JP6635621B2 - 自動車用視覚システム及び視覚システムを制御する方法 - Google Patents

自動車用視覚システム及び視覚システムを制御する方法 Download PDF

Info

Publication number
JP6635621B2
JP6635621B2 JP2018526753A JP2018526753A JP6635621B2 JP 6635621 B2 JP6635621 B2 JP 6635621B2 JP 2018526753 A JP2018526753 A JP 2018526753A JP 2018526753 A JP2018526753 A JP 2018526753A JP 6635621 B2 JP6635621 B2 JP 6635621B2
Authority
JP
Japan
Prior art keywords
image
search
vertical
vision system
stereo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018526753A
Other languages
English (en)
Other versions
JP2019518253A (ja
Inventor
リンドグレン、レイフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veoneer Sweden AB
Original Assignee
Veoneer Sweden AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veoneer Sweden AB filed Critical Veoneer Sweden AB
Publication of JP2019518253A publication Critical patent/JP2019518253A/ja
Application granted granted Critical
Publication of JP6635621B2 publication Critical patent/JP6635621B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • G06T7/85Stereo camera calibration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/223Analysis of motion using block-matching
    • G06T7/231Analysis of motion using block-matching using full search
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • G06T2207/10012Stereo images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)

Description

本発明は、ステレオ撮像装置を形成する一対の撮像デバイスと、このステレオ撮像装置によって取り込まれた画像の修正と、修正画像のステレオマッチングとを実行し、ステレオマッチングされた画像から自動車の周囲にある物体を検出するように構成されるデータ処理装置とを備える、自動車用視覚システムに関する。また、本発明は、視覚システムを制御する方法に関する。
ステレオカメラから視差画像又は深度画像を正確に計算するために、互いに対する2つのカメラの向きがわからなければならない。2つのカメラ間のピッチ角に誤差があることによって、一方のカメラの視点が、他方のカメラの視点に比べて下がる。ロール角は、対応する光学軸の周りの画像面の回転を意味する。左画像と右画像との間の正確なステレオマッチングを実行するために、これら両方の角度がわからなければならない。自動車用ステレオカメラの場合、自動車用システムの温度変化及び長い寿命に起因して、これらの角度は車両の寿命にわたって一定ではない。それゆえ、ピッチ角誤差及びロール角誤差を推定するためのオンラインの解決策が必要とされる。
5点法(5-point method)又は特徴点法(feature point method)として知られる、ピッチ角及びロール角を推定するための従来の方法は、左画像及び右画像対において、特徴点と呼ばれる、例えば、5つの特有の点を見つけることと、これらの特徴点からピッチ角誤差及びロール角誤差を推定することとを伴う。しかしながら、この方法は、画像内の特徴点を見つけることを必要とし、特有の特徴点を見つけることができない、例えば、変化のない環境、微光の環境又は雨降りの環境において十分に機能しないであろう。
本発明の目的は、自動車の運転中にステレオカメラ間のピッチ角誤差及び/又はロール角誤差を正確に特定できるようにする視覚システム及び方法を提供することである。
本発明は、独立請求項の特徴を用いて、この目的を解決する。本発明によれば、一方の撮像デバイスからの修正画像の画像要素に対して、他方の撮像デバイスからの対応する修正画像の2次元探索エリア内の最も一致する(best-matching)画像要素の探索が実行される。その探索は、垂直シフト情報をもたらし、その情報から、その画像要素から最も一致する画像要素までの垂直シフトが導出可能である。本発明によれば、撮像デバイスの、又は撮像デバイス間のピッチ角誤差及び/又はロール角誤差を、そのような垂直シフト情報に基づいて、すなわち、垂直シフト情報から直接、又は間接的に容易に計算できることがわかった。本発明によれば、画像内の任意の特有の特徴点を見つける必要はなく、検査される自動車環境における全ての条件下で、ピッチ角誤差及びロール角誤差の特定が可能である。それらの計算は修正画像に関して実行されるので、その誤差は、計算されるステレオマッチング又は修正において使用されるピッチ角及び/又はロール角の誤差である。
本発明による画像要素は、ピクセル、すなわち、取り得る最小の画像要素若しくは画素とすることができるか、又は複数のピクセルから構成される画像エリア、例えば、p×qピクセルの長方形エリアとすることができる。ただし、p及びqは1より大きい整数である。
特に1次元水平探索エンジンの使用に関連する一実施形態において、垂直シフト情報は、検討対象の画像要素と、検討対象の画像要素に対して異なる垂直成分だけシフトされた他方の撮像デバイスからの対応する修正画像の複数の画像要素との間の垂直一致度を示す複数の一致関連スコアを含み、それにより、垂直マッチングコストキューブ(vertical matching cost cube)が生成される。具体的には、1次元水平探索エンジンが使用されるとき、各1次元水平探索が、1次元水平探索における水平位置ごとに1つの一致又はコスト値を有する、水平一致又はコストタプルを計算する。各水平一致又はコストタプル内の最も低い一致又はコスト値が抽出され、それにより、実行された水平探索ごとに1つの一致又はコスト値を含む垂直マッチングコストキューブが生成される。そのような垂直一致スコアキューブは、ステレオマッチングに影響を及ぼすピッチ角誤差及び/又はロール角誤差を計算するために必要とされる画像の全ての情報を含む。
好ましくは、複数の画像要素が、より大きな画像領域にまとめられ、垂直シフトごとに、その画像領域内の各画像要素からのコスト値、又は一致関連スコアが総計又は累積され、それにより、縮小サイズのマッチングコストキューブが生成される。この手法は、ピッチ角誤差及びロール角誤差の計算に関して十分に高い精度を依然として可能にしながら、大きい垂直マッチングコストキューブに比べて、データ量がはるかに少ないという利点を有する。言い換えると、数多くのピクセルからの一致スコア又はコスト値を画像領域に集約して、メモリ帯域幅、メモリサイズを節約し、処理要件を緩和することができる。
好ましくは、縮小コストキューブから、画像領域ごとに最良の一致を与える垂直シフトが特定され、それにより、垂直シフトマップが生成される。そのようなシフトマップから、ピッチ角誤差及び/又はロール角誤差を最も容易に計算することができる。例えば、同じ方向を指しており、同じサイズを有するシフトマップへの寄与からピッチ誤差を推定することができ、右側及び左側において反対方向を指しており、中央から左右に向かって増加するシフトマップへの寄与から、ロール誤差を推定することができる。代替的には、最小化関数、特に最小二乗最小化関数を同時に用いて、シフトマップからピッチ誤差及びロール誤差を計算することができる。また、シフトマップを使用することなく、垂直一致スコアキューブから、又は縮小コストキューブから直接、ピッチ角誤差及び/又はロール角誤差を計算することもできる。
幾つかの実施形態において、ピッチ角誤差及び/又はロール角誤差を計算することに加えて、垂直シフト情報から、両方の撮像デバイス間の焦点距離差の誤差を計算することができる。例えば、焦点距離差は、上側及び下側において反対方向を指しており、中央から上下に向かって増加するシフトマップへの寄与から推定することができる。代替的には、焦点距離差の誤差は、最小化関数を用いて、ピッチ誤差及び/又はロール誤差と同時にシフトマップから計算することができる。また、シフトマップを使用することなく、垂直一致スコアキューブから、又は縮小コストキューブから直接、焦点距離差の誤差を計算することもできる。
好ましい実施形態において、探索は、1次元水平探索エンジンを使用し、垂直方向において互いに対して異なる量だけシフトされた複数の1次元水平探索を実行することによって実行される。言い換えると、例えば、既存の1次元ステレオマッチングハードウェア又はソフトウェアエンジンを、視覚システムにおいて行われる標準的なステレオ計算と時分割することによって、単に再利用することができる。例えば、探索は、水平ステレオマッチングプロセスの空きタイムスロットにおいて、及び/又は水平ステレオマッチングプロセスと交互のタイムスロットにおいて実行することができる。
別の実施形態において、水平ステレオマッチングプロセスと探索とを同時に実行するために、完全に2次元の探索エンジンを使用することができる。両方のタスクの根底にある数学的問題は本質的に同じであるので、オプティカルフロー計算において使用される2次元探索エンジンが特に適している。そのような2次元探索エンジンは、検討対象の各画像要素から、他の撮像デバイスからの対応する画像内の最も一致する画像要素までのベクトルの形をとる垂直シフト情報をもたらす。ベクトルの垂直成分を単に取り出すことによって、これらのベクトルから垂直シフトマップを容易に導出することができる。
探索エンジンは、ソフトウェアエンジン又は専用探索ハードウェアとすることができる。詳細には、1次元探索エンジンは、水平ステレオマッチングハードウェアブロックによって形成することができる。
好ましくは、計算されたピッチ角誤差及び/又はロール角誤差は、後のステレオマッチングプロセスにおいて使用される。言い換えると、ピッチ角誤差及び/又はロール角誤差に起因する撮像デバイスのいかなる不一致も、運転中に自動的に絶えず補償することができる。
適切で正確な結果を得るために、適した信号処理アルゴリズムを用いて、各画像対から推定されたピッチ角及び/又はロール角をフィルタリングすることができる。また、統計値を改善し、それにより精度を高めるために、ピッチ角及び/又はロール角を推定する前に、幾つかのシフトマップを合成することもできる。同じ理由から、マッチングスコアキューブ又はコストキューブに基づいて更なる処理を実行する前に、特にシフトマップを計算する前に、幾つかのマッチングスコアキューブ又はコストキューブを合成することができる。
以下において、本発明は、添付の図面を参照しながら、好ましい実施形態に基づいて例示されることになる。
自動車内のステレオ視覚システムの概略図である。 左画像/右画像対のための水平ステレオマッチング及び垂直マッチングを示す図である。 コストキューブからのシフトマップの計算を概略的に示す図である。 シフトマップからのピッチ角誤差の計算を示す図である。 シフトマップからのロール角誤差の計算を示す図である。 シフトマップからの焦点距離ドリフトの計算を示す図である。
視覚システム10は、自動車内に取り付けられ、自動車の周囲の領域、例えば、自動車の前方の領域の画像を取り込むための撮像装置11を備える。撮像装置11は、ステレオ撮像装置11を形成し、可視及び/又は赤外波長範囲において動作する2つの光学撮像デバイス12a、12b、詳細にはカメラを備える。ただし、赤外線は、5ミクロンより短い波長を有する近IR及び/又は5ミクロンより長い波長を有する遠IRを含む。
撮像装置11は、撮像装置11から受信された画像データを処理するように構成されるデータ処理デバイス14に結合される。データ処理デバイス14は、有利には、撮像デバイス11による画像の取り込みを制御し、撮像装置11から画像情報を含む電気信号を受信し、左画像/右画像の対を修正するか、又はワーピングすることにより整合させ、及び/又は視差画像を作成するように構成される前処理セクション13を備え、それ自体は当該技術分野において既知である。画像前処理セクション13は、専用ハードウェア回路、例えば、フィールドプログラマブルゲートアレイ(FPGA)によって実現される場合がある。代替的には、前処理セクション13、又はその機能の一部は、マイクロプロセッサにおいて、又は例えば、FPGA、DSP、ARM及び/又はマイクロプロセッサ機能を備えるシステムオンチップ(SoC)デバイスにおいて実現することができる。
更なる画像及びデータ処理が、データ処理デバイス14において、対応するソフトウェアによって実行される。詳細には、データ処理デバイス14は、歩行者、他の車両、自転車運転者及び/又は大型動物等の自動車の前方に存在し得る物体を識別し、好ましくは分類もするように構成される物体検出セクション15と、物体検出セクション15によって識別された記録画像内の物体候補の位置を経時的に追跡するように構成される追跡セクション16と、追跡される物体の衝突確率を推定し、推定された衝突確率に応じて、少なくとも1つの運転者支援デバイス18、19を起動するか、又は制御するように構成される推定及び決定セクション17とを備える。運転者支援デバイス18は、詳細には、検出された物体に関連する情報を表示するためのディスプレイデバイス18を含むことができる。しかしながら、本発明は、ディスプレイデバイス18には限定されない。運転者支援デバイス18、19は、それに加えて、又はその代わりに、適切な光学、音響及び/又は触覚警告信号によって運転者に衝突警告を与えるように構成される警告手段;乗員エアバッグ又は安全ベルトテンショナー、歩行者エアバッグ、フードリフター等の1つ以上の拘束システム;及び/又はブレーキ若しくはステアリング手段等の動的車両制御システムを含むことができる。データ処理システム14は、メモリデバイス25を備えることが好ましい。
データ処理デバイス14は、プログラムされるか、又はプログラム可能であるデジタルデバイスであることが好ましく、マイクロプロセッサ、マイクロコントローラー、デジタルシグナルプロセッサ(DSP)、又は例えば、FPGA及びマイクロプロセッサ機能を備えるシステムオンチップ(SoC)を備えることが好都合である。前処理セクション13及びメモリデバイス25を含むデータ処理デバイス14は、車載電子制御ユニット(ECU)において実現されることが好ましく、個別のケーブル又は車両データバスを介して、撮像装置11に接続することができる。別の実施形態では、ECUと、撮像デバイス12のうちの1つ以上とを単一のユニットに統合することができ、ECU及び全ての撮像デバイス12を含むワンボックスの解決策が好ましい可能性がある。撮像、画像前処理、画像処理から、運転者支援デバイス18の起こり得る起動若しくは制御、及び/又は回帰分析までの全てのステップは、運転中に自動的に絶えずリアルタイムに実行される。
以下において、一例として、運転中の撮像デバイス12aと12bとの間のピッチ角誤差及び/又はロール角誤差の本発明の計算が説明される。以下の手順は、データ処理装置14、好ましくは、その前処理セクション13において行われる。
図2は、左側カメラ12aを用いて撮影された画像40及び右側カメラ12bを用いて撮影された画像41を示す。最初に、上記で言及されたように、修正ステップが与えられ、そのステップでは、左画像/右画像を整合させるために、それらの画像が互いに対して修正されるか、又はワーピングされる。
修正ステップ後に、修正された左画像/右画像において、水平ステレオマッチングステップが実行される。このステップは、左画像/右画像のピクセルごとに最良の水平一致を見つけることと、ピクセルごとに視差値を計算することとを含み、結果として深度情報を含む視差画像が生成される。具体的には、左画像/右画像のピクセルごとの最良の水平一致を見つけるステップにおいて、通常、一方の画像内のピクセル42ごとに、このピクセルの周りの小さな画像部分43が取り込まれ、コスト関数、例えば、絶対差の総和、又は二乗差の総和を用いて、他方の画像内の対応する小さな画像部分44に対して1次元水平探索45が行われる。
図3に示される方法は、修正された左画像/右画像のピクセル、又は複数のピクセルからなる領域に関して最良の垂直一致を見つけるステップを含む。このステップは、修正画像全体において実行することができるか、又は処理リソースを節約するために、修正画像の1つ以上のより小さな部分に関してのみ、例えば、1つの画像のnラインごとに、又はmラインのnグループごとに実行することができる。ただし、n及びmは1より大きい整数であり、例えば、n=2及びm=64である。さらに、このステップは、検討対象の修正画像又は修正画像部分(複数の場合もある)のピクセルごとに、又は全てのピクセルのサブセットに対して、例えば、nピクセルごとに実行することができる。ただし、nは1より大きい整数であり、例えば、n=2である。
通常、一方の画像40内のピクセル42ごとに最良の垂直一致を見つけるステップにおいて、このピクセルの周りの小さな画像部分43が取り込まれ、コスト関数、例えば、絶対差の総和、又は二乗差の総和を用いて、他方の画像41内の2次元探索領域51内の対応する小さな画像部分44に関して探索が行われる。
本実施形態において、探索は、1次元水平探索45、46、47を何度も繰り返すことによって実行され、各水平探索は、異なる量だけ、上下両方に、探索45の周りで垂直方向にシフトされる。図2において、例えば、水平探索45に対して、垂直方向上方にシフトされた2つの水平探索46及び垂直方向下方にシフトされた2つの水平探索47が実行され、結果として、5回の水平探索が行われる。水平探索45〜47の数は、好ましくは5より多く、好ましくは少なくとも10であり、より好ましくは少なくとも20であり、更に好ましくは少なくとも30であり、例えば、16+1+16=33であることは理解されたい。
互いに対する水平探索45、46、47の好ましくは等距離の垂直シフトは、1つ以上のピクセルだけシフトすること、又は好ましくはサブピクセルシフト、すなわち、ピクセルの数分の一だけシフトすることとすることができ、それは画像処理技法によって実行される。垂直サブピクセルシフトは、ピッチ角誤差及び/又はロール角誤差の特定において、1つ以上のピクセルだけシフトする場合より高い精度を与える。垂直シフトは、2つの画像40、41の一方において、新たな修正によって、又はリサンプリングによって実行される。
各1次元水平探索45、46、47は、1次元水平探索における水平位置ごとに1つの一致又はコスト値を有する、水平一致又はコストタプルを計算する。その後、各水平一致又はコストタプル内の最も低い一致又はコスト値が抽出され、それにより、実行された水平探索ごとに1つの一致又はコスト値を含む垂直マッチングコストキューブが生成される。より一般的には、2次元探索において使用されるコスト関数は、検討対象の個々のピクセル43ごとに実行される水平探索ごとに個別のコスト値をもたらす。それゆえ、検討対象のピクセルごとの個別のコスト値の数は、上記で言及された例において、そのピクセルに関して実行された水平探索の数、例えば、33に等しい。コスト値はここで、一致スコアを形成する;コスト値が小さいほど、一致度が高い。一致値が高いほど、一致度が高い一致値を含む、他のタイプの一致スコアも可能である。
複数の垂直にシフトされた1次元水平探索を介して実効的に2次元の探索を実行する上記で言及された実施形態は、最良の水平一致を実行するための通常の1次元マッチングエンジン又はハードウェアが、最良の垂直一致を見つけるためにも使用されるという利点を有する。それゆえ、新たな、又は適合したエンジン又はハードウェアは不要である。最良の垂直一致を見つけるために、水平マッチングエンジン又はハードウェアを時分割によって再利用することができる。例えば、交互のタイムスロットA−B−A−B−...において、水平ステレオマッチング(タイムスロットA)及び垂直にシフトされた水平探索(タイムスロットB)が非同時に実行される。結果として、1つのステレオマッチングハードウェアブロックを通して、1つの画像に関する異なる水平シフト及び垂直シフトを何度も実行することによって、1次元マッチングハードウェアを用いて、2次元探索が実行される。
抽出された(垂直)コスト値の組が、(垂直)コストキューブ52を構築する。図3を参照されたい。図3のコストキューブ52の前面は、画像40、41のサイズを有し、一方、第3の次元は、実行される垂直シフトに関する垂直コスト値によって形成される。単に一例として図3に与えられる数は、上記で言及されたように、1024px×288pxを有する画像と、ピクセルごとに計算された33個の垂直コスト値とに関連する。それゆえ、コストキューブ52は33単位の深度であり、概ね10^7個のコスト値を含む。
一例として、図2の画像要素44’は、最も低いコスト値を有することができ、すなわち、他方の画像の画像要素43との最良の垂直一致を有することができる。最良の垂直一致を与える、中央画像要素44から画像要素44’への矢印は、画像要素44’の垂直シフト45である。コストキューブ内のピクセルごとに、33個の対応するコスト値のうちの最も低いコスト値を識別することによって、大きいコストキューブ52から、1024×288垂直シフトマップを抽出することができる。しかしながら、そのような大きなシフトマップは、計算コストが非常に高くなる。
本発明において計算コストを下げるために、大きなコストキューブ52から、図3の右側に示される縮小コストキューブ50が計算されることが好ましい。これは、複数の画像要素又はピクセルを、n×mピクセルのより大きな画像領域にまとめることによって行われる。ただし、n及びmは1より大きい整数であり、好ましくは少なくとも5であり、より好ましくは少なくとも10である。検討対象の画像領域の数は、好ましくは少なくとも10であり、及び/又は好ましくは画像内のピクセルの全数の少なくとも10分の1であり、より好ましくは少なくとも100分の1である。実際の実施形態において、1024px×288pxフル画像は、図3に示されるような64px×48pxの領域にまとめることができ、その結果、16×6=96個の画像領域が生成される。画像領域ごとに、まとめられた一致スコアタプル(ここでは、33個の垂直シフトコスト値を含む)、又はまとめられたコストタプルは、例えば、検討対象の画像領域に属する大きいコストキューブ52のn×m個のコストタプル(例えば、64×48)の総和、又は平均として計算される。この結果として、例えば、16×6×33=3168個の(まとめられた)コスト値を有する、はるかに小さいサイズの縮小コストキューブ50が生成される。
より小さいコストキューブ50の大きな利点は、バッファリングされる必要があるデータ量が大きく削減されることである。1つの垂直シフトに対応する、コストキューブ内の各水平面は、一度に計算することができる。それゆえ、大きいコストキューブ52の場合に垂直シフトごとに1024×288個のコスト値を記憶しなければならない代わりに、この実施形態では、小さいコストキューブ50の場合に垂直シフトごとに16×6個のコスト値しか記憶される必要がなく、それは、3000分の1未満まで削減される。
縮小コストキューブ50から、シフトマップ48が計算されることが好ましい。縮小コストキューブ50内の画像要素49ごとに、対応するコストタプルのうちの(ここでは、33個の対応するコスト値のうちの)最良の一致スコア、すなわち、最も低いコスト値が特定される。この最良の一致スコア、すなわち、最も低いコスト値は、左画像/右画像内の画像領域間の最良の一致を与える特定の垂直シフトに相当する。各要素49の垂直シフトは、例えば、16×6個の画像領域49から構成される2次元シフトマップ48をもたらす。それゆえ、シフトマップ48は、最良の一致を与える垂直シフトがシフトマップ48の各要素49に割り当てられる2次元マップである。
シフトマップ48から、ステレオマッチングに影響を及ぼすピッチ角誤差、ロール角誤差及び他のパラメーターを簡単に計算することができる。例えば、同じ方向、ここでは上方を指しており、同じサイズを有するシフトマップへの寄与からピッチ誤差を推定することができる。図4を参照されたい。右側及び左側において反対方向を指しており、中央から左右に向かって増加するシフトマップへの寄与からロール誤差を推定することができる。図5を参照されたい。上側及び下側において反対方向を指しており、中央から上下に向かって増加するシフトマップへの寄与から両方の撮像デバイス間の焦点距離差又は焦点距離ドリフトを計算することができる。図6を参照されたい。
実際には、図4及び図5に示される純粋なパターンの一次結合が、シフトマップ48において生じる可能性が高い。適した処理技法を用いて、シフトマップ48から、ピッチ角誤差及びロール角誤差からの寄与を抽出することができる。
後続の修正及び/又はステレオマッチングにおいてこれらの誤差を補償できるようにするために、計算されたピッチ角誤差及びロール角誤差が前処理セクション13にフィードバックされることが好ましい。

Claims (14)

  1. 自動車用視覚システム(10)であって、
    ステレオ撮像装置(11)を形成する一対の撮像デバイス(12a、12b)と、
    前記ステレオ撮像装置(11)によって取り込まれた画像の修正と、修正画像のステレオマッチングとを実行し、ステレオマッチングされた画像から、前記自動車の周囲にある物体を検出するように構成されるデータ処理装置(14)とを備え、
    前記データ処理装置(14)は、一方の撮像デバイスからの修正画像内のピクセル毎又は複数のピクセルからなる領域毎に画像要素(43)に対して、他方の撮像デバイスからの対応する修正画像内の最も一致する画像要素(44’)の探索を実行するように構成され、
    前記探索は、2次元探索エリアを対象にし、前記各画像要素(43)から前記最も一致する画像要素(44’)への垂直シフトが導出可能である垂直シフト情報をもたらし、
    前記データ処理デバイス(14)は、前記垂直シフト情報から、前記撮像デバイス(12a、12b)間のピッチ角誤差及び/又はロール角誤差を計算するように構成されることを特徴とする、自動車用視覚システム。
  2. 前記垂直シフト情報は、検討対象の前記画像要素(43)と、検討対象の前記画像要素(43)に対して異なる垂直成分だけシフトされた他方の撮像デバイスからの対応する画像の複数の画像要素(44)との間の垂直一致度を示す複数の一致関連スコアを含み、それにより、垂直マッチングコストキューブ(52)が生成されることを特徴とする、請求項1に記載の視覚システム。
  3. 複数の画像要素がより大きな画像領域(49)にまとめられ、垂直シフトごとに、該画像領域(49)内の各画像要素から前記一致関連スコアが累積され、それにより、縮小サイズのマッチングコストキューブ(50)が生成されることを特徴とする、請求項2に記載の視覚システム。
  4. 画像領域(49)ごとに最良の一致を与える前記垂直シフトは、前記縮小コストキューブ(50)から特定され、それにより、垂直シフトマップ(48)が生成されることを特徴とする、請求項3に記載の視覚システム。
  5. 前記データ処理デバイス(14)は、前記垂直シフト情報から、両方の撮像デバイス間の焦点距離差を計算するように構成されることを特徴とする、請求項1〜4のいずれか一項に記載の視覚システム。
  6. 前記垂直シフト情報は、検討対象の各画像要素(43)から、前記他方の撮像デバイスからの前記対応する修正画像内の前記最も一致する画像要素(44’)へのベクトルを含むことを特徴とする、請求項1〜5のいずれか一項に記載の視覚システム。
  7. 前記ベクトルの垂直成分から垂直シフトマップ(48)が導出されることを特徴とする、請求項6に記載の視覚システム。
  8. 最小化関数、特に最小二乗最小化関数を同時に用いて、前記シフトマップ(48)からピッチ誤差及びロール誤差が計算されることを特徴とする、請求項4又は7に記載の視覚システム。
  9. 前記探索は、1次元水平探索エンジンを使用し、垂直方向において互いに対して異なる量だけシフトされる複数の1次元水平探索(45〜47)を実行することによって実行されることを特徴とする、請求項1〜8のいずれか一項に記載の視覚システム。
  10. 前記1次元水平探索エンジンは、前記ステレオマッチングプロセスと、前記探索とを、時分割によって非同時に実行するために使用されることを特徴とする、請求項9に記載の視覚システム。
  11. 前記探索は、前記ステレオマッチングプロセスの空きタイムスロットにおいて、及び/又は前記ステレオマッチングプロセスと交互のタイムスロットにおいて実行されることを特徴とする、請求項10に記載の視覚システム。
  12. 前記探索は、2次元探索エンジンを使用して、詳細には、オプティカルフロー計算を実行することができるアルゴリズムを利用して実行されることを特徴とする、請求項1〜8のいずれか一項に記載の視覚システム。
  13. 前記計算されたピッチ角誤差及び/又はロール角誤差は、後の修正及び/又はステレオマッチングプロセスにおいて使用されることを特徴とする、請求項1〜12のいずれか一項に記載の視覚システム。
  14. ステレオ撮像装置(11)を形成する一対の撮像デバイス(12a、12b)を使用する、自動車用視覚方法であって、前記ステレオ撮像装置(11)によって取り込まれた画像の修正と、修正画像のステレオマッチングと、ステレオマッチングされた画像から前記自動車の周囲にある物体を検出することとを含み、一方の撮像デバイスからの修正画像内のピクセル毎又は複数のピクセルからなる領域毎に画像要素(43)に対して、他方の撮像デバイスからの対応する修正画像内の最も一致する画像要素(44’)の探索を実行することであって、前記探索は、2次元探索エリアを対象にし、前記各画像要素(43)から前記最も一致する画像要素(44’)への垂直シフトが導出可能である垂直シフト情報をもたらすことと、前記垂直シフト情報から、前記撮像デバイス(12a、12b)間のピッチ角誤差及び/又はロール角誤差を計算することとを特徴とする、視覚方法。
JP2018526753A 2015-12-04 2016-12-02 自動車用視覚システム及び視覚システムを制御する方法 Active JP6635621B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP15198019.0A EP3176750B1 (en) 2015-12-04 2015-12-04 Vision system for a motor vehicle and method of controlling a vision system
EP15198019.0 2015-12-04
PCT/EP2016/079644 WO2017093518A1 (en) 2015-12-04 2016-12-02 Vision system for a motor vehicle and method of controlling a vision system

Publications (2)

Publication Number Publication Date
JP2019518253A JP2019518253A (ja) 2019-06-27
JP6635621B2 true JP6635621B2 (ja) 2020-01-29

Family

ID=54843673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018526753A Active JP6635621B2 (ja) 2015-12-04 2016-12-02 自動車用視覚システム及び視覚システムを制御する方法

Country Status (5)

Country Link
US (1) US10706589B2 (ja)
EP (1) EP3176750B1 (ja)
JP (1) JP6635621B2 (ja)
CN (1) CN108292441B (ja)
WO (1) WO2017093518A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3410705B1 (en) * 2017-06-02 2021-11-03 Veoneer Sweden AB 3d vision system for a motor vehicle and method of controlling a 3d vision system
CN111369425B (zh) * 2020-02-20 2024-05-14 北京迈格威科技有限公司 图像处理方法、装置、电子设备和计算机可读介质
EP4300423A1 (en) 2022-06-27 2024-01-03 Continental Autonomous Mobility Germany GmbH Robust stereo camera image processing method and system
KR102608332B1 (ko) * 2023-03-03 2023-11-30 국방과학연구소 대상 추적 알고리즘

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3266827B2 (ja) 1997-06-25 2002-03-18 本田技研工業株式会社 車両の物体検知装置
US5964822A (en) 1997-08-27 1999-10-12 Delco Electronics Corp. Automatic sensor azimuth alignment
DE19751004A1 (de) 1997-11-18 1999-05-20 Daimler Chrysler Ag Verfahren zur Verarbeitung von Radarsignalen
US6577269B2 (en) 2000-08-16 2003-06-10 Raytheon Company Radar detection method and apparatus
JP4265803B2 (ja) 2005-11-22 2009-05-20 三菱電機株式会社 レーダシステム
US20080002878A1 (en) * 2006-06-28 2008-01-03 Somasundaram Meiyappan Method For Fast Stereo Matching Of Images
WO2008075271A2 (en) * 2006-12-18 2008-06-26 Koninklijke Philips Electronics N.V. Calibrating a camera system
DE102008008619A1 (de) * 2008-02-12 2008-07-31 Daimler Ag Verfahren zur Kalibrierung eines Stereokamerasystems
EP2254091B1 (en) * 2009-05-19 2020-03-25 Veoneer Sweden AB Vision system and method for a motor vehicle
JP5588812B2 (ja) 2010-09-30 2014-09-10 日立オートモティブシステムズ株式会社 画像処理装置及びそれを用いた撮像装置
US8866889B2 (en) 2010-11-03 2014-10-21 Microsoft Corporation In-home depth camera calibration
JP2012177676A (ja) * 2011-01-31 2012-09-13 Sony Corp 画像処理装置および方法、並びにプログラム
US20130016186A1 (en) * 2011-07-13 2013-01-17 Qualcomm Incorporated Method and apparatus for calibrating an imaging device
JP2013093013A (ja) 2011-10-06 2013-05-16 Ricoh Co Ltd 画像処理装置、車両
DE102011055795A1 (de) 2011-11-29 2013-05-29 Continental Automotive Gmbh Verfahren zur Ermittlung eines drohenden Überschlags eines Fahrzeugs
DE102012009577A1 (de) 2012-05-15 2012-11-29 Daimler Ag Verfahren zur Kalibrierung und Verfahren zur Justierung von Einzelbildkameras einer Kameraanordnung
JP5695000B2 (ja) * 2012-08-13 2015-04-01 本田技研工業株式会社 車両周辺監視装置
US9066085B2 (en) 2012-12-13 2015-06-23 Delphi Technologies, Inc. Stereoscopic camera object detection system and method of aligning the same
US9384551B2 (en) * 2013-04-08 2016-07-05 Amazon Technologies, Inc. Automatic rectification of stereo imaging cameras
CN103679707A (zh) * 2013-11-26 2014-03-26 西安交通大学 基于双目相机视差图的道路障碍物检测系统及检测方法
EP3736732A1 (en) 2014-01-30 2020-11-11 Mobileye Vision Technologies Ltd. Systems and methods for lane end recognition

Also Published As

Publication number Publication date
EP3176750A1 (en) 2017-06-07
JP2019518253A (ja) 2019-06-27
WO2017093518A1 (en) 2017-06-08
CN108292441B (zh) 2022-05-24
US10706589B2 (en) 2020-07-07
EP3176750B1 (en) 2019-03-13
CN108292441A (zh) 2018-07-17
US20180357792A1 (en) 2018-12-13

Similar Documents

Publication Publication Date Title
US9912933B2 (en) Road surface detection device and road surface detection system
JP6635621B2 (ja) 自動車用視覚システム及び視覚システムを制御する方法
JP4702569B2 (ja) 車両用画像処理装置
JP2013190421A (ja) 車両において通行物体位置検出を向上する方法
JP6743171B2 (ja) 自動車両の道路付近の物体を検出するための方法、コンピュータデバイス、運転者支援システム、及び、自動車両
JP7041172B2 (ja) 自動車用3d視覚システム、及び3d視覚システムを制御する方法
US20170318279A1 (en) Stereo camera apparatus and vehicle comprising the same
KR102082254B1 (ko) 차량 인식 시스템
US20190362512A1 (en) Method and Apparatus for Estimating a Range of a Moving Object
JP5539250B2 (ja) 接近物体検知装置及び接近物体検知方法
CN109278642A (zh) 车辆倒车安全性映射
JP2018060422A (ja) 物体検出装置
US9824449B2 (en) Object recognition and pedestrian alert apparatus for a vehicle
JP6564127B2 (ja) 自動車用視覚システム及び視覚システムを制御する方法
CN111989541B (zh) 立体摄像机装置
JP7003972B2 (ja) 距離推定装置、距離推定方法及び距離推定用コンピュータプログラム
JP5832850B2 (ja) 車線監視システム及び車線監視方法
JP6466679B2 (ja) 物体検出装置
WO2017122688A1 (ja) 車載カメラのレンズ異常検出装置
US11420855B2 (en) Object detection device, vehicle, and object detection process
JP4661578B2 (ja) 移動体認識装置
JP2014067320A (ja) ステレオカメラ装置
JP2017211765A (ja) 物体認識装置
US11010625B2 (en) Vehicle exterior environment recognition apparatus and method of recognizing exterior environment outside vehicle
JP2006107000A (ja) 画像異常判定方法及び画像異常判定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180531

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20181114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191216

R150 Certificate of patent or registration of utility model

Ref document number: 6635621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350