WO2019087329A1 - シート材 - Google Patents

シート材 Download PDF

Info

Publication number
WO2019087329A1
WO2019087329A1 PCT/JP2017/039541 JP2017039541W WO2019087329A1 WO 2019087329 A1 WO2019087329 A1 WO 2019087329A1 JP 2017039541 W JP2017039541 W JP 2017039541W WO 2019087329 A1 WO2019087329 A1 WO 2019087329A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet material
embossing
skin
thickness
skin material
Prior art date
Application number
PCT/JP2017/039541
Other languages
English (en)
French (fr)
Inventor
和之 東條
学 山塚
Original Assignee
住江織物株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住江織物株式会社 filed Critical 住江織物株式会社
Priority to JP2017560838A priority Critical patent/JP6321308B1/ja
Priority to PCT/JP2017/039541 priority patent/WO2019087329A1/ja
Publication of WO2019087329A1 publication Critical patent/WO2019087329A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/06Embossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes

Definitions

  • the present invention relates to a sheet material, and in particular to a sheet material suitable for embossing.
  • An embossed sheet material is known as a sheet material for covering the surface of a seat, a sofa, a seat and the like of a vehicle.
  • a skin material is laminated on a base material having elasticity, such as a foamed polyurethane resin.
  • the surface material is embossed.
  • the base material is compressed and deformed to form a recess, and an uneven pattern is formed on the surface of the sheet material.
  • Such a concavo-convex pattern improves the design of the sheet material and changes the tactile sensation.
  • Patent Document 1 describes a method of manufacturing a sheet material having a deep and clear concavo-convex pattern.
  • the sheet material is formed by integrally laminating a skin material, a flexible polyurethane foam material, and a base material made of a cushion layer.
  • a deep and clear asperity pattern is formed on the surface of the sheet material. That is, the concave portion is reliably formed on the surface of the sheet material by sufficient pressing by the convex portion of the emboss type. As a result, in the sheet material, the uneven pattern can be clearly recognized.
  • An object of the present invention is to provide a sheet material capable of forming a deep and clear uneven pattern and a fine uneven pattern.
  • a sheet material of the present invention is provided with a base material which has elasticity, and a skin material laminated on the surface of the above-mentioned base material, and a sheet in which a concavo-convex pattern is formed on the surface of the above-mentioned skin material.
  • the material is provided.
  • the average value of constant load elongation in the first direction and the second direction orthogonal to each other of the skin material is 25 to 70%.
  • the thickness change rate is 15% when embossed under the conditions of a mold temperature of 180 ° C, a pressure of 40 t / cm 3 , and a heating time of 45 seconds in a test pattern with an embossed portion of 40 mm ⁇ 50 mm and a line width of 2 mm. It is below.
  • the skin material easily extends in the first direction and the second direction orthogonal to each other. Moreover, the thickness change rate before and after embossing can be suppressed small. Therefore, in the convex portion on the surface of the sheet material, the surface material easily follows the compression return of the base material after embossing, and the surface material is easily stretched, and easily returns to a thickness close to the thickness of the sheet material before embossing. As a result, the difference in height between the convex portion and the concave portion of the concavo-convex pattern is easily obtained, and a deep and clear concavo-convex pattern or a fine concavo-convex pattern can be formed.
  • the thickness change rate defined here is calculated by the following equation (1). That is, as shown in FIGS. 1 (a) and 1 (b), when the material thickness of the sheet material before embossing is a and the maximum thickness of the projections of the sheet material after embossing is b, the thickness change The rate is calculated by the following equation (1).
  • the above sheet material preferably has an emboss ratio of 45% or more when embossed under the above conditions.
  • the skin material preferably has a constant load elongation in a first direction of 0.3 to 1.5 times a constant load elongation in a second direction.
  • the value of the constant load elongation in the first direction and the second direction orthogonal to each other of the skin material does not differ greatly. It is easy to extend in the first direction and the second direction orthogonal to each other, and the balance of the extension is good. Therefore, the surface material can easily follow the compression return of the base material after embossing, and the difference in height between the convex portion and the concave portion of the concavo-convex pattern can be more easily produced.
  • the above-mentioned surface material has a tensile elongation percentage by the KES test of 5% or more in each of the first direction and the second direction. According to this configuration, the skin material easily extends in the first direction and the second direction orthogonal to each other.
  • the tensile elongation in the second direction according to the KES test is 1.5 or more times the tensile elongation in the first direction according to the KES test. According to this configuration, the skin material easily stretches following the compression return of the base material after embossing. Therefore, the difference in height between the convex portion and the concave portion of the concavo-convex pattern can be more easily obtained.
  • the sheet material of the present invention it is possible to form a deep and clear uneven pattern and a fine uneven pattern.
  • (A) is a cross-sectional view of the sheet material before embossing
  • (b) is a cross-sectional view of the sheet material after embossing.
  • the graph which shows the relationship between the thickness change rate of the sheet material of each Example and each comparative example, and the embossing ratio.
  • the sheet material 1 has the base material 3 which has elasticity, and the skin material 2 laminated
  • the sheet material 1 may have the backing 4 composed of one or more layers also on the second surface of the substrate 3.
  • the sheet material 1 is embossed from the surface material 2 to form a concavo-convex pattern.
  • the skin material 2 preferably has a constant load elongation in the warp direction and a constant load elongation in the weft direction in the range of 20 to 80%, and more preferably in the range of 20 to 65%.
  • the average value of the constant load elongation in the warp direction and the constant load elongation in the weft direction is preferably in the range of 25 to 75%, and more preferably in the range of 28 to 70%.
  • the skin material 2 preferably has a constant load elongation in the longitudinal direction of 0.3 to 1.5 times and preferably 0.7 to 1.3 times the constant load elongation in the weft direction. More preferable. When the ratio of constant load elongation in the warp and weft directions is within this range, the balance of the constant load elongation in the warp and weft directions is well balanced, and the skin material 2 changes the shape of the base material 3 having elasticity. It becomes easy to follow.
  • the surface material 2 preferably has a tensile elongation in the warp direction and a tensile elongation in the weft direction of 5% or more, more preferably 6% or more, according to the KES test.
  • the tensile elongation in the weft direction is preferably 1.5 times or more, more preferably 2.0 times or more the tensile elongation in the warp direction.
  • the structure of the skin material 2 is not particularly limited.
  • tissue of the surface material 2 a knitted fabric, a woven fabric, a lace fabric, a nonwoven fabric etc. are mentioned, for example. Above all, it is preferable that the structure of the surface material 2 is a knitted fabric, in terms of stretchability that follows the shape change of the base material 3 having elasticity.
  • the knitted fabric is not particularly limited, but is preferably a knitted fabric knitted by a tricot knitting machine using a plurality of bales.
  • the knitting structure include denbi knitting, cord knitting, half knitting, satin knitting and the like.
  • the knitting structure is formed in which the loops of the warps of different hooks in the same series are offset.
  • the warp loops of the back hook (L1) and the loops of the warp of the front hook (L2) in the same series as the back hook are woven at offset positions.
  • the warp loops of the back hook (L1) and the loops of the warp of the middle hook (L2) in the same series as the back hook are woven in It is preferable that it is a knitting structure in which the warp yarn is lapped over a knitting needle of two or more needles.
  • the constant load elongation rate and the tensile elastic modulus in the longitudinal direction and the latitudinal direction of the knitted fabric become large, and the surface material 2 becomes a knitted structure that easily follows the shape change of the base material 3.
  • appropriate thickness can be given to the surface material 2.
  • the stitch density is not particularly limited. It is preferably 1600 to 12000 pcs / inch 2 , more preferably 2000 to 9000 pcs / inch 2 , and still more preferably 3000 to 9000 pcs / inch 2 .
  • the stitch density in the machine direction is preferably in the range of 40 to 80 wells / inch, and more preferably in the range of 50 to 70 wells / inch.
  • the stitch density in the weft direction latitude density
  • the weft density is preferably 1.0 to 2.0 times the warp density.
  • the constant load elongation rate in the warp direction and the weft direction of the knitted fabric and the tensile elastic modulus become large, and the skin material 2 becomes a knit structure that easily follows the shape change of the base material 3 .
  • the type of fiber used for the surface material 2 is not particularly limited.
  • the type of fiber include natural fibers such as plant fibers and animal fibers, and chemical fibers such as synthetic fibers, semi-synthetic fibers, and regenerated fibers.
  • synthetic fibers for example, polyurethane (PU) fiber, polyethylene terephthalate (PET) fiber, polyethylene naphthalate (PEN) fiber, acrylic fiber, polyvinyl alcohol fiber, polyethylene (PE) fiber, polypropylene (PP) fiber, etc. are mentioned. Be These may be used alone or in combination of two or more.
  • the surface material 2 is a knitted fabric knitted by a tricot knitting machine using a plurality of wrinkles
  • the fineness of the fibers used for the surface material 2 is not particularly limited.
  • the fineness of the fiber is preferably in the range of 20 to 200 dtex, and more preferably in the range of 20 to 100 dtex.
  • the constant load elongation rate and the tensile elongation rate of the surface material 2 can be set to a suitable range.
  • the single fiber fineness of the fibers used for the surface material 2 is not particularly limited.
  • the single fiber fineness of the fiber is preferably in the range of 0.1 to 100 dtex, and more preferably in the range of 0.3 to 50 dtex. When the single fiber fineness of the fiber is in this range, the abrasion resistance of the surface material 2 is improved.
  • the material thickness of the surface material 2 is not particularly limited.
  • the fabric thickness of the surface material 2 is preferably in the range of 0.3 to 3.0 mm, and more preferably 0.5 to 2.0 mm. When the fabric thickness is in this range, the surface material 2 can easily stretch following the compression return of the base material 3 after embossing, and a deep and clear uneven pattern and a fine uneven pattern can be formed.
  • the substrate 3 is formed of an elastic material.
  • the material having elasticity is not particularly limited, but is preferably a foam material obtained by foaming a conventionally known resin.
  • a polyurethane resin a polystyrene resin, a polyethylene resin, a polypropylene resin, a polyvinyl chloride resin, a silicone resin, a polyimide resin etc. are mentioned, for example.
  • a polyurethane foam formed by foaming a polyurethane resin is preferable, and a flexible polyurethane foam is more preferable because it has appropriate flexibility and is excellent in resilience.
  • polyurethane resin which comprises a polyurethane foam, polyether-type polyurethane resin, polyester-type polyurethane resin, polycarbonate-type polyurethane resin etc. are mentioned. These may be used alone or in combination of two or more.
  • the thickness of the substrate 3 is not particularly limited.
  • the thickness of the substrate 3 is preferably in the range of 2 to 10 mm, and more preferably in the range of 2 to 6 mm.
  • the thickness of the substrate 3 is preferably 2 to 20 times the thickness of the surface material 2 and more preferably 2 to 10 times the thickness of the surface material 2. When the thickness of the substrate 3 is in this range, it is easy to distinguish between the concave and the convex after embossing, and a clear asperity pattern can be formed on the surface of the sheet material 1.
  • the thickness change rate when embossed specifically, a test pattern having an embossed portion of 40 mm ⁇ 50 mm and a line width of 2 mm
  • the thickness change rate is preferably 5% or more and 15% or less, preferably 5% or more and 13% or less when embossed under conditions of a mold temperature of 180 ° C., a pressure of 40 t / cm 3 , and a heating time of 45 seconds. Is more preferably 5% to 12%.
  • the embossing ratio at the time of embossing specifically, in a test pattern having an embossed portion of 40 mm ⁇ 50 mm and a line width of 2 mm, a mold temperature of 180 ° C. and a pressure of 40 t / cm 3
  • the embossing ratio when embossed under the condition of a heating time of 45 seconds is preferably 45% or more and 65% or less, and more preferably 47% or more and 60% or less.
  • the emboss ratio is in this range, in the sheet material 1 after embossing, the concave portion of the concavo-convex pattern is reliably pressed, and a sharp and sharp concavo-convex pattern is easily formed between the convex portion and the concave portion. can do.
  • the skin material 2 has a constant load elongation in the warp direction and a constant load elongation in the weft direction in the range of 20 to 80%. Therefore, the covering material 2 is easily stretched in the longitudinal direction and the latitudinal direction. Therefore, the surface material 2 can easily follow the shape change of the elastic base material 3 and can easily follow the compression return of the base material 3 when the sheet material 1 is embossed. Therefore, the convex part of uneven
  • the surface material 2 has a constant load elongation rate in the warp direction and an average value of the constant load elongation rate in the weft direction in the range of 25 to 75%. Therefore, the surface material 2 is easily stretched and easily follows the shape change of the elastic base material 3.
  • the constant load elongation in the warp direction is 0.3 to 1.5 times the constant load elongation in the weft direction. Therefore, it is easy to extend in the longitudinal direction and the latitudinal direction orthogonal to each other, the balance of the elongation becomes good, and the surface material 2 easily follows the change in shape of the elastic base material.
  • the skin material 2 has a tensile elongation in the warp direction and a tensile elongation in the weft direction of 5% or more by the KES test. Therefore, the covering material 2 is easily stretched in the longitudinal direction and the latitudinal direction. Therefore, the surface material 2 can easily follow the shape change of the elastic base material 3 and can easily follow the compression return of the base material 3 when the sheet material 1 is embossed. Therefore, the convex part of uneven
  • the skin material 2 has a tensile elongation in the latitudinal direction measured by the KES test of 1.5 or more times that in the warp direction. Therefore, the surface material can easily expand following the compression return of the base material after embossing, and the difference in height between the convex portion and the concave portion of the concavo-convex pattern can be more easily produced.
  • the sheet material 1 has a thickness change rate of 5% to 15% when embossed under the above conditions. Therefore, in the sheet material 1 after embossing, the difference in height between the convex portion and the concave portion of the concavo-convex pattern is easily generated, and a deep and clear concavo-convex pattern or a fine concavo-convex pattern can be formed.
  • the sheet material 1 has an embossing ratio of 45% to 65% when embossed under the above conditions. Therefore, in the sheet material 1 after embossing, the concave portion of the concavo-convex pattern is reliably pressed, and the convex portion and the concave portion are easily sharpened, and a deep and clear concavo-convex pattern can be formed.
  • Example 1 The surface material is a knitted fabric with a closure of 1-0 / 1-2 and a closure of 2-3 / 1-0 using a two-strip tricot knitting machine. And half 1).
  • the weir L1 was a polyurethane (PU) fiber having a fineness of 44 dtex and a fineness of 44 dtex
  • the weir L2 was a polyethylene terephthalate (PET) fiber having a fineness of 56 dtex and a fineness of 1.56 dtex.
  • PU polyurethane
  • PET polyethylene terephthalate
  • the surface density of the skin material is 69 wells / inch, the weft density is 108 courses / inch, and the fabric thickness is 0.7 mm.
  • a polyurethane foam with a thickness of 5 mm and a specific gravity of 20 kg / m 3 was used.
  • the adhesion between the base material and the surface material was performed as follows.
  • the flame of a gas burner was directly applied to the polyurethane foam to melt the surface of the polyurethane foam, and the surface material was bonded to the surface in the molten state and left for several hours. Thereby, a sheet material in which the base material and the skin material were adhered was obtained.
  • Example 2 The surface material is a knitted fabric with a closure of 1-0 / 1-2, a closure of 1 / 1-2 and a closure of 3-4 / 1-0 by using a 2-cot tricot knitting machine And satin 1).
  • the fibers of the ridges L1 and L2 were the same as in Example 1.
  • the skin density of the skin material is 68 wells / inch, the weft density is 116 courses / inch, and the fabric thickness is 0.9 mm.
  • As a substrate a urethane foam having a thickness of 3 mm and a specific gravity of 20 kg / m 3 was used.
  • the adhesion between the substrate and the skin material was performed in the same manner as in Example 1.
  • the surface material is a knitted fabric in which the eyelid L1 is closed at 1-0 / 1-2 and the eyelid L2 is closed at 1-0 / 2-3 using a two-sheet tricot knitting machine (see below , Called half.
  • a polyethylene terephthalate fiber having a fineness of 84 dtex and a single fiber fineness of 2.33 dtex was used for the weir L1
  • a polyethylene terephthalate fiber having a fineness of 84 dtex and a single fiber fineness of 0.88 dtex was used for the weir L2.
  • the surface density of the skin material is 42 wells / inch, the weft density is 68 courses / inch, and the fabric thickness is 0.7 mm. This was similarly adhered to the same base material as Example 1 to obtain a skin material.
  • Comparative example 2 The skin material used was the same as in Comparative Example 1.
  • a substrate a polyurethane foam having a thickness of 3 mm and a specific gravity of 20 kg / m 3 was used.
  • the adhesion between the substrate and the skin material was performed in the same manner as in Example 1.
  • Example 3 Using a three-sheet tricot knitting machine, the skin material is knitted with a closure of 1-0 / 1-2, a closure of L2 with a closure of 1-2 / 1-0 (hereinafter referred to as “Denbi”). A knitted fabric was used in which the eyelid L3 was knitted with two stitches of 0-1 / 3-2.
  • the ⁇ L1 is a polyurethane fiber having a fineness of 44 dtex and a single fiber fineness of 44 dtex
  • the ⁇ L2 is a polyethylene terephthalate fiber having a fineness of 33 dtex and a single fiber fineness of 2.75 dtex
  • the ⁇ L3 is a polyethylene terephthalate fiber having a fineness of 84 dtex and a single fiber fineness of 0.88 dtex
  • the surface density of the skin material is 57 wells / inch
  • the weft density is 86 courses / inch
  • the fabric thickness is 0.7 mm.
  • As a substrate a polyurethane foam with a thickness of 5 mm and a specific gravity of 20 kg / m 3 was used. The adhesion between the substrate and the skin material was performed in the same manner as in Example 1.
  • Example 4 Using a three-sheet tricot knitting machine, the skin material is knitted as in Example 3 in the same manner as in Example 3 (Denbi 1), and a 7-needle swing of 0-1 / 8-7 I used a knitted fabric that was knitted with my eyes.
  • the fibers of ridges L1, L2 and L3 were the same as in Example 3.
  • the skin density of the surface material was 58 wells / inch, the weft density was 65 courses / inch, and the fabric thickness was 1.5 mm.
  • a polyurethane foam with a thickness of 5 mm and a specific gravity of 20 kg / m 3 was used. The adhesion between the substrate and the skin material was performed in the same manner as in Example 1.
  • Example 5 Using a three-sheet tricot knitting machine, the skin material is knitted as in Example 3 in the same manner as in Example 3 (Denbi 1), and a 7-needle swing of 0-1 / 8-7 I used a knitted fabric that was knitted with my eyes.
  • the polyethylene terephthalate fibers having a fineness of 33 dtex and a single fiber fineness of 2.75 dtex were used for the weir L1 and L2, and a polyethylene terephthalate fiber having a fineness of 56 dtex and a single fiber fineness of 0.39 dtex was used for the weir L3.
  • the skin density of the skin material is 50 wells / inch, the weft density is 65 courses / inch, and the fabric thickness is 1.0 mm.
  • a polyurethane foam having a thickness of 3 mm and a specific gravity of 20 kg / m 3 was used.
  • the adhesion between the substrate and the skin material was performed in the same manner as in Example 1.
  • Example 6 Using a 3-sheet tricot knitting machine, the surface material is knitted as in Example 3 with ⁇ L1 and L2 (denbi 1), and the ⁇ L3 is a 5-needle swing opening of 0-1 / 6-5. I used a knitted fabric that was knitted with my eyes. The fibers of ridges L1, L2 and L3 were the same as in Example 5. The surface density of the skin material is 50 wells / inch, the weft density is 64 courses / inch, and the fabric thickness is 0.85 mm. As a substrate, a polyurethane foam having a thickness of 3 mm and a specific gravity of 20 kg / m 3 was used. The adhesion between the substrate and the skin material was performed in the same manner as in Example 1.
  • Example 7 Using a three-sheet tricot knitting machine, the skin material is knitted with ⁇ L1 at a 1-2 / 1-0 closure and ⁇ L2 at a 0/1 / 2-1 opening (hereinafter referred to as denbi 2), ⁇ L3 using a knitted fabric with a 3-4 / 1-0 three-needle closure.
  • Each of the weirs L1, L2 and L3 used was a polyethylene terephthalate fiber having a fineness of 33 dtex and a single fiber fineness of 0.92 dtex.
  • the skin density of the skin material is 56 wells / inch, the weft density is 68 courses / inch, and the fabric thickness is 0.5 mm.
  • As a substrate a polyurethane foam with a thickness of 5 mm and a specific gravity of 20 kg / m 3 was used. The adhesion between the substrate and the skin material was performed in the same manner as in Example 1.
  • the surface material is a knitted fabric in which the eyelid L1 is closed at 1-0 / 2-3 and the eyelid L2 is closed at 1-0 / 1-2, using a three-sheet tricot knitting machine , The reverse half.), Using a knitted fabric knitted with a closure of 2-3 / 1-0 two-needle swing ⁇ L3.
  • the polyethylene terephthalate fibers having a fineness of 84 dtex and a single fiber fineness of 2.33 dtex were used for the weir L1 and L2, and polyethylene terephthalate fibers having a fineness of 84 dtex and a single fiber fineness of 0.88 dtex for the weir L3.
  • the skin density of the skin material is 56 wells / inch, the weft density is 68 courses / inch, and the fabric thickness is 0.9 mm.
  • a polyurethane foam with a thickness of 5 mm and a specific gravity of 20 kg / m 3 was used.
  • the adhesion between the substrate and the skin material was performed in the same manner as in Example 1.
  • Comparative example 4 The skin material used was the same as in Comparative Example 3.
  • a substrate a polyurethane foam with a thickness of 5 mm and a specific gravity of 20 kg / m 3 was used.
  • the adhesion between the substrate and the skin material was performed in the same manner as in Example 1.
  • the skin material and the skin material obtained in each example and each comparative example were evaluated according to the following method.
  • Measurement of constant load elongation of skin material It measured by the method according to JIS-L1096 method. Specifically, test pieces of 80 mm in width and 250 mm in length were prepared for each of the skin materials of the examples and the comparative examples. For each test piece, a score was marked at a position of 50 mm above and below the center point of the lengthwise test piece in the lengthwise direction, and jigs were attached to both ends in the lengthwise direction of the test piece. The weight was suspended so as to be 10 kg including the weight of the jig, and left for 10 minutes, and the upper and lower rating intervals (L mm) after 10 minutes were measured.
  • the constant load elongation was calculated by the following equation (3).
  • the test piece was held with a clamp at an interval of 50 mm, and was pulled to a maximum load of 4.9 N / cm at a tensile speed of 0.2 mm / sec, and the displacement amount S (mm) at that time was measured.
  • the tensile elongation (EMT) was calculated by the following equation (4).
  • A concavo-convex pattern in which the difference between the concave and the convex is very clear was obtained.
  • A concavo-convex pattern in which the difference between the concave and the convex is clear was obtained.
  • Fair The difference between the concave and the convex portions was small, and a concavo-convex pattern lacking in a sense of asperity was obtained.
  • the average value of the constant load elongation rate (%) in the warp direction and the constant load elongation rate (%) in the weft direction of the skin material is 25 to 70%, and the thickness change rate when embossed under the above conditions is 5
  • FIG. 2 shows the relationship between the thickness change rate and the emboss rate when embossed under the above conditions.
  • “ ⁇ ” indicates the sheet material of each example, and “ ⁇ ” indicates the sheet material of each comparative example.
  • the tensile elongation in the warp direction (%) is 5% or more
  • the tensile elongation in the weft direction (%) is 15% or more
  • the tensile elongation in the weft direction It was found that in the sheet materials of Examples 4 to 6 in which the percentage (%) was 1.5 or more times the tensile elongation percentage (%) in the longitudinal direction, the thickness change rate of the sheet was small and the emboss ratio was large. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Laminated Bodies (AREA)
  • Knitting Of Fabric (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

弾性を有する基材(2)と、前記基材(2)の表面に積層された表皮材(3)とを備え、前記表皮材(3)の表面に凹凸模様が形成されるシート材(1)であって、前記表皮材(3)の互いに直交する第1方向と第2方向とにおける定荷重伸び率の平均値が25~70%であり、被エンボス部が40mm×50mm、ライン幅が2mmのテストパターンにて、型温度180℃、圧力40t/cm、加熱時間45secの条件下でエンボス加工されたときの厚み変化率が15%以下である。

Description

シート材
 本発明は、シート材に関し、具体的には、エンボス加工に適したシート材に関する。
 車両の座席シートやソファ、座椅子等の表面を覆うシート材として、エンボス加工を施したものが知られている。こうしたシート材の製造では、例えば、まず、発泡ポリウレタン樹脂等の弾性を有する基材上に、表皮材を積層する。そして、表皮材にエンボス加工を施す。これによって、基材を圧縮変形させて凹部を形成し、シート材の表面に凹凸模様を形成する。こうした凹凸模様により、シート材の意匠性を向上させるとともに、触感を変化させる。
 最近では、シート材の表面に複雑な凹凸模様や、微細な凹凸模様や、或いは、深く明瞭な凹凸模様等を形成して、シート材の意匠性をより向上させることが要望されている。
 特許文献1には、深く明瞭な凹凸模様を有するシート材の製造方法が記載されている。この場合、シート材は、表皮材と、軟質ポリウレタンフォーム材と、クッション層からなる基材とを積層一体化してなる。また、エンボス加工時の加熱温度及び加工スピードを調整することにより、シート材の表面に深く明瞭な凹凸模様を形成している。つまり、エンボス型の凸部での十分な押圧により、シート材の表面に凹部を確実に形成する。その結果、シート材において、凹凸模様を明瞭に視認することができる。
特開2005-262581号公報
 しかし、上記のようにしてシート材の表面に明瞭な凹部が形成されると、シート材の表面の凸部では、シート材の表皮材が凹部側に引っ張られる。そのため、軟質ポリウレタンフォーム材や基材等が圧縮された状態に維持される。その結果、シート材の表面の凸部の高さが出にくくなる。また、シート材の表皮材が凹部側に引っ張られると、微細な凹凸模様が形成されにくい。
 本発明の目的は、深く明瞭な凹凸模様や微細な凹凸模様を形成可能なシート材を提供することである。
 上記の課題を達成するため、本発明のシート材は、弾性を有する基材と、前記基材の表面に積層された表皮材とを備え、前記表皮材の表面に凹凸模様が形成されるシート材が提供される。このシート材では、表皮材の互いに直交する第1方向と第2方向とにおける定荷重伸び率の平均値が25~70%である。また、被エンボス部が40mm×50mm、ライン幅が2mmのテストパターンにて、型温度180℃、圧力40t/cm、加熱時間45secの条件下でエンボス加工されたときの厚み変化率が15%以下である。
 この構成によれば、表皮材が、互いに直交する第1方向及び第2方向に伸びやすい。また、エンボス加工前後での厚み変化率が小さく抑えられる。そのため、シート材の表面の凸部では、表皮材が、エンボス加工後の基材の圧縮戻りに追従して表皮材が伸びやすく、エンボス前のシート材の厚みに近い厚みに戻りやすくなる。その結果、凹凸模様の凸部と凹部との高さの差が出やすく、深く明瞭な凹凸模様や微細な凹凸模様を形成することができる。
 ここで規定する厚み変化率とは、以下の式(1)により算出する。
 即ち、図1(a)、図1(b)に示すように、エンボス加工前のシート材の生地厚みをa、エンボス加工後のシート材の凸部における最大厚みをbとしたとき、厚み変化率は、以下の式(1)により算出する。
Figure JPOXMLDOC01-appb-M000001
 上記のシート材は、前記条件下でエンボス加工されたときエンボス率が45%以上であることが好ましい。
 この構成によれば、凹凸模様の凸部と凹部とのメリハリが出やすく、より深く明瞭な凹凸模様や、より微細な凹凸模様を形成することができる。
 ここで規定するエンボス率とは、以下の式(2)により算出する。
 即ち、図1(a)、図1(b)に示すように、エンボス加工前のシート材の生地厚みをa、エンボス加工後のシート材の凹部における最小厚みをcとしたとき、エンボス率は、以下の式(2)により算出する。
Figure JPOXMLDOC01-appb-M000002
  上記の表皮材は、第1方向の定荷重伸び率が第2方向の定荷重伸び率の0.3~1.5倍であることが好ましい。
 この構成によれば、表皮材の互いに直交する第1方向と第2方向とにおける定荷重伸び率の値が大きく異なることがない。互いに直交する第1方向及び第2方向のそれぞれに伸びやすく、伸びのバランスが良好である。そのため、表皮材が、エンボス加工後の基材の圧縮戻りに追従しやすく、凹凸模様の凸部と凹部との高さの差をより出やすくすることができる。
 上記の表皮材は、KES試験による引張伸び率が、前記第1方向及び前記第2方向のいずれも5%以上であることが好ましい。
 この構成によれば、表皮材が互いに直交する第1方向及び第2方向に伸びやすい。
 上記の表皮材は、KES試験による前記第2方向の引張伸び率が、KES試験による前記第1方向の引張伸び率の1.5倍以上であることが好ましい。
 この構成によれば、表皮材が、エンボス加工後の基材の圧縮戻りに追従して伸びやすい。そのため、凹凸模様の凸部と凹部との高さの差をより出やすくすることができる。
 本発明のシート材によれば、深く明瞭な凹凸模様や微細な凹凸模様を形成することができる。
(a)はエンボス前のシート材の断面図、(b)はエンボス後のシート材の断面図。 各実施例及び各比較例のシート材の厚み変化率とエンボス率との関係を示すグラフ。
 以下、本発明の実施形態に係るシート材について具体的に説明する。
 図1(a)に示すように、シート材1は、弾性を有する基材3と、基材3の第1の表面に積層された表皮材2とを有している。基材3と表皮材2とは、図示しない接着層を介して、互いに接着されている。シート材1は、基材3の第2の表面にも、一層或いは複数層からなる裏材4を有してもよい。
 図1(b)に示すように、シート材1には、表皮材2からエンボス加工されて凹凸模様が形成される。
 表皮材2は、経方向の定荷重伸び率、緯方向の定荷重伸び率がいずれも20~80%の範囲であることが好ましく、20~65%の範囲であることがより好ましい。また、経方向の定荷重伸び率と緯方向の定荷重伸び率の平均値が25~75%の範囲であることが好ましく、28~70%の範囲であることがより好ましい。経方向及び緯方向の定荷重伸び率の値、それらの平均値がこの範囲であると、表皮材2が伸びやすく、弾性を有する基材3の形状変化に追従しやすくなる。
 また、表皮材2は、経方向の定荷重伸び率が、緯方向の定荷重伸び率の0.3~1.5倍であることが好ましく、0.7~1.3倍であることがより好ましい。経方向及び緯方向の定荷重伸び率の割合がこの範囲であると、経方向及び緯方向の定荷重伸び率のバランスが良好となり、表皮材2は、弾性を有する基材3の形状変化に追従しやすくなる。
 表皮材2は、KES試験による経方向の引張伸び率、緯方向の引張伸び率がいずれも5%以上であることが好ましく、6%以上であることがより好ましい。また、緯方向の引張伸び率が、経方向の引張伸び率の1.5倍以上であることが好ましく、2.0倍以上であることがより好ましい。経方向及び緯方向の引張伸び率の値、それらの割合がこの範囲であると、表皮材2が伸びやすく、弾性を有する基材3の形状変化に追従しやすくなる。
 表皮材2の組織は、特に限定されない。表皮材2の組織としては、例えば、編地、織地、レース地、不織布等が挙げられる。中でも、弾性を有する基材3の形状変化に追従する伸縮性を有する点から、表皮材2の組織は編地であることが好ましい。
 編地である場合、その編組織は、特に限定されないが、複数の筬を用いたトリコット編機で編成された編組織であることが好ましい。編組織としては、例えば、デンビ編、コード編、ハーフ編、サテン編等が挙げられる。これら各種編組織において、好適な伸縮性を有する観点から、同じ系列にある異なる筬の経糸のループがずれた位置で編み込まれている編組織であることが好ましい。例えば2筬の場合、後筬(L1)の経糸のループと後筬と同じ系列にある前筬(L2)の経糸のループとがずれた位置で編み込まれていることが好ましい。また、例えば3筬の場合、後筬(L1)の経糸のループと後筬と同じ系列にある中間筬(L2)の経糸のループがずれた位置で編み込まれており、前筬(L3)の経糸が2針以上の編針を越えてラッピングされているような編組織であることが好ましい。こうすることで、編地の経方向及び緯方向の定荷重伸び率や引張弾性率が大きくなり、表皮材2は、基材3の形状変化に追従しやすい編組織となる。また、表皮材2に適度な厚みを付与することができる。
 また、表皮材2が編地である場合、その編目密度は、特に限定されない。1600~12000個/inchであることが好ましく、2000~9000個/inchであることがより好ましく、3000~9000個/inchであることがさらに好ましい。経方向の編目密度(経密度)は、40~80ウェル/inchの範囲であることが好ましく、50~70ウェル/inchの範囲であることがより好ましい。緯方向の編目密度(緯密度)は、40~150コース/inchの範囲であることが好ましく、60~120コース/inchの範囲であることがより好ましい。また、緯密度が、経密度の1.0~2.0倍であることが好ましい。編目密度がこれら範囲であることにより、編地の経方向及び緯方向の定荷重伸び率や引張弾性率が大きくなり、表皮材2は、基材3の形状変化に追従しやすい編組織となる。
 表皮材2に使用される繊維の種類は、特に限定されない。繊維の種類としては、例えば、植物繊維、動物繊維等の天然繊維、合成繊維、半合成繊維、再生繊維、等の化学繊維等が挙げられる。合成繊維の場合、例えば、ポリウレタン(PU)繊維、ポリエチレンテレフタレート(PET)繊維、ポリエチレンナフタレート(PEN)繊維、アクリル繊維、ポリビニルアルコール系繊維、ポリエチレン(PE)繊維、ポリプロピレン(PP)繊維等が挙げられる。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 また、表皮材2が、複数の筬を用いたトリコット編機で編成された編組織である場合、少なくとも筬1~2枚は、捲縮を有する繊維を用いることが好ましい。捲縮を有する繊維を用いない筬には、ストレッチ性を有する繊維を用いることが好ましい。
 表皮材2に使用される繊維の繊度は、特に限定されない。繊維の繊度は、20~200dtexの範囲であることが好ましく、20~100dtexの範囲であることがより好ましい。繊維の繊度がこの範囲であることにより、表皮材2の定荷重伸び率及び引張伸び率を好適な範囲とすることができる。
 表皮材2に使用される繊維の単繊維繊度は、特に限定されない。繊維の単繊維繊度は、0.1~100dtexの範囲であることが好ましく、0.3~50dtexの範囲であることがより好ましい。繊維の単繊維繊度がこの範囲であることにより、表皮材2の耐摩耗性が向上する。
 表皮材2の生地厚みは、特に限定されない。表皮材2の生地厚みは、0.3~3.0mmの範囲であることが好ましく、0.5~2.0mmであることがより好ましい。生地厚みがこの範囲であることにより、表皮材2がエンボス加工後の基材3の圧縮戻りに追従して伸びやすく、深く明瞭な凹凸模様や微細な凹凸模様を形成することができる。
 基材3は、弾性を有する材料で形成されている。弾性を有する材料は、特に限定されないが、従来周知の樹脂を発泡させて得られるフォーム材であることが好ましい。樹脂の種類としては、例えば、ポリウレタン樹脂、ポリスチレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニル樹脂、シリコーン樹脂、ポリイミド樹脂等が挙げられる。中でも、ポリウレタン樹脂を発泡させてなるポリウレタンフォームが好ましく、適度な柔軟性を有し、復元力に優れている点から、軟質ポリウレタンフォームがより好ましい。ポリウレタンフォームを構成するポリウレタン樹脂としては、ポリエーテル系ポリウレタン樹脂、ポリエステル系ポリウレタン樹脂、ポリカーボネート系ポリウレタン樹脂等が挙げられる。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 基材3の厚みは、特に限定されない。基材3の厚みは、2~10mmの範囲であることが好ましく、2~6mmの範囲であることがより好ましい。また、基材3の厚みは、表皮材2の生地厚みに対して、2~20倍の厚みであることが好ましく、2~10倍の範囲であることがより好ましい。基材3の厚みがこの範囲であると、エンボス加工後の凹部と凸部の区別がつきやすく、シート材1の表面に、明瞭な凹凸模様を形成することができる。
 表皮材2が基材3に接着されてなるシート材1では、エンボス加工された時の厚み変化率、具体的には、被エンボス部が40mm×50mm、ライン幅が2mmのテストパターンにて、型温度180℃、圧力40t/cm、加熱時間45secの条件下でエンボス加工されたときの厚み変化率が、5%以上15%以下であることが好ましく、5%以上13%以下であることがより好ましく、5%以上12%以下であることがさらに好ましい。厚み変化率がこの範囲であると、エンボス加工後のシート材1において、凹凸模様の凸部と凹部との高さの差が出やすく、深く明瞭な凹凸模様や微細な凹凸模様を形成することができる。
 また、シート材1では、エンボス加工された時のエンボス率、具体的には、被エンボス部が40mm×50mm、ライン幅が2mmのテストパターンにて、型温度180℃、圧力40t/cm、加熱時間45secの条件下でエンボス加工されたときのエンボス率が、45%以上65%以下であることが好ましく、47%以上60%以下であることがより好ましい。エンボス率がこの範囲であると、エンボス加工後のシート材1において、凹凸模様の凹部が確実に押された状態となって凸部と凹部とのメリハリが出やすく、深く明瞭な凹凸模様を形成することができる。
 上記実施形態によれば、以下の効果を奏することができる。
 (1)表皮材2は、経方向の定荷重伸び率、緯方向の定荷重伸び率がいずれも20~80%の範囲である。そのため、表皮材2は、経方向、緯方向に伸びやすい。よって、表皮材2は、弾性を有する基材3の形状変化に追従しやすく、シート材1をエンボス加工したときの基材3の圧縮戻りに追従しやすい。したがって、凹凸模様の凸部を高くすることができる。
 (2)表皮材2は、経方向の定荷重伸び率、緯方向の定荷重伸び率の平均値が25~75%の範囲である。そのため、表皮材2が伸びやすく、弾性を有する基材3の形状変化に追従しやすい。
 (3)上記実施形態の表皮材2は、経方向の定荷重伸び率が緯方向の定荷重伸び率の0.3~1.5倍である。そのため、互いに直交する経方向及び緯方向のそれぞれに伸びやすく、伸びのバランスが良好となり、表皮材2は、弾性を有する基材の形状変化に追従しやすい。
 (4)表皮材2は、KES試験による経方向の引張伸び率、緯方向の引張伸び率がいずれも5%以上である。そのため、表皮材2は、経方向、緯方向に伸びやすい。よって、表皮材2は、弾性を有する基材3の形状変化に追従しやすく、シート材1をエンボス加工したときの基材3の圧縮戻りに追従しやすい。したがって、凹凸模様の凸部を高くすることができる。
 (5)表皮材2は、KES試験による緯方向の引張伸び率が、経方向の引張伸び率の1.5倍以上である。そのため、表皮材が、エンボス加工後の基材の圧縮戻りに追従して伸びやすく、凹凸模様の凸部と凹部との高さの差をより出やすくすることができる。
 (6)シート材1は、上記条件下でエンボス加工されたときの厚み変化率が5%以上15%以下である。そのため、エンボス加工後のシート材1において、凹凸模様の凸部と凹部との高さの差が出やすく、深く明瞭な凹凸模様や微細な凹凸模様を形成することができる。
 (7)シート材1は、上記条件下でエンボス加工されたときのエンボス率が45%以上65%以下である。そのため、エンボス加工後のシート材1において、凹凸模様の凹部が確実に押された状態となって凸部と凹部とのメリハリが出やすく、深く明瞭な凹凸模様を形成することができる。
 次に、本発明の実施例及び比較例について説明するが、本発明はこれに限定されない。
 (実施例1)
 表皮材は、2枚筬のトリコット編機を使用して、筬L1を1-0/1-2の閉じ目、筬L2を2-3/1-0の閉じ目で編成した編地(以下、ハーフ1という。)を使用した。筬L1は繊度44dtex、単繊維繊度44dtexのポリウレタン(PU)繊維、筬L2は繊度56dtex、単繊維繊度1.56dtexのポリエチレンテレフタレート(PET)繊維を使用した。表皮材の経密度は69ウェル/inch、緯密度は108コース/inchであり、生地厚みは0.7mmである。基材は、厚み5mm、比重20kg/mのポリウレタンフォームを使用した。
 基材と表皮材との接着は、次のように行った。ポリウレタンフォームにガスバーナーの火炎を直接当ててポリウレタンフォームの表面を溶融し、溶融した状態の表面に表皮材を接合して数時間放置した。これにより、基材と表皮材とが接着されたシート材を得た。
 (実施例2)
 表皮材は、2枚筬のトリコット編機を使用して、筬L1を1-0/1-2の閉じ目、筬L2を3-4/1-0の閉じ目で編成した編地(以下、サテン1という。)を使用した。筬L1、L2の繊維は実施例1と同様とした。表皮材の表皮材の経密度は68ウェル/inch、緯密度は116コース/inchであり、生地厚みは0.9mmである。基材は、厚み3mm、比重20kg/mのウレタンフォームを使用した。基材と表皮材との接着は、実施例1と同様に行った。
 (比較例1)
 表皮材は、2枚筬のトリコット編機を使用して、筬L1を1-0/1-2の閉じ目、筬L2を1-0/2-3の閉じ目で編成した編地(以下、ハーフという。)を使用した。筬L1は繊度84dtex、単繊維繊度2.33dtexのポリエチレンテレフタレート繊維、筬L2は繊度84dtex、単繊維繊度0.88dtexのポリエチレンテレフタレート繊維を使用した。表皮材の経密度は42ウェル/inch、緯密度は68コース/inchであり、生地厚みは0.7mmである。これを、実施例1と同じ基材に同様に接着して表皮材を得た。
 (比較例2)
 表皮材は、比較例1と同じものを使用した。基材は、厚み3mm、比重20kg/mのポリウレタンフォームを使用した。基材と表皮材との接着は、実施例1と同様に行った。
 (実施例3)
 表皮材は、3枚筬のトリコット編機を使用して、筬L1を1-0/1-2の閉じ目、筬L2を1-2/1-0の閉じ目で編成し(以下、デンビ1という。)、筬L3を0-1/3-2の2針振りの開き目で編成した編地を使用した。筬L1は繊度44dtex、単繊維繊度44dtexのポリウレタン繊維、筬L2は繊度33dtex、単繊維繊度2.75dtexのポリエチレンテレフタレート繊維、筬L3は繊度84dtex、単繊維繊度0.88dtexのポリエチレンテレフタレート繊維を使用した。表皮材の経密度は57ウェル/inch、緯密度は86コース/inchであり、生地厚みは0.7mmである。基材は、厚み5mm、比重20kg/mのポリウレタンフォームを使用した。基材と表皮材との接着は、実施例1と同様に行った。
 (実施例4)
 表皮材は、3枚筬のトリコット編機を使用して、筬L1、L2は実施例3と同様に編成し(デンビ1)、筬L3を0-1/8-7の7針振りの開き目で編成した編地を使用した。筬L1、L2、L3の繊維は実施例3と同様とした。表皮材の経密度は58ウェル/inch、緯密度は65コース/inchであり、生地厚みは1.5mmであった。基材は、厚み5mm、比重20kg/mのポリウレタンフォームを使用した。基材と表皮材との接着は、実施例1と同様に行った。
 (実施例5)
 表皮材は、3枚筬のトリコット編機を使用して、筬L1、L2は実施例3と同様に編成し(デンビ1)、筬L3を0-1/8-7の7針振りの開き目で編成した編地を使用した。筬L1、L2は繊度33dtex、単繊維繊度2.75dtexのポリエチレンテレフタレート繊維、筬L3は繊度56dtex、単繊維繊度0.39dtexのポリエチレンテレフタレート繊維を使用した。表皮材の経密度は50ウェル/inch、緯密度は65コース/inchであり、生地厚みは1.0mmである。基材は、厚み3mm、比重20kg/mのポリウレタンフォームを使用した。基材と表皮材との接着は、実施例1と同様に行った。
 (実施例6)
 表皮材は、3枚筬のトリコット編機を使用して、筬L1、L2は実施例3と同様に編成し(デンビ1)、筬L3を0-1/6-5の5針振りの開き目で編成した編地を使用した。筬L1、L2、L3の繊維は実施例5と同様とした。表皮材の経密度は50ウェル/inch、緯密度は64コース/inchであり、生地厚みは0.85mmである。基材は、厚み3mm、比重20kg/mのポリウレタンフォームを使用した。基材と表皮材との接着は、実施例1と同様に行った。
 (実施例7)
 表皮材は、3枚筬のトリコット編機を使用して、筬L1を1-2/1-0の閉じ目、筬L2を0-1/2-1の開き目で編成し(以下、デンビ2という。)、筬L3を3-4/1-0の3針振りの閉じ目で編成した編地を使用した。筬L1、L2、L3は、すべて繊度33dtex、単繊維繊度0.92dtexのポリエチレンテレフタレート繊維を使用した。表皮材の経密度は56ウェル/inch、緯密度は68コース/inchであり、生地厚みは0.5mmである。基材は、厚み5mm、比重20kg/mのポリウレタンフォームを使用した。基材と表皮材との接着は、実施例1と同様に行った。
 (比較例3)
 表皮材は、3枚筬のトリコット編機を使用して、筬L1を1-0/2-3の閉じ目、筬L2を1-0/1-2の閉じ目で編成した編地(以下、逆ハーフという。)、筬L3を2-3/1-0の2針振りの閉じ目で編成した編地を使用した。筬L1、L2は、繊度84dtex、単繊維繊度2.33dtexのポリエチレンテレフタレート繊維、筬L3は繊度84dtex、単繊維繊度0.88dtexのポリエチレンテレフタレート繊維を使用した。表皮材の経密度は56ウェル/inch、緯密度は68コース/inchであり、生地厚みは0.9mmである。基材は、厚み5mm、比重20kg/mのポリウレタンフォームを使用した。基材と表皮材との接着は、実施例1と同様に行った。
 (比較例4)
 表皮材は、比較例3と同じものを使用した。基材は、厚み5mm、比重20kg/mのポリウレタンフォームを使用した。基材と表皮材との接着は、実施例1と同様に行った。
 各実施例、各比較例で得られた表皮材及び表皮材について、以下の方法に従って評価した。
 (表皮材の定荷重伸び率の測定)
 JIS-L1096法に準じる方法で測定した。具体的には、各実施例、各比較例の表皮材について、幅80mm、長さ250mmの試験片を各方向5枚ずつ用意した。それぞれの試験片について、縦長の試験片の長さ方向の中心点から上下にそれぞれ50mmの位置に評点を印し、試験片の長さ方向両端に冶具を取り付けた。冶具の重量を含めて10kgとなるよう錘を吊るして10分間放置し、10分経過後の上下の評点間隔(Lmm)を測定した。定荷重伸び率は、以下の式(3)で算出した。
Figure JPOXMLDOC01-appb-M000003
  各実施例の結果を表1、各比較例の結果を表2に記載した。
(表皮材の引張伸び率の測定)
 引張伸び率は、KES-FB1-A装置(カトーテック株式会社製)を使用して、KES試験方法により測定した。各実施例、各比較例の表皮材について、幅200mm、長さ200mmの試験片を各方向3枚ずつ用意した。それぞれの試験片を、KES-FB1-A装装置に取り付けて試験した。試験片は、間隔50mmをあけてクランプでつかみ、引張速度0.2mm/secで、最大荷重4.9N/cmまで引張り、その時の変位量S(mm)を測定した。引張伸び率(EMT)は、以下の式(4)で算出した。
Figure JPOXMLDOC01-appb-M000004
  各実施例の結果を表1、各比較例の結果を表2に記載した。なお、表1中の「-」は、引張伸び率(EMT)が50%以上となって測定不能であったものを示している。
 (シート材の厚み変化率)
 各実施例、各比較例のシート材について、平型エンボス機にて、表皮材表面にエンボス加工を行った。エンボス加工は、被エンボス部の面積が40mm×50mm、ライン幅が2mmのテストパターンにて、型温度180℃、圧力40t/cm、加熱時間45secで行った。図1(a)は、エンボス加工前のシート材の断面図、図1(b)は、エンボス加工後のシート材の断面図である。エンボス加工前のシート材の生地厚みをa、エンボス加工後のシート材の凸部における最大厚みをbとして、前記式(1)により厚み変化率を測定した。
 各実施例の結果を表1、各比較例の結果を表2に記載した。
 (シート材のエンボス率)
 各実施例、各比較例のシート材について、表皮材表面に前記条件でエンボス加工を行った。図1(a)、図1(b)に示すように、エンボス加工前のシート材の生地厚みをa、エンボス加工後のシート材の凹部の最小厚みをcとして、前記式(2)によりエンボス率を算出した。
 各実施例の結果を表1、各比較例の結果を表2に記載した。
(エンボス加工後の表面形状の観察)
 上記エンボス加工後の各実施例、各比較例のシート材について、その表面形状を以下の指標により観察した。
    ◎:凹部と凸部の差が非常に明瞭である凹凸模様が得られた。
    ○:凹部と凸部の差が明瞭である凹凸模様が得られた。
    △:凹部と凸部の差が小さく凹凸感に乏しい凹凸模様が得られた。
 各実施例の結果を表1、各比較例の結果を表2に記載した。
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
 表1、表2中、L3組織の「X針振り(開)」とは、X針振りの開き目、「X針振り(閉)I」とは、X針振りの閉じ目を示す。
 表皮材の経方向の定荷重伸び率(%)と緯方向の定荷重伸び率(%)の平均値が25~70%であり、前記条件下でエンボス加工されたときの厚み変化率が5%以上15%以下の各実施例のシート材では、表皮材がウレタンフォーム基材の圧縮戻りに追従して伸び、エンボス加工後の凸部の高さの減少が抑制された。そのため、エンボス加工後の凹部と凸部の差が明瞭である凹凸模様が形成された。特に、前記厚み変化率が5%以上12%以下の実施例1、2、4、5のシート材では、エンボス加工後の凹部と凸部の差が非常に明瞭である凹凸模様が形成された。一方、各比較例のシート材では、エンボス加工後の凹部と凸部の差が小さく凹凸感に乏しい凹凸模様が形成された。以上より、表皮材の経方向定荷重伸び率(%)と緯方向定荷重伸び率(%)の平均値が25~70%であり、シート材の厚み変化率が5%以上15%以下であることにより、深く明瞭である凹凸模様や微細な凹凸模様を形成できることがわかった。
 また、表皮材の経方向の定荷重伸び率(%)が緯方向の定荷重伸び率(%)の0.3~1.5倍である各実施例のシート材では、エンボス加工後の凹部と凸部の差が明瞭である凹凸模様が形成された。特に、表皮材の経方向の定荷重伸び率(%)が緯方向の定荷重伸び率(%)の0.7~1,5倍である実施例1~6のシート材では、エンボス加工後の凹部と凸部の差がより明瞭である凹凸模様が形成された。経方向の定荷重伸び率(%)と緯方向の定荷重伸び率(%)とのバランスがよく、表皮材がウレタンフォーム基材の圧縮戻りに追従して伸びやすいためであると考えられる。一方、表皮材の経方向の定荷重伸び率(%)と緯方向の定荷重伸び率(%)が上記関係を満たさない各比較例のシート材では、凹凸感に乏しい凹凸模様が形成された。
 表皮材のKES試験による経方向の引張伸び率、緯方向の引張伸び率がいずれも5%以上である各実施例のシート材では、表皮材がウレタンフォーム基材の圧縮戻りに追従して伸び、明瞭な凹凸模様が形成された。また、KES試験での緯方向の引張伸び率が、経方向の引張伸び率の1.5倍以上である実施例4~6のシート材では、エンボス率が大きく、厚み変化率が小さい結果が得られた。
 前記条件下でエンボス加工されたときの厚み変化率が5%以上15%以下であり、エンボス率が45%以上65%以下の各実施例のシート材では、エンボス加工後の凸部の高さの減少が抑制されるとともに凹部が明瞭に形成され、エンボス加工後の凹部と凸部の差が明瞭な凹凸模様が形成された。なお、図2には、前記条件下でエンボス加工されたときの厚み変化率とエンボス率との関係を示す。図中「●」が各実施例のシート材、「▲」が各比較例のシート材を示す。
 また、表皮材の引張特性評価試験の結果より、経方向の引張伸び率(%)が5%以上、緯方向の引張伸び率(%)が15%以上であり、かつ、緯方向の引張伸び率(%)が経方向の引張伸び率(%)の1.5倍以上である実施例4~6のシート材では、シート材の厚み変化率が小さく、エンボス率が大きくなることがわかった。
 1…シート材、2…基材、3…表皮材。

Claims (5)

  1. 弾性を有する基材と、前記基材の表面に積層された表皮材とを備え、前記表皮材の表面に凹凸模様が形成されるシート材であって、
     前記表皮材の互いに直交する第1方向と第2方向とにおける定荷重伸び率の平均値が25~70%であり、
     被エンボス部が40mm×50mm、ライン幅が2mmのテストパターンにて、型温度180℃、圧力40t/cm、加熱時間45secの条件下でエンボス加工されたときの厚み変化率が15%以下である、シート材。
  2. 前記条件下でエンボス加工されたときのエンボス率が45%以上である、請求項1に記載のシート材。
  3. 前記表皮材は、前記第1方向の定荷重伸び率が前記第2方向の定荷重伸び率の0.3~1.5倍である、請求項1又は2に記載のシート材。
  4. 前記表皮材は、KES試験による引張伸び率が、前記第1方向及び前記第2方向のいずれも5%以上である請求項1~3のいずれか一項に記載のシート材。
  5. 前記表皮材は、KES試験による前記第2方向の引張伸び率が、KES試験による前記第1方向の引張伸び率の1.5倍以上である、請求項1~4のいずれか一項に記載のシート材。
PCT/JP2017/039541 2017-11-01 2017-11-01 シート材 WO2019087329A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017560838A JP6321308B1 (ja) 2017-11-01 2017-11-01 シート材
PCT/JP2017/039541 WO2019087329A1 (ja) 2017-11-01 2017-11-01 シート材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/039541 WO2019087329A1 (ja) 2017-11-01 2017-11-01 シート材

Publications (1)

Publication Number Publication Date
WO2019087329A1 true WO2019087329A1 (ja) 2019-05-09

Family

ID=62107315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039541 WO2019087329A1 (ja) 2017-11-01 2017-11-01 シート材

Country Status (2)

Country Link
JP (1) JP6321308B1 (ja)
WO (1) WO2019087329A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522010A (en) * 1978-07-27 1980-02-16 Tore Textile Knitt velour like molded base fabric having stretchability
JPH08337949A (ja) * 1995-06-12 1996-12-24 Araco Corp たて編組織の構造
JP2004254769A (ja) * 2003-02-24 2004-09-16 Inoac Corp 車両用シートカバーの裏基布に用いる経編地の構造及び車両用シートカバー
JP2006021416A (ja) * 2004-07-08 2006-01-26 Achilles Corp カバー材の製造方法
JP2014184580A (ja) * 2013-03-22 2014-10-02 Inoac Corp 凹凸模様を表面に有する積層シートとその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522010A (en) * 1978-07-27 1980-02-16 Tore Textile Knitt velour like molded base fabric having stretchability
JPH08337949A (ja) * 1995-06-12 1996-12-24 Araco Corp たて編組織の構造
JP2004254769A (ja) * 2003-02-24 2004-09-16 Inoac Corp 車両用シートカバーの裏基布に用いる経編地の構造及び車両用シートカバー
JP2006021416A (ja) * 2004-07-08 2006-01-26 Achilles Corp カバー材の製造方法
JP2014184580A (ja) * 2013-03-22 2014-10-02 Inoac Corp 凹凸模様を表面に有する積層シートとその製造方法

Also Published As

Publication number Publication date
JPWO2019087329A1 (ja) 2019-11-14
JP6321308B1 (ja) 2018-05-09

Similar Documents

Publication Publication Date Title
JP6691913B2 (ja) エンボス加工用複合材およびエンボス加工品
CN109303440A (zh) 包括间隔织物的床垫及相关方法
JP2007276285A (ja) 凹凸模様を有する車輌の座席用表皮材及びその製造方法。
JP6199529B2 (ja) エンボス加工用複合材およびエンボス加工品
US20230034721A1 (en) Skin material and method for producing the same
TWM577021U (zh) 墊體複合材結構、墊體及護具
JPWO2012121204A1 (ja) カップ部を備えた女性用衣類及び女性用衣類の製造方法
JP5006521B2 (ja) 硬度差を有する立体構造経編地
US11814783B2 (en) Synthetic leather
WO2019087329A1 (ja) シート材
CN112654498A (zh) 伸缩配线构件
JP5605148B2 (ja) 発泡成型品補強材用不織布及びその製造方法
JP2012213471A (ja) フィット性、滑り止め性に優れたシート材
JP2010043386A (ja) 布バネ用布帛
JP6281410B2 (ja) 車両用天井材
JP6407250B2 (ja) ループ織物およびそれを用いた留具、並びに該留具と対となる雄型留具
JP2020142403A (ja) 化粧シート
JP6474279B2 (ja) クッション
TW202019683A (zh) 墊體複合材結構、墊體及護具
JP2019180631A (ja) 座席およびその製造方法
WO2022230687A1 (ja) 表皮材、及び金型
JP2010115869A (ja) 肢体支持面材
JP5551890B2 (ja) 二層構造布バネ材
JP2020142402A (ja) エンボス加工型、エンボス加工装置及びエンボス加工方法
JP2024020700A (ja) 車輌内装用加飾シート材

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017560838

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931053

Country of ref document: EP

Kind code of ref document: A1