WO2019087444A1 - ダブルタイヤ判定装置、及びダブルタイヤ判定方法 - Google Patents

ダブルタイヤ判定装置、及びダブルタイヤ判定方法 Download PDF

Info

Publication number
WO2019087444A1
WO2019087444A1 PCT/JP2018/019221 JP2018019221W WO2019087444A1 WO 2019087444 A1 WO2019087444 A1 WO 2019087444A1 JP 2018019221 W JP2018019221 W JP 2018019221W WO 2019087444 A1 WO2019087444 A1 WO 2019087444A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
captured image
area
double
wheel
Prior art date
Application number
PCT/JP2018/019221
Other languages
English (en)
French (fr)
Inventor
晃浩 野田
今川 太郎
日下 博也
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201880067171.2A priority Critical patent/CN111213192B/zh
Priority to JP2019549831A priority patent/JP7182195B2/ja
Publication of WO2019087444A1 publication Critical patent/WO2019087444A1/ja
Priority to US16/812,246 priority patent/US11175175B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0008Industrial image inspection checking presence/absence
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/015Detecting movement of traffic to be counted or controlled with provision for distinguishing between two or more types of vehicles, e.g. between motor-cars and cycles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/04Detecting movement of traffic to be counted or controlled using optical or ultrasonic detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/02Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles
    • G01G19/022Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles for weighing wheeled or rolling bodies in motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30236Traffic on road, railway or crossing

Definitions

  • the present disclosure relates to a double tire determination device that determines whether a tire mounted on a vehicle is a double tire.
  • the double tire refers to a mounted state of the tire, in which two wheels are arranged in parallel on one side of an axle and two tires of the same size are used for the two wheels.
  • Patent Document 1 a wheel holding a target tire is irradiated with detection light, and the tire is a double tire based on a detection result of reflection light of the detection light reflected by the wheel. A technique for determining whether or not this is described.
  • the intensity of the reflected light must be significantly higher than the intensity of the ambient light at the place of use utilizing the technology.
  • An object of the present invention is to provide a double tire determination device capable of determining whether or not the tire is in use.
  • a double tire determination device includes an image input unit and a determination unit.
  • the image input unit receives an input of a captured image including a tire mounted on a vehicle.
  • the determination unit determines whether the tire is a double tire from the captured image.
  • the determination unit includes, in the captured image, the area of the first wheel region positioned on the first direction side of the position of the rotation center of the tire in the region of the wheel that holds the tire, and the wheel that retains the tire in the captured image Whether or not the tire is a double tire is determined based on the ratio of the area of the second wheel area located on the second direction opposite to the first direction in the area of the rotation center relative to the position of the rotation center Do.
  • a double tire determination method includes an input step of receiving an input of a captured image including a tire mounted on a vehicle, and a determination step of determining whether the tire is a double tire from the captured image. Including. In the determination step, the area of the wheel that holds the tire in the captured image, the area of the first wheel area located on the first direction side of the position of the rotation center of the tire, and the wheel that holds the tire in the captured image Whether or not the tire is a double tire is determined based on the ratio of the area of the second wheel area located on the second direction opposite to the first direction to the position of the rotation center in the area of Be done.
  • the double tire determination device and the double tire determination method whether or not the tire is a double tire without irradiating the detection light to the target tire and detecting the reflected light of the detection light It can be judged.
  • FIG. 1 is a schematic view showing an example of how to determine whether a tire is a double tire.
  • FIG. 2 is a block diagram showing the configuration of the double tire determination device according to the first embodiment.
  • FIG. 3A is a perspective view of a double tire.
  • FIG. 3B is a perspective view of a single tire.
  • FIG. 4A is a cross-sectional view of a double tire.
  • FIG. 4B is a cross-sectional view of a single tire.
  • FIG. 5 is a schematic view showing an example of imaging a double tire.
  • FIG. 6 is a diagram showing an example of a captured image.
  • FIG. 7 is a schematic view showing an example of how a single tire is imaged.
  • FIG. 8 is a flowchart of double tire determination processing.
  • FIG. 1 is a schematic view showing an example of how to determine whether a tire is a double tire.
  • FIG. 2 is a block diagram showing the configuration of the double tire determination device according to the first embodiment.
  • FIG. 9 is a block diagram showing a configuration of a double tire determination device according to a second embodiment.
  • FIG. 10A is a data configuration diagram of the displacement coefficient ⁇ 1.
  • FIG. 10B is a data configuration diagram of the displacement count ⁇ 2.
  • FIG. 11 is a flowchart of the axial load measurement process.
  • FIG. 12 is a diagram showing an example of a captured image A.
  • FIG. 13 is a diagram illustrating an example of the captured image B.
  • the double tire determination device includes an image input unit and a determination unit.
  • the image input unit receives an input of a captured image including a tire mounted on a vehicle.
  • the determination unit determines whether the tire is a double tire from the captured image.
  • the determination unit includes, in the captured image, the area of the first wheel region positioned on the first direction side of the position of the rotation center of the tire in the region of the wheel that holds the tire, and the wheel that retains the tire in the captured image Whether or not the tire is a double tire is determined based on the ratio of the area of the second wheel area located on the second direction opposite to the first direction in the area of the rotation center relative to the position of the rotation center Do.
  • the double tire determination device determines whether or not the tire is a double tire from a captured image including a target tire.
  • this double tire determination device it is possible to determine whether or not the tire is a double tire without performing irradiation of detection light to the target tire and detection of reflection light of the detection light. .
  • the double tire determination method includes an input step of receiving an input of a captured image including a tire mounted on a vehicle, and a determination step of determining whether the tire is a double tire from the captured image including.
  • the area of the wheel that holds the tire in the captured image, the area of the first wheel area located on the first direction side of the position of the rotation center of the tire, and the wheel that holds the tire in the captured image Whether or not the tire is a double tire is determined based on the ratio of the area of the second wheel area located on the second direction opposite to the first direction to the position of the rotation center in the area of Be done.
  • this double tire determination method it is determined whether or not the tire is a double tire from a captured image including a target tire.
  • this double tire determination method it is possible to determine whether or not the tire is a double tire without irradiating the detection light to the target tire and detecting the reflected light of the detection light. .
  • Embodiment 1 As an aspect of the present disclosure, a double tire determination device that determines whether a tire of a vehicle present on a traveling road of the vehicle is a double tire will be described.
  • a captured image captured for a specific traveling path is input from an external imaging device. And this double tire determination device determines whether the tire with which the vehicle was mounted
  • FIG. 1 is a schematic view showing an example of how a tire mounted on a vehicle 40 is determined to be a double tire using the double tire determination device 10 according to the first embodiment.
  • the double tire determination device 10 is connected to an imaging device 20 that images, for example, a traveling path 30 which is a road made of asphalt, on which a large vehicle 40 such as a truck travels. Then, the double tire determination device 10 receives one or more captured images captured by the imaging device 20.
  • an imaging device 20 that images, for example, a traveling path 30 which is a road made of asphalt, on which a large vehicle 40 such as a truck travels. Then, the double tire determination device 10 receives one or more captured images captured by the imaging device 20.
  • FIG. 2 is a block diagram showing the configuration of the double tire determination device 10. As shown in FIG. As shown in FIG. 2, the double tire determination device 10 is configured to include an image input unit 110, a tire position specifying unit 120, and a determination unit 130.
  • the microprocessor executes a program stored in the memory. Is realized by
  • the image input unit 110 receives an input of one or more captured images captured by the imaging device 20.
  • the image input unit 110 receives an input of a digital image of 4096 ⁇ 2160 pixels, for example.
  • the input of the captured image is performed via wireless or wired communication or a recording medium.
  • the tire position identification unit 120 identifies the position of the tire in the captured image.
  • the tire position specifying unit 120 specifies the rotation center of the tire in the captured image as the position of the tire.
  • the tire position specifying unit 120 performs an image recognition process on the captured image, and determines whether the captured image includes a vehicle. Then, when it is determined that the vehicle is included, the tire position specifying unit 120 recognizes the tire of the vehicle by further image recognition processing, and specifies the rotation center of the tire as the position of the tire.
  • the tire position specifying unit 120 may specify, for example, the axial center of the axle supporting the wheel holding the tire as the rotational center of the tire.
  • the determination unit 130 determines whether the tire is a double tire based on the captured image received by the image input unit 110 and the position of the tire in the captured image specified by the tire position specifying unit 120. judge.
  • FIG. 3A is a perspective view of a double tire
  • FIG. 3B is a perspective view of a single tire.
  • a double tire refers to a mounted state of a tire using two tires of the same size on one side of an axle.
  • a single tire refers to a mounted state of a tire using one tire per side of an axle.
  • FIG. 4A is a cross-sectional view of the double tire on the AA ′ plane in FIG. 3A
  • FIG. 4B is a cross-sectional view of the single tire on the BB ′ plane in FIG. 3B.
  • two wheels 60A and 60B are arranged in parallel on one side of an axle 70A, and two tires 50A and 50B of the same size are used.
  • one tire 50C is used on one side of the axle 70C.
  • the wheel 60A holding the tire 50A located outside is disposed concave toward the inside of the axle 70A.
  • the wheel 60C holding the tire 50C is disposed so as to project outward of the axle 70C.
  • FIG. 5 is a schematic diagram which shows an example of a mode that the imaging device 20 images a double tire.
  • FIG. 6 is a diagram illustrating an example of a captured image captured by the imaging device 20.
  • FIG. 7 is a schematic view showing the imaging device 20 imaging a single tire.
  • the double tire is positioned on the front side in the traveling direction of the vehicle with respect to the imaging direction of the imaging device 20 due to the wheel 60A being arranged to be recessed inward of the axle 70A.
  • the wheel 60A being arranged to be recessed inward of the axle 70A.
  • a part of the area on the rear side in the traveling direction of the wheel 60A is hidden by the dead angle 100A of the tire 50A and can not be seen from the imaging device 20.
  • the area of the first wheel region 80A is the first. It becomes larger than the area of 2 wheel field 90A.
  • the first wheel area 80A is an area of the wheel 60A that is located forward in the traveling direction of the vehicle than the rotation center of the tire 50A (here, the axis center of the axle 70A).
  • the second wheel area 90A is an area of the wheel 60A that is located on the rear side in the traveling direction of the vehicle than the rotation center of the tire 50A.
  • the extraction of the center of the rotation axis may be performed from the shape of the wheel 60A and the axle 70A, or may be performed from the rotation components of the tire 50A and the wheel 60A in the captured image.
  • the double tire is on the rear side in the traveling direction of the vehicle with respect to the imaging direction of the imaging device 20.
  • a partial region on the front side in the traveling direction in the wheel 60A is hidden by the blind spot 100B of the tire 50A and can not be seen from the imaging device 20.
  • the area of the second wheel region 90B is the first. It becomes larger than the area of 1 wheel field 80B.
  • the second wheel area 90B is an area of the wheel 60A that is located rearward in the traveling direction of the vehicle than the rotation center of the tire 50A.
  • the first wheel area 80B is an area of the wheel 60A that is located forward in the traveling direction of the vehicle than the rotation center of the tire 50A.
  • the wheel 60C is disposed so as to protrude outward of the axle 70, so the wheel 60C is a blind spot of the tire 50C. It is hard to hide in
  • the target tire is a double tire
  • a part of the wheel 60A is hidden behind the blind spot of the tire 50A depending on the position of the tire in the captured image. I will. Due to this, the area of the first wheel area (the first wheel area 80A or the first wheel area 80B in FIG. 6) and the second wheel area (the second wheel area 90A or the second wheel area 90B in FIG. 6) The ratio with the area of) may not be one to one.
  • the determination unit 130 uses this phenomenon to determine whether the target tire is a double tire based on the dead angle of the tire 50A generated on the wheel 60A of the tire 50A in the captured image. That is, the determination unit 130 determines the area of the first wheel area (here, the first wheel area 80A or the first wheel area 80B) and the second wheel area (here, the second wheel area 90A or the second area). The above determination is performed based on the ratio to the area of the wheel region 90B.).
  • the first wheel area is an area of the wheel 60A of the tire 50A in the captured image that is located in the first direction (here, forward in the traveling direction of the vehicle) than the position of the rotation center of the tire 50A. is there.
  • the second wheel region is a second direction opposite to the first direction (herein, the traveling direction of the vehicle backward) of the position of the rotation center of the tire 50A among the wheels 60A of the tire 50A in the captured image It is an area located on the) side.
  • the determination unit 130 determines the second wheel when the area of the area 90 is larger than the area of the first wheel area 80, it is determined that the target tire is a double tire.
  • the determination unit 130 determines the second wheel when the area of the area 90 is larger than the area of the first wheel area 80, it is determined that the target tire is a double tire.
  • the direction of the perpendicular from the position of the imaging device 20 with respect to the extension of the rotation axis (axle 70A) of the tire 50A may be a first direction, and the opposite direction of the perpendicular may be a second direction. That is, by imaging with the imaging device 20 from a direction different from the extension line of the rotation axis, it is possible to determine whether the target tire is a double tire based on the dead angle by the tire 50A.
  • the first predetermined length As long as the area is significantly longer than the area of the second wheel region 90, any value may be used.
  • the second predetermined length is the area of the second wheel area 90 when the position of the tire 50A in the captured image specified by the tire position specifying unit 120 is on the second direction side of the center position of the captured image. Any value may be used as long as it has a length that significantly increases the area of the first wheel area 80.
  • the first predetermined length and the second predetermined length may be, for example, values defined by the length (for example, 1 m) in the real space corresponding to the captured image. For example, the number of pixels in the captured image (for example, It may be a value defined by 100 pixels). Also, the first predetermined length and the second predetermined length may be, for example, the same value, or may be different values, for example.
  • the double tire determination device 10 performs a double tire determination process as its characteristic operation.
  • the double tire determination process is a process of determining whether or not the tire is a double tire when a captured image including a tire mounted on a vehicle is input.
  • FIG. 8 is a flowchart of double tire determination processing.
  • the double tire determination process is started by inputting a captured image including a tire mounted on a vehicle to the image input unit 110.
  • the image input unit 110 acquires the input captured image (step S10).
  • the tire position specifying unit 120 performs image processing to calculate the coordinates of the rotation center of the tire included in the captured image, and specifies the calculated coordinates as the position of the tire ( Step S11).
  • the determination unit 130 determines that the position of the specified tire is ahead of the center position of the captured image by a first predetermined length or more and forward in the traveling direction of the vehicle on which the tire is mounted (first direction) It is checked whether it is the side (step S12).
  • step S12 when the position of the identified tire is on the first direction side by the first predetermined length or more than the center position of the captured image (step S12: Yes), the determination unit 130 determines the first wheel area And the area of the second wheel area (step S13).
  • the first wheel region is a region in the captured image that is located in the first direction side with respect to the rotation center of the tire in the region of the wheel that holds the tire.
  • the second wheel area is an area of the area of the wheel holding the tire in the captured image, which is located on the second direction side with respect to the rotation center of the tire.
  • step S12 when the position of the identified tire is not at least the first predetermined length or more in the first direction than the center position of the captured image (step S12: No), the determination unit 130 determines that the position of the tire is It is checked whether it is on the rear side in the traveling direction (second direction) of the vehicle on which the tire is mounted with a second predetermined length or more than the center position of the captured image (step S14).
  • step S14 when the position of the identified tire is on the second direction side by the second predetermined length or more than the center position of the captured image (step S14: Yes), the determination unit 130 determines in the captured image The area of the first wheel area and the area of the second wheel area in the captured image are compared (step S15).
  • step S13 if the area of the first wheel area is larger than the area of the second wheel area (step S13: Yes), the determination unit 130 determines that the target tire is a double tire (step S13). Step S16).
  • step S15 when the area of the second wheel area is larger than the area of the first wheel area (step S15: Yes), the determining unit 130 determines that the target tire is a double tire. (Step S16).
  • step S13 when the area of the first wheel area is not larger than the area of the second wheel area (step S13: No), the determination unit 130 determines that the target tire is not a double tire (step S13).
  • step S17 when the area of the second wheel area is not larger than the area of the first wheel area (step S15: No), the determination unit 130 determines that the target tire is not a double tire. (Step S17).
  • step S16 When the process of step S16 is completed, the process of step S17 is completed, or the position of the tire specified in the process of step S14 is a second predetermined side or more than the center position of the captured image in the second direction If not (step S14: No), the double tire determination device 10 ends the double tire determination process.
  • the double tire determination device 10 determines whether or not the tire is a double tire from the captured image including the target tire.
  • the double tire determination device 10 it is possible to determine whether or not the tire is a double tire without performing irradiation of the detection light to the target tire and detection of reflected light of the detection light. .
  • the double tire determination device is an example in which an axial load measuring unit is added to the double tire determination device 10 according to the first embodiment.
  • the axial load measuring unit detects the displacement of displacement generated on the traveling path when the vehicle travels from the captured image, and calculates the axial load of the vehicle that caused the displacement based on the detected displacement. .
  • FIG. 9 is a block diagram showing the configuration of the double tire determination device 11 according to the second embodiment.
  • the double tire determination device 11 is configured by adding an axial weight measurement unit 200 to the double tire determination device 10 according to the first embodiment.
  • the axial load measuring unit 200 executes a program stored in the memory. Is realized by
  • the axial load measurement unit 200 includes a displacement amount detection unit 210, an axial load position specifying unit 220, a storage unit 230, and an axial load calculation unit 240.
  • the axial load position specifying unit 220 specifies the axial load position of the vehicle in the captured image. More specifically, the axial load position specifying unit 220 performs an image recognition process on the captured image, and determines whether the captured image includes a vehicle. When it is determined that the vehicle is included, the axle load position specifying unit 220 recognizes the tire of the vehicle by further image recognition processing, and the region on the traveling road corresponding to the lowest point of the tire is Identify as a double position.
  • the displacement amount detection unit 210 detects an amount of displacement in the captured image of the displacement generated on the traveling path when the axial weight is added, using the captured image in which the traveling path of the vehicle is captured. In particular, when the axial load position is specified by the axial load position specification unit 220, the displacement amount detection unit 210 detects the displacement amount for the displacement at the specified axial load position. That is, the displacement amount detection unit 210 compares the captured image in which displacement does not occur in the traveling path among the plurality of captured images received by the image input unit 110 with the captured image in which displacement occurs. The displacement of the displacement is detected.
  • the detection of the displacement of displacement between images can be realized by using block matching, correlation, or optical flow.
  • the displacement amount is calculated, for example, as the number of pixels indicating the difference in pixel position corresponding to the same point on the traveling road between the images to be compared.
  • the captured image without displacement may be a captured image captured in a state in which there is no axial weight target in advance, or in a plurality of captured images captured continuously in time, the image change amount
  • the captured image may be a captured image having a predetermined value or less, or may be a captured image determined by the image recognition processing to have no axial weight target.
  • the storage unit 230 stores information indicating the relationship between the axial weight and the displacement amount. More specifically, the storage unit 230 is a relational expression indicating the relationship between the axial weight and the displacement amount of displacement when displacement occurs on the traveling path due to the axial weight being applied to the traveling path, and
  • the displacement coefficient which is a coefficient used in this relational expression, is stored as information. There are two types of information: first information when the tire of the vehicle is a single tire, and second information when the tire of the vehicle is a double tire.
  • the displacement coefficient ⁇ has a displacement coefficient value associated with each position that can be identified as an axial load position by the axial load position specifying unit 220.
  • the distance from the imaging position to each area is different from one another, the composition such as asphalt is different from one another, the road surface temperature is different from one another, the deterioration state of the road surface is different from one another Can be reflected.
  • the displacement coefficient ⁇ is, for example, 10 pixels in the horizontal direction (x direction) and 10 pixels in the vertical direction (y direction) in the captured image. It has a value corresponding to the area.
  • the storage unit 230 stores the coefficient ⁇ 1 of the first information and the coefficient ⁇ 2 of the second information.
  • the correction coefficient A is a value larger than 1 and smaller than 2, and here, for example, 1.5.
  • the correction coefficient A may be, for example, a value determined by conducting an experiment in advance.
  • the displacement amount detection unit 210 detects displacement amounts of the case where the tire mounted on the axle is a double tire and the case where it is a single tire with respect to an axle having a known axle weight in advance. The ratio of the amounts may be determined as the correction factor A.
  • FIGS. 10A and 10B An example of the displacement coefficient ⁇ 1 and the displacement coefficient ⁇ 2 stored by the storage unit 230 is shown in FIGS. 10A and 10B.
  • the axial weight calculation unit 240 stores the displacement amount output from the displacement amount detection unit 210 and the second stored by the storage unit 230. Based on the information (displacement coefficient ⁇ 2), the axial weight of the vehicle present on the traveling road is calculated. In particular, when the axial load position is specified by the axial load position specifying unit 220, the axial load calculation unit 240 calculates the axial load based on the displacement of the displacement at the specified axial load position. More specifically, the axial load calculation unit 240 sets a displacement coefficient value corresponding to a region including the axial load position specified by the axial load position specifying unit 220 in the displacement amount d output from the displacement amount detection unit 210. The axis weight w is calculated by multiplication.
  • the axial weight calculation unit 240 stores the displacement amount output from the displacement amount detection unit 210 and the storage unit 230. Based on the first information (displacement coefficient ⁇ 1), the axial weight of the vehicle present on the traveling road is calculated.
  • the double tire determination device 11 performs axial load measurement processing as its characteristic operation.
  • the axle weight measurement process is a process of calculating the axle weight of the vehicle when the double tire determination device 11 receives a captured image including the vehicle.
  • FIG. 11 is a flowchart of the axial load measurement process.
  • the axial weight measurement process is started by inputting a captured image including the vehicle (hereinafter, the captured image is referred to as “captured image A”) to the image input unit 110.
  • the image input unit 110 acquires a captured image A input from the imaging device 20 (step S110).
  • FIG. 12 is an example of the captured image A acquired.
  • the captured image A includes a vehicle 40 traveling on the traveling path 30. And this vehicle 40 is in contact with the traveling path 30 at the lowest point 510 of the tire.
  • the axial load position specifying unit 220 When the captured image A is input, the axial load position specifying unit 220 performs image recognition processing to specify the lowest point 510 of the tire of the vehicle 40, and on the travel path 30 corresponding to the specified lowest point 510. Is identified as an axial load position (step S120).
  • the axial overlap position to be identified is not necessarily limited to one point (one pixel), and may be identified as a local image area composed of a plurality of adjacent pixels.
  • the axial load detection range to be subjected to the axial load detection may be limited to the area of the travel path 30 or may be limited to a part of the travel path 30.
  • the area to be limited may be designated by the user, or designation by the user may be performed in combination with image recognition of the color and texture of the traveling path.
  • the image processing amount can be suppressed. Therefore, the amount of processing for detecting the axial load position can be suppressed.
  • the displacement amount detection unit 210 detects the displacement amount of the displacement generated on the traveling path at the specified axial load position (step S130). In the detection of the displacement amount, of the captured image A and the captured image acquired by the image input unit 110, a captured image without displacement (hereinafter, this captured image is referred to as “captured image B”). And using. If the captured image B is not acquired by the image input unit 110 until the axial load position is specified, the displacement amount detection unit 210 waits until the captured image B is acquired by the image input unit 110, This displacement amount is detected.
  • FIG. 13 is an example of the captured image B acquired.
  • the captured image B is an image captured from the same viewpoint with respect to the same place as the captured image A (see FIG. 12).
  • An area 610 on the travel path 30 in the captured image B is the same area as the area on the travel path 30 corresponding to the lowest point 510 of the tire in the captured image A.
  • the area 620 on the traveling path 30 in the captured image B is the same area as the area 520 on the traveling path 30 in the captured image A.
  • the displacement amount detection unit 210 detects a displacement amount of displacement occurring between the area on the travel path 30 corresponding to the lowest point 510 in the captured image A and the area 610 in the captured image B.
  • the displacement amount of the traveling path resulting from the axial weight of a general vehicle is minute, it is desirable to suppress the influence of the shaking of the imaging device 20 due to the vibration or the like of the vehicle traveling on the traveling path.
  • the same points not identified as axial load positions for example, the region 520 in the captured image A and the region 620 in the captured image B) are selected and selected.
  • non-axial weight position displacement amount The amount of displacement between the two regions (hereinafter, this amount of displacement is referred to as "non-axial weight position displacement amount") is calculated. Then, the amount of displacement of non-axial weight position is subtracted from the amount of displacement of displacement occurring between the region on traveling path 30 corresponding to the lowest point 510 of the tire in captured image A and the region 610 in captured image B. By correcting the displacement amount, it is possible to suppress the influence of the shake of the imaging device 20. In addition, the influence of the shake of the imaging device 20 can be suppressed also by a method using an optical image stabilization (Optical Image Stabilization) technology, a method using a mechanical mechanism such as a sensor shift method, or the like.
  • optical image stabilization Optical Image Stabilization
  • the axial weight calculation unit 240 checks whether the target tire is determined to be a double tire by the determination unit 130 (step S140).
  • step S140 when the determination unit 130 determines that the target tire is a double tire (step S140: Yes), the axial weight calculation unit 240 acquires the displacement coefficient ⁇ 2 from the storage unit 230 ( Step S150).
  • step S140 If the target tire is not determined to be a double tire by the determination unit 130 in the process of step S140 (step S140: No), the axial weight calculation unit 240 acquires the displacement coefficient ⁇ 1 from the storage unit 230. (Step S160).
  • the axis weight calculation unit 240 multiplies the acquired displacement coefficient by the displacement amount output from the displacement amount detection unit 210. Then, the axial weight is calculated (step S170).
  • the axial weight calculation unit 240 When the axial weight is calculated, the axial weight calculation unit 240 outputs the calculated numerical value of the axial weight to the outside (step S180).
  • the axial weight calculation unit 240 instead of outputting the calculated value of the axial weight to the outside, the axial weight calculation unit 240 notifies the user of the effect when the calculated value of the axial weight is larger than a predetermined reference value. It may be informed.
  • the reference value may be an absolute reference value or a relative reference value. This is done to reflect that the vehicle included in the corresponding captured image has a relatively high possibility of being overloaded.
  • step S180 the double tire determination device 11 ends the axial weight measurement process.
  • the displacement amount of displacement produced on the traveling road due to the axial weight being applied to the traveling road is that the tire is a single tire when the tire mounted on the axle is a double tire. It becomes smaller than.
  • the double tire determination device 11 calculates the axial weight
  • the displacement amount detected by the displacement amount detection unit 210 is multiplied by the correction coefficient A.
  • the displacement coefficient ⁇ 2 is acquired. Then, the double tire determination device 11 uses the displacement coefficient ⁇ 2 to calculate the axial weight.
  • the double tire determination device 11 is compared to the conventional axial weight measurement device that calculates the axial weight by the conventional calculation method that does not correct the displacement amount.
  • the axis weight can be measured more accurately.
  • Embodiments 1 and 2 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to these, and can be applied to embodiments in which changes, replacements, additions, omissions, and the like are appropriately made.
  • the imaging device 20 is disposed in a direction substantially perpendicular (about 90 °) to the traveling direction of the traveling path, and positions in the traveling direction forward and backward of the center line in the captured image So, I was able to shoot the tire from an oblique direction.
  • the imaging device 20 may be disposed in the directions of 45 to 80 ° and 100 to 135 ° with respect to the traveling direction of the traveling path.
  • the area ratio between the first wheel area and the second wheel area gradually changes as the vehicle imaged in the captured image moves from the rear in the traveling direction to the front in the traveling direction. Based on the degree of change, it can be determined whether the target tire is a double tire.
  • the first direction is the front of the vehicle and the second direction is the rear of the vehicle.
  • the first direction may be the upward direction of the vehicle
  • the second direction may be the downward direction of the vehicle.
  • imaging is performed from a position higher than the tire of the vehicle.
  • a partial area of the upper side of the wheel is hidden by the dead angle of the tire, it is determined to be a double tire
  • a partial area of the upper side of the wheel is not hidden by a dead angle of the tire
  • whether or not the tire is a double tire may be determined based on the ratio of the areas of the upper and lower wheels with respect to the center of rotation.
  • the double tire determination device 10 has been described as an example of the configuration including the image input unit 110 that receives an input of a captured image captured by the imaging device 20.
  • the double tire determination device 10 does not necessarily have to be configured to include the image input unit 110.
  • an imaging unit that captures a captured image may be provided instead of the image input unit 110.
  • the captured image used by the tire position specifying unit 120 may be a captured image captured by the imaging unit.
  • double-tire determining apparatus 10 is described as an example of a configuration realized by the microprocessor executing a program stored in the memory in a computer including a microprocessor and a memory. did.
  • the double tire determination device 10 is not necessarily limited to the example of the configuration realized as the above implementation example as long as it has the same function as the above implementation example.
  • part or all of the components constituting the double tire determination device 10 may be an example of a configuration realized by a dedicated circuit.
  • the captured image may be a monochrome image, a color image or a multispectral image.
  • the wavelength band of light to be imaged may be ultraviolet light, near infrared light, or far infrared light.
  • Each component (functional block) in the double tire determination device 10 or 11 may be individually made into one chip by a semiconductor device such as an integrated circuit (IC) or a large scale integration (LSI), or a part of It may be made into one chip so as to include all or all.
  • a semiconductor device such as an integrated circuit (IC) or a large scale integration (LSI), or a part of It may be made into one chip so as to include all or all.
  • the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible.
  • FPGA field programmable gate array
  • reconfigurable processor that can reconfigure connection and setting of circuit cells in the LSI may be used.
  • integrated circuit technology comes out to replace LSI's as a result of the advancement of semiconductor technology or a derivative other technology, it is possible to carry out function block integration using this technology. Application of biotechnology etc. may be possible.
  • all or part of the various processes may be realized by hardware such as an electronic circuit or may be realized using software.
  • the processing by software is realized by the processor included in the double tire determination device executing a program stored in the memory.
  • the program may be recorded on a recording medium and distributed or distributed. For example, by installing the distributed program in a device having another processor and causing the processor to execute the program, it is possible to cause the device to perform each of the above processes.
  • the present disclosure is widely applicable to a double tire determination device that determines whether or not it is a double tire.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Quality & Reliability (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Tires In General (AREA)
  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)

Abstract

ダブルタイヤ判定装置(10)は、画像入力部(110)と、判定部(130)とを備える。画像入力部(110)は、車両に装着されたタイヤを含む撮像画像の入力を受ける。判定部(130)は、撮像画像からタイヤがダブルタイヤであるか否かを判定する。判定部(130)は、撮像画像における、タイヤを保持するホイールの領域のうち、タイヤの回転中心の位置よりも第1方向側に位置する第1ホイール領域の面積と、撮像画像における、タイヤを保持するホイールの領域のうち、回転中心の位置よりも、第1方向と逆向きの第2方向側に位置する第2ホイール領域の面積との比率に基づいて、タイヤがダブルタイヤであるか否かを判定する。

Description

ダブルタイヤ判定装置、及びダブルタイヤ判定方法
 本開示は、車両に装着されたタイヤがダブルタイヤであるか否かを判定するダブルタイヤ判定装置に関する。
 従来、車両に装着されたタイヤがダブルタイヤであるか否かを判定するダブルタイヤ判定装置が知られている。
 ダブルタイヤとは、タイヤの装着状態であって、車軸の片側にホイールを並列に2つ並べ、その2つのホイールにつき同サイズのタイヤを2本使用するタイヤの装着状態のことを言う。
 例えば、特許文献1には、対象とするタイヤを保持するホイールに検出光を照射し、そのホイールにより反射された、その検出光の反射光の検出結果に基づいて、そのタイヤがダブルタイヤであるか否かを判定する技術が記載されている。
特開2016-170598号公報
 上記従来の技術を利用するためには、その反射光の強度は、その技術を利用する利用場所における環境光の強度よりも、有意に高くなければならない。
 このため、上記従来の技術を利用する従来のダブルタイヤ判定装置は、その設置場所、その運用時間帯等が制限されてしまうことがある。
 そこで、本開示は、係る問題に鑑みてなされたものであり、対象とするタイヤへの検出光の照射、及びその検出光の反射光の検知を行わずとも、そのタイヤがダブルタイヤであるか否かを判定し得るダブルタイヤ判定装置を提供することを目的とする。
 本開示の一態様に係るダブルタイヤ判定装置は、画像入力部と、判定部とを備える。画像入力部は、車両に装着されたタイヤを含む撮像画像の入力を受ける。判定部は、撮像画像からタイヤがダブルタイヤであるか否かを判定する。判定部は、撮像画像における、タイヤを保持するホイールの領域のうち、タイヤの回転中心の位置よりも第1方向側に位置する第1ホイール領域の面積と、撮像画像における、タイヤを保持するホイールの領域のうち、回転中心の位置よりも、第1方向と逆向きの第2方向側に位置する第2ホイール領域の面積との比率に基づいて、タイヤがダブルタイヤであるか否かを判定する。
 本開示の一態様に係るダブルタイヤ判定方法は、車両に装着されたタイヤを含む撮像画像の入力を受ける入力ステップと、撮像画像からタイヤがダブルタイヤであるか否かを判定する判定ステップとを含む。判定ステップにおいて、撮像画像における、タイヤを保持するホイールの領域のうち、タイヤの回転中心の位置よりも第1方向側に位置する第1ホイール領域の面積と、撮像画像における、タイヤを保持するホイールの領域のうち、回転中心の位置よりも、第1方向と逆向きの第2方向側に位置する第2ホイール領域の面積との比率に基づいて、タイヤがダブルタイヤであるか否かが判定される。
 上記ダブルタイヤ判定装置、及びダブルタイヤ判定方法によると、対象とするタイヤへの検出光の照射、及びその検出光の反射光の検知を行わずとも、そのタイヤがダブルタイヤであるか否かを判定し得る。
図1は、ダブルタイヤであるか否かを判定する様子の一例を示す模式図である。 図2は、実施の形態1に係るダブルタイヤ判定装置の構成を示すブロック図である。 図3Aは、ダブルタイヤの斜視図である。 図3Bは、シングルタイヤの斜視図である。 図4Aは、ダブルタイヤの断面図である。 図4Bは、シングルタイヤの断面図である。 図5は、ダブルタイヤを撮像する様子の一例を示す模式図である。 図6は、撮像画像の一例を示す図である。 図7は、シングルタイヤを撮像する様子の一例を示す模式図である。 図8は、ダブルタイヤ判定処理のフローチャートである。 図9は、実施の形態2に係るダブルタイヤ判定装置の構成を示すブロック図である。 図10Aは、変位係数α1のデータ構成図である。 図10Bは、変位計数α2のデータ構成図である。 図11は、軸重計測処理のフローチャートである。 図12は、撮像画像Aの一例を示す図である。 図13は、撮像画像Bの一例を示す図である。
 実施の形態の一態様に係るダブルタイヤ判定装置は、画像入力部と、判定部とを備える。画像入力部は、車両に装着されたタイヤを含む撮像画像の入力を受ける。判定部は、撮像画像からタイヤがダブルタイヤであるか否かを判定する。判定部は、撮像画像における、タイヤを保持するホイールの領域のうち、タイヤの回転中心の位置よりも第1方向側に位置する第1ホイール領域の面積と、撮像画像における、タイヤを保持するホイールの領域のうち、回転中心の位置よりも、第1方向と逆向きの第2方向側に位置する第2ホイール領域の面積との比率に基づいて、タイヤがダブルタイヤであるか否かを判定する。
 このダブルタイヤ判定装置は、対象とするタイヤを含む撮像画像から、そのタイヤがダブルタイヤであるか否かを判定する。
 このため、このダブルタイヤ判定装置によると、対象とするタイヤへの検出光の照射、及びその検出光の反射光の検知を行わずとも、そのタイヤがダブルタイヤであるか否かを判定し得る。
 実施の形態の一態様に係るダブルタイヤ判定方法は、車両に装着されたタイヤを含む撮像画像の入力を受ける入力ステップと、撮像画像からタイヤがダブルタイヤであるか否かを判定する判定ステップとを含む。判定ステップにおいて、撮像画像における、タイヤを保持するホイールの領域のうち、タイヤの回転中心の位置よりも第1方向側に位置する第1ホイール領域の面積と、撮像画像における、タイヤを保持するホイールの領域のうち、回転中心の位置よりも、第1方向と逆向きの第2方向側に位置する第2ホイール領域の面積との比率に基づいて、タイヤがダブルタイヤであるか否かが判定される。
 このダブルタイヤ判定方法は、対象とするタイヤを含む撮像画像から、そのタイヤがダブルタイヤであるか否かを判定する。
 このため、このダブルタイヤ判定方法によると、対象とするタイヤへの検出光の照射、及びその検出光の反射光の検知を行わずとも、そのタイヤがダブルタイヤであるか否かを判定し得る。
 なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されても良く、システム、方法、集積回路、コンピュータプログラムまたは記録媒体の任意な組み合わせで実現されても良い。
 以下、本開示の一態様に係るダブルタイヤ判定装置の具体例について説明する。なお、以下で説明する実施の形態は、いずれも本開示の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。本開示は、請求の範囲だけによって限定される。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、本開示の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。
 (実施の形態1)
 ここでは、本開示の一態様として、車両の走行路上に存在する車両のタイヤがダブルタイヤであるか否かを判定するダブルタイヤ判定装置について説明する。
 このダブルタイヤ判定装置には、外部の撮像装置から、特定の走行路について撮像された撮像画像が入力される。そして、このダブルタイヤ判定装置は、その入力された撮像画像から、その車両に装着されたタイヤが、ダブルタイヤであるか否かを判定する。
 以下、このダブルタイヤ判定装置の詳細について、図面を参照しながら説明する。
 [1-1.構成]
 図1は、実施の形態1に係るダブルタイヤ判定装置10を用いて車両40に装着されたタイヤがダブルタイヤであるか否かを判定する様子の一例を示す模式図である。
 ここでは、ダブルタイヤ判定装置10は、例えば、トラックなどの大型の車両40が走行する、例えば、アスファルト製の道路である走行路30を撮像する撮像装置20に接続される。そして、ダブルタイヤ判定装置10には、撮像装置20によって撮像された1以上の撮像画像が入力される。
 図2は、ダブルタイヤ判定装置10の構成を示すブロック図である。図2に示されるように、ダブルタイヤ判定装置10は、画像入力部110と、タイヤ位置特定部120と、判定部130とを含んで構成される。
 ダブルタイヤ判定装置10は、例えば、マイクロプロセッサ(図示せず。)とメモリ(図示せず。)とを備えるコンピュータ(図示せず。)において、メモリに記憶されたプログラムをマイクロプロセッサが実行することによって実現される。
 画像入力部110は、撮像装置20によって撮像された1以上の撮像画像の入力を受け付ける。ここでは、画像入力部110は、例えば、4096×2160ピクセルのデジタル画像の入力を受け付ける。撮像画像の入力は、無線又は有線による通信、もしくは、記録媒体を介して行われる。
 タイヤ位置特定部120は、画像入力部110によって受け付けられた撮像画像に、車両に装着されたタイヤが含まれる場合に、その撮像画像におけるそのタイヤの位置を特定する。ここでは、タイヤ位置特定部120は、例えば、撮像画像におけるタイヤの回転中心を、そのタイヤの位置として特定する。
 より具体的には、タイヤ位置特定部120は、撮像画像に対して画像認識処理を行い、撮像画像に車両が含まれるか否かを判定する。そして、車両が含まれると判定した場合には、タイヤ位置特定部120は、さらなる画像認識処理により、その車両のタイヤを認識し、そのタイヤの回転中心を、そのタイヤの位置として特定する。タイヤ位置特定部120は、例えば、そのタイヤを保持するホイールを支持する車軸の軸中心を、そのタイヤの回転中心であると特定しても良い。
 判定部130は、画像入力部110によって受け付けられた撮像画像と、タイヤ位置特定部120によって特定された、その撮像画像におけるタイヤの位置とに基づいて、そのタイヤがダブルタイヤであるか否かを判定する。
 以下、判定部130による、対象となるタイヤがダブルタイヤであるか否の判定について、図面を参照しながら説明する。
 図3Aは、ダブルタイヤの斜視図であり、図3Bは、シングルタイヤの斜視図である。ここで、ダブルタイヤとは、車軸の片側につき同サイズのタイヤを2本使用するタイヤの装着状態のことを言う。シングルタイヤとは、車軸の片側につきタイヤを1本使用するタイヤの装着状態のことを言う。
 図4Aは、図3AにおけるA-A´面におけるダブルタイヤの断面図であり、図4Bは、図3BにおけるB-B´面におけるシングルタイヤの断面図である。
 図3A、図4Aに示されるように、ダブルタイヤでは、車軸70Aの片側にホイール60Aとホイール60Bとを並列に2つ並べ、同サイズのタイヤ50Aとタイヤ50Bとの2本を使用する。
 一方、図3B、図4Bに示されるように、シングルタイヤでは、車軸70Cの片側に、タイヤ50Cを1本使用する。
 一般に、ダブルタイヤでは、図3A、図4Aに示されるように、外側に位置するタイヤ50Aを保持するホイール60Aは、車軸70Aの内側向きに凹んで配置される。
 これに対して、一般に、シングルタイヤでは、図3B、図4Bに示されるように、タイヤ50Cを保持するホイール60Cは、車軸70Cの外側向きに出っ張って配置される。
 図5は、撮像装置20が、ダブルタイヤを撮像する様子の一例を示す模式図である。図6は、撮像装置20が撮像する撮像画像の一例を示す図である。図7は、撮像装置20がシングルタイヤを撮像する様子を示す模式図である。
 図5に示されるように、ホイール60Aが車軸70Aの内側向きに凹んで配置されることに起因して、ダブルタイヤが、撮像装置20の撮像方向に対して車両の進行方向前方側に位置する場合には、ホイール60Aにおける、進行方向後方側の一部の領域が、タイヤ50Aの死角100Aに隠れてしまい、撮像装置20から見えなくなる。
 このため、図6に示されるように、撮像画像において、ダブルタイヤが、撮像画像の中心よりも車両の進行方向前方側に位置する場合には、第1ホイール領域80Aの面積の方が、第2ホイール領域90Aの面積よりも大きくなる。なお、第1ホイール領域80Aとは、ホイール60Aのうち、タイヤ50Aの回転中心(ここでは、車軸70Aの軸中心。)よりも車両の進行方向前方側に位置する領域である。また、第2ホイール領域90Aとは、ホイール60Aのうち、タイヤ50Aの回転中心よりも車両の進行方向後方側に位置する領域である。ここで、回転軸の中心の抽出は、ホイール60A及び車軸70Aの形状から行っても良いし、撮像画像におけるタイヤ50A及びホイール60Aの回転成分から行っても良い。
 また、図5に示されるように、ホイール60Aが車軸70Aの内側向きに凹んで配置されることに起因して、ダブルタイヤが、撮像装置20の撮像方向に対して車両の進行方向後方側に位置する場合には、ホイール60Aにおける、進行方向前方側の一部の領域が、タイヤ50Aの死角100Bに隠れてしまい、撮像装置20から見えなくなる。
 このため、図6に示されるように、撮像画像において、ダブルタイヤが、撮像画像の中心よりも車両の進行方向後方側に位置する場合には、第2ホイール領域90Bの面積の方が、第1ホイール領域80Bの面積よりも大きくなる。なお、第2ホイール領域90Bとは、ホイール60Aのうち、タイヤ50Aの回転中心よりも車両の進行方向後方側に位置する領域である。第1ホイール領域80Bとは、ホイール60Aのうち、タイヤ50Aの回転中心よりも車両の進行方向前方側に位置する領域である。
 一方、図7に示されるように、撮像対象となるタイヤがシングルタイヤである場合には、ホイール60Cが車軸70の外側向きに出っ張って配置されているために、ホイール60Cが、タイヤ50Cの死角に隠れてしまいにくい。
 図5~図7を用いて説明したように、対象とするタイヤが、ダブルタイヤである場合には、撮像画像におけるそのタイヤの位置によっては、タイヤ50Aの死角にホイール60Aの一部が隠れてしまう。これに起因して、第1ホイール領域(図6における第1ホイール領域80A又は第1ホイール領域80B。)の面積と、第2ホイール領域(図6における第2ホイール領域90A又は第2ホイール領域90B)の面積との比率が1対1ではなくなることがある。
 判定部130は、この現象を利用して、撮像画像においてタイヤ50Aのホイール60Aに生じた、タイヤ50Aによる死角に基づいて、対象となるタイヤがダブルタイヤであるか否の判定を行う。すなわち、判定部130は、第1ホイール領域(ここでは、第1ホイール領域80A、または第1ホイール領域80B。)の面積と、第2ホイール領域(ここでは、第2ホイール領域90A、または第2ホイール領域90B。)の面積との比率に基づいて、上記判定を行う。ここで、第1ホイール領域とは、撮像画像における、タイヤ50Aのホイール60Aのうち、タイヤ50Aの回転中心の位置よりも第1方向(ここでは、車両の進行方向前方)側に位置する領域である。また、第2ホイール領域とは、撮像画像における、タイヤ50Aのホイール60Aのうち、タイヤ50Aの回転中心の位置よりも、第1方向と逆向きの第2方向(ここでは、車両の進行方向後方)側に位置する領域である。
 より具体的には、判定部130は、タイヤ位置特定部120によって特定された、撮像画像におけるタイヤ50Aの位置が、撮像画像の中心位置よりも第1所定長以上第1方向側である場合において、第1ホイール領域80の面積の方が第2ホイール領域90の面積よりも大きいとき、対象となるタイヤがダブルタイヤであると判定する。また、判定部130は、タイヤ位置特定部120によって特定された、撮像画像におけるタイヤ50Aの位置が、撮像画像の中心位置よりも第2所定長以上第2方向側である場合において、第2ホイール領域90の面積の方が第1ホイール領域80の面積よりも大きいときに、対象となるタイヤがダブルタイヤであると判定する。
 また、タイヤ50Aの回転軸(車軸70A)の延長線に対する撮像装置20の位置から垂線の方向が第1方向とし、垂線の反対方向が第2方向としてもよい。つまり、回転軸の延長線と異なる方向から撮像装置20で撮像することで、タイヤ50Aによる死角に基づいて、対象となるタイヤがダブルタイヤであるか否かを判定することができる。
 ここで、第1所定長は、タイヤ位置特定部120によって特定された、撮像画像におけるタイヤ50Aの位置が、撮像画像の中心位置よりも第1方向側である場合において、第1ホイール領域80の面積の方が第2ホイール領域90の面積よりも有意に大きくなる長さであれば、どのような値であっても構わない。また、第2所定長は、タイヤ位置特定部120によって特定された、撮像画像におけるタイヤ50Aの位置が、撮像画像の中心位置よりも第2方向側である場合において、第2ホイール領域90の面積の方が第1ホイール領域80の面積よりも有意に大きくなる長さであれば、どのような値であっても構わない。第1所定長及び第2所定長は、例えば、撮像画像に対応する実空間における長さ(例えば、1m)によって規定される値であっても構わないし、例えば、撮像画像におけるピクセル数(例えば、100ピクセル)によって規定される値であっても構わない。また、第1所定長と第2所定長とが、例えば、同じ値であっても構わないし、例えば、互いに異なる値であっても構わない。
 上記構成のダブルタイヤ判定装置10が行う動作について、以下、図面を参照しながら説明する。
 [1-2.動作]
 ダブルタイヤ判定装置10は、その特徴的な動作として、ダブルタイヤ判定処理を行う。
 ダブルタイヤ判定処理は、車両に装着されたタイヤが含まれる撮像画像が入力された場合において、そのタイヤがダブルタイヤであるか否かを判定する処理である。
 図8は、ダブルタイヤ判定処理のフローチャートである。
 このダブルタイヤ判定処理は、画像入力部110に、車両に装着されたタイヤが含まれる撮像画像が入力されることで開始される。
 ダブルタイヤ判定処理が開始されると、画像入力部110は、入力された撮像画像を取得する(ステップS10)。
 撮像画像が取得されると、タイヤ位置特定部120は、画像処理を行って、その撮像画像に含まれるタイヤの回転中心の座標を算出し、算出した座標を、そのタイヤの位置として特定する(ステップS11)。
 タイヤの位置が特定されると、判定部130は、特定されたタイヤの位置が、撮像画像の中心位置よりも第1所定長以上、そのタイヤを装着する車両の進行方向前方(第1方向)側であるか否かを調べる(ステップS12)。
 ステップS12の処理において、特定されたタイヤの位置が、撮像画像の中心位置よりも第1所定長以上第1方向側である場合に(ステップS12:Yes)、判定部130は、第1ホイール領域の面積と、第2ホイール領域の面積とを比較する(ステップS13)。ここで、第1ホイール領域とは、撮像画像における、タイヤを保持するホイールの領域のうち、そのタイヤの回転中心よりも第1方向側に位置する領域である。また、第2ホイール領域とは、撮像画像における、タイヤを保持するホイールの領域のうち、そのタイヤの回転中心よりも第2方向側に位置する領域である。
 ステップS12の処理において、特定されたタイヤの位置が、撮像画像の中心位置よりも第1所定長以上第1方向側でない場合に(ステップS12:No)、判定部130は、そのタイヤの位置が、撮像画像の中心位置よりも第2所定長以上、そのタイヤを装着する車両の進行方向後方(第2方向)側であるか否かを調べる(ステップS14)。
 ステップS14の処理において、特定されたタイヤの位置が、撮像画像の中心位置よりも第2所定長以上第2方向側である場合に(ステップS14:Yes)、判定部130は、その撮像画像における第1ホイール領域の面積と、その撮像画像における第2ホイール領域の面積とを比較する(ステップS15)。
 ステップS13の処理において、第1ホイール領域の面積の方が第2ホイール領域の面積よりも大きい場合(ステップS13:Yes)、判定部130は、対象となるタイヤがダブルタイヤであると判定する(ステップS16)。また、ステップS15の処理において、第2ホイール領域の面積の方が第1ホイール領域の面積よりも大きい場合(ステップS15:Yes)、判定部130は、対象となるタイヤがダブルタイヤであると判定する(ステップS16)。
 ステップS13の処理において、第1ホイール領域の面積の方が第2ホイール領域の面積よりも大きくない場合(ステップS13:No)、判定部130は、対象となるタイヤがダブルタイヤでないと判定する(ステップS17)。また、ステップS15の処理において、第2ホイール領域の面積の方が第1ホイール領域の面積よりも大きくない場合(ステップS15:No)、判定部130は、対象となるタイヤがダブルタイヤでないと判定する(ステップS17)。
 ステップS16の処理が終了した場合、ステップS17の処理が終了した場合、または、ステップS14の処理において、特定されたタイヤの位置が、撮像画像の中心位置よりも第2所定長以上第2方向側でない場合(ステップS14:No)に、ダブルタイヤ判定装置10は、そのダブルタイヤ判定処理を終了する。
 [1-3.効果等]
 上述した通り、ダブルタイヤ判定装置10は、対象とするタイヤを含む撮像画像から、そのタイヤがダブルタイヤであるか否かを判定する。
 このため、ダブルタイヤ判定装置10によると、対象とするタイヤへの検出光の照射、及びその検出光の反射光の検知を行わずとも、そのタイヤがダブルタイヤであるか否かを判定し得る。
 (実施の形態2)
 ここでは、本開示の一態様として、実施の形態1に係るダブルタイヤ判定装置10から、その構成の一部が変更された実施の形態2に係るダブルタイヤ判定装置について説明する。
 実施の形態2に係るダブルタイヤ判定装置は、実施の形態1に係るダブルタイヤ判定装置10に対して、軸重計測部が追加される例となっている。軸重計測部は、撮像画像から車両の走行時に走行路に生じた変位の変位量を検出し、検出した変位量に基づいて、その変位量を生じる原因となった車両の軸重を算出する。
 以下、このダブルタイヤ判定装置について、実施の形態1に係るダブルタイヤ判定装置10との相違点を中心に、図面を参照しながら説明する。
 [2-1.構成]
 図9は、実施の形態2に係るダブルタイヤ判定装置11の構成を示すブロック図である。
 図9に示されるように、ダブルタイヤ判定装置11は、実施の形態1に係るダブルタイヤ判定装置10に対して、軸重計測部200が追加されて構成される。
 軸重計測部200は、例えば、マイクロプロセッサ(図示せず。)とメモリ(図示せず。)とを備えるコンピュータ(図示せず。)において、メモリに記憶されたプログラムをマイクロプロセッサが実行することによって実現される。
 軸重計測部200は、変位量検出部210と、軸重位置特定部220と、記憶部230と、軸重算出部240とを含む。
 軸重位置特定部220は、画像入力部110によって受け付けられた撮像画像に路上の車両が含まれる場合に、その撮像画像における、その車両の軸重位置を特定する。より具体的には、軸重位置特定部220は、撮像画像に対して画像認識処理を行い、撮像画像に車両が含まれるか否かを判定する。そして、車両が含まれると判定する場合には、軸重位置特定部220は、さらなる画像認識処理により、その車両のタイヤを認識し、そのタイヤの最下点に対応する走行路上の領域を軸重位置として特定する。
 変位量検出部210は、車両の走行路が撮像された撮像画像を用いて、軸重が加えられたことによってその走行路に生じる変位の、その撮像画像における変位量を検出する。特に、軸重位置特定部220によって軸重位置が特定された場合に、変位量検出部210は、その特定された軸重位置における変位について、変位量の検出を行う。すなわち、変位量検出部210は、画像入力部110によって受け付けられた複数の撮像画像のうち、走行路に変位が生じていない撮像画像と、変位が生じている撮像画像とを比較することで、その変位の変位量を検出する。画像間における変位の変位量の検出は、ブロックマッチングや相関法やオプティカルフローを用いることで実現可能である。この変位量は、例えば、比較対象となる画像間における、走行路上の同一地点に対応する画素位置の差を示す画素数として算出される。また、変位が生じていない撮像画像は、予め軸重対象が存在しない状態で撮像された撮像画像であっても良いし、時間的に連続して撮像された複数の撮像画像において、画像変化量が一定以下である撮像画像であっても良いし、画像認識処理により、軸重対象が存在しないと判定された撮像画像であっても良い。
 記憶部230は、軸重と変位量との関係を示す情報を記憶する。より具体的には、記憶部230は、走行路に軸重が加えられたことに起因して走行路に変位が生じる場合における、軸重と変位の変位量との関係を示す関係式、及び、この関係式で用いられる係数である変位係数を、情報として記憶する。情報には、車両のタイヤがシングルタイヤであるときの第1情報と、車両のタイヤがダブルタイヤであるときの第2情報の2種類がある。
 一般に、軸重w(kg)は、変位量d(画素数)の関数fとして、w=f(d)の式で表現される。ここでは、関数fを一次式で近似して取り扱うこととしている。このため、記憶部230は、変数をd、係数をαとして表わされる一次式w=αdを関係式として記憶し、係数αを変位係数として記憶する。
 この変位係数αは、軸重位置特定部220によって、軸重位置として特定され得る位置それぞれについて、その位置に対応付けられた変位係数値を有する。このことにより、走行路上の領域毎に、撮像位置からそれぞれの領域までの距離が互いに異なること、アスファルト等の組成が互いに異なること、路面温度が互いに異なること、路面の劣化状態が互いに異なること等を反映することができる。ここでは、変位係数αは、撮像画像における、例えば、横方向(x方向)10ピクセル、縦方向(y方向)10ピクセルからなる領域(以下、「局所領域」と呼ぶ。)毎に、その局所領域に対応する値を有している。
 また、記憶部230は、第1情報の係数α1と第2情報の係数α2を記憶している。そして、第1情報の係数α1と第2情報の係数α2は、α2=Aα1の関係がある。補正係数Aは、1より大きく2より小さな値、ここでは、例えば、1.5としている。
 ここで、補正係数Aは、例えば、予め実験を行うことで決定された値であって良い。例えば、変位量検出部210が、予め、既知の軸重の車軸に対して、その車軸に装着されるタイヤがダブルタイヤである場合とシングルタイヤである場合との変位量を検出し、それら変位量の比率を、補正係数Aとして決定しても良い。
 記憶部230によって記憶される変位係数α1及び変位係数α2の一例を図10A、図10Bに示す。
 軸重算出部240は、判定部130によって、対象とするタイヤがダブルタイヤであると判定された場合に、変位量検出部210から出力された変位量と、記憶部230によって記憶される第2情報(変位係数α2)とに基づいて、走行路上に存在する車両の軸重を算出する。特に、軸重位置特定部220によって軸重位置が特定された場合には、軸重算出部240は、特定された軸重位置における変位の変位量に基づいて、軸重の算出を行う。より具体的には、軸重算出部240は、変位量検出部210から出力された変位量dに、軸重位置特定部220によって特定される軸重位置を含む領域に対応する変位係数値を掛け合わせることで軸重wを算出する。
 また、軸重算出部240は、判定部130によって、対象とするタイヤがシングルタイヤであると判定された場合は、変位量検出部210から出力された変位量と、記憶部230によって記憶される第1情報(変位係数α1)とに基づいて、走行路上に存在する車両の軸重を算出する。
 上記構成のダブルタイヤ判定装置11が行う動作について、以下、図面を参照しながら説明する。
 [2-2.動作]
 ダブルタイヤ判定装置11は、その特徴的な動作として、軸重計測処理を行う。
 軸重計測処理は、ダブルタイヤ判定装置11に、車両が含まれる撮像画像が入力された場合において、その車両の軸重を算出する処理である。
 図11は、軸重計測処理のフローチャートである。
 この軸重計測処理は、画像入力部110に、車両が含まれる撮像画像(以下、この撮像画像を「撮像画像A」と呼ぶ。)が入力されることで開始される。
 軸重計測処理が開始されると、画像入力部110は、撮像装置20から入力された撮像画像Aを取得する(ステップS110)。
 図12は、取得された撮像画像Aの一例である。この撮像画像Aには、走行路30上を走行する車両40が含まれる。そして、この車両40は、そのタイヤの最下点510において走行路30に接触している。
 再び図11に戻って、軸重計測処理の説明を続ける。
 撮像画像Aが入力されると、軸重位置特定部220は、画像認識処理を行って、車両40のタイヤの最下点510を特定し、特定した最下点510に対応する走行路30上の領域を軸重位置として特定する(ステップS120)。
 ここで、特定する軸重位置は、必ずしも1点(1画素)でなくてもよく、隣接する複数画素からなる局所画像領域として特定されても良い。なお、軸重検出の対象とする軸重検出範囲を、走行路30の領域に限定しても良いし、走行路30の一部に限定しても良い。限定する領域を、ユーザが指定しても良いし、ユーザによる指定と、走行路の色やテクスチャの画像認識とを併用して行っても良い。軸重検出範囲を限定することで、画像処理量を抑制する効果がある。このため、軸重位置を検出するための処理量を抑制することができる。なお、撮像画像において複数のタイヤが走行路30に接触している場合には、接触位置のそれぞれに対応する、複数の軸重位置が検出されることとなる。
 軸重位置が特定されると、変位量検出部210は、特定された軸重位置において走行路に生じた変位の変位量を検出する(ステップS130)。この変位量の検出には、撮像画像Aと、画像入力部110によって取得された撮像画像のうちの、変位が生じていない撮像画像(以下、この撮像画像を「撮像画像B」と呼ぶ。)とを用いて行われる。軸重位置が特定されるまでに、画像入力部110によって撮像画像Bが取得されていない場合は、変位量検出部210は、画像入力部110によって撮像画像Bが取得されるまで待ってから、この変位量の検出を行う。
 図13は、取得された撮像画像Bの一例である。この撮像画像Bは、撮像画像A(図12参照)と同じ場所について、同じ視点から撮像された画像である。撮像画像Bにおける、走行路30上の領域610は、撮像画像Aにおける、タイヤの最下点510に対応する走行路30上の領域と同一領域である。また、撮像画像Bにおける、走行路30上の領域620は、撮像画像Aにおける走行路30上の領域520と同一領域である。
 変位量検出部210は、撮像画像Aにおける最下点510に対応する走行路30上の領域と、撮像画像Bにおける領域610との間で生じる変位の変位量を検出する。ここで、一般的な車両の軸重に起因する走行路の変位量は微小であるため、走行路を走行する車両の震動等による撮像装置20の揺れの影響を抑えることが望ましい。一例として、撮像画像Aと撮像画像Bとの双方において、軸重位置であると特定されない同一地点(例えば、撮像画像Aにおける領域520と、撮像画像Bにおける領域620と)を選出し、選出された領域間の変位量(以下、この変位量を「非軸重位置変位量」と呼ぶ。)を算出する。そして、撮像画像Aにおけるタイヤの最下点510に対応する走行路30上の領域と、撮像画像Bにおける領域610との間で生じる変位の変位量から、この非軸重位置変位量を差し引いて変位量を補正することで、撮像装置20の揺れの影響を抑えることが可能となる。他にも、光学的ブレ補正(Optical Image Stabilization)技術を利用する方法、センサシフト方式等の機械的機構を利用する方法等によっても撮像装置20の揺れの影響を抑えることが可能となる。
 再び図11に戻って、第1計測処理の説明を続ける。
 変位量が検出されると、軸重算出部240は、対象とするタイヤが、判定部130によってダブルタイヤであると判定されたか否かを調べる(ステップS140)。
 ステップS140の処理において、対象とするタイヤが、判定部130によってダブルタイヤであると判定された場合に(ステップS140:Yes)、軸重算出部240は記憶部230から変位係数α2を取得する(ステップS150)。
 ステップS140の処理において、対象とするタイヤが、判定部130によってダブルタイヤであると判定されなかった場合に(ステップS140:No)、軸重算出部240は記憶部230から変位係数α1を取得する(ステップS160)。
 ステップS150の処理および、ステップS160の処理により、変位係数値が取得されると、軸重算出部240は、取得された変位係数に、変位量検出部210から出力された変位量を掛け合わせることで、軸重を算出する(ステップS170)。
 軸重が算出されると、軸重算出部240は、算出された軸重の数値を外部に出力する(ステップS180)。ここで、軸重算出部240は、算出された軸重の数値を外部に出力する代わりに、算出された軸重の数値が予め定められた基準値よりも大きい場合に、その旨をユーザに報知するとしても良い。この際、この基準値は、絶対的な基準値でも良いし、相対的な基準値でも良い。これは、対応する撮像画像に含まれる車両が、過積載である可能性が比較的高いことを反映してなされるものである。
 ステップS180の処理が終了すると、ダブルタイヤ判定装置11は、その軸重計測処理を終了する。
 [2-3.効果等]
 一般に、走行路に軸重が加えられたことに起因してその走行路に生じる変位の変位量は、車軸に装着されるタイヤがダブルタイヤである場合には、そのタイヤがシングルタイヤである場合よりも小さくなる。
 上述した通り、ダブルタイヤ判定装置11は、軸重を算出する場合において、対象とするタイヤがダブルタイヤであるときには、変位量検出部210によって検出された変位量に対して、補正係数Aを乗じた変位係数α2を取得する。そして、ダブルタイヤ判定装置11は、変位係数α2を用いて、軸重を算出する。
 これにより、ダブルタイヤ判定装置11は、対象とするタイヤがダブルタイヤである場合であっても、変位量を補正しない従来型の算出方法で軸重を算出する従来の軸重計測装置に比べて、より精度良く軸重を計測し得る。
 (他の実施の形態)
 以上のように、本出願において開示する技術の例示として、実施の形態1、2について説明した。しかしながら、本開示における技術は、これらに限定されず、適宜、変更、置き換え、付加、省略等を行った実施の形態にも適用可能である。
 (1)実施の形態1において、走行路の走行方向に対して略垂直(約90°)の方向に撮像装置20を配置し、撮像画像において中心線よりも進行方向前方及び進行方向後方の位置ではタイヤを斜め方向から撮影できるとした。しかし、走行路の走行方向に対して45~80°及び100~135°の方向に撮像装置20を配置するとしても良い。この場合、撮像画像に撮像された車両が進行方向後方から進行方向前方に移動するに従い、第1ホイール領域と第2ホイール領域との面積比率が徐々に変化する。この変化度合いにより、対象となるタイヤがダブルタイヤであるか否かを判定することができる。
 (2)実施の形態1において、第1方向を車両の進行方向前方、第2方向を車両の進行方向後方とした。しかし、第1方向を車両の上方向、第2方向を車両の下方向としても良い。例えば、車両のタイヤよりも高い位置から撮影を行う。そして、ホイールの上側の一部の領域がタイヤの死角で隠れたとき、ダブルタイヤであると判定し、ホイールの上側の一部の領域がタイヤの死角で隠れないとき、ダブルタイヤであると判定しない。この場合、回転中心に対して、上側と下側のホイールの面積の比率に基づいて、タイヤがダブルタイヤであるか否かを判定すればよい。
 (3)実施の形態1において、ダブルタイヤ判定装置10は、撮像装置20によって撮像された撮像画像の入力を受け付ける画像入力部110を備える構成の例であるとして説明した。しかしながら、撮像画像を取得することができれば、ダブルタイヤ判定装置10は、必ずしも画像入力部110を備える構成である必要はない。例えば、画像入力部110を備える代わりに、撮像画像を撮像する撮像部を備えてもよい。そして、タイヤ位置特定部120が利用する撮像画像は、その撮像部によって撮像された撮像画像であるとしても構わない。このような構成にすることで、外部の撮像装置が不要となる。
 (4)実施の形態1において、ダブルタイヤ判定装置10は、マイクロプロセッサとメモリとを備えるコンピュータにおいて、メモリに記憶されたプログラムをマイクロプロセッが実行することによって実現される構成の例であるとして説明した。しかしながら、ダブルタイヤ判定装置10は、上記実現例と同等の機能を有していれば、必ずしも上記実現例通りに実現される構成の例に限定される必要はない。例えば、ダブルタイヤ判定装置10を構成する構成要素の一部又は全部が、専用回路によって実現される構成の例であっても構わない。
 (5)各実施の形態において、撮像画像は、モノクロ画像でもカラー画像でもマルチスペクトル画像であっても構わない。また、撮像する光の波長帯は、可視光以外に、紫外線、近赤外線、遠赤外線であっても構わない。
 (6)ダブルタイヤ判定装置10、11における各構成要素(機能ブロック)は、IC(Integrated Circuit)、LSI(Large Scale Integration)等の半導体装置により個別に1チップ化されてもよいし、一部又は全部を含むように1チップ化されてもよい。また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。更には、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてあり得る。
 また、上記各種処理の全部又は一部は、電子回路等のハードウェアにより実現されても、ソフトウェアを用いて実現されてもよい。なお、ソフトウェアによる処理は、ダブルタイヤ判定装置に含まれるプロセッサがメモリに記憶されたプログラムを実行することにより実現されるものである。また、そのプログラムを記録媒体に記録して頒布や流通させてもよい。例えば、頒布されたプログラムを、他のプロセッサを有する装置にインストールして、そのプログラムをそのプロセッサに実行させることで、その装置に、上記各処理を行わせることが可能となる。
 また、上述した実施の形態で示した構成要素及び機能を任意に組み合わせることで実現される形態も本開示の範囲に含まれる。
 本開示は、ダブルタイヤか否かを判定するダブルタイヤ判定装置に広く利用可能である。
 10、11 ダブルタイヤ判定装置
 110 画像入力部
 120 タイヤ位置特定部
 130 判定部
 210 変位量検出部
 220 軸重位置特定部
 230 記憶部
 240 軸重算出部

Claims (9)

  1.  車両に装着されたタイヤを含む撮像画像の入力を受ける画像入力部と、
     前記撮像画像から前記タイヤがダブルタイヤであるか否かを判定する判定部とを備え、
     前記判定部は、前記撮像画像における、前記タイヤを保持するホイールの領域のうち、前記タイヤの回転中心の位置よりも第1方向側に位置する第1ホイール領域の面積と、前記撮像画像における、前記タイヤを保持するホイールの領域のうち、前記回転中心の位置よりも、前記第1方向と逆向きの第2方向側に位置する第2ホイール領域の面積との比率に基づいて、前記タイヤがダブルタイヤであるか否かを判定する
     ダブルタイヤ判定装置。
  2.  前記撮像画像から、前記撮像画像における前記タイヤの位置を特定するタイヤ位置特定部を備え、
     前記判定部は、前記タイヤ位置特定部によって特定された前記撮像画像における前記タイヤの位置に基づいて、前記タイヤがダブルタイヤであるか否かを判定する
     請求項1に記載のダブルタイヤ判定装置。
  3.  前記第1方向は、前記車両の進行方向であり、
     前記判定部は、前記タイヤ位置特定部によって特定された、前記撮像画像における前記タイヤの位置が、前記撮像画像の中心位置よりも第1所定長以上前記第1方向側である場合において、前記第1ホイール領域の面積の方が前記第2ホイール領域の面積よりも大きいとき、前記タイヤがダブルタイヤであると判定する
     請求項2に記載のダブルタイヤ判定装置。
  4.  前記第1方向は、前記車両の進行方向であり、
     前記判定部は、前記タイヤ位置特定部によって特定された、前記撮像画像における前記タイヤの位置が、前記撮像画像の中心位置よりも第2所定長以上前記第2方向側である場合において、前記第2ホイール領域の面積の方が前記第1ホイール領域の面積よりも大きいとき、前記タイヤがダブルタイヤであると判定する
     請求項2に記載のダブルタイヤ判定装置。
  5.  前記第1方向は、前記タイヤの回転軸の延長線に対する前記撮像画像を撮像する撮像装置の位置から垂線の方向であり、
     前記判定部は、前記第1ホイール領域の面積の方が前記第2ホイール領域の面積よりも大きいときに、前記タイヤをダブルタイヤであると判定する
     請求項2に記載のダブルタイヤ判定装置。
  6.  前記撮像画像から、前記タイヤから軸重が加えられたことによって、前記車両が走行する走行路に生じる変位に対応した、前記撮像画像における変位量を検出する変位量検出部と、
     前記軸重と前記変位量との関係を示す情報を記憶する記憶部と、
     前記変位量と、前記情報と、前記判定部による判定の結果とに基づいて、前記軸重を算出する軸重算出部と、を備える
     請求項1~5のいずれか1項に記載のダブルタイヤ判定装置。
  7.  前記記憶部は、前記情報としてシングルタイヤ用の第1情報とダブルタイヤ用の第2情報とを記憶し、
     前記タイヤがダブルタイヤであると前記判定部が判定した場合、前記軸重算出部は、前記第2情報と、前記変位量とに基づいて、前記軸重の算出を行い、
     前記タイヤがダブルタイヤでないと前記判定部が判定した場合、前記軸重算出部は、前記第1情報と、前記変位量とに基づいて、前記軸重の算出を行う
     請求項6に記載のダブルタイヤ判定装置。
  8.  車両に装着されたタイヤを含む撮像画像の入力を受ける画像入力部と、
     前記撮像画像から、前記撮像画像において前記タイヤを保持するホイールに生じた、前記タイヤによる死角に基づいて、前記タイヤがダブルタイヤであるか否かを判定する判定部を備える
     ダブルタイヤ判定装置。
  9.  車両に装着されたタイヤを含む撮像画像の入力を受ける入力ステップと、
     前記撮像画像から前記タイヤがダブルタイヤであるか否かを判定する判定ステップとを含み、
     前記判定ステップにおいて、前記撮像画像における、前記タイヤを保持するホイールの領域のうち、前記タイヤの回転中心の位置よりも第1方向側に位置する第1ホイール領域の面積と、前記撮像画像における、前記タイヤを保持するホイールの領域のうち、前記回転中心の位置よりも、前記第1方向と逆向きの第2方向側に位置する第2ホイール領域の面積との比率に基づいて、前記タイヤがダブルタイヤであるか否かが判定される
     ダブルタイヤ判定方法。
PCT/JP2018/019221 2017-10-31 2018-05-18 ダブルタイヤ判定装置、及びダブルタイヤ判定方法 WO2019087444A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880067171.2A CN111213192B (zh) 2017-10-31 2018-05-18 双轮胎判定装置以及双轮胎判定方法
JP2019549831A JP7182195B2 (ja) 2017-10-31 2018-05-18 ダブルタイヤ判定装置、及びダブルタイヤ判定方法
US16/812,246 US11175175B2 (en) 2017-10-31 2020-03-06 Dual tire determination device and dual tire determination method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017211342 2017-10-31
JP2017-211342 2017-10-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/812,246 Continuation US11175175B2 (en) 2017-10-31 2020-03-06 Dual tire determination device and dual tire determination method

Publications (1)

Publication Number Publication Date
WO2019087444A1 true WO2019087444A1 (ja) 2019-05-09

Family

ID=66332922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019221 WO2019087444A1 (ja) 2017-10-31 2018-05-18 ダブルタイヤ判定装置、及びダブルタイヤ判定方法

Country Status (4)

Country Link
US (1) US11175175B2 (ja)
JP (1) JP7182195B2 (ja)
CN (1) CN111213192B (ja)
WO (1) WO2019087444A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110907200A (zh) * 2019-12-10 2020-03-24 重庆唯英科技有限公司 一种汽车单双胎识别系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019064682A1 (ja) * 2017-09-26 2019-04-04 パナソニックIpマネジメント株式会社 リフトアップ判定装置、及びリフトアップ判定方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162354A (ja) * 2015-03-04 2016-09-05 三菱重工メカトロシステムズ株式会社 車軸数検出装置、車種判別システム、車軸数検出方法及びプログラム
JP2016170508A (ja) * 2015-03-11 2016-09-23 三菱重工メカトロシステムズ株式会社 タイヤパターン判定装置、車種判別装置、タイヤパターン判定方法及びプログラム
JP2016170598A (ja) * 2015-03-12 2016-09-23 三菱重工メカトロシステムズ株式会社 タイヤパターン判定装置、車種判別装置、タイヤパターン判定方法及びプログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007046495B4 (de) * 2007-09-28 2017-01-12 Continental Automotive Gmbh Vorrichtung und Verfahren zur Unterscheidung der Reifen eines Doppelreifensystems
JP5218532B2 (ja) * 2010-12-01 2013-06-26 株式会社日本自動車部品総合研究所 運転支援装置および運転支援システム
JP2012198699A (ja) 2011-03-18 2012-10-18 Toshiba Corp 車両検出装置
DE102013200910A1 (de) * 2013-01-22 2014-07-24 Robert Bosch Gmbh Verfahren und Vorrichtung zur Fahrzeugvermessung
US10636227B2 (en) * 2014-06-19 2020-04-28 The Goodyear Tire & Rubber Company System and method for multiple feature detection and analysis of a rotating tire
JP2016192177A (ja) * 2015-03-31 2016-11-10 株式会社デンソーアイティーラボラトリ 車両検出システム、車両検出装置、車両検出方法、及び車両検出プログラム
CN107230207B (zh) * 2017-06-23 2020-06-02 合肥美亚光电技术股份有限公司 轮胎的检测方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162354A (ja) * 2015-03-04 2016-09-05 三菱重工メカトロシステムズ株式会社 車軸数検出装置、車種判別システム、車軸数検出方法及びプログラム
JP2016170508A (ja) * 2015-03-11 2016-09-23 三菱重工メカトロシステムズ株式会社 タイヤパターン判定装置、車種判別装置、タイヤパターン判定方法及びプログラム
JP2016170598A (ja) * 2015-03-12 2016-09-23 三菱重工メカトロシステムズ株式会社 タイヤパターン判定装置、車種判別装置、タイヤパターン判定方法及びプログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110907200A (zh) * 2019-12-10 2020-03-24 重庆唯英科技有限公司 一种汽车单双胎识别系统

Also Published As

Publication number Publication date
US11175175B2 (en) 2021-11-16
CN111213192B (zh) 2022-05-10
JP7182195B2 (ja) 2022-12-02
US20200209049A1 (en) 2020-07-02
JPWO2019087444A1 (ja) 2020-09-24
CN111213192A (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
KR101329471B1 (ko) 비접촉 휠 얼라인먼트 센서 및 방법
JP5354105B2 (ja) 距離測定装置および距離測定方法
JP6138861B2 (ja) 距離算出装置
WO2019087444A1 (ja) ダブルタイヤ判定装置、及びダブルタイヤ判定方法
CN112513676A (zh) 纵深取得装置、纵深取得方法以及程序
JP6635621B2 (ja) 自動車用視覚システム及び視覚システムを制御する方法
US10789727B2 (en) Information processing apparatus and non-transitory recording medium storing thereon a computer program
JP6204844B2 (ja) 車両のステレオカメラシステム
EP3062516B1 (en) Parallax image generation system, picking system, parallax image generation method, and computer-readable recording medium
JP5533739B2 (ja) 光学情報読み取り装置
JP6597467B2 (ja) 顔向き計測装置
JP3387168B2 (ja) 光学式位置検出装置
JPWO2019159759A1 (ja) 操作検出装置及び操作検出方法
US11010625B2 (en) Vehicle exterior environment recognition apparatus and method of recognizing exterior environment outside vehicle
JP7017966B2 (ja) 解析装置、解析方法、プログラム、及び記憶媒体
JP7115832B2 (ja) 測距装置
KR101583662B1 (ko) 광각 카메라 영상의 특징점 검출 방법
KR101228939B1 (ko) 거리 측정 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873140

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549831

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18873140

Country of ref document: EP

Kind code of ref document: A1