルおよびパーフルオロアルキル基を有する重合体等による弗素化合物処理、3-メタクリロキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン等によるシランカップリング剤処理、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルピロホスフェート)チタネート等によるチタンカップリング剤処理、金属石鹸処理、アシルグルタミン酸等によるアミノ酸処理、水添卵黄レシチン等によるレシチン処理、コーラーゲン処理、ポリエチレン処理、保湿性処理、無機化合物処理、メカノケミカル処理、リン酸、亜リン酸、リン酸塩、亜リン酸塩等によるリン酸化合物処理等の処理方法が挙げられる。
 上記表面処理はリン酸化合物処理(リン酸化合物による処理)が好ましい。リン酸化合物処理を施すことにより、金属粒子表面に高極性の処理層を厚く形成することができる。その結果、金属粒子の表面を効果的に改質できる。すなわち、金属粒子の耐腐食性を効果的に高めることができ、また、結着材との親和性が高められたり、金属粒子同士の疎水的相互作用による凝集が抑えられたりして組成物の粘度上昇をより効果的に抑制することができる。また、結着材中の金属粒子が均質に分散する様になるなどして組成物を成形して得られるシートの機械強度をより高めることができ、音響特性のばらつきもより生じにくくなる。
 リン酸化合物には、リン酸の他に、亜リン酸、次亜リン酸、ピロリン酸、直鎖状のポリリン酸、及び環状のメタリン酸、ならびにこれらの塩が含まれる。リン酸化合物が塩の形態の場合、金属塩が好ましい。例えばアルカリ金属、アルカリ土類金属、及びアンモニウム塩が挙げられるが、これらに限定されない。
 表面処理において上記のリン酸化合物の1種又は2種類以上を用いることができる。また、これらのリン酸化合物は通常、キレート剤、中和剤等と混合して表面処理剤とされる。また、表面処理剤として、一般に市販されているリン酸化合物の水溶液を使用することもできる。
 リン酸化合物処理は、例えば、金属粒子と上記リン酸化合物を含む表面処理剤とを混合することにより行うことができる。混合時間、温度等の条件は目的に応じて適宜に設定すればよい。この処理においては、リン酸化合物の解離(平衡)反応を利用して不溶性のリン酸化合物を金属粒子表面に析出させる。
 リン酸化合物処理は、例えば、「表面技術」、第61巻、第3号、p216、2010年、又は、「表面技術」、第64巻、第12号、p640、2013年を参照することができる。
 また、感度の観点からはシランカップリング剤による表面処理(シランカップリング剤処理)が好ましい。詳細な理由は明らかではないが、シランカップリング剤により表面処理することにより金属と結着剤との相互作用が高まり、金属粒子と結着剤界面での超音波の反射、散乱が抑制されることにより、他の表面処理よりも減衰値が小さくなると推測している。
 表面処理金属粒子を構成する金属は特に制限されない。金属原子単独でもよく、金属の炭化物、窒化物、酸化物、又はホウ素化物でもよい。また合金を形成していてもよい。合金の種類としては高張力鋼(Fe-C)、クロムモリブデン鋼(Fe-Cr-Mo)、マンガンモリブデン鋼(Fe-Mn-Mo)、ステンレス鋼(Fe-Ni-Cr)、42アロイ、インバー(Fe-Ni)、バーメンデュール(Fe-Co)、ケイ素鋼(Fe-Si)、丹銅、トムバック(Cu-Zn)、洋白(Cu-Zn-Ni)、青銅(Cu-Sn)、白銅(Cu-Ni)、赤銅(Cu-Au)、コンスタンタン(Cu-Ni)、ジェラルミン(Al-Cu)、ハステロイ(Ni-Mo-Cr-Fe)、モネル(Ni-Cu)、インコネル(Ni-Cr-Fe)、ニクロム(Ni-Cr)、フェロマンガン(Mn-Fe)、超硬合金(WC/Co)などが挙げられる。
 表面処理金属粒子を構成する金属は、周期表第4~12族の金属の少なくとも1種を含む(好ましくは周期表第4~12族の金属の少なくとも1種からなる)ことが好ましい。また、周期表第4~12族の金属は、周期表第4周期の金属であることが好ましい。周期表第4周期の金属を用いることにより金属粒子と結着材との親和性が高められ、耐腐食性をより向上させることができ、得られるシートの機械強度の向上にも効果的に寄与する。
 上記金属は、より好ましくは鉄、亜鉛、チタン、銅及びニッケルの少なくとも1種を含み(好ましくは鉄、亜鉛、チタン、銅及びニッケルの少なくとも1種からなり)、鉄、銅及びニッケルの少なくとも1種を含む(好ましくは鉄、銅及びニッケルの少なくとも1種からなる)ことがより好ましい。
 上記金属は酸化物の状態のものを含まないことが好ましい。
 本発明に用いる表面処理金属粒子の粒径は、樹脂組成物の粘度を低減し、また音響減衰を低減する観点から0.01~100μmが好ましく、1~10μmがより好ましい。ここで、表面処理金属粒子の「粒径」は平均一次粒子径を意味する。
 ここで、平均一次粒子径とは、体積平均粒子径を意味する。この体積平均粒子径は、次のように決定される。
 メタノールに表面処理金属粒子を、0.5質量%となるように添加し、10分間超音波にかけることにより、表面処理金属粒子を分散させる。このように処理した表面処理金属粒子の粒度分布を、レーザー回折散乱式粒度分布測定装置(堀場製作所製、商品名:LA950V2)により測定し、その体積基準メジアン径を体積平均粒子径とする。なお、メジアン径とは粒径分布を累積分布として表したときの累積50%に相当する。
 表面処理金属粒子において、金属粒子を覆う表面処理層の厚さは、1~1000nmが好ましく、5~100nmがより好ましい。
 また、表面処理層は金属粒子表面全体を覆う必要はなく、本発明の効果を損なわない範囲で、一部に欠陥が生じていてもよい。
 本発明の組成物中、表面処理金属粒子と結着材の各含有量は、目的の音響インピーダンス等に応じて適宜に調整される。例えば、音響整合層を複層とする場合、圧電素子側の音響整合層に用いる組成物中の表面処理金属粒子の含有量は相対的に多くし、音響レンズ側の音響整合層に用いる組成物中の表面処理金属粒子の含有量は相対的に少なくすることができる。こうすることにより、圧電素子側から音響レンズ側に向けて、音響インピーダンスに傾斜を持たせることができ、音響波の伝播をより効率化することができる。
 本発明の組成物中の表面処理金属粒子と結着材の各含有量は、例えば、表面処理金属粒子100質量部に対し、結着材を10~80質量部とすることができ、15~75質量部がより好ましく、20~70質量部がさらに好ましい。
 本発明の組成物は、結着材と表面処理金属粒子から構成されていてもよい。また、本発明の効果を損なわない範囲で、これら以外の成分を含有していてもよい。結着材以外で表面処理金属粒子以外の成分としては、例えば、硬化遅延剤、溶媒、分散剤、顔料、染料、帯電防止剤、酸化防止剤、難燃剤および/または熱伝導性向上剤等が挙げられる。
 本発明の組成物中、結着材と表面処理金属粒子の各含有量の合計は、80質量%以上が好ましく、90質量%以上がより好ましい。
 本発明の組成物は、結着材が熱可塑性樹脂の場合、「樹脂の融点+20℃」の温度下において、粘度が1~5000Pa・sが好ましく、10~1000Pa・sがより好ましい。熱可塑性樹脂を2種以上用いる場合には、「樹脂の融点+20℃」とは、「融点が最も高い樹脂の融点+20℃」を意味する。
 また、結着材が熱硬化性樹脂の場合、硬化前(25℃で熱硬化性樹脂と硬化剤とを均一に混合してから60分以内)の25℃における粘度が1~5000Pa・sが好ましく、10~1000Pa・sがより好ましい。なお、本発明の音響整合層用材料セットにおいては主剤の25℃における粘度が上記好ましい範囲内にあることが好ましい。
 粘度は、コーン型回転レオメーター(HAAKE社製「RheoStress RS6000」)を用いて、温度25℃、1rpm、測定時間60秒間の条件で測定される。
<音響整合層用樹脂組成物の調製>
 本発明の音響整合層用樹脂組成物は、例えば、音響整合層用樹脂組成物を構成する成分を混合することにより得ることができる。この混合方法は各成分を均一混合できれば特に制限されない。例えば、撹拌機を用いたり、混練機(ニーダー、加圧ニーダー、バンバリーミキサー(連続ニーダー)、2本ロールの混練装置)を用いて混練りしたりすることができる。結着材として熱可塑性樹脂を用いる場合には、樹脂の融点以上の温度で混練りする。これにより、結着材中に表面処理金属粒子が分散してなる音響整合層用樹脂組成物を得ることができる。
 また、結着材として熱硬化性樹脂を用いる場合には、硬化前の状態の結着材と表面処理金属粒子とを混合することにより、また必要により硬化剤を混合することにより、結着材中に表面処理金属粒子が分散してなる音響整合層用組成物を得ることができる。この場合、上記のようなニーダー等で混合してもよいが、あまり熱が生じないように、比較的穏やかに撹拌することが好ましい。
 また、エポキシ樹脂と表面処理金属粒子とを含む樹脂組成物からなる主剤と、このエポキシ樹脂の硬化剤とを含む音響整合層用材料セットとする場合には、エポキシ樹脂と表面処理金属粒子とを混合することにより主剤を得ることができる。音響整合層の作製時に、この主剤と硬化剤とを混合することにより本発明の組成物を得る。この組成物を成形しながら硬化することにより、音響整合層又はその前駆体シートを形成することができる。
[音響整合シート(音響整合層)]
 本発明の組成物は、これをシート状に成形し、必要により所望の厚さ又は形状へと切削、ダイシング等することにより、音響整合シートを得ることができる。この音響整合シートは音響波プローブの音響整合層として用いられる。音響整合層を含む音響波プローブの構成については後述する。
 本発明の組成物が結着材として熱可塑性樹脂を有する場合、組成物を加熱して樹脂を熱溶融させ、所望のシート状に成形し、冷却して固化することにより音響整合シート又はその前駆体シートを形成することができる。
 また、本発明の組成物が結着材として熱硬化性樹脂を有し、また必要により硬化剤を有する場合、硬化反応を生じない低温域、あるいは硬化速度が十分に遅い低温域で所望のシート状に成形する。次いで、必要により加熱等することにより成形物に架橋構造を形成させて硬化し、音響整合シート又はその前駆体シートとする。つまり、結着材として熱硬化性樹脂を有する組成物を用いた場合、形成される音響整合シートは、本発明の組成物を硬化して三次元網状構造を形成させた硬化物である。
[音響波プローブ]
 本発明の音響波プローブは、本発明の組成物を用いて形成した音響整合シートを音響整合層として有する。
 本発明の音響波プローブの構成について、その一例を図1に示す。図1に示す音響波プローブは、超音波診断装置における超音波プローブである。なお、超音波プローブとは、音響波プローブにおける音響波として、特に超音波を使用するプローブである。そのため、超音波プローブの基本的な構造は音響波プローブにそのまま適用することができる。
<超音波プローブ>
 超音波プローブ10は、超音波診断装置の主要構成部品であって、超音波を発生するとともに、超音波ビームを送受信する機能を有するものである。超音波プローブ10の構成は、図1に示すように、先端(被検対象である生体に接する面)部分から音響レンズ1、音響整合層2、圧電素子層3、バッキング材4の順に設けられている。なお、近年、高次高調波を受信することを目的に、送信用超音波振動子(圧電素子)と、受信用超音波振動子(圧電素子)を異なる材料で構成し、積層構造としたものも提案されている。
(圧電素子層)
 圧電素子層3は、超音波を発生する部分であって、圧電素子の両側に電極が貼り付けられており、電圧を加えると圧電素子が伸縮と膨張を繰り返し振動することにより、超音波が発生する。
 圧電素子を構成する材料としては、水晶、LiNbO、LiTaOおよびKNbOなどの単結晶、ZnOおよびAlNなどの薄膜ならびにPb(Zr,Ti)O系などの焼結体を分極処理した、いわゆるセラミックスの無機圧電体が広く利用されている。一般的には、変換効率のよいPZT:チタン酸ジルコン酸鉛等の圧電セラミックスが使用されている。
 また、高周波側の受信波を検知する圧電素子には、より広い帯域幅の感度が必要である。このため、高周波、広帯域に適した圧電素子として、ポリフッ化ビニリデン(PVDF)などの有機系高分子物質を利用した有機圧電体が使用されている。
 さらに、特開2011-071842号公報等には、優れた短パルス特性および広帯域特性を示し、量産性に優れ、特性ばらつきの少ないアレイ構造が得られる、MEMS(Micro Electro Mechanical Systems)技術を利用したcMUTが記載されている。
 本発明においては、いずれの圧電素子材料も好ましく用いることができる。
(バッキング材)
 バッキング材4は、圧電素子層3の背面に設けられており、余分な振動を抑制することにより超音波のパルス幅を短くし、超音波診断画像における距離分解能の向上に寄与する。
(音響整合層)
 音響整合層2は、圧電素子層3と被検対象間での音響インピーダンスの差を小さくし、超音波を効率よく送受信するために設けられる。
(音響レンズ)
 音響レンズ1は、屈折を利用して超音波をスライス方向に集束し、分解能を向上させるために設けられる。また、被検対象である生体と密着し、超音波を生体の音響インピーダンス(人体では、1.4~1.7×10kg/m/sec)と整合させること、および、音響レンズ1自体の超音波減衰量が小さいことが求められている。
 すなわち、音響レンズ1の材料としては、音速が人体の音速よりも十分小さく、超音波の減衰が少なく、また、音響インピーダンスが人体の皮膚の値に近い材料を使用することで、超音波の送受信感度が高められる。
 このような構成の超音波プローブ10の動作を説明する。圧電素子の両側に設けられた電極に電圧を印加して圧電素子層3を共振させ、超音波信号を音響レンズから被検対象に送信する。受信時には、被検対象からの反射信号(エコー信号)によって圧電素子層3を振動させ、この振動を電気的に変換して信号とし、画像を得る。
[音響波プローブの製造]
 本発明の音響波プローブは、本発明の音響整合層用樹脂組成物を用いること以外は、常法により作製することができる。すなわち、本発明の音響波プローブの製造方法は、圧電素子上に、本発明の音響整合層用樹脂組成物を用いて音響整合層を形成することを含む。圧電素子はバッキング材上に常法により設けることができる。
 また、音響整合層上には、音響レンズの形成材料を用いて常法により音響レンズが形成される。
[音響波測定装置]
 本発明の音響波測定装置は、本発明の音響波プローブを有する。音響波測定装置は、音響波プローブで受信した信号の信号強度を表示したり、この信号を画像化したりする機能を備える。
 本発明の音響波測定装置は、超音波プローブを用いた超音波測定装置であることも好ましい。
 以下に本発明を、音響波として超音波を用いた実施例に基づいてさらに詳細に説明する。なお、本発明は超音波に限定されるものではなく、被検対象および測定条件等に応じて適切な周波数を選択してさえいれば、可聴周波数の音響波を用いてもよい。
[調製例1] 音響整合層用樹脂組成物の調製(結着材:熱可塑性樹脂)
 下表に示す配合量で、金属粒子と、熱可塑性樹脂とを混合し、二軸混練機(商品名:ラボプラストミル Cモデル、東洋精機製作所社製)を用いて混練りした。混練り条件は、温度を「熱可塑性樹脂の融点+20℃」、スクリュー回転数を15rpmとして、混練り時間を20分間とした。こうして、熱可塑性樹脂を結着材として有する音響整合層用樹脂組成物を調製した。
[試験例1] 粘度の評価
 調製例1で得た各組成物を、各組成物の結着材として用いた熱可塑性樹脂の融点+20℃の温度まで熱し、この温度における粘度(Pa・s)を測定した。粘度の測定条件は次の通りとし、得られた粘度の測定値を下記評価基準に当てはめ、組成物のハンドリング性を評価した。粘度が低いほどハンドリング性に優れる。
<粘度測定条件>
 測定装置:コーン型回転レオメーター(HAAKE社製「RheoStress RS6000」)
 回転数:1rpm
 測定時間:60秒間
<粘度評価基準>
 A:500Pa・s未満
 B:500Pa・s以上、1000Pa・s未満
 C:1000Pa・s以上、5000Pa・s未満
 D:5000Pa・s以上
 結果を下表に示す。
[試験例2] 密度
 調製例1で得た各組成物を用いて、結着材として用いた熱可塑性樹脂の融点+10℃の温度で圧縮成型し、次いでトリミングして、縦60mm×横60mm×厚さ2mmのシートを作製した。
 得られたシートについて、25℃におけるシートの密度をJIS K7112(1999)に記載のA法(水中置換法)の密度測定方法に準拠して、電子比重計(アルファミラージュ社製、商品名「SD-200L」)を用いて測定した。
 結果を下表に示す。
[試験例3] 機械強度
 調製例1で得た各組成物を用いて、結着材として用いた熱可塑性樹脂の融点+10℃の温度で圧縮成型し、次いでトリミングして、縦50mm×横50mm×厚さ0.4mmのシートを作製した。このシートを、縦40mm×横5mm×厚さ0.4mmに打ち抜き、短冊状の試験片を得た。この試験片を、引張試験機(商品名:オートグラフAGS-X/20N、島津製作所社製)を用いて、引張速度を30mm/分として試験片の長手方向に向けて引張試験を行った。試験片が破断するのに要するエネルギー(破断エネルギー)を決定し、下記評価基準に当てはめ評価した。
<破断エネルギー評価基準>
 A:50J以上
 B:40J以上、50J未満
 C:30J以上、40J未満
 D:30J未満
 結果を下表に示す。
[試験例4] 音響インピーダンス(AI)のばらつき
 調製例1で得た各組成物を用いて、結着材として用いた熱可塑性樹脂の融点+10℃の温度で圧縮成型し、次いでトリミングして、縦5cm×横5cm×厚さ2mmのシートを作製した。このシートの4角の近傍と中央部の計5か所について、密度(単位:g/cm)と音速(単位:m/sec)の積(密度×音速)から音響インピーダンスを算出した。5か所の音響インピーダンスの標準偏差を求め、下記評価基準に当てはめ音響特性のばらつきを評価した。
<音速>
 超音波音速は、JIS Z2353(2003)に従い、シングアラウンド式音速測定装置(超音波工業株式会社製、商品名「UVM-2型」)を用いて25℃において測定した(単位:m/sec)。5か所の測定部各々において、直径1.5cmの円形の内部全体(単チャンネルの小プローブサイズ)を測定対象とした。
<密度>
 25℃における5か所の測定部の密度を、JIS K7112(1999)に記載のA法(水中置換法)の密度測定方法に準じて、電子比重計(アルファミラージュ社製、商品名「SD-200L」)を用いて測定した。ここで、測定部の密度は、上記の音速測定部(直径1.5cmの円形)内において、10mm×10mm角の正方形にシート片を切り出し、切り出したシート片(10mm×10mm角)の密度(単位:g/cm)とした。
<音響特性のばらつき評価基準>
 A:標準偏差が0.5未満
 B:標準偏差が0.5以上、0.7未満
 C:標準偏差が0.7以上、0.9未満
 D:標準偏差が0.9以上
 結果を下表に示す。
[試験例5] 耐腐食性
 調製例1で得た調製直後の各組成物を用いて、上記試験例4と同様にして縦5cm×横5cm×厚さ2mmのシート状に成形した。環境試験機中で各シートを85℃、相対湿度90%で500時間放置した後、上記試験片を取出してその表面状態をマイクロスコープBS-D8000II(ソニック株式会社製)を用いて倍率50倍でランダムに10箇所観察した。観察結果を下記基準に当てはめ、腐食の程度を評価した。
<耐腐食性評価基準>
 A:腐食箇所が認められない。
 B:島状の腐食箇所は認められないが、変色が確認された。
 C:島状の腐食箇所が1~5箇所確認された。
 D:島状の腐食箇所が6箇所以上、もしくは全体的に錆が確認された。
 結果を下表に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 上記表に記載の金属粒子と熱可塑性樹脂について、詳細を以下に記載する。
[金属粒子]
(A-1)Fe(平均粒子径4.1μm)、リン酸鉄処理
(A-2)Zn(平均粒子径6.3μm)、リン酸鉄処理
(A-3)Ti(平均粒子径5.1μm)、リン酸鉄処理
(A-4)Cu(平均粒子径3.6μm)、リン酸鉄処理
(A-5)Ni(平均粒子径2.6μm)、リン酸鉄処理
(A-6)Zr(平均粒子径6.1μm)、リン酸鉄処理
(A-7)Mo(平均粒子径4.4μm)、リン酸鉄処理
(A-8)Ag(平均粒子径5.6μm)、リン酸鉄処理
(A-9)Pt(平均粒子径6.8μm)、リン酸鉄処理
(A-10)Au(平均粒子径3.0μm)、リン酸鉄処理
(A-11)Fe(平均粒子径4.1μm)、リン酸処理
(A-12)Fe(平均粒子径4.1μm)、リン酸亜鉛処理
(A-13)Fe(平均粒子径4.1μm)、リン酸マンガン処理
(A-14)Fe(平均粒子径4.1μm)、3-メタクリロキシプロピルトリメトキシシラン処理
(A-15)Fe(平均粒子径4.1μm)、3-グリシドキシプロピルトリメトキシシラン処理
(A-16)Fe(平均粒子径4.1μm)、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン処理
(X-1)Fe(平均粒子径4.1μm)、表面処理無し
[熱可塑性樹脂]
(B-1)ポリアミド6(PA6)
(B-2)高密度ポリエチレン(HDPE)
(B-3)ポリプロピレン(PP)
(B-4)ポリスチレン(GPPS)
(B-5)アクリロニトリル-ブタジエン-スチレン共重合体(ABS)
(B-6)ポリメチルメタクリレート(PMMA)
(B-7)ポリアセタール(POM)
(B-8)ポリカーボネート(PC)
(B-9)ポリフェニレンエーテル(PPE)
(B-10)ポリブチレンテレフタレート(PBT)
(B-11)ポリエーテルサルホン(PES)
(B-12)ポリエーテルイミド(PEI)
(B-13)ポリフェニレンサルファイド(PPS)
(B-14)熱可塑性ポリウレタン(TPU)
(B-15)ポリ塩化ビニル(PVC)
(B-16)フッ素樹脂(PVDF)
 上記表1-1~1-3に示されるように、表面処理が施されていない金属粒子と熱可塑性樹脂とを組合せて組成物を調製した場合、この組成物は樹脂を溶融した際の粘度(溶融粘度)が高く、ハンドリング性に劣る結果となった。また、この組成物を用いて形成したシートは機械強度に劣り、またシート内における音響特性のばらつきが大きく、また腐食しやすいものであった(比較例1)。
 これに対し、表面処理金属粒子と熱可塑性樹脂とを組合せて組成物を調製した場合には、得られる組成物の、樹脂を溶融した際の粘度(溶融粘度)を低く抑えることができた。また、この組成物を用いて形成したシートは機械強度に優れ、またシート内における音響特性のばらつきも小さく、また腐食しにくい特性を有するものであった(実施例1~33)。
[調製例2] 音響整合層用樹脂組成物の調製(結着材:熱硬化性樹脂と硬化剤の組合せ)
 下表に示す配合量で、金属粒子とエポキシ樹脂と硬化剤とを混合した。具体的には、金属粒子とエポキシ樹脂とを撹拌機(商品名:泡とり練太郎 ARV-310、シンキー社製)を用いて、室温下、1.0Paに減圧した状態で、1800rpmで撹拌しながら4分間脱泡した。そこに硬化剤を加え、同条件で撹拌して脱泡した。
 こうして、熱硬化性樹脂を結着材として含む音響整合層用樹脂組成物を調製した。
[試験例6] 粘度
 調製例2で得た調製直後の各組成物の粘度(Pa・s)を測定した。粘度の測定条件は次の通りとし、得られた粘度の測定値を下記評価基準に当てはめ、組成物のハンドリング性を評価した。
<粘度測定条件>
 測定装置:コーン型回転レオメーター(HAAKE社製「RheoStress RS6000」)
 測定温度:25℃
 回転数:1rpm
 測定時間:60秒間
<粘度評価基準>
 A:500Pa・s未満
 B:500Pa・s以上、1000Pa・s未満
 C:1000Pa・s以上、5000Pa・s未満
 D:5000Pa・s以上
 結果を下表に示す。
[試験例7] 密度
 調製例2で得た調製直後の各組成物を型に流し込んでシート形状とし、80℃の温度下に18時間静置し、次いで150℃の温度下に1時間静置し、縦60mm×横60mm×厚さ2mmのシート状硬化物を作製した。
 得られたシートについて、試験例2と同様にして密度を測定した。
 結果を下表に示す。
[試験例8] 機械強度
 調製例2で得た調製直後の各組成物をシート状に成形し、80℃の温度下に18時間静置し、次いで150℃の温度下に1時間静置し、縦50mm×横50mm×厚さ0.4mmのシート状硬化物を作製した。このシート状硬化物を、縦40mm×横5mm×厚さ0.4mmに打ち抜き、短冊状の試験片を得た。この試験片を用いて、試験例3と同様にして破断エネルギーを評価した。
 結果を下表に示す。
[試験例9] 音響インピーダンス(AI)のばらつき
 調製例2で得た調製直後の各組成物をシート状に成形し、80℃の温度下に18時間静置し、次いで150℃の温度下に1時間静置し、縦5cm×横5cm×厚さ2mmのシート状硬化物を作製した。このシート状硬化物を用いて、試験例4と同様にして音響インピーダンス(AI)のばらつきを評価した。
 結果を下表に示す。
[試験例10] 耐腐食性
 調製例2で得た調製直後の各組成物をシート状に成形し、80℃の温度下に18時間静置し、次いで150℃の温度下に1時間静置し、縦5cm×横5cm×厚さ2mmのシート状硬化物を作製した。このシート状硬化物を用いて、試験例5と同様にして耐腐食性を評価した。
 結果を下表に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 上記表に記載のエポキシ樹脂と硬化剤について、詳細を以下に記載する。
[エポキシ樹脂]
(C-1)ビスフェノールAジグリシジルエーテル(三菱化学社製「jER825」(商品名)、エポキシ当量170)
(C-2)ビスフェノールAジグリシジルエーテル(三菱化学社製「jER828」(商品名)、エポキシ当量190)
(C-3)ビスフェノールAジグリシジルエーテル(三菱化学社製「jER834」(商品名)、エポキシ当量230)
(C-4)ビスフェノールFジグリシジルエーテル(DIC社製「EPICLON830」(商品名)、エポキシ当量170)
(C-5)エポキシノボラック樹脂(シグマアルドリッチ社製、製品番号406775、エポキシ当量170)
(C-6)ビスフェノールAプロポキシレートジグリシジルエーテル(シグマアルドリッチ社製、エポキシ当量228)
(C-7)4,4'-メチレンビス(N,N-ジグリシジルアニリン)(東京化成工業社製、エポキシ当量106)
[硬化剤]
(D-1)ポリアミドアミン(DIC社製「ラッカマイドEA-330」)
(D-2)トリエチレンテトラミン(東京化成工業製試薬)
(D-3)2,4,6-トリス(ジメチルアミノメチル)フェノール(ナカライテスク社製、商品名「ルベアックDMP-30」)
(D-4)2-エチル-4-メチルイミダゾール(東京化成工業製試薬)
(D-5)ヘキサヒドロ無水フタル酸(新日本理化工業社製「リカシッドHH」)
 上記表2-1~2-3に示されるように、表面処理が施されていない金属粒子と熱硬化性樹脂とを組合せて組成物を調製した場合、粘度が高く、ハンドリング性に劣る結果となった。また、この組成物を用いて形成したシートは機械強度に劣り、またシート内における音響特性のばらつきが大きく、また腐食しやすいものであった(比較例2)。
 これに対し、表面処理金属粒子と熱硬化性樹脂とを組合せて組成物を調製した場合には、得られる組成物の粘度を低く抑えることができた。また、この組成物を用いて形成したシートは機械強度に優れ、またシート内における音響特性のばらつきも小さく、また腐食しにくい特性を有するものであった(実施例34~61)。
[調製例3] 音響整合層用樹脂組成物の調製
 上記調製例と同様にして、下表に示す配合により音響整合層用樹脂組成物を調製した。
[試験例11] 超音波感度
 調製例3で得た調製直後の各組成物を用いて、上記試験例に記載の方法に準じて縦100mm×横100mm×厚み2mmのシートを得た。
 超音波発振器(例えば、岩通計測株式会社製、ファンクション・ジェネレータ、商品名「FG-350」)から出力された5MHzの正弦波信号(1波)を超音波プローブ(ジャパンプローブ株式会社製)に入力し、超音波プローブから中心周波数が5MHzの超音波パルス波を水中に発生させた。発生させた超音波が、上記シートを通過する前と後の振幅の大きさを超音波受信機(例えば、松下電器産業株式会社製、オシロスコープ、商品名「VP-5204A」)により、水温25℃の環境で測定した。音響波(超音波)感度を比較することにより、各シートの音響波(超音波)減衰量を比較した。
 超音波感度は、超音波発振器による、半値幅50nsec以下の入力波の電圧ピーク値Vinに対し、発生させた超音波がシートを通過し、シートの対面から反射してきた音響波(超音波)を超音波発振器が受信したときに得られる電圧値をVsとし、下記計算式で与えられる数値とした。
  (超音波感度)=20×Log(Vs/Vin)
 得られた超音波感度を下記基準に当てはめ、感度を評価した。
<感度の評価基準>
 A:-66dB以上
 B:-70dB以上-66dB未満
 C:-70dB未満
 結果を下表に示す。下表には、上記試験例と同様にして測定した密度、破断エネルギー、AI標準偏差(AIばらつき)、耐腐食性の評価結果も併せて示した。
Figure JPOXMLDOC01-appb-T000007
 表3に示す通り、シランカップリング剤処理された金属粒子を用いることにより、音響波の感度を効果的に高められることがわかる。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2017年11月1日に日本国で特許出願された特願2017-212208に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
 1    音響レンズ
 2    音響整合層(音響整合シート)
 3    圧電素子層
 4    バッキング材
 7    筐体
 9    コード
 10   超音波探触子(プローブ)

Claims (19)

  1.  樹脂を含む結着材と表面処理金属粒子とを含有する、音響整合層用樹脂組成物。
  2.  前記表面処理金属粒子が、周期表第4~12族の金属の少なくとも1種を含む、請求項1記載の音響整合層用樹脂組成物。
  3.  前記の周期表第4~12族の金属が、周期表第4周期の金属である、請求項2記載の音響整合層用樹脂組成物。
  4.  前記表面処理金属粒子が、鉄、銅及びニッケルの少なくとも1種を含む、請求項1記載の音響整合層用樹脂組成物。
  5.  前記表面処理金属粒子が、表面にリン酸化合物処理が施された金属粒子である、請求項1~4のいずれか1項記載の音響整合層用樹脂組成物。
  6.  前記表面処理金属粒子が、表面にシランカップリング剤処理が施された金属粒子である、請求項1~4のいずれか1項に記載の音響整合層用樹脂組成物。
  7.  前記結着材が熱可塑性樹脂を含む、請求項1~6のいずれか1項記載の音響整合層用樹脂組成物。
  8.  前記結着材が、ポリアミド樹脂、アクリロニトリル-ブタジエン-スチレン共重合体、メタ(アクリル)樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリエーテルサルホン樹脂、ポリエーテルイミド樹脂、及び熱可塑性ポリウレタン樹脂の少なくとも1種である、請求項1~7のいずれか1項記載の音響整合層用樹脂組成物。
  9.  前記結着材が、エポキシ樹脂と該エポキシ樹脂の硬化剤とを含む、請求項1~6のいずれか1項記載の音響整合層用樹脂組成物。
  10.  前記エポキシ樹脂がビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、及びフェノールノボラック型エポキシ樹脂の少なくとも1種を含む、請求項9記載の音響整合層用樹脂組成物。
  11.  前記硬化剤が、一級アミン及び二級アミンの少なくとも1種を含む、請求項9又は10記載の音響整合層用樹脂組成物。
  12.  請求項9~11のいずれか1項記載の音響整合層用樹脂組成物を硬化してなる硬化物。
  13.  請求項12記載の硬化物からなる音響整合シート。
  14.  請求項1~11のいずれか1項記載の音響整合層用樹脂組成物により形成した音響整合シート。
  15.  請求項13又は14記載の音響整合シートを音響整合層として有する音響波プローブ。
  16.  請求項15記載の音響波プローブを備える音響波測定装置。
  17.  前記音響波測定装置が超音波診断装置である、請求項16記載の音響波測定装置。
  18.  圧電素子上に、請求項1~11のいずれか1項記載の音響整合層用樹脂組成物を用いて音響整合層を形成することを含む、音響波プローブの製造方法。
  19.  エポキシ樹脂と表面処理金属粒子とを含む樹脂組成物からなる主剤と、該エポキシ樹脂の硬化剤とを含む、音響整合層用材料セット。
PCT/JP2018/040441 2017-11-01 2018-10-31 音響整合層用樹脂組成物、硬化物、音響整合シート、音響波プローブ、音響波測定装置、音響波プローブの製造方法、及び音響整合層用材料セット WO2019088148A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880070686.8A CN111295892A (zh) 2017-11-01 2018-10-31 声匹配层用树脂组合物、固化物、声匹配片材、声波探头、声波测定装置、声波探头的制造方法及声匹配层用材料组
JP2019550441A JP7022761B2 (ja) 2017-11-01 2018-10-31 音響整合層用樹脂組成物、硬化物、音響整合シート、音響波プローブ、音響波測定装置、音響波プローブの製造方法、及び音響整合層用材料セット
EP18871994.2A EP3706436B1 (en) 2017-11-01 2018-10-31 Resin composition for acoustic matching layer, hardened product, acoustic matching sheet, acoustic wave probe, acoustic wave measurement device, acoustic wave probe production method
US16/863,096 US20200253582A1 (en) 2017-11-01 2020-04-30 Resin composition for acoustic matching layer, cured product, acoustic matching sheet, acoustic wave probe, acoustic wave measuring apparatus, method for manufacturing acoustic wave probe, and material set for acoustic matching layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017212208 2017-11-01
JP2017-212208 2017-11-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/863,096 Continuation US20200253582A1 (en) 2017-11-01 2020-04-30 Resin composition for acoustic matching layer, cured product, acoustic matching sheet, acoustic wave probe, acoustic wave measuring apparatus, method for manufacturing acoustic wave probe, and material set for acoustic matching layer

Publications (1)

Publication Number Publication Date
WO2019088148A1 true WO2019088148A1 (ja) 2019-05-09

Family

ID=66331913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040441 WO2019088148A1 (ja) 2017-11-01 2018-10-31 音響整合層用樹脂組成物、硬化物、音響整合シート、音響波プローブ、音響波測定装置、音響波プローブの製造方法、及び音響整合層用材料セット

Country Status (5)

Country Link
US (1) US20200253582A1 (ja)
EP (1) EP3706436B1 (ja)
JP (1) JP7022761B2 (ja)
CN (1) CN111295892A (ja)
WO (1) WO2019088148A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187258A1 (ja) 2020-03-18 2021-09-23 富士フイルム株式会社 音響整合層用材料、音響整合シート、音響波プローブ、超音波プローブ、音響波測定装置、及び、超音波診断装置、並びに、音響波プローブの製造方法
WO2022070927A1 (ja) 2020-09-30 2022-04-07 富士フイルム株式会社 音響整合層材料、音響整合シート、音響整合シート形成用組成物、音響波プローブ、及び、音響波測定装置、並びに、音響整合層材料及び音響波プローブの各製造方法
WO2023054204A1 (ja) 2021-09-30 2023-04-06 富士フイルム株式会社 音響整合層材、音響整合シート、音響整合層材用組成物、音響波プローブ、音響波測定装置、及び音響波プローブの製造方法
WO2023054203A1 (ja) 2021-09-30 2023-04-06 富士フイルム株式会社 音響整合層材、音響整合シート、音響整合層材用組成物、音響波プローブ、音響波測定装置、及び音響波プローブの製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3050145A1 (en) * 2017-02-24 2018-08-30 Justin Rorke Buckland Ultrasonic devices including acoustically matched regions therein
US11522694B2 (en) * 2020-02-25 2022-12-06 Lexmark International, Inc. Acoustical physically unclonable function (puf) and system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11113908A (ja) * 1997-10-08 1999-04-27 Hitachi Medical Corp 超音波探触子
JP2010013326A (ja) * 2008-07-04 2010-01-21 Fujifilm Corp 微細酸化物構造体及びその製造方法、複合圧電材料、積層型圧電振動子、超音波探触子、並びに、超音波診断装置
JP2011071842A (ja) 2009-09-28 2011-04-07 Fujifilm Corp 超音波プローブ、および超音波トランスデューサアレイの製造方法
JP2012034160A (ja) * 2010-07-30 2012-02-16 Konica Minolta Medical & Graphic Inc 超音波探触子用バッキング材、それを用いた超音波探触子、及び超音波医用画像診断装置
JP2013081241A (ja) * 2006-03-02 2013-05-02 Visualsonics Inc 超音波整合層および振動子
JP2013192113A (ja) 2012-03-14 2013-09-26 Panasonic Corp 超音波探触子及びその製造方法
US20160199031A1 (en) * 2015-01-12 2016-07-14 Samsung Medison Co., Ltd. Matching member and ultrasound probe including the same
JP2017012436A (ja) 2015-06-30 2017-01-19 富士フイルム株式会社 音響波プローブ用組成物、音響波プローブ用シリコーン樹脂、音響波プローブおよび超音波プローブならびに音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡
JP2017212208A (ja) 2016-05-18 2017-11-30 株式会社半導体エネルギー研究所 正極活物質の作製方法、およびリチウムイオン電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3427264A (en) * 1966-02-07 1969-02-11 Exxon Research Engineering Co Metal-filled plastics comprising a styrene polymer and an elastomer
JPH0617015B2 (ja) * 1990-05-24 1994-03-09 株式会社メイト 強磁性金属粉末を配合した樹脂複合材料とその製法
JP2001200169A (ja) * 1999-11-09 2001-07-24 Mate:Kk 強磁性金属粉末を配合した樹脂複合材料
JP4140359B2 (ja) * 2002-11-27 2008-08-27 松下電器産業株式会社 超音波振動子用整合部材およびそれを用いた超音波センサ
JP4063171B2 (ja) * 2003-07-23 2008-03-19 住友金属鉱山株式会社 制振遮音材
RU2419388C2 (ru) * 2006-01-31 2011-05-27 Панасоник Корпорэйшн Ультразвуковой зонд
JP2009296055A (ja) * 2008-06-02 2009-12-17 Konica Minolta Medical & Graphic Inc 超音波探触子およびそれを用いる超音波診断装置
US20140130607A1 (en) * 2011-07-13 2014-05-15 Panasonic Corporation Manufacturing method of acoustic matching member, acoustic matching member, ultrasonic transmitter/ receiver unit incorporating acoustic matching member, and ultrasonic flow meter device
JP6214333B2 (ja) * 2013-10-23 2017-10-18 三菱鉛筆株式会社 音響整合層とその製造方法
WO2016088699A1 (ja) * 2014-12-01 2016-06-09 富士フイルム株式会社 音響波プローブ用組成物、これを用いた音響波プローブ用シリコーン樹脂、音響波プローブおよび超音波プローブ、ならびに、音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡
JP6596920B2 (ja) * 2015-05-21 2019-10-30 コニカミノルタ株式会社 音響レンズ、その製造方法、超音波探触子および超音波撮像装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11113908A (ja) * 1997-10-08 1999-04-27 Hitachi Medical Corp 超音波探触子
JP2013081241A (ja) * 2006-03-02 2013-05-02 Visualsonics Inc 超音波整合層および振動子
JP2010013326A (ja) * 2008-07-04 2010-01-21 Fujifilm Corp 微細酸化物構造体及びその製造方法、複合圧電材料、積層型圧電振動子、超音波探触子、並びに、超音波診断装置
JP2011071842A (ja) 2009-09-28 2011-04-07 Fujifilm Corp 超音波プローブ、および超音波トランスデューサアレイの製造方法
JP2012034160A (ja) * 2010-07-30 2012-02-16 Konica Minolta Medical & Graphic Inc 超音波探触子用バッキング材、それを用いた超音波探触子、及び超音波医用画像診断装置
JP2013192113A (ja) 2012-03-14 2013-09-26 Panasonic Corp 超音波探触子及びその製造方法
US20160199031A1 (en) * 2015-01-12 2016-07-14 Samsung Medison Co., Ltd. Matching member and ultrasound probe including the same
JP2017012436A (ja) 2015-06-30 2017-01-19 富士フイルム株式会社 音響波プローブ用組成物、音響波プローブ用シリコーン樹脂、音響波プローブおよび超音波プローブならびに音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡
JP2017212208A (ja) 2016-05-18 2017-11-30 株式会社半導体エネルギー研究所 正極活物質の作製方法、およびリチウムイオン電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE SURFACE FINISHING SOCIETY OF JAPAN, vol. 61, no. 3, 2010, pages 216
JOURNAL OF THE SURFACE FINISHING SOCIETY OF JAPAN, vol. 64, no. 12, 2013, pages 640

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187258A1 (ja) 2020-03-18 2021-09-23 富士フイルム株式会社 音響整合層用材料、音響整合シート、音響波プローブ、超音波プローブ、音響波測定装置、及び、超音波診断装置、並びに、音響波プローブの製造方法
JPWO2021187258A1 (ja) * 2020-03-18 2021-09-23
JP7242961B2 (ja) 2020-03-18 2023-03-20 富士フイルム株式会社 音響整合層用材料、音響整合シート、音響波プローブ、超音波プローブ、音響波測定装置、及び、超音波診断装置、並びに、音響波プローブの製造方法
EP4122399A4 (en) * 2020-03-18 2023-08-16 FUJIFILM Corporation MATERIAL FOR ACOUSTIC ADAPTATION LAYER, ACOUSTIC ADAPTATION SHEET, ACOUSTIC WAVE PROBE, ULTRASOUND PROBE, ACOUSTIC WAVE MEASUREMENT DEVICE, ULTRASOUND DIAGNOSTIC DEVICE AND METHOD FOR PRODUCING ACOUSTIC WAVE PROBE
WO2022070927A1 (ja) 2020-09-30 2022-04-07 富士フイルム株式会社 音響整合層材料、音響整合シート、音響整合シート形成用組成物、音響波プローブ、及び、音響波測定装置、並びに、音響整合層材料及び音響波プローブの各製造方法
JPWO2022070927A1 (ja) * 2020-09-30 2022-04-07
JP7286886B2 (ja) 2020-09-30 2023-06-05 富士フイルム株式会社 音響整合層材料、音響整合シート、音響整合シート形成用組成物、音響波プローブ、及び、音響波測定装置、並びに、音響整合層材料及び音響波プローブの各製造方法
WO2023054204A1 (ja) 2021-09-30 2023-04-06 富士フイルム株式会社 音響整合層材、音響整合シート、音響整合層材用組成物、音響波プローブ、音響波測定装置、及び音響波プローブの製造方法
WO2023054203A1 (ja) 2021-09-30 2023-04-06 富士フイルム株式会社 音響整合層材、音響整合シート、音響整合層材用組成物、音響波プローブ、音響波測定装置、及び音響波プローブの製造方法

Also Published As

Publication number Publication date
CN111295892A (zh) 2020-06-16
JPWO2019088148A1 (ja) 2020-11-19
US20200253582A1 (en) 2020-08-13
JP7022761B2 (ja) 2022-02-18
EP3706436A4 (en) 2020-12-30
EP3706436B1 (en) 2023-09-27
EP3706436A1 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
WO2019088148A1 (ja) 音響整合層用樹脂組成物、硬化物、音響整合シート、音響波プローブ、音響波測定装置、音響波プローブの製造方法、及び音響整合層用材料セット
JP6908719B2 (ja) 音響整合層用樹脂組成物、音響整合シート、音響波プローブ、音響波測定装置、音響波プローブの製造方法、及び音響整合層用材料セット
JP7162143B2 (ja) 音響整合層材、音響整合層材用組成物、音響整合シート、音響波プローブ、音響波測定装置、及び音響波プローブの製造方法
JP6961709B2 (ja) 音響整合層用樹脂組成物、硬化物、音響整合シート、音響波プローブ、音響波測定装置、音響波プローブの製造方法、及び音響整合層用材料セット
JP5488036B2 (ja) 超音波探触子用バッキング材、それを用いた超音波探触子、及び超音波医用画像診断装置
JPWO2020203370A1 (ja) 音響整合シート、音響整合層用組成物、音響波プローブ、音響波測定装置、及び音響波プローブの製造方法
JP5545056B2 (ja) 超音波探触子用バッキング材、それを用いた超音波探触子、及び超音波医用画像診断装置
JP6928106B2 (ja) 音響整合層用樹脂組成物、硬化物、音響整合シート、音響波プローブ、音響波測定装置、音響波プローブの製造方法、及び音響整合層用材料セット
JP7286886B2 (ja) 音響整合層材料、音響整合シート、音響整合シート形成用組成物、音響波プローブ、及び、音響波測定装置、並びに、音響整合層材料及び音響波プローブの各製造方法
JP7242961B2 (ja) 音響整合層用材料、音響整合シート、音響波プローブ、超音波プローブ、音響波測定装置、及び、超音波診断装置、並びに、音響波プローブの製造方法
WO2023054204A1 (ja) 音響整合層材、音響整合シート、音響整合層材用組成物、音響波プローブ、音響波測定装置、及び音響波プローブの製造方法
WO2023054203A1 (ja) 音響整合層材、音響整合シート、音響整合層材用組成物、音響波プローブ、音響波測定装置、及び音響波プローブの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871994

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2019550441

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018871994

Country of ref document: EP

Effective date: 20200602