WO2023054203A1 - 音響整合層材、音響整合シート、音響整合層材用組成物、音響波プローブ、音響波測定装置、及び音響波プローブの製造方法 - Google Patents

音響整合層材、音響整合シート、音響整合層材用組成物、音響波プローブ、音響波測定装置、及び音響波プローブの製造方法 Download PDF

Info

Publication number
WO2023054203A1
WO2023054203A1 PCT/JP2022/035512 JP2022035512W WO2023054203A1 WO 2023054203 A1 WO2023054203 A1 WO 2023054203A1 JP 2022035512 W JP2022035512 W JP 2022035512W WO 2023054203 A1 WO2023054203 A1 WO 2023054203A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic
acoustic matching
matching layer
layer material
acoustic wave
Prior art date
Application number
PCT/JP2022/035512
Other languages
English (en)
French (fr)
Inventor
和史 古川
義博 中井
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2023551436A priority Critical patent/JPWO2023054203A1/ja
Priority to EP22876070.8A priority patent/EP4412251A1/en
Priority to CN202280044174.0A priority patent/CN117546484A/zh
Publication of WO2023054203A1 publication Critical patent/WO2023054203A1/ja
Priority to US18/396,935 priority patent/US20240153479A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0662Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface
    • B06B1/067Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface which is used as, or combined with, an impedance matching layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/02Mechanical acoustic impedances; Impedance matching, e.g. by horns; Acoustic resonators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers

Definitions

  • the present invention relates to an acoustic matching layer material, an acoustic matching sheet, a composition for an acoustic matching layer material, an acoustic wave probe, an acoustic wave measuring device, and a method for manufacturing an acoustic wave probe.
  • the acoustic wave measuring device uses an acoustic wave probe that irradiates an object such as a living body with an acoustic wave, receives the reflected wave (echo), and outputs a signal. Reflected waves received by this acoustic wave probe are converted into electrical signals and displayed as images. Therefore, by using the acoustic wave probe, the inside of the object to be examined can be imaged and observed.
  • an ultrasonic diagnostic apparatus which is a type of acoustic wave measuring apparatus, transmits ultrasonic waves toward the inside of a subject, receives ultrasonic waves reflected by tissues inside the subject, and displays them as an image.
  • a photoacoustic wave measuring device which is one type of acoustic wave measuring device, receives acoustic waves radiated from the inside of a subject due to the photoacoustic effect and displays them as an image.
  • the photoacoustic effect refers to the phenomenon that when an electromagnetic wave pulse such as visible light, near-infrared light, or microwave is irradiated to an object to be inspected, the object to be inspected absorbs the electromagnetic wave, generates heat, and thermally expands, resulting in an acoustic wave ( Typically, it is a phenomenon in which ultrasonic waves) are generated.
  • an electromagnetic wave pulse such as visible light, near-infrared light, or microwave
  • an acoustic wave measuring device transmits and receives acoustic waves to and from a subject
  • an acoustic wave probe is required to match the subject (typically a human body) in acoustic impedance.
  • acoustic wave probes are provided with an acoustic matching layer.
  • An ultrasonic probe includes a piezoelectric element that transmits and receives ultrasonic waves and an acoustic lens that contacts a living body, and an acoustic matching layer is arranged between the piezoelectric element and the acoustic lens.
  • Ultrasonic waves oscillated from the piezoelectric element pass through the acoustic matching layer, pass through the acoustic lens, and enter the living body.
  • acoustic impedance density x longitudinal wave speed
  • the acoustic lens is required to have acoustic impedance characteristics close to those of a living body.
  • the acoustic impedance difference between the piezoelectric element and the living body is generally large.
  • the acoustic impedance difference between the piezoelectric element and the acoustic lens is also usually large. Therefore, when the piezoelectric element and the acoustic lens are laminated, the ultrasonic waves emitted from the piezoelectric element are reflected by the surface of the acoustic lens, and the efficiency of the ultrasonic waves entering the living body is reduced. In order to suppress the reflection of this ultrasonic wave, the acoustic matching layer is provided between the piezoelectric element and the acoustic lens.
  • the acoustic impedance of the acoustic matching layer takes a value between the acoustic impedance of the living body or the acoustic lens and the acoustic impedance of the piezoelectric element, thereby efficiently propagating ultrasonic waves from the piezoelectric element to the living body.
  • the acoustic matching layer has a multilayer structure in which a plurality of acoustic matching sheets (sheet-like acoustic matching layer materials) are laminated, and the acoustic impedance is inclined from the piezoelectric element side to the acoustic lens side.
  • silica particles, glass particles and metal particles are added to an epoxy resin in order to realize an acoustic matching sheet having a desired acoustic impedance. etc.) to obtain an acoustic matching layer (acoustic matching sheet).
  • a high acoustic impedance of about 16 Mrayl is required for the acoustic matching layer arranged on the piezoelectric element side. If high-density metal particles are simply used to increase the acoustic impedance of the acoustic matching sheet, the sound velocity of longitudinal waves will decrease, resulting in restrictions on the realization of high acoustic impedance. According to the inventors' studies, by using a certain amount of low-density particles in combination with high-density metal particles, the reduction in the longitudinal wave speed of the acoustic matching sheet can be suppressed while enjoying the benefits of high density. I know it can be done.
  • the present invention provides an acoustic matching layer material that exhibits high acoustic impedance suitable for being placed on the side of a piezoelectric element, has a low bubble content, and has sufficient mechanical strength, and an acoustic matching layer material using the acoustic matching layer material.
  • An object of the present invention is to provide a matching sheet and a composition for an acoustic matching layer suitable for preparing the acoustic matching layer.
  • Another object of the present invention is to provide an acoustic wave probe using the acoustic matching sheet and an acoustic wave measuring apparatus using the same.
  • Another object of the present invention is to provide a method for manufacturing an acoustic wave probe using the acoustic matching layer material.
  • the inventors of the present invention made further studies to obtain an acoustic matching layer material exhibiting a high acoustic impedance suitable for the acoustic matching layer on the piezoelectric element side.
  • a combination of resin and high-density metal particles (10 g/cm 3 or more)
  • resin and high-density metal particles 10 g/cm 3 or more
  • a sufficiently high acoustic impedance can be achieved, and that the resulting acoustic matching layer material has a low bubble content and sufficient mechanical strength.
  • the present invention has been completed through further studies based on these findings.
  • the content of the acoustic matching layer material is less than 5% by mass.
  • Cy 1 represents a ring.
  • L 1a represents a linking group
  • L 1b represents a linking group containing a nitrogen atom
  • p 1 is 1 or 2
  • q 1 is 1 or 2
  • r 1 is an integer of 1-3.
  • Cy2 represents a ring
  • L 2a and L 2b represent an alkylene group, an alkanetriyl group, an oxygen atom, or a linking group combining these.
  • p 2 is 1 or 2
  • q 2 is 1 or 2
  • r 2 is an integer of 1-3.
  • Cy 3 represents a ring.
  • L 3a represents a linking group containing a nitrogen atom
  • L 3b represents a linking group.
  • LL 3 represents a linking group.
  • p 3 is 1 or 2
  • q 3 is 1 or 2
  • r 3 is an integer from 0 to 3
  • s 3 is 2 or 3.
  • Cy 4 represents a ring.
  • L 4a and L 4b each represent an alkylene group, an alkanetriyl group, an oxygen atom, or a linking group combining these.
  • LL 4 represents a linking group.
  • p 4 is 1 or 2
  • q 4 is 1 or 2
  • r 4 is an integer from 0 to 3
  • s 4 is 2 or 3.
  • the compound represented by general formula (4) has 3 or more epoxy groups.
  • ⁇ 3> The acoustic matching layer material according to ⁇ 1> or ⁇ 2>, wherein the acoustic matching layer material contains a curing agent (D) component, and the curing agent (D) contains an amine curing agent.
  • D curing agent
  • D contains an amine curing agent.
  • ⁇ 4> The acoustic matching layer material according to ⁇ 3>, wherein the amine curing agent contains an aromatic amine.
  • ⁇ 5> The acoustic matching layer material according to any one of ⁇ 1> to ⁇ 4>, wherein the epoxy resin (A) component has an aromatic hydrocarbon ring.
  • ⁇ 6> The acoustic matching layer material according to any one of ⁇ 1> to ⁇ 5>, which has a density of 7.0 g/cm 3 or more at 25°C.
  • ⁇ 7> The acoustic matching layer material according to any one of ⁇ 1> to ⁇ 6>, wherein the longitudinal sound velocity of ultrasonic waves at 25° C. is 2300 m/sec or more.
  • ⁇ 8> The acoustic matching layer material according to any one of ⁇ 1> to ⁇ 7>, which has an acoustic impedance of 16 Mrayl or more at 25°C.
  • An acoustic matching sheet comprising the acoustic matching layer material according to any one of ⁇ 1> to ⁇ 8>.
  • An acoustic wave measuring device comprising the acoustic wave probe according to ⁇ 11>.
  • epoxy equivalent weight is the number of grams (g/eq) of epoxy resin containing one gram equivalent of epoxy groups. That is, it means a value obtained by dividing the molecular weight of the epoxy resin by the number of epoxy groups possessed by the epoxy resin.
  • substituents, etc. when there are multiple substituents, linking groups, etc. (hereinafter referred to as substituents, etc.) indicated by a specific symbol, or when multiple substituents, etc. are defined simultaneously or alternatively, each It means that substituents and the like may be the same or different from each other.
  • substituents and the like when a plurality of substituents and the like are adjacent to each other, they may be connected to each other or condensed to form a ring.
  • group of each group described as an example of each substituent is used to include both unsubstituted and substituted forms.
  • alkyl group means an alkyl group which may have a substituent.
  • the number of carbon atoms in a group when the number of carbon atoms in a group is limited, the number of carbon atoms in the group means the total number of carbon atoms including substituents unless otherwise specified.
  • compound is used to include the compound itself, its salt, and its ion.
  • the acoustic matching layer material of the present invention and the acoustic matching sheet using the acoustic matching layer material exhibit high acoustic impedance suitable for placement on the piezoelectric element side, contain few bubbles, and have sufficient mechanical properties. Have strength.
  • the acoustic matching layer material can be obtained by curing the composition for an acoustic matching layer material of the present invention.
  • an acoustic wave probe of the present invention has the above acoustic matching sheet.
  • the acoustic wave measuring device of the present invention has an acoustic wave probe. Further, according to the method of manufacturing an acoustic wave probe of the present invention, it is possible to obtain an acoustic wave probe using the acoustic matching layer material.
  • FIG. 1 is a perspective transparent view of an example of a convex ultrasonic probe, which is one mode of an acoustic wave probe;
  • the acoustic matching layer material of the present invention (hereinafter also simply referred to as "the layer material of the present invention") comprises an epoxy resin (A) component having an epoxy equivalent of 140 or less (a component derived from an epoxy resin (A) having an epoxy equivalent of 140 or less). and metal particles (B) having a density of 10 g/cm 3 or more at 20°C.
  • the layer material of the present invention may contain particles (C) having a density at 20° C. of less than 4.5 g/cm 3 , and the content of the particles (C) in the layer material of the present invention is less than 5% by mass. is.
  • epoxy resin (A) having an epoxy equivalent of 140 or less may be simply referred to as “epoxy resin (A)".
  • Metal particles (B) having a density of 10 g/cm 3 or more at 20°C may be simply referred to as “metal particles (B)”.
  • particles (C) having a density of less than 4.5 g/cm 3 at 20°C may be simply referred to as “particles (C)”.
  • the shape of the layer material of the present invention is not particularly limited, and examples thereof include a sheet shape, a columnar shape and a prismatic shape, with a sheet shape being preferred.
  • the layer material of the present invention is composed of the epoxy resin (A) component and has a high crosslink density. Therefore, the metal particles (B) are contained in a matrix having a large elastic modulus, and this is thought to affect the increase in longitudinal wave sound velocity and thus the achievement of high acoustic impedance. In addition, since high acoustic impedance can be achieved without particles (C), air bubbles are less likely to be involved during raw material mixing in the production thereof, which is considered to be related to sufficient mechanical strength.
  • the epoxy resin (A) component may be referred to as a "binder".
  • the layer material of the present invention contains a curing agent (D) component, which will be described later, the epoxy resin (A) component and the curing agent (D) component are collectively referred to as a "binder”.
  • Epoxy resin (A) The epoxy resin that leads to the epoxy resin (A) component contained in the layer material of the present invention is not particularly limited as long as it has an epoxy equivalent of 140 or less.
  • the lower limit of the epoxy equivalent of the epoxy resin (A) is not particularly limited, and is, for example, 60 or more, preferably 70 or more.
  • the molecular weight of the epoxy resin (A) is not particularly limited, and is, for example, 150-800, preferably 200-700.
  • the number of epoxy groups per molecule of epoxy resin (A) is not particularly limited, and is, for example, 2 to 10, and may be 2 to 8.
  • As the epoxy resin (A), a compound represented by any one of the following general formulas (1) to (4) is preferable. Compounds represented by general formula (1) are more preferred.
  • the epoxy resin (A) preferably has an aromatic hydrocarbon ring from the viewpoint of high toughness of the acoustic matching layer material.
  • Cy 1 represents a ring.
  • L 1a represents a linking group
  • L 1b represents a linking group containing a nitrogen atom.
  • p 1 is 1 or 2
  • q 1 is 1 or 2
  • r 1 is an integer of 1-3.
  • Cy 1 may be monocyclic or condensed. Cy 1 includes, for example, an alicyclic ring, an aliphatic heterocyclic ring, an aromatic hydrocarbon ring and an aromatic heterocyclic ring, preferably an alicyclic ring and an aromatic hydrocarbon ring, and more preferably an aromatic hydrocarbon ring.
  • the number of ring-constituting carbon atoms in the alicyclic ring is not particularly limited, and is, for example, 3 to 10, preferably 5 to 8, more preferably 6.
  • a specific example of the alicyclic ring is a cyclohexane ring.
  • the number of ring-constituting atoms of the aliphatic heterocycle is not particularly limited, and is, for example, 6 to 10, preferably 6.
  • the ring-constituting heteroatoms of the aromatic heterocyclic ring include, for example, a nitrogen atom and an oxygen atom.
  • the number of ring-constituting carbon atoms in the aromatic hydrocarbon ring is not particularly limited, and is, for example, 6-10.
  • Specific examples of aromatic hydrocarbon rings include benzene rings and naphthalene rings.
  • the number of ring-constituting atoms of the aromatic heterocycle is not particularly limited, and is, for example, 6-10.
  • the ring-constituting heteroatoms of the aromatic heterocyclic ring include, for example, a nitrogen atom and an oxygen atom.
  • a specific example of the aromatic hetero ring is a pyridine ring.
  • Cy 1 may have a substituent, and specific examples of the substituent include an alkyl group (eg, 1 to 5 carbon atoms), an oxo group, an alkoxy group (eg, 1 to 5 carbon atoms), an amino group, an aryl groups (eg phenyl and naphthyl groups) and halogen atoms (eg fluorine, chlorine, bromine and iodine atoms).
  • substituents include an alkyl group (eg, 1 to 5 carbon atoms), an oxo group, an alkoxy group (eg, 1 to 5 carbon atoms), an amino group, an aryl groups (eg phenyl and naphthyl groups) and halogen atoms (eg fluorine, chlorine, bromine and iodine atoms).
  • the linking group that L 1a can take is preferably an alkylene group, an alkanetriyl group, a nitrogen atom, an oxygen atom, or a linking group combining these.
  • the alkylene group may be linear or branched, and the number of carbon atoms in the alkylene group is, for example, 1 to 10, preferably 1 to 5, more preferably 1 or 2, and particularly preferably 1.
  • Specific examples of alkylene groups include methylene, ethylene, propylene and isopropylene.
  • the alkanetriyl group may be linear or branched, and the carbon number of the alkanetriyl group is, for example, 1-10, preferably 1-6, more preferably 1-4.
  • alkanetriyl groups include methanetriyl, ethanetriyl and propanetriyl.
  • connecting group combining these a divalent connecting group combining an alkylene group and an oxygen atom (“-alkylene-O-", “-O-alkylene-"), and an alkylene group and a nitrogen atom and a trivalent linking group (“(-alkylene-) 2 nitrogen atom-”, “-nitrogen atom (-alkylene-) 2 ”, “(-alkylene-) 2 nitrogen atom-alkylene-”, “- alkylene-nitrogen atoms (-alkylene-) 2 '').
  • Examples of the linking group that L 1b can take include, for example, a divalent linking group in which an imino group and an alkylene group are combined (“-NH-alkylene group-”, “-alkylene group-NH-”), and an alkylene group and A trivalent group combined with a nitrogen atom (“(-alkylene-) 2 nitrogen atom-”, “-nitrogen atom (-alkylene-) 2 ”, “(-alkylene-) 2 nitrogen atom-alkylene-”, “ -alkylene-nitrogen atom (-alkylene-) 2 '').
  • the preferred form of the alkylene group is the same as the form of the alkylene group described for L1a .
  • Cy2 represents a ring.
  • L 2a and L 2b represent an alkylene group, an alkanetriyl group, an oxygen atom, or a linking group combining these.
  • p 2 is 1 or 2
  • q 2 is 1 or 2
  • r 2 is an integer of 1 to 3 (preferably 1 or 2).
  • Cy2 may be monocyclic or condensed.
  • Cy 2 includes, for example, an alicyclic ring, an aliphatic heterocyclic ring, an aromatic hydrocarbon ring and an aromatic heterocyclic ring, preferably an aromatic hydrocarbon ring.
  • the alicyclic, aliphatic heterocyclic, aromatic hydrocarbon ring and aromatic heterocyclic ring that Cy 2 can take the alicyclic, aliphatic heterocyclic, aromatic hydrocarbon ring and aromatic heterocyclic ring described in the above “Cy 1 " ring.
  • Cy 2 may have a substituent, and specific examples of the substituent include the substituents described above for "Cy 1 ".
  • the alkylene group that can be used as L 2a and L 2b may be either linear or branched, and the number of carbon atoms in the alkylene group is, for example, 1 to 10, preferably 1 to 5, more preferably 1 or 2, and particularly 1. preferable.
  • Specific examples of alkylene groups include methylene, ethylene, propylene and isopropylene.
  • the alkanetriyl group may be linear or branched, and the carbon number of the alkanetriyl group is, for example, 1-10, preferably 1-6, more preferably 1-4.
  • Specific examples of alkanetriyl groups include methanetriyl, ethanetriyl and propanetriyl.
  • a divalent or trivalent linking group combining these include, for example, a divalent group combining an alkylene group and an oxygen atom ("-alkylene-O-", “-O-alkylene-”). mentioned.
  • Cy 3 represents a ring.
  • L 3a represents a linking group containing a nitrogen atom
  • L 3b represents a linking group.
  • LL 3 represents a linking group.
  • p 3 is 1 or 2
  • q 3 is 1 or 2
  • r 3 is an integer of 0 to 3 (preferably 0 or 1)
  • s 3 is 2 or 3.
  • the compound represented by general formula (3) has 3 or more epoxy groups.
  • Cy3 may be monocyclic or condensed. Cy 3 includes, for example, an alicyclic ring, an aliphatic heterocyclic ring, an aromatic hydrocarbon ring and an aromatic heterocyclic ring, preferably an aromatic hydrocarbon ring. As the alicyclic, aliphatic heterocyclic, aromatic hydrocarbon ring and aromatic heterocyclic ring that Cy 3 can take, the alicyclic, aliphatic heterocyclic, aromatic hydrocarbon ring and aromatic heterocyclic ring described in the above “Cy 1 " rings, and aromatic hydrocarbon rings are preferred. Cy 3 may have a substituent, and specific examples of the substituent include the substituents described above for "Cy 1 ".
  • Linking groups that L 3a can take include, for example, trivalent groups in which an alkylene group and a nitrogen atom are combined (“(-alkylene-) 2 nitrogen atom-”, “-nitrogen atom (-alkylene-) 2 ”). is mentioned.
  • the linking group that L 3b can take is preferably an alkylene group, a nitrogen atom, an oxygen atom, or a linking group combining these.
  • the alkylene group may be linear or branched, and the number of carbon atoms in the alkylene group is, for example, 1 to 10, preferably 1 to 5, more preferably 1 or 2, and particularly preferably 1.
  • Specific examples of alkylene groups include methylene, ethylene, propylene and isopropylene.
  • linking group combining these a divalent connecting group combining an alkylene group and an oxygen atom (“-alkylene-O-", “-O-alkylene-”), and an alkylene group and a nitrogen atom and a trivalent linking group (“(-alkylene-) 2 nitrogen atom-”, “-nitrogen atom (-alkylene-) 2 ”).
  • the linking group that L 3b can take the above-mentioned “divalent linking group in which an alkylene group and an oxygen atom are combined” and the above-mentioned “trivalent linking group in which an alkylene group and a nitrogen atom are combined” are preferable.
  • Divalent linking groups that LL 3 can adopt include an alkylene group and a sulfonyl group.
  • the alkylene group may be linear or branched, and the number of carbon atoms in the alkylene group is, for example, 1 to 10, preferably 1 to 5, more preferably 1 or 2, and particularly preferably 1.
  • Specific examples of alkylene groups include methylene, ethylene, propylene and isopropylene.
  • alkanetriyl group is mentioned as a trivalent linking group which LL 3 can take.
  • the alkanetriyl group may be linear or branched, and the carbon number of the alkanetriyl group is, for example, 1 to 10, preferably 1 to 5, more preferably 1 or 2, and particularly preferably 1.
  • Specific examples of alkanetriyl groups include methanetriyl, ethanetriyl and propanetriyl.
  • Cy 4 represents a ring.
  • L 4a and L 4b each represent an alkylene group, an alkanetriyl group, an oxygen atom, or a linking group combining these.
  • LL 4 represents a linking group.
  • p 4 is 1 or 2
  • q 4 is 1 or 2
  • r 4 is an integer of 0 to 3 (preferably 1)
  • s 4 is 2 or 3 (preferably 2).
  • the compound represented by general formula (4) has 3 or more epoxy groups.
  • Cy 4 may be monocyclic or condensed. Cy 4 includes, for example, an alicyclic ring, an aliphatic heterocyclic ring, an aromatic hydrocarbon ring and an aromatic heterocyclic ring, preferably an aromatic hydrocarbon ring. As the alicyclic, aliphatic heterocyclic, aromatic hydrocarbon ring and aromatic heterocyclic ring that Cy 4 can take, the alicyclic, aliphatic heterocyclic, aromatic hydrocarbon ring and aromatic heterocyclic ring described in the above “Cy 1 " rings, and aromatic hydrocarbon rings are preferred. Cy 4 may have a substituent, and specific examples of the substituent include the substituents described above for "Cy 1 ".
  • the alkylene group that can be used as L 4a and L 4b may be either linear or branched, and the number of carbon atoms in the alkylene group may be, for example, 1 to 10, 1 to 5, or 1 or 2.
  • Specific examples of alkylene groups include methylene, ethylene, propylene and isopropylene.
  • the alkanetriyl group may be either linear or branched, and the carbon number of the alkanetriyl group may be, for example, 1-10, 1-6, or 1-4. Specific examples of alkanetriyl groups include methanetriyl, ethanetriyl and propanetriyl.
  • linking group in which these are combined examples include divalent groups in which an alkylene group and an oxygen atom are combined ("-alkylene-O-", “-O-alkylene-").
  • the divalent linking group that LL 4 can adopt includes an alkylene group.
  • the alkylene group may be linear or branched, and the number of carbon atoms in the alkylene group is, for example, 1-10, preferably 1-5, more preferably 1-3.
  • Specific examples of alkylene groups include methylene, ethylene, propylene and 1-methylethylidene.
  • alkanetriyl group is mentioned as a trivalent linking group that LL 4 can take.
  • the alkanetriyl group may be linear or branched, and the carbon number of the alkanetriyl group is, for example, 1 to 10, preferably 1 to 5, more preferably 1 or 2, and particularly preferably 1.
  • Specific examples of alkanetriyl groups include methanetriyl, ethanetriyl and propanetriyl.
  • the epoxy resin (A) may be used singly or in combination of two or more.
  • the epoxy resin (A) component may be one obtained by curing the epoxy resin (A) alone, or may be one obtained by reacting with a curing agent (D) described later and cured. That is, the layer material of the present invention may contain a component derived from the curing agent (D).
  • the layer material of the present invention contains metal particles (B).
  • the metal particles (B) may or may not be surface-treated. This surface treatment can be performed, for example, with reference to International Publication No. 2019/088148.
  • the metal constituting the metal particles (B) is not particularly limited as long as it has a density of 10 g/cm 3 or more at 20°C.
  • the metal particles (B) may be metal atoms alone, or metal carbides, nitrides, oxides, or borides. Moreover, an alloy may be formed. Examples of metals constituting the metal particles (B) include osmium, iridium, platinum, rhenium, neptunium, gold, tungsten, tantalum, hafnium, rhodium, ruthenium, palladium, thallium, lead, silver, and molybdenum. .
  • the particle size of the metal particles (B) is not particularly limited.
  • the particle diameter of the metal particles (B) is, for example, preferably 0.01 to 100 ⁇ m, more preferably 1 to 10 ⁇ m, from the viewpoint of reducing the viscosity of the composition for the acoustic matching layer material and improving the mechanical strength of the acoustic matching layer material. , more preferably 2 to 6 ⁇ m, particularly preferably 2 to 4 ⁇ m.
  • the "particle size" of the metal particles (B) means the average primary particle size.
  • the average primary particle size is a volume-based median size, and is determined as follows.
  • the metal particles (B) are dispersed in methanol by adding the metal particles (B) to 0.5% by mass and subjecting the mixture to ultrasonic waves for 10 minutes.
  • the particle size distribution of the metal particles (B) thus treated is measured with a laser diffraction/scattering particle size distribution analyzer (trade name: LA950V2, manufactured by Horiba Ltd.) to determine the volume-based median diameter.
  • the median diameter corresponds to cumulative 50% when the particle size distribution is expressed as a cumulative distribution.
  • Particles (C) are not particularly limited as long as they have a density of less than 4.5 g/cm 3 .
  • Metal particles, ceramic particles, organic fine particles, silica particles, and organic-inorganic composite particles can be used as the particles (C).
  • metals constituting the metal particles for example, barium, aluminum, boron, and oxides, nitrides or carbides thereof can be used.
  • the ceramic particles preferably contain at least one atom of Groups 1 to 3 and Groups 13 to 17 of the periodic table, and at least one of Mg, Ca, Ba, B, Al, Y and Si (preferably 1 to 3) and at least one (preferably one) of O, C, N and S.
  • carbides, nitrides or oxides containing at least one (preferably 1 to 3) of Mg, Ba, B, Al, Y and Si are preferred.
  • magnesium-aluminum spinel magnesium aluminate spinel, MgO.Al2O3 ), wollastonite ( CaSiO3 ), cordierite ( 2MgO.2Al2O3.5SiO2 ), boron carbide ( B4C ) , silicon carbide (SiC), alumina (Al 2 O 3 ), aluminum nitride (AlN), magnesium oxide (MgO), silicon nitride (Si 3 N 4 ), boron nitride (BN) and yttrium oxide (Y 2 O 3 ).
  • the particle size of the particles (C) is not particularly limited.
  • the particle diameter of the particles (C) is, for example, preferably 0.01 to 100 ⁇ m, more preferably 1 to 10 ⁇ m, from the viewpoint of reducing the viscosity of the composition for the acoustic matching layer material and improving the mechanical strength of the acoustic matching layer material. 2 to 6 ⁇ m is more preferred, and 2 to 4 ⁇ m is particularly preferred.
  • the "particle size" of the particles (C) is synonymous with the "particle size" of the metal particles (B).
  • curing agent (D) As the curing agent used in the present invention, various curing agents generally used as curing agents for epoxy resins can be used. For example, amine curing agents, acid anhydride curing agents, phenol curing agents, imidazole curing agents, phosphine curing agents, thiol curing agents, Lewis acid curing agents, dicyandiamide and the like can be used. Among them, it is preferable to use an amine curing agent in terms of curing temperature and curing speed, and it is particularly preferable to use an aromatic amine curing agent. It is also preferable to use a plurality of these curing agents, and it is also preferable to add a small amount of one of them as a curing aid. Specific examples of the curing agent (D) are shown below, but the present invention is not limited thereto.
  • the contents of the binder, the metal particles (B) and the particles (C) are appropriately adjusted according to the intended longitudinal wave speed and acoustic impedance.
  • the content of the binder in the layer material of the present invention is preferably 1 to 15% by mass, more preferably 1 to 11% by mass.
  • the content of the metal particles (B) in the layer material of the present invention is preferably 80 to 98% by mass, more preferably 85 to 95% by mass, still more preferably 87 to 94% by mass, particularly 88 to 93% by mass. preferable.
  • the content of the particles (C) in the layer material of the present invention is 5% by mass or less, preferably 2% by mass or less, still more preferably less than 1% by mass, and particularly preferably 0.8% by mass or less.
  • the layer material of the present invention may be composed of a binder and metal particles (B), or a binder, metal particles (B) and particles (C). Further, components other than these may be contained within a range that does not impair the effects of the present invention. Components (other components) other than the metal particles (B) and the particles (C) other than the binder include, for example, curing retarders, dispersants, pigments, dyes, antistatic agents, antioxidants, flame retardants and Thermal conductivity improvers and the like are included. In the layer material of the present invention, the total content of the binder, metal particles (B) and particles (C) is preferably 80% by mass or more, more preferably 90% by mass or more.
  • the density of the layer material of the present invention at 25° C. is, for example, 7.0 g/cm 3 or more, preferably 7.2 g/cm 3 or more.
  • the density of the layer material of the present invention is usually 1.1 ⁇ 10 g/cm 3 or less.
  • the layer material of the present invention has an in-plane longitudinal wave speed (m/sec) at 25° C. when formed into a sheet, preferably 2300 or more, more preferably 2400 or more, and particularly preferably 2500 or more.
  • the longitudinal wave speed of sound is usually 2800 or less.
  • the layer material of the present invention preferably has an in-plane acoustic impedance (Mrayl) at 25° C.
  • the acoustic impedance is typically 28 or less.
  • the longitudinal wave speed of sound and the acoustic impedance are determined in accordance with the method described in Examples below. Specifically, the layer material processed into a sheet is divided into three equal parts in the thickness direction, and the longitudinal wave speed of sound and acoustic impedance are measured at three independent locations on the middle sheet of the three obtained sheets. is determined by Note that sheet thickness has virtually no effect on longitudinal wave speed and density.
  • composition for an acoustic matching layer material of the present invention (a composition used for the acoustic matching layer material of the present invention, hereinafter also referred to as the "composition of the present invention") comprises an epoxy resin (A) and metal particles (B). and
  • the composition of the present invention may contain particles (C), and the content of the particles (C) is less than 5% by mass in the solid content contained in the composition of the present invention.
  • the solid content typically means components other than the solvent.
  • the composition of the present invention may contain the curing agent (D) described above, and may contain the above other components.
  • the composition of the present invention contains an epoxy resin (A) and a curing agent (D) as a binder, the curing reaction of the epoxy resin (A) progresses over time in the composition even under mild conditions. There is therefore, the properties of this composition may change over time and may not be stable. However, for example, by storing the composition at a temperature of ⁇ 10° C. or lower, the curing reaction does not occur or is sufficiently suppressed, and a composition in which each component is stably maintained can be obtained. It is also preferable to use a resin composition containing an epoxy resin (A) and metal particles (B) as a main agent, and to form an acoustic matching layer material set in which the main agent and the curing agent (D) are separately separated. .
  • the main agent and the curing agent (D) are mixed to prepare the composition of the present invention, and the composition is subjected to a curing reaction to prepare the acoustic matching layer material.
  • the mass ratio of the epoxy resin (A) and the curing agent (D) constituting the binder may be appropriately adjusted according to the type of the curing agent (D) used.
  • epoxy resin (A)/curing agent (D) can be 99/1 to 20/80, preferably 90/10 to 40/60.
  • the composition of the present invention is used by mixing the main agent and the curing agent (D) at the time of preparing the layer material using the above-mentioned material set for the acoustic matching layer, the epoxy resin (A) and the curing agent
  • composition for acoustic matching layer material of the present invention can be obtained, for example, by mixing components constituting the composition for acoustic matching layer material.
  • This mixing method is not particularly limited as long as each component can be substantially uniformly mixed.
  • the desired uniform mixing can be achieved by kneading using a rotation/revolution stirrer.
  • the main agent can be obtained by mixing the epoxy resin (A) and the metal particles (B).
  • the composition for acoustic matching layer material of the present invention is obtained by mixing the main agent and the curing agent (D) during the preparation of the acoustic matching layer material.
  • the acoustic matching layer material or its precursor can be prepared by curing this composition while molding it.
  • An acoustic matching sheet can be obtained from the layer material of the present invention by cutting, dicing, or the like into a desired thickness or shape, if necessary. Also, this acoustic matching sheet can be further processed into a desired shape by a conventional method. Specifically, for example, the composition of the present invention is formed into a desired sheet shape in a low temperature range in which the curing reaction does not occur or in a low temperature range in which the curing rate is sufficiently slow. Next, if necessary, the molded product is heated to form a crosslinked structure and cured, and if necessary, it is cut or diced into a desired thickness or shape to form an acoustic matching sheet or its precursor sheet. do.
  • the acoustic matching sheet to be formed is preferably a cured product obtained by curing the composition of the present invention to form a three-dimensional network structure.
  • This acoustic matching sheet is used as an acoustic matching layer of an acoustic wave probe. The configuration of the acoustic wave probe including the acoustic matching layer will be described later.
  • the acoustic wave probe of the present invention has the acoustic matching sheet of the present invention as at least one acoustic matching layer.
  • An example of the configuration of the acoustic wave probe of the present invention is shown in FIG.
  • the acoustic wave probe shown in FIG. 1 is an ultrasonic probe in an ultrasonic diagnostic apparatus.
  • the ultrasonic probe is a probe that uses ultrasonic waves as acoustic waves in the acoustic wave probe. Therefore, the basic structure of the ultrasonic probe can be applied as it is to the acoustic wave probe.
  • the ultrasonic probe 10 is a main component of the ultrasonic diagnostic apparatus, and has functions of generating ultrasonic waves and transmitting/receiving ultrasonic beams.
  • the ultrasonic probe 10 is composed of an acoustic lens 1, an acoustic matching layer 2, a piezoelectric element layer 3, and a backing material 4, which are arranged in this order from the tip (the surface in contact with the living body to be examined). ing.
  • the ultrasonic transducer for transmission (piezoelectric element) and the ultrasonic transducer for reception (piezoelectric element) are made of different materials to form a laminated structure. is also proposed.
  • the piezoelectric element layer 3 is a portion that generates ultrasonic waves, and electrodes are attached to both sides of the piezoelectric element. When a voltage is applied, the piezoelectric element repeats expansion and contraction and vibrates, thereby generating ultrasonic waves. do.
  • Materials constituting the piezoelectric element include crystal, single crystals such as LiNbO 3 , LiTaO 3 and KNbO 3 , thin films such as ZnO and AlN, and sintered bodies such as Pb(Zr, Ti)O 3 system, which are subjected to polarization treatment.
  • Ceramic inorganic piezoelectric materials are widely used. Piezoelectric ceramics such as PZT (lead zirconate titanate), which has a high conversion efficiency, are generally used.
  • the piezoelectric element for detecting received waves on the high frequency side requires sensitivity over a wider bandwidth.
  • an organic piezoelectric material using an organic polymer material such as polyvinylidene fluoride (PVDF) is used.
  • PVDF polyvinylidene fluoride
  • MEMS Micro Electro Mechanical Systems
  • Any piezoelectric element material can be preferably used in the present invention.
  • the backing material 4 is provided on the back surface of the piezoelectric element layer 3, shortens the pulse width of ultrasonic waves by suppressing excess vibration, and contributes to improving the distance resolution in ultrasonic diagnostic images.
  • the acoustic matching layer 2 is provided to reduce the difference in acoustic impedance between the piezoelectric element layer 3 and the object to be inspected, and to transmit and receive ultrasonic waves efficiently.
  • Acoustic lens 1 is provided to focus ultrasonic waves in the slice direction using refraction to improve resolution. In addition, it should be in close contact with the living body to be inspected, match the ultrasonic wave with the acoustic impedance of the living body (1.4 to 1.7 Mrayl in the human body), and the ultrasonic attenuation of the acoustic lens 1 itself should be small. is required. That is, as the material of the acoustic lens 1, by using a material whose longitudinal wave speed is sufficiently lower than that of the human body, which causes less attenuation of ultrasonic waves, and whose acoustic impedance is close to the value of the skin of the human body, Ultrasonic wave transmission/reception sensitivity is enhanced.
  • the operation of the ultrasonic probe 10 having such a configuration will be described.
  • a voltage is applied to electrodes provided on both sides of the piezoelectric element to cause the piezoelectric element layer 3 to resonate, and an ultrasonic signal is transmitted from the acoustic lens to the subject.
  • the piezoelectric element layer 3 is vibrated by a reflected signal (echo signal) from the object to be inspected, and this vibration is electrically converted into a signal to obtain an image.
  • the acoustic wave probe of the present invention can be produced by a conventional method except for using the acoustic matching sheet of the present invention. That is, the method of manufacturing an acoustic wave probe of the present invention includes forming an acoustic matching layer on a piezoelectric element using the acoustic matching sheet of the present invention.
  • the piezoelectric element can be provided on the backing material by conventional methods.
  • An acoustic lens is formed on the acoustic matching layer by a conventional method using an acoustic lens forming material.
  • the acoustic wave measuring device of the present invention has the acoustic wave probe of the present invention.
  • the acoustic wave measuring device has a function of displaying the signal strength of the signal received by the acoustic wave probe and imaging this signal.
  • the acoustic wave measuring device of the present invention is also preferably an ultrasonic measuring device using an ultrasonic probe.
  • the compounding amount of a component means the compounding amount of the component itself. That is, when the raw material contains a solvent (solvent), it is the amount excluding the solvent.
  • acoustic waves are not limited to ultrasonic waves, and acoustic waves of audible frequencies may be used as long as an appropriate frequency is selected according to the subject, measurement conditions, and the like.
  • room temperature means 25°C.
  • acoustic matching sheet sheet-shaped acoustic matching layer material
  • acoustic matching sheet of Example 1 The acoustic matching layer material used in Example 1 was placed in a circular mold with a diameter of 40 mm and a depth of 3 mm. A circular sheet-shaped acoustic matching layer material having a diameter of 40 mm and a thickness of 3 mm was produced by pouring the composition for 80° C. for 18 hours and then curing it at 150° C. for 1 hour. This sheet was cut with a dicer into three circular acoustic matching sheets each having a diameter of 40 mm and a thickness of 1 mm, and the middle acoustic matching sheet (1 mm thick) was used for the following measurements.
  • Acoustic impedance was calculated from the product of the density obtained in this way and the longitudinal wave speed (arithmetic mean value of density ⁇ arithmetic mean value of longitudinal wave speed of sound), and was evaluated according to the following evaluation criteria.
  • A, B and C pass this test.
  • Test Example 3 Presence or Absence of Air Bubbles
  • the cross section of each side of the test piece of 9 mm ⁇ 9 mm used in Test Example 2 was observed with an optical microscope at a magnification of 200, and the number of air bubbles was counted. The average number of the four sides was obtained and evaluated by applying the following evaluation criteria. A, B and C pass this test. -Evaluation criteria- A: No bubbles. B: 1 to 3 bubbles C: 4 to 10 bubbles D: 11 or more bubbles
  • Top row 1-31 Examples 1-31
  • Top row c1-c4 Comparative examples c1-c4
  • Epoxy resin (A) - Epoxy resin (A) used in Examples - (1-3), (1-5), (1-6), (1-13), (2-1), (2-2), (2-5), (2-7), (3 -2), (4-4) and (4-5): the above exemplary compounds (1-3), (1-5), (1-6), (1-13), (2-1), ( 2-2), (2-5), (2-7), (3-2), (4-4) and (4-5)
  • X-2 the following compounds Incidentally, X-1 and X-2 are listed in the column of epoxy resin (A) in order to facilitate comparison between Examples and Comparative Examples.
  • SiC particle size 3 ⁇ m
  • SiC particle size 3 ⁇ m
  • Al 2 O 3 particle size 3 ⁇ m
  • alumina particles N-9000 (trade name) manufactured by Nishimura Ceramics Co., Ltd.
  • SiO 2 particle size 3 ⁇ m
  • silica particles manufactured by Corefront
  • Table 1 reveals the following.
  • the acoustic matching sheets of Comparative Examples 1 and 2 which were produced using an epoxy resin having an epoxy equivalent exceeding 140 and metal particles (B), failed Test Example 2 (acoustic impedance).
  • the acoustic matching sheet of Comparative Example 3 produced using the epoxy resin (A) and metal particles having a density of less than 10 g/cm 3 at 20° C. failed Test Example 2 (acoustic impedance).
  • the acoustic matching sheet of Comparative Example 4 uses the epoxy resin (A) and the metal particles (B), but since the content of the particles (C) exceeds 5% by mass, a large number of air bubbles are generated. Sufficient mechanical strength was not obtained.
  • the acoustic matching sheets of Examples 1 to 31 of the present invention have a low bubble content, sufficient mechanical strength, a high longitudinal wave speed, a thin film and high acoustic properties. It can be seen that impedance is shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Signal Processing (AREA)
  • Biophysics (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

エポキシ当量140以下のエポキシ樹脂(A)成分と、20℃における密度が10g/cm以上の金属粒子(B)とを含み、20℃における密度が4.5g/cm未満の粒子(C)の含有量が5質量%未満である、音響整合層材、音響整合シート、音響整合層材用組成物、音響波プローブ、音響波測定装置、及び音響波プローブの製造方法。

Description

音響整合層材、音響整合シート、音響整合層材用組成物、音響波プローブ、音響波測定装置、及び音響波プローブの製造方法
 本発明は、音響整合層材、音響整合シート、音響整合層材用組成物、音響波プローブ、音響波測定装置、及び音響波プローブの製造方法に関する。
 音響波測定装置には、音響波を生体等の被検対象に照射し、その反射波(エコー)を受信して信号を出力する音響波プローブが用いられる。この音響波プローブにより受信した反射波は電気信号に変換され、画像として表示される。したがって、音響波プローブを用いることにより、被検対象内部を映像化して観察することができる。
 音響波としては、超音波、光音響波などが、被検対象に応じて、また測定条件に応じて適宜に選択される。
 例えば、音響波測定装置の1種である超音波診断装置は、被検対象内部に向けて超音波を送信し、被検対象内部の組織で反射された超音波を受信し、画像として表示する。
 また、音響波測定装置の1種である光音響波測定装置は、光音響効果によって被検対象内部から放射される音響波を受信し、画像として表示する。光音響効果とは、可視光、近赤外光又はマイクロ波等の電磁波パルスを被検対象に照射したときに、被検対象が電磁波を吸収して発熱し、熱膨張することにより音響波(典型的には超音波)が発生する現象である。
 音響波測定装置は、被検対象との間で音響波の送受信を行うため、音響波プローブには被検対象(典型的には人体)と音響インピーダンスを整合させることが要求される。この要求を満たすために、音響波プローブには音響整合層が設けられる。このことを音響波プローブの1種である超音波診断装置用探触子(超音波プローブとも称される)を例に説明する。
 超音波プローブは、超音波を送受信する圧電素子と、生体に接触する音響レンズとを備え、圧電素子と音響レンズとの間には音響整合層が配されている。圧電素子から発振される超音波は音響整合層を透過し、さらに音響レンズを透過して生体に入射される。音響レンズと生体との間の音響インピーダンス(密度×縦波音速)には通常は差がある。この差が大きいと、超音波が生体表面で反射されやすく、超音波の生体内への入射効率が低下してしまう。そのため、音響レンズには生体に近い音響インピーダンス特性が求められる。
 他方、圧電素子と生体との間の音響インピーダンスの差は一般に大きい。それゆえ、圧電素子と音響レンズとの間の音響インピーダンスの差も通常は大きなものとなる。したがって、圧電素子と音響レンズとの積層構造とした場合には、圧電素子から発せられた超音波は音響レンズ表面で反射し、超音波の生体への入射効率は低下する。この超音波の反射を抑制するために、圧電素子と音響レンズとの間には上記の音響整合層が設けられる。音響整合層の音響インピーダンスは生体又は音響レンズの音響インピーダンスと圧電素子の音響インピーダンスとの間の値をとり、これにより圧電素子から生体への超音波の伝播が効率化する。また、近年では、音響整合層を、音響整合シート(シート状の音響整合層材)を複数積層させた複層構造として、圧電素子側から音響レンズ側に向けて音響インピーダンスに傾斜を設けることにより、超音波の伝播をより効率化した音響整合層の開発が進められている。
 例えば、特許文献1には、所望の音響インピーダンスを有する音響整合シートを実現するために、エポキシ樹脂にシリカ粒子、ガラス粒子及び金属粒子(例えば、タングステン、亜鉛、アルミニウム、錫、銀、白金及び金等)を用いて音響整合層(音響整合シート)を得る技術が記載されている。
特開2009-296055号公報
 圧電素子側に配される音響整合層には、16Mrayl程度の高い音響インピーダンスが求められる。音響整合シートの音響インピーダンスを高めるために、単に高密度の金属粒子を使用すると、縦波音速が低下し、結果、高い音響インピーダンスの実現には制約が生じてしまう。本発明者らが検討したところ、高密度の金属粒子に対して低密度の粒子を一定量併用することで、高密度化の利益を享受しながら、音響整合シートの縦波音速の低下を抑制できることが分かってきた。しかし、高密度の金属粒子と低密度の粒子とを併用すると、製造過程で原料の混合時に気泡を巻き込みやすく、得られる音響整合シート中にも気泡が残留して歩留まりが低下しやすいこと、また、得られる音響整合シートは、残留する気泡ないし低密度粒子の影響などで機械的強度にも劣り、切削等の加工性に劣る傾向にあることが分かってきた。
 本発明は、圧電素子側に配されるのに好適な高い音響インピーダンスを示し、かつ気泡の含有量が少なく、十分な機械的強度を有する音響整合層材、上記音響整合層材を用いた音響整合シート、及び上記音響整合層材の調製に好適な音響整合層材用組成物を提供することを課題とする。
 また本発明は、上記音響整合シートを用いた音響波プローブ、及びこれを用いた音響波測定装置を提供することを課題とする。
 また本発明は、上記音響整合層材を用いた音響波プローブの製造方法を提供することを課題とする。
 本発明者らは、圧電素子側の音響整合層として好適な高い音響インピーダンスを示す音響整合層材を得るべく更に検討を進めたところ、音響整合層材の原料として、エポキシ当量が140以下のエポキシ樹脂と高密度(10g/cm以上)の金属粒子とを組み合わせて用いることにより、高密度金属粒子による材の高密度化の利点を享受しながら、縦波音速の低下を効果的に抑制することができ、十分に高い音響インピーダンスを達成できること、また、得られる音響整合層材は気泡の含有量が低く、かつ十分な機械的強度を有することを見出した。本発明はこれらの知見に基づきさらに検討を重ね、完成されるに至ったものである。
 すなわち、本発明の上記課題は下記の手段により解決された。
<1>
 エポキシ当量140以下のエポキシ樹脂(A)成分と、20℃における密度が10g/cm以上の金属粒子(B)とを含み、20℃における密度が4.5g/cm未満の粒子(C)の含有量が5質量%未満である、音響整合層材。
<2>
 上記エポキシ樹脂(A)成分が下記一般式(1)~(4)のいずれかで表される化合物由来の成分である、<1>に記載の音響整合層材。
Figure JPOXMLDOC01-appb-C000005
 一般式(1)中、Cyは環を示す。L1aは連結基を示し、L1bは窒素原子を含む連結基を示す。pは1又は2であり、qは1又は2であり、rは1~3の整数である。
Figure JPOXMLDOC01-appb-C000006
 一般式(2)中、Cyは環を示す。L2a及びL2bは、アルキレン基、アルカントリイル基若しくは酸素原子又はこれらを組み合わせた連結基を示す。pは1又は2であり、qは1又は2であり、rは1~3の整数である。
Figure JPOXMLDOC01-appb-C000007
 一般式(3)中、Cyは環を示す。L3aは窒素原子を含む連結基を示し、L3bは連結基を示す。LLは連結基を示す。pは1又は2であり、qは1又は2であり、rは0~3の整数であり、sは2又は3である。
 ただし、一般式(3)で表される化合物はエポキシ基を3個以上有する。
Figure JPOXMLDOC01-appb-C000008
 一般式(4)中、Cyは環を示す。L4a及びL4bは、アルキレン基、アルカントリイル基若しくは酸素原子又はこれらを組み合わせた連結基を示す。LLは連結基を示す。pは1又は2であり、qは1又は2であり、rは0~3の整数であり、sは2又は3である。
 ただし、一般式(4)で表される化合物はエポキシ基を3個以上有する。
<3>
 上記音響整合層材が硬化剤(D)成分を含み、硬化剤(D)がアミン硬化剤を含む、<1>又は<2>に記載の音響整合層材。
<4>
 上記アミン硬化剤が芳香族アミンを含む、<3>に記載の音響整合層材。
<5>
 上記エポキシ樹脂(A)成分が芳香族炭化水素環を有する、<1>~<4>のいずれか1つに記載の音響整合層材。
<6>
 25℃における密度が7.0g/cm以上である、<1>~<5>のいずれか1つに記載の音響整合層材。
<7>
 25℃における超音波の縦波音速が2300m/sec以上である、<1>~<6>のいずれか1つに記載の音響整合層材。
<8>
 25℃における音響インピーダンスが16Mrayl以上である、<1>~<7>のいずれか1つに記載の音響整合層材。
<9>
 <1>~<8>のいずれか1つに記載の音響整合層材からなる、音響整合シート。
<10>
 エポキシ当量140以下のエポキシ樹脂(A)と、20℃における密度が10g/cm以上の金属粒子(B)とを含み、20℃における密度が4.5g/cm未満の粒子(C)の、固形分中の含有量が5質量%未満である、<1>~<8>のいずれか1つに記載の音響整合層材を得るための音響整合層材用組成物。
<11>
 <9>に記載の音響整合シートを音響整合層として有する音響波プローブ。
<12>
 <11>に記載の音響波プローブを備える音響波測定装置。
<13>
 上記音響波測定装置が超音波診断装置である、<12>に記載の音響波測定装置。
<14>
 圧電素子上に、<1>~<8>のいずれか1つに記載の音響整合層材を用いて音響整合層を形成することを含む、音響波プローブの製造方法。
 本明細書において「~」とは、その前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本明細書において「エポキシ当量」とは、1グラム当量のエポキシ基を含むエポキシ樹脂のグラム数(g/eq)である。すなわち、エポキシ樹脂の分子量を、このエポキシ樹脂が有するエポキシ基の数で除して得られる値を意味する。
 本明細書において、特定の符号で示された置換基や連結基等(以下、置換基等という)が複数あるとき、あるいは複数の置換基等を同時もしくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。また、特に断らない場合であっても、複数の置換基等が隣接するときにはそれらが互いに連結したり縮環したりして環を形成していてもよい意味である。
 本明細書において、各置換基の例として説明される各基の「基」は無置換の形態及び置換基を有する形態のいずれも包含する意味に用いる。例えば、「アルキル基」は置換基を有してもよいアルキル基を意味する。また、基の炭素数が限定されている場合、この基の炭素数は、特段の断りがない限り、置換基を含めた全炭素数を意味する。
 本明細書において、化合物の表示については、化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、本発明の効果を損なわない範囲で、構造の一部を変化させたものを含む意味である。更に、置換又は無置換を明記していない化合物については、本発明の効果を損なわない範囲で、任意の置換基を有していてもよい意味である。このことは、置換基及び連結基についても同様である。
 本発明の音響整合層材及び上記音響整合層材を用いた音響整合シートは、圧電素子側に配されるのに好適な高い音響インピーダンスを示し、かつ気泡の含有量が少なく、十分な機械的強度を有する。
 また本発明の音響整合層材用組成物は、これを硬化させることにより、上記音響整合層材を得ることができる。
 また本発明の音響波プローブは、上記音響整合シートを有する。
 また本発明の音響波測定装置は、音響波プローブを有する。
 また本発明の音響波プローブの製造方法によれば、上記音響整合層材を用いた音響波プローブを得ることができる。
音響波プローブの一態様であるコンベックス型超音波プローブの一例についての斜視透過図である。
[音響整合層材]
 本発明の音響整合層材(以下、単に「本発明の層材」とも称す。)は、エポキシ当量140以下のエポキシ樹脂(A)成分(エポキシ当量140以下のエポキシ樹脂(A)由来の成分)と、20℃における密度が10g/cm以上の金属粒子(B)とを含有する。
 本発明の層材は、20℃における密度が4.5g/cm未満の粒子(C)を含んでもよく、本発明の層材中、この粒子(C)の含有量は、5質量%未満である。
 以下、「エポキシ当量140以下のエポキシ樹脂(A)」を単に「エポキシ樹脂(A)」と称することがある。「20℃における密度が10g/cm以上の金属粒子(B)」を単に「金属粒子(B)」と称することがある。「20℃における密度が4.5g/cm未満の粒子(C)」を単に「粒子(C)」と称することがある。
 本発明の層材の形状は特に制限されず、例えば、シート状、円柱状及び角柱状が挙げられ、シート状が好ましい。
 本発明の層材は、エポキシ樹脂(A)成分で構成される架橋密度が高いものである。それゆえ、弾性率の大きいマトリックス中に、金属粒子(B)を含有する形態となり、これが縦波音速の高速化、ひいては高い音響インピーダンスの達成に影響しているものと考えられる。また、粒子(C)を有しなくても高い音響インピーダンスを実現できるため、その製造における原料混合時に気泡を巻き込みにくく、これが十分な機械的強度に関連しているものと考えられる。
 以下、エポキシ樹脂(A)成分を「結着材」と称することがある。この場合、本発明の層材が後述の硬化剤(D)成分を含む場合、エポキシ樹脂(A)成分と硬化剤(D)成分とを合わせて「結着剤」と称す。
(エポキシ樹脂(A))
 本発明の層材が含有するエポキシ樹脂(A)成分を導くエポキシ樹脂としては、エポキシ当量140以下のエポキシ樹脂であれば特に制限されない。
 エポキシ樹脂(A)のエポキシ当量の下限は特に制限されず、例えば、60以上であり、70以上が好ましい。
 エポキシ樹脂(A)の分子量は特に制限されず、例えば、150~800であり、200~700が好ましい。エポキシ樹脂(A)1分子当たりのエポキシ基の数は特に制限されず、例えば、2~10個であり、2~8個でもよい。
 エポキシ樹脂(A)としては、下記一般式(1)~(4)のいずれかで表される化合物が好ましく、迅速に硬化させることで、音速及び音響インピーダンスを両立して高めることができることから、一般式(1)で表される化合物がより好ましい。また、エポキシ樹脂(A)は、音響整合層材の高い強靭性の観点から、芳香族炭化水素環を有することが好ましい。
-一般式(1)で表される化合物-
Figure JPOXMLDOC01-appb-C000009
 一般式(1)中、Cyは環を示す。L1aは連結基を示し、L1bは窒素原子を含む連結基を示す。pは1又は2であり、qは1又は2であり、rは1~3の整数である。
 Cyは単環でもよく、縮環でもよい。
 Cyとして例えば、脂環、脂肪族ヘテロ環、芳香族炭化水素環及び芳香族ヘテロ環が挙げられ、脂環及び芳香族炭化水素環が好ましく、芳香族炭化水素環がより好ましい。
 脂環の環構成炭素数は特に制限されず、例えば、3~10であり、5~8が好ましく、6がより好ましい。脂環の具体例としては、シクロヘキサン環が挙げられる。
 脂肪族ヘテロ環の環構成原子数は特に制限されず、例えば、6~10であり、6が好ましい。芳香族ヘテロ環の環構成ヘテロ原子としては、例えば窒素原子及び酸素原子が挙げられる。
 芳香族炭化水素環の環構成炭素数は特に制限されず、例えば、6~10である。芳香族炭化水素環の具体例としては、ベンゼン環及びナフタレン環が挙げられる。
 芳香族ヘテロ環の環構成原子数は特に制限されず、例えば、6~10である。芳香族ヘテロ環の環構成ヘテロ原子としては、例えば窒素原子及び酸素原子が挙げられる。芳香族ヘテロ環の具体例としては、ピリジン環が挙げられる。
 Cyは置換基を有してもよく、置換基の具体例として、アルキル基(例えば、炭素数1~5)、オキソ基、アルコキシ基(例えば、炭素数1~5)、アミノ基、アリール基(例えば、フェニル基及びナフチル基)及びハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子及びヨウ素原子)が挙げられる。
 L1aが採り得る連結基としては、アルキレン基、アルカントリイル基、窒素原子若しくは酸素原子又はこれらを組み合わせた連結基が好ましい。
 アルキレン基は直鎖及び分岐のいずれでもよく、アルキレン基の炭素数は、例えば1~10であり、1~5が好ましく、1又は2より好ましく、1が特に好ましい。アルキレン基の具体例として、メチレン、エチレン、プロピレン及びイソプロピレンが挙げられる。
 アルカントリイル基は直鎖及び分岐のいずれでもよく、アルカントリイル基の炭素数は、例えば、1~10であり、1~6が好ましく、1~4がより好ましい。アルカントリイル基の具体例として、メタントリイル、エタントリイル及びプロパントリイルが挙げられる。
 上記「これらを組み合わせた連結基」としては、アルキレン基と酸素原子とを組み合わせた2価の連結基(「-アルキレン-O-」、「-O-アルキレン-」)、及びアルキレン基と窒素原子とを組み合わせた3価の連結基(「(-アルキレン-)窒素原子-」、「-窒素原子(-アルキレン-)」、「(-アルキレン-)窒素原子-アルキレン-」、「-アルキレン-窒素原子(-アルキレン-)」)が挙げられる。
 L1bが採り得る連結基としては、例えば、イミノ基とアルキレン基とを組み合わせた2価の連結基(「-NH-アルキレン基-」、「-アルキレン基-NH-」)、及びアルキレン基と窒素原子とを組み合わせた3価の基(「(-アルキレン-)窒素原子-」、「-窒素原子(-アルキレン-)」、「(-アルキレン-)窒素原子-アルキレン-」、「-アルキレン-窒素原子(-アルキレン-)」)が挙げられる。アルキレン基の好ましい形態はL1aで説明したアルキレン基の形態と同じである。
 以下、一般式(1)で表される化合物の具体例を挙げるが、本発明はこれらに限定されない。下記「Mw」は分子量を意味し、「EEW」はエポキシ当量を意味する。後述する一般式(2)~(4)のいずれかで表される化合物の具体例においても同様である。
Figure JPOXMLDOC01-appb-C000010
-一般式(2)で表される化合物-
Figure JPOXMLDOC01-appb-C000011
 一般式(2)中、Cyは環を示す。L2a及びL2bは、アルキレン基、アルカントリイル基若しくは酸素原子又はこれらを組み合わせた連結基を示す。pは1又は2であり、qは1又は2であり、rは1~3の整数(好ましくは1又は2)である。
 Cyは単環でもよく、縮環でもよい。
 Cyとして例えば、脂環、脂肪族ヘテロ環、芳香族炭化水素環及び芳香族ヘテロ環が挙げられ、芳香族炭化水素環が好ましい。
 Cyが採り得る脂環、脂肪族ヘテロ環、芳香族炭化水素環及び芳香族ヘテロ環として、上記「Cy」で説明した脂環、脂肪族ヘテロ環、芳香族炭化水素環及び芳香族ヘテロ環が挙げられる。
 Cyは置換基を有してもよく、置換基の具体例として、上記「Cy」で説明した置換基が挙げられる。
 L2a及びL2bとして採り得るアルキレン基は直鎖及び分岐のいずれでもよく、アルキレン基の炭素数は、例えば1~10であり、1~5が好ましく、1又は2がより好ましく、1が特に好ましい。アルキレン基の具体例として、メチレン、エチレン、プロピレン及びイソプロピレンが挙げられる。
 アルカントリイル基は直鎖及び分岐のいずれでもよく、アルカントリイル基の炭素数は、例えば、1~10であり、1~6が好ましく、1~4がより好ましい。アルカントリイル基の具体例として、メタントリイル、エタントリイル及びプロパントリイルが挙げられる。
 上記「これらを組み合わせた2若しくは3価の連結基」としては、例えば、アルキレン基と酸素原子とを組み合わせた2価の基(「-アルキレン-O-」、「-O-アルキレン-」)が挙げられる。
 以下、一般式(2)で表される化合物の具体例を挙げるが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000012
-一般式(3)で表される化合物-
Figure JPOXMLDOC01-appb-C000013
 一般式(3)中、Cyは環を示す。L3aは窒素原子を含む連結基を示し、L3bは連結基を示す。LLは連結基を示す。pは1又は2であり、qは1又は2であり、rは0~3の整数(好ましくは0又は1)であり、sは2又は3である。
 ただし、一般式(3)で表される化合物はエポキシ基を3個以上有する。
 Cyは単環でもよく、縮環でもよい。
 Cyとして例えば、脂環、脂肪族ヘテロ環、芳香族炭化水素環及び芳香族ヘテロ環が挙げられ、芳香族炭化水素環が好ましい。
 Cyが採り得る脂環、脂肪族ヘテロ環、芳香族炭化水素環及び芳香族ヘテロ環として、上記「Cy」で説明した脂環、脂肪族ヘテロ環、芳香族炭化水素環及び芳香族ヘテロ環が挙げられ、芳香族炭化水素環が好ましい。
 Cyは置換基を有してもよく、置換基の具体例として、上記「Cy」で説明した置換基が挙げられる。
 L3aが採り得る連結基としては、例えば、アルキレン基と窒素原子とを組み合わせた3価の基(「(-アルキレン-)窒素原子-」、「-窒素原子(-アルキレン-)」)が挙げられる。
 L3bが採り得る連結基としては、アルキレン基、窒素原子若しくは酸素原子又はこれらを組み合わせた連結基が好ましい。
 アルキレン基は直鎖及び分岐のいずれでもよく、アルキレン基の炭素数は、例えば1~10であり、1~5が好ましく、1又は2がより好ましく、1が特に好ましい。アルキレン基の具体例として、メチレン、エチレン、プロピレン及びイソプロピレンが挙げられる。
 上記「これらを組み合わせた連結基」としては、アルキレン基と酸素原子とを組み合わせた2価の連結基(「-アルキレン-O-」、「-O-アルキレン-」)、及びアルキレン基と窒素原子とを組み合わせた3価の連結基(「(-アルキレン-)窒素原子-」、「-窒素原子(-アルキレン-)」が挙げられる。
 L3bが採り得る連結基としては、上記「アルキレン基と酸素原子とを組み合わせた2価の連結基」及び上記「アルキレン基と窒素原子とを組み合わせた3価の連結基」が好ましい。
 LLが採り得る2価の連結基としては、アルキレン基及びスルホニル基が挙げられる。
 アルキレン基は直鎖及び分岐のいずれでもよく、アルキレン基の炭素数は、例えば1~10であり、1~5が好ましく、1又は2がより好ましく、1が特に好ましい。アルキレン基の具体例として、メチレン、エチレン、プロピレン及びイソプロピレンが挙げられる。
 LLが採り得る3価の連結基としてはアルカントリイル基が挙げられる。
 アルカントリイル基は直鎖及び分岐のいずれでもよく、アルカントリイル基の炭素数は、例えば、1~10であり、1~5が好ましく、1又は2がより好ましく、1が特に好ましい。アルカントリイル基の具体例として、メタントリイル、エタントリイル及びプロパントリイルが挙げられる。
 以下、一般式(3)で表される化合物の具体例を挙げるが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000014
-一般式(4)で表される化合物-
Figure JPOXMLDOC01-appb-C000015
 一般式(4)中、Cyは環を示す。L4a及びL4bは、アルキレン基、アルカントリイル基若しくは酸素原子又はこれらを組み合わせた連結基を示す。LLは連結基を示す。pは1又は2であり、qは1又は2であり、rは0~3の整数(好ましくは1)であり、sは2又は3(好ましくは2)である。
 ただし、一般式(4)で表される化合物はエポキシ基を3個以上有する。
 Cyは単環でもよく、縮環でもよい。
 Cyとして例えば、脂環、脂肪族ヘテロ環、芳香族炭化水素環及び芳香族ヘテロ環が挙げられ、芳香族炭化水素環が好ましい。
 Cyが採り得る脂環、脂肪族ヘテロ環、芳香族炭化水素環及び芳香族ヘテロ環として、上記「Cy」で説明した脂環、脂肪族ヘテロ環、芳香族炭化水素環及び芳香族ヘテロ環が挙げられ、芳香族炭化水素環が好ましい。
 Cyは置換基を有してもよく、置換基の具体例として、上記「Cy」で説明した置換基が挙げられる。
 L4a及びL4bとして採り得るアルキレン基は直鎖及び分岐のいずれでもよく、アルキレン基の炭素数は、例えば1~10であり、1~5でもよく、1又は2でもよい。アルキレン基の具体例として、メチレン、エチレン、プロピレン及びイソプロピレンが挙げられる。
 アルカントリイル基は直鎖及び分岐のいずれでもよく、アルカントリイル基の炭素数は、例えば、1~10であり、1~6でもよく、1~4でもよい。アルカントリイル基の具体例として、メタントリイル、エタントリイル及びプロパントリイルが挙げられる。
 上記「これらを組み合わせた連結基」としては、例えば、アルキレン基と酸素原子とを組み合わせた2価の基(「-アルキレン-O-」、「-O-アルキレン-」)が挙げられる。
 LLが採り得る2価の連結基としては、アルキレン基が挙げられる。
 アルキレン基は直鎖及び分岐のいずれでもよく、アルキレン基の炭素数は、例えば1~10であり、1~5が好ましく、1~3が好ましい。アルキレン基の具体例として、メチレン、エチレン、プロピレン及び1-メチルエチリデンが挙げられる。
 LLが採り得る3価の連結基としてはアルカントリイル基が挙げられる。
 アルカントリイル基は直鎖及び分岐のいずれでもよく、アルカントリイル基の炭素数は、例えば、1~10であり、1~5が好ましく、1又は2がより好ましく、1が特に好ましい。アルカントリイル基の具体例として、メタントリイル、エタントリイル及びプロパントリイルが挙げられる。
 以下、一般式(4)で表される化合物の具体例を挙げるが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000016
 エポキシ樹脂(A)は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明の層材中、エポキシ樹脂(A)成分は、エポキシ樹脂(A)が単独で硬化したものでもよく、後述する硬化剤(D)と反応して硬化したものであってもよい。すなわち、本発明の層材は、硬化剤(D)由来の成分を含有してもよい。
(金属粒子(B))
 本発明の層材は金属粒子(B)を含有する。層材中、この金属粒子(B)の含有量を調整することにより、層材の密度を調整することができ、層材の音響インピーダンスを所望のレベルに調整することが可能になる。金属粒子(B)は、表面処理されていなくても、表面処理されていてもよい。この表面処理は、例えば、国際公開第2019/088148号を参照して行うことができる。
 金属粒子(B)を構成する金属は、20℃における密度が10g/cm以上であること以外は特に制限されない。金属粒子(B)は、金属原子単独でもよく、金属の炭化物、窒化物、酸化物、又はホウ素化物でもよい。また合金を形成していてもよい。
 金属粒子(B)を構成する金属としては例えば、オスミウム、イリジウム、白金、レニウム、ネプツニウム、金、タングステン、タンタル、ハフニウム、ロジウム、ルテニウム、パラジウム、タリウム、鉛、銀、モリブデン等を挙げることができる。これらの中で、白金、金、タングステン、タンタル、ハフニウム、タリウム、銀、モリブデン及びこれらの炭化物が好ましく、タングステン、タンタル、ハフニウム及びこれらの炭化物がより好ましく、タングステン及びその炭化物が更に好ましく、炭化タングステンが特に好ましい。
 金属粒子(B)の粒径は特に制限されない。金属粒子(B)の粒径は、音響整合層材用組成物の粘度の低減及び音響整合層材の機械的強度向上の観点から、例えば0.01~100μmが好ましく、1~10μmがより好ましく、2~6μmが更に好ましく、2~4μmが特に好ましい。
 金属粒子(B)の「粒径」は平均一次粒子径を意味する。ここで、平均一次粒子径とは、体積基準のメジアン径であり、次のように決定される。
 メタノールに金属粒子(B)を、0.5質量%となるように添加し、10分間超音波にかけることにより、金属粒子(B)を分散させる。このように処理した金属粒子(B)の粒度分布を、レーザー回折散乱式粒度分布測定装置(堀場製作所製、商品名:LA950V2)により測定し、体積基準のメジアン径を決定する。なお、メジアン径とは粒径分布を累積分布として表したときの累積50%に相当する。
(粒子(C))
 粒子(C)は、密度4.5g/cm未満の粒子であれば特に制限されない。粒子(C)としては、金属粒子、セラミックス粒子、有機微粒子、シリカ粒子及び有機無機複合粒子を用いることができる。
 金属粒子を構成する金属としては、例えば、バリウム、アルミニウム、ホウ素、及びこれらの酸化物、窒化物又は炭化物を用いることができる。
 セラミックス粒子は、周期表第1~3族及び13~17族の少なくとも1種の原子を含むことが好ましく、Mg、Ca、Ba、B、Al、Y及びSiの少なくとも1種(好ましくは1~3種)と、O、C、N及びSの少なくとも1種(好ましくは1種)を含む物質であることがより好ましい。
 セラミックス粒子として、Mg、Ba、B、Al、Y及びSiの少なくとも1種(好ましくは1~3種)を含む、炭化物、窒化物又は酸化物が好ましく、具体的には、マグネシウム-アルミニウムスピネル(アルミン酸マグネシウムスピネル、MgO・Al)、ウォラストナイト(CaSiO)、コージェライト(2MgO・2Al・5SiO)、炭化ホウ素(BC)、炭化ケイ素(SiC)、アルミナ(Al)、窒化アルミニウム(AlN)、酸化マグネシウム(MgO)、窒化ケイ素(Si)、窒化ホウ素(BN)及び酸化イットリウム(Y)が挙げられる。
 有機微粒子としては、ゴム粒子、アクリル粒子、メラミン粒子、カーボンブラック及びグラファイトを用いることができる。
 シリカ粒子としては、ヒュームドシリカ及びヒューズドシリカを用いることができる。
 有機無機複合粒子としてはシリコーンアクリル粒子を用いることができる。
 粒子(C)の粒径は特に制限されない。粒子(C)の粒径は、音響整合層材用組成物の粘度の低減及び音響整合層材の機械的強度向上の観点から、例えば0.01~100μmが好ましく、1~10μmがより好ましく、2~6μmが更に好ましく、2~4μmが特に好ましい。
 なお、粒子(C)の「粒径」は、金属粒子(B)の「粒径」と同義である。
(硬化剤(D))
 本発明で用いられる硬化剤はエポキシ樹脂の硬化剤として一般に用いられる様々な硬化剤を用いることができる。例えば、アミン硬化剤、酸無水物硬化剤、フェノール硬化剤、イミダゾール硬化剤、ホスフィン硬化剤、チオール硬化剤、ルイス酸硬化剤、ジシアンジアミドなどを用いることができる。中でも、硬化温度、硬化速度の点でアミン硬化剤を用いることが好ましく、特に芳香族アミン硬化剤を用いることが好ましい。これらの硬化剤を複数用いることも好ましく、そのうち一方を硬化助剤として少量添加して用いることも好ましい。
 以下、硬化剤(D)の具体例を示すが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000017
 本発明の層材中、結着材と金属粒子(B)と粒子(C)の各含有量は、目的の縦波音速及び音響インピーダンスに応じて適宜に調整される。
 本発明の層材中の結着材の含有量は1~15質量%が好ましく、1~11質量%がより好ましい。本発明の層材中の金属粒子(B)の含有量は、80~98質量%が好ましく、85~95質量%がより好ましく、87~94質量%が更に好ましく、88~93質量%が特に好ましい。本発明の層材中の粒子(C)の含有量は、5質量%以下であり、2質量%以下がより好ましく、1質量%未満が更に好ましく、0.8質量%以下が特に好ましい。
 本発明の層材は、結着材と金属粒子(B)とから、又は、結着材と金属粒子(B)と粒子(C)とから構成されていてもよい。また、本発明の効果を損なわない範囲で、これら以外の成分を含有していてもよい。結着材以外で金属粒子(B)及び粒子(C)以外の成分(他の成分)としては、例えば、硬化遅延剤、分散剤、顔料、染料、帯電防止剤、酸化防止剤、難燃剤及び熱伝導性向上剤等が挙げられる。
 本発明の層材中、結着材と金属粒子(B)と粒子(C)の各含有量の合計は、80質量%以上が好ましく、90質量%以上がより好ましい。
 本発明の層材の25℃における密度は、例えば7.0g/cm以上であり、7.2g/cm以上が好ましい。本発明の層材の密度は、通常、1.1×10g/cm以下である。
 本発明の層材は、例えば、シート状にした場合の面内における縦波音速(m/sec)が、25℃で、2300以上が好ましく、2400以上がより好ましく、2500以上が特に好ましい。上記縦波音速は、通常、2800以下である。
 また、本発明の層材は、例えば、シート状にした場合の面内における音響インピーダンス(Mrayl)が、25℃で、16以上が好ましく、18以上がより好ましく、22以上が特に好ましい。上記音響インピーダンスは、通常、28以下である。
 上記縦波音速及び上記音響インピーダンスは、後述する実施例に記載の方法に準じて決定される。具体的には、シート状に加工した層材料を厚さ方向に3等分し、得られた3枚のシートの真ん中の1枚について、独立した3か所の縦波音速及び音響インピーダンスを測定して決定されるものである。なお、シートの厚さは縦波音速と密度に事実上影響しない。
<音響整合層材用組成物>
 本発明の音響整合層材用組成物(本発明の音響整合層材に用いられる組成物、以下、「本発明の組成物」とも称する。)は、エポキシ樹脂(A)と金属粒子(B)とを含有する。本発明の組成物は粒子(C)を含んでもよく、本発明の組成物に含まれる固形分中、粒子(C)の含有量は5質量%未満である。なお、固形分とは、典型的には溶媒以外の成分を意味する。
 また、本発明の組成物は、上述した硬化剤(D)を含有してもよく、上記他の成分を含有してもよい。
 本発明の組成物が結着材としてエポキシ樹脂(A)と硬化剤(D)とを含む場合、おだやかな条件でも、組成物中において、経時的にエポキシ樹脂(A)の硬化反応が進む場合がある。したがって、この組成物の性状は経時的に変化し安定でない場合がある。しかし、例えば、上記組成物を-10℃以下の温度で保存することにより、硬化反応を生じずに又は十分に抑制して各成分が安定に維持された状態の組成物とすることができる。
 また、エポキシ樹脂(A)と金属粒子(B)とを含む樹脂組成物を主剤とし、この主剤と硬化剤(D)とを別々により分けた音響整合層用材料セットの形態とすることも好ましい。音響整合層材の調製に当たり、主剤と硬化剤(D)とを混合して本発明の組成物を調製し、この組成物を硬化反応させることにより、音響整合層材を調製することができる。
 結着材を構成するエポキシ樹脂(A)と硬化剤(D)の質量比は、用いる硬化剤(D)の種類等に応じて適宜に調整すればよい。例えば、エポキシ樹脂(A)/硬化剤(D)=99/1~20/80とすることができ、90/10~40/60が好ましい。
 また、上記の音響整合層用材料セットを用いて、層材調製時に主剤と硬化剤(D)とを混合して本発明の組成物を使用する場合においては、エポキシ樹脂(A)と硬化剤との質量比がエポキシ樹脂(A)/硬化剤(D)=99/1~20/80となるように主剤と硬化剤(D)とを混合して用いる形態とすることが好ましく、90/10~40/60となるように主剤と硬化剤(D)とを混合して用いる形態とすることがより好ましい。
<音響整合層材用組成物の調製>
 本発明の音響整合層材用組成物は、例えば、音響整合層材用組成物を構成する成分を混合することにより得ることができる。この混合方法は各成分を実質的に均一混合できれば特に制限されない。例えば、自転公転撹拌機を用いて混練りすることにより目的の均一混合ができる。
 また、エポキシ樹脂(A)と金属粒子(B)とを含む樹脂組成物からなる主剤と、このエポキシ樹脂(A)の硬化剤(D)とを含む音響整合層用材料セットとする場合には、エポキシ樹脂(A)と金属粒子(B)とを混合することにより主剤を得ることができる。音響整合層材の調製時に、この主剤と硬化剤(D)とを混合することにより本発明の音響整合層材用組成物を得る。この組成物を成形しながら硬化することにより、音響整合層材又はその前駆体を調製することができる。
[音響整合シート(音響整合層)]
 本発明の層材は、これを必要により所望の厚さ又は形状へと切削、ダイシング等することにより、音響整合シートを得ることができる。また、この音響整合シートを常法によりさらに所望の形状へと加工することもできる。
 具体的には、例えば、本発明の組成物を、硬化反応を生じない低温域、あるいは硬化速度が十分に遅い低温域で所望のシート状に成形する。次いで、必要により加熱等することにより成形物に架橋構造を形成させて硬化し、これを必要により所望の厚さ又は形状へと切削、ダイシング等することにより、音響整合シート又はその前駆体シートとする。つまり、形成される音響整合シートは、好ましくは、本発明の組成物を硬化して三次元網状構造を形成させた硬化物である。この音響整合シートは音響波プローブの音響整合層として用いられる。音響整合層を含む音響波プローブの構成については後述する。
[音響波プローブ]
 本発明の音響波プローブは、本発明の音響整合シートを音響整合層の少なくとも1層として有する。
 本発明の音響波プローブの構成について、その一例を図1に示す。図1に示す音響波プローブは、超音波診断装置における超音波プローブである。なお、超音波プローブとは、音響波プローブにおける音響波として、特に超音波を使用するプローブである。そのため、超音波プローブの基本的な構造は音響波プローブにそのまま適用することができる。
<超音波プローブ>
 超音波プローブ10は、超音波診断装置の主要構成部品であって、超音波を発生するとともに、超音波ビームを送受信する機能を有するものである。超音波プローブ10の構成は、図1に示すように、先端(被検対象である生体に接する面)部分から音響レンズ1、音響整合層2、圧電素子層3、バッキング材4の順に設けられている。なお、近年、高次高調波を受信することを目的に、送信用超音波振動子(圧電素子)と、受信用超音波振動子(圧電素子)を異なる材料で構成し、積層構造としたものも提案されている。
(圧電素子層)
 圧電素子層3は、超音波を発生する部分であって、圧電素子の両側に電極が貼り付けられており、電圧を加えると圧電素子が伸縮と膨張を繰り返し振動することにより、超音波が発生する。
 圧電素子を構成する材料としては、水晶、LiNbO、LiTaO及びKNbOなどの単結晶、ZnO及びAlNなどの薄膜並びにPb(Zr,Ti)O系などの焼結体を分極処理した、いわゆるセラミックスの無機圧電体が広く利用されている。一般的には、変換効率のよいPZT:チタン酸ジルコン酸鉛等の圧電セラミックスが使用されている。
 また、高周波側の受信波を検知する圧電素子には、より広い帯域幅の感度が必要である。このため、高周波、広帯域に適した圧電素子として、ポリフッ化ビニリデン(PVDF)などの有機系高分子物質を利用した有機圧電体が使用されている。
 さらに、特開2011-071842号公報等には、優れた短パルス特性及び広帯域特性を示し、量産性に優れ、特性ばらつきの少ないアレイ構造が得られる、MEMS(Micro Electro Mechanical Systems)技術を利用したcMUTが記載されている。
 本発明においては、いずれの圧電素子材料も好ましく用いることができる。
(バッキング材)
 バッキング材4は、圧電素子層3の背面に設けられており、余分な振動を抑制することにより超音波のパルス幅を短くし、超音波診断画像における距離分解能の向上に寄与する。
(音響整合層)
 音響整合層2は、圧電素子層3と被検対象間での音響インピーダンスの差を小さくし、超音波を効率よく送受信するために設けられる。
(音響レンズ)
 音響レンズ1は、屈折を利用して超音波をスライス方向に集束し、分解能を向上させるために設けられる。また、被検対象である生体と密着し、超音波を生体の音響インピーダンス(人体では、1.4~1.7Mrayl)と整合させること、及び、音響レンズ1自体の超音波減衰量が小さいことが求められている。
 すなわち、音響レンズ1の材料としては、縦波音速が人体の縦波音速よりも十分小さく、超音波の減衰が少なく、また、音響インピーダンスが人体の皮膚の値に近い材料を使用することで、超音波の送受信感度が高められる。
 このような構成の超音波プローブ10の動作を説明する。圧電素子の両側に設けられた電極に電圧を印加して圧電素子層3を共振させ、超音波信号を音響レンズから被検対象に送信する。受信時には、被検対象からの反射信号(エコー信号)によって圧電素子層3を振動させ、この振動を電気的に変換して信号とし、画像を得る。
[音響波プローブの製造]
 本発明の音響波プローブは、本発明の音響整合シートを用いること以外は、常法により作製することができる。すなわち、本発明の音響波プローブの製造方法は、圧電素子上に、本発明の音響整合シートを用いて音響整合層を形成することを含む。圧電素子はバッキング材上に常法により設けることができる。
 また、音響整合層上には、音響レンズの形成材料を用いて常法により音響レンズが形成される。
[音響波測定装置]
 本発明の音響波測定装置は、本発明の音響波プローブを有する。音響波測定装置は、音響波プローブで受信した信号の信号強度を表示したり、この信号を画像化したりする機能を備える。
 本発明の音響波測定装置は、超音波プローブを用いた超音波測定装置であることも好ましい。
 本発明を、音響波として超音波を用いた実施例に基づいてさらに詳細に説明する。本発明は、本発明で規定すること以外は、実施例により限定されない。
 下記において成分の配合量は、成分そのものの配合量を意味する。すなわち、原料が溶媒(溶剤)を含む場合には、溶媒を除いた量である。なお、本発明において音響波は超音波に限定されるものではなく、被検対象及び測定条件等に応じて適切な周波数を選択してさえいれば、可聴周波数の音響波を用いてもよい。以下、室温とは25℃を意味する。
[合成例]
<1>音響整合層材用組成物の調製
(1)実施例1で用いる音響整合層材料用組成物の調製
 表1-1に記載の組成を有する音響整合層材用組成物を調製した。
 具体的には、タングステンカーバイド粒子(WC-60S(粒径:6μm)(商品名、アライドマテリアル社製))116質量部と、エポキシ樹脂(1-3)(住友化学製「スミエポキシELM-120」(商品名)、エポキシ当量92))10質量部と、硬化剤(2)(メタフェニレンジアミン、富士フイルム和光純薬製)2.9質量部とを、自転公転装置(商品名:ARV-310、シンキー社製)により混合して、実施例1で用いる音響整合層材用組成物を調製した。
(2)実施例2~31及び比較例1~4で用いる音響整合層材用組成物の調製
 後記表1-1~1-3(以下、表1-1~1-3を纏めて表1と称する。)に記載の組成に変えたこと以外は、実施例1で用いる音響整合層材用組成物の調製と同様にして、実施例2~31及び比較例1~4で用いる音響整合層材用組成物を調製した。
<2>音響整合シート(シート状の音響整合層材)の作製
(1)実施例1の音響整合シートの作製
 直径40mm、深さ3mmの円形の型に、実施例1で用いる音響整合層材用組成物を流し込み、80℃で18時間、その後150℃で1時間硬化させることにより直径40mm、厚さ3mmの円形シート状の音響整合層材を作製した。このシートを、ダイサーで直径40mm、厚さ1mmの円形の音響整合シート3枚に切り分け、真ん中の1枚の音響整合シート(厚さ1mm)を下記測定に用いた。
(2)実施例2~31及び比較例1~4の音響整合シートの作製
 実施例1で用いる音響整合層材用組成物に代えて、実施例2~31及び比較例1~4で用いる音響整合層材用組成物を用いたこと以外は、実施例1の音響整合シートと同様にして音響整合シート(厚さ1mm)(3枚に切り分けたうちの真ん中の1枚の音響整合シート)を作製し、下記測定に用いた。
[試験例1]縦波音速の測定
 超音波縦波音速は、JIS Z2353(2003)に従い、シングアラウンド式音速測定装置(超音波工業社製、商品名「UVM-2型」)を用いて25℃において測定した。上記で得た直径40mm、厚さ1mmの円形の音響整合シートについて、互いに重ならない直径15mmの3つの円形領域について、これら円形領域3カ所の内部全体(単チャンネルの小プローブサイズ)を測定対象とした。上記3つの円形領域の縦波音速の算術平均値を算出し、下記評価基準に当てはめ評価した。A~Cが本試験の合格である。Dであると、本発明が想定する所望の高い音響インピーダンスの実現が難しくなる。
 
-評価基準-
A:2500[m/sec]以上
B:2400[m/sec]以上、2500[m/sec]未満
C:2300[m/sec]以上、2400[m/sec]未満
D:2300[m/sec]未満
[試験例2]密度の測定及び音響インピーダンスの算出
 上記で得た直径40mm、厚さ1mmの円形の音響整合シートについて、上記で縦波音速を測定した3つの円形領域内の各々から9mm×9mmの試験片を切り出した。各切り出しサンプルの25℃における密度をJIS K7112(1999)に記載のA法(水中置換法)の密度測定方法に準拠して、電子比重計(アルファミラージュ社製、商品名「SD-200L」)を用いて測定し、3つの円形領域の密度の算術平均値を得た。このようにして得た密度と上記縦波音速の積(密度の算術平均値×縦波音速の算術平均値)から音響インピーダンスを算出し、下記評価基準に当てはめ評価した。A、B及びCが本試験の合格である。
 
-評価基準-
A:22Mrayl以上
B:18Mrayl以上、22Mrayl未満
C:16Mrayl以上、18Mrayl未満
D:16Mrayl未満
[試験例3]気泡の有無
 試験例2で用いた9mm×9mmの試験片の各辺の断面を、倍率200倍の光学顕微鏡で観察し、気泡の個数を数えた。四辺の平均個数を求め下記評価基準に当てはめ評価した。A、B及びCが本試験の合格である。
 
-評価基準-
A:気泡がない。
B:気泡が1~3個
C:気泡が4~10個
D:気泡が11個以上
[試験例4]引張試験
 上記で作成した音響整合シート(厚さ1mm)をテンシロン万能材料試験機(商品名:RTF-1210、エー・アンド・デイ社製)を用いて室温で測定した。A、B及びCが本試験の合格である。
 
-評価基準-
A:引張強度が30MPa以上
B:引張強度が20MPa以上30MPa未満
C:引張強度が10MPa以上20MPa未満
D:引張強度が10MPa未満
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
<表の注>
一番上の行の1~31:実施例1~31
一番上の行のc1~c4:比較例c1~c4
[エポキシ樹脂(A)]
-実施例で用いたエポキシ樹脂(A)-
(1-3)、(1-5)、(1-6)、(1-13)、(2-1)、(2-2)、(2-5)、(2-7)、(3-2)、(4-4)及び(4-5):上記例示化合物(1-3)、(1-5)、(1-6)、(1-13)、(2-1)、(2-2)、(2-5)、(2-7)、(3-2)、(4-4)及び(4-5)
(5-1):下記化合物
Figure JPOXMLDOC01-appb-C000021
-比較例で用いたエポキシ樹脂-
X-1:下記化合物
Figure JPOXMLDOC01-appb-C000022
X-2:下記化合物
Figure JPOXMLDOC01-appb-C000023
 なお、X-1及びX-2は実施例と比較例とを比較しやすくするため、エポキシ樹脂(A)の列に記載している。
[硬化剤(D)]
(1)、(2)、(4)、(8)、(12)、(13)及び(14):上記例示化合物(1)、(2)、(4)、(8)、(12)、(13)及び(14)
[金属粒子(B)]
WC(粒径10μm):タングステンカーバイド粒子(アライドマテリアル社製WC-100S(商品名))
WC(粒径6μm):タングステンカーバイド粒子(アライドマテリアル社製WC-60S(商品名))
WC(粒径2.5μm):タングステンカーバイド粒子(アライドマテリアル社製WC-25S(商品名))
WC(粒径1μm):タングステンカーバイド粒子(アライドマテリアル社製W-U010(商品名))
W(粒径6μm):タングステン粒子(アライドマテリアル社製D-20(商品名))
TaC(粒径3μm):タンタルカーバイド粒子(日本新金属社製)
Mo(粒径6μm):モリブデン粒子(アライドマテリアル社製TMO-50(商品名))
Fe(粒径5μm):鉄粒子(鉄粉)(高純度化学研究所社製)
[粒子(C)]
SiC(粒径3μm):炭化ケイ素粒子(高純度化学研究所社製)
Al(粒径3μm):アルミナ粒子(西村陶業社製N-9000(商品名))
SiO(粒径3μm):シリカ粒子(コアフロント社製)
 表1から以下のことが分かる。
 エポキシ当量が140を越えるエポキシ樹脂と金属粒子(B)とを用いて作製した、比較例1及び2の音響整合シートは、試験例2(音響インピーダンス)が不合格であった。エポキシ樹脂(A)と、20℃での密度が10g/cm未満の金属粒子とを用いて作製した比較例3の音響整合シートは、試験例2(音響インピーダンス)が不合格であった。
 比較例4の音響整合シートは、エポキシ樹脂(A)と金属粒子(B)とを用いているが、粒子(C)の含有量が5質量%を越えているため、気泡が多数発生し、十分な機械的強度が得られなかった。
 これに対して、本発明の実施例1~31の音響整合シートは、気泡の含有量が少なく、十分な機械的強度を有し、更には、速い縦波音速を示し、薄膜状で高い音響インピーダンスを示すことが分かる。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2021年9月30日に日本国で特許出願された特願2021-161984に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
 1    音響レンズ
 2    音響整合層
 3    圧電素子層
 4    バッキング材
 7    筐体
 9    コード
 10   超音波探触子(プローブ)

Claims (14)

  1.  エポキシ当量140以下のエポキシ樹脂(A)成分と、20℃における密度が10g/cm以上の金属粒子(B)とを含み、20℃における密度が4.5g/cm未満の粒子(C)の含有量が5質量%未満である、音響整合層材。
  2.  前記エポキシ樹脂(A)成分が下記一般式(1)~(4)のいずれかで表される化合物由来の成分である、請求項1に記載の音響整合層材。
    Figure JPOXMLDOC01-appb-C000001
     一般式(1)中、Cyは環を示す。L1aは連結基を示し、L1bは窒素原子を含む連結基を示す。pは1又は2であり、qは1又は2であり、rは1~3の整数である。
    Figure JPOXMLDOC01-appb-C000002
     一般式(2)中、Cyは環を示す。L2a及びL2bは、アルキレン基、アルカントリイル基若しくは酸素原子又はこれらを組み合わせた連結基を示す。pは1又は2であり、qは1又は2であり、rは1~3の整数である。
    Figure JPOXMLDOC01-appb-C000003
     一般式(3)中、Cyは環を示す。L3aは窒素原子を含む連結基を示し、L3bは連結基を示す。LLは連結基を示す。pは1又は2であり、qは1又は2であり、rは0~3の整数であり、sは2又は3である。
     ただし、一般式(3)で表される化合物はエポキシ基を3個以上有する。
    Figure JPOXMLDOC01-appb-C000004
     一般式(4)中、Cyは環を示す。L4a及びL4bは、アルキレン基、アルカントリイル基若しくは酸素原子又はこれらを組み合わせた連結基を示す。LLは連結基を示す。pは1又は2であり、qは1又は2であり、rは0~3の整数であり、sは2又は3である。
     ただし、一般式(4)で表される化合物はエポキシ基を3個以上有する。
  3.  前記音響整合層材が硬化剤(D)成分を含み、当該硬化剤(D)がアミン硬化剤を含む、請求項1又は2に記載の音響整合層材。
  4.  前記アミン硬化剤が芳香族アミンを含む、請求項3に記載の音響整合層材。
  5.  前記エポキシ樹脂(A)成分が芳香族炭化水素環を有する、請求項1~4のいずれか1項に記載の音響整合層材。
  6.  25℃における密度が7.0g/cm以上である、請求項1~5のいずれか1項に記載の音響整合層材。
  7.  25℃における超音波の縦波音速が2300m/sec以上である、請求項1~6のいずれか1項に記載の音響整合層材。
  8.  25℃における音響インピーダンスが16Mrayl以上である、請求項1~7のいずれか1項に記載の音響整合層材。
  9.  請求項1~8のいずれか1項に記載の音響整合層材からなる、音響整合シート。
  10.  エポキシ当量140以下のエポキシ樹脂(A)と、20℃における密度が10g/cm以上の金属粒子(B)とを含み、20℃における密度が4.5g/cm未満の粒子(C)の、固形分中の含有量が5質量%未満である、請求項1~8のいずれか1項に記載の音響整合層材を得るための音響整合層材用組成物。
  11.  請求項9に記載の音響整合シートを音響整合層として有する音響波プローブ。
  12.  請求項11に記載の音響波プローブを備える音響波測定装置。
  13.  前記音響波測定装置が超音波診断装置である、請求項12に記載の音響波測定装置。
  14.  圧電素子上に、請求項1~8のいずれか1項に記載の音響整合層材を用いて音響整合層を形成することを含む、音響波プローブの製造方法。
PCT/JP2022/035512 2021-09-30 2022-09-22 音響整合層材、音響整合シート、音響整合層材用組成物、音響波プローブ、音響波測定装置、及び音響波プローブの製造方法 WO2023054203A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023551436A JPWO2023054203A1 (ja) 2021-09-30 2022-09-22
EP22876070.8A EP4412251A1 (en) 2021-09-30 2022-09-22 Acoustic matching layered material, acoustic matching sheet, composition for acoustic matching layered material, acoustic wave probe, acoustic wave measurement device, and method for manufacturing acoustic wave probe
CN202280044174.0A CN117546484A (zh) 2021-09-30 2022-09-22 声匹配层材料、声匹配片、声匹配层材料用组合物、声波探头、声波测定装置及声波探头的制造方法
US18/396,935 US20240153479A1 (en) 2021-09-30 2023-12-27 Acoustic matching layer material, acoustic matching sheet, composition for acoustic matching layer material, acoustic wave probe, acoustic wave measurement apparatus, and manufacturing method of acoustic wave probe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021161984 2021-09-30
JP2021-161984 2021-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/396,935 Continuation US20240153479A1 (en) 2021-09-30 2023-12-27 Acoustic matching layer material, acoustic matching sheet, composition for acoustic matching layer material, acoustic wave probe, acoustic wave measurement apparatus, and manufacturing method of acoustic wave probe

Publications (1)

Publication Number Publication Date
WO2023054203A1 true WO2023054203A1 (ja) 2023-04-06

Family

ID=85782623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035512 WO2023054203A1 (ja) 2021-09-30 2022-09-22 音響整合層材、音響整合シート、音響整合層材用組成物、音響波プローブ、音響波測定装置、及び音響波プローブの製造方法

Country Status (5)

Country Link
US (1) US20240153479A1 (ja)
EP (1) EP4412251A1 (ja)
JP (1) JPWO2023054203A1 (ja)
CN (1) CN117546484A (ja)
WO (1) WO2023054203A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009296055A (ja) 2008-06-02 2009-12-17 Konica Minolta Medical & Graphic Inc 超音波探触子およびそれを用いる超音波診断装置
JP2011071842A (ja) 2009-09-28 2011-04-07 Fujifilm Corp 超音波プローブ、および超音波トランスデューサアレイの製造方法
JP2013081241A (ja) * 2006-03-02 2013-05-02 Visualsonics Inc 超音波整合層および振動子
WO2019088148A1 (ja) 2017-11-01 2019-05-09 富士フイルム株式会社 音響整合層用樹脂組成物、硬化物、音響整合シート、音響波プローブ、音響波測定装置、音響波プローブの製造方法、及び音響整合層用材料セット
JP2021161984A (ja) 2020-04-01 2021-10-11 マツダ株式会社 過給機付きエンジン

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081241A (ja) * 2006-03-02 2013-05-02 Visualsonics Inc 超音波整合層および振動子
JP2009296055A (ja) 2008-06-02 2009-12-17 Konica Minolta Medical & Graphic Inc 超音波探触子およびそれを用いる超音波診断装置
JP2011071842A (ja) 2009-09-28 2011-04-07 Fujifilm Corp 超音波プローブ、および超音波トランスデューサアレイの製造方法
WO2019088148A1 (ja) 2017-11-01 2019-05-09 富士フイルム株式会社 音響整合層用樹脂組成物、硬化物、音響整合シート、音響波プローブ、音響波測定装置、音響波プローブの製造方法、及び音響整合層用材料セット
JP2021161984A (ja) 2020-04-01 2021-10-11 マツダ株式会社 過給機付きエンジン

Also Published As

Publication number Publication date
JPWO2023054203A1 (ja) 2023-04-06
US20240153479A1 (en) 2024-05-09
CN117546484A (zh) 2024-02-09
EP4412251A1 (en) 2024-08-07

Similar Documents

Publication Publication Date Title
JP7162143B2 (ja) 音響整合層材、音響整合層材用組成物、音響整合シート、音響波プローブ、音響波測定装置、及び音響波プローブの製造方法
US7679270B2 (en) Ultrasonic probe
JP7022761B2 (ja) 音響整合層用樹脂組成物、硬化物、音響整合シート、音響波プローブ、音響波測定装置、音響波プローブの製造方法、及び音響整合層用材料セット
JP2007007262A (ja) コンベックス型超音波プローブおよび超音波診断装置
US11649352B2 (en) Resin composition for acoustic matching layer, acoustic matching sheet, acoustic wave probe, acoustic wave measuring apparatus, method for manufacturing acoustic wave probe, and material set for acoustic matching layer
JPWO2012023619A1 (ja) 超音波探触子およびそれを用いた超音波診断装置
WO2023054203A1 (ja) 音響整合層材、音響整合シート、音響整合層材用組成物、音響波プローブ、音響波測定装置、及び音響波プローブの製造方法
WO2023054204A1 (ja) 音響整合層材、音響整合シート、音響整合層材用組成物、音響波プローブ、音響波測定装置、及び音響波プローブの製造方法
JP5488036B2 (ja) 超音波探触子用バッキング材、それを用いた超音波探触子、及び超音波医用画像診断装置
JP2010114122A (ja) 有機圧電体、超音波振動子、超音波探触子および超音波画像検出装置
JP6961709B2 (ja) 音響整合層用樹脂組成物、硬化物、音響整合シート、音響波プローブ、音響波測定装置、音響波プローブの製造方法、及び音響整合層用材料セット
JP5545056B2 (ja) 超音波探触子用バッキング材、それを用いた超音波探触子、及び超音波医用画像診断装置
WO2024204614A1 (ja) バッキング材料、超音波プローブ、超音波診断装置及び硬化性樹脂組成物
JP6928106B2 (ja) 音響整合層用樹脂組成物、硬化物、音響整合シート、音響波プローブ、音響波測定装置、音響波プローブの製造方法、及び音響整合層用材料セット
JP7286886B2 (ja) 音響整合層材料、音響整合シート、音響整合シート形成用組成物、音響波プローブ、及び、音響波測定装置、並びに、音響整合層材料及び音響波プローブの各製造方法
Webster Passive materials for high frequency piezocomposite ultrasonic transducers
JP2022160286A (ja) 超音波プローブ用組成物及び超音波プローブ用シリコーン樹脂
JP2022160287A (ja) 超音波プローブ用組成物及び超音波プローブ用シリコーン樹脂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876070

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551436

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280044174.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022876070

Country of ref document: EP

Effective date: 20240430