WO2019086025A1 - 燃料电池的膜电极组件及其制备方法 - Google Patents
燃料电池的膜电极组件及其制备方法 Download PDFInfo
- Publication number
- WO2019086025A1 WO2019086025A1 PCT/CN2018/113915 CN2018113915W WO2019086025A1 WO 2019086025 A1 WO2019086025 A1 WO 2019086025A1 CN 2018113915 W CN2018113915 W CN 2018113915W WO 2019086025 A1 WO2019086025 A1 WO 2019086025A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- thickness
- microporous layer
- microporous
- electrode assembly
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8636—Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8803—Supports for the deposition of the catalytic active composition
- H01M4/8807—Gas diffusion layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8803—Supports for the deposition of the catalytic active composition
- H01M4/881—Electrolytic membranes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8825—Methods for deposition of the catalytic active composition
- H01M4/8828—Coating with slurry or ink
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8875—Methods for shaping the electrode into free-standing bodies, like sheets, films or grids, e.g. moulding, hot-pressing, casting without support, extrusion without support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/925—Metals of platinum group supported on carriers, e.g. powder carriers
- H01M4/926—Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0234—Carbonaceous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0241—Composites
- H01M8/0245—Composites in the form of layered or coated products
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the invention relates to the technical field of fuel cells, in particular to a membrane electrode assembly of a fuel cell and a preparation method thereof.
- Fuel cells have broad prospects in the fields of transportation, backup power, distributed power stations, etc. due to their high energy conversion efficiency, low emissions and no pollution.
- a typical fuel cell monomer consists of an electrolyte membrane (typically a proton exchange membrane), a cathode and anode catalytic electrode, a gas diffusion layer, and a bipolar plate.
- Gas diffusion media in fuel cells typically consist of a conductive porous substrate such as carbon fiber paper or carbon cloth with a microporous layer attached thereto.
- the microporous layer usually includes carbon powder and a hydrophobic fluoropolymer, which functions as a drainage ventilator and enhances electron transport capability, and the microporous layer plays a very important role in water management of the fuel cell.
- the water management of fuel cells is very important.
- the lack of water will cause the high proton transport impedance of the electrolyte membrane and the low activity of the electrode, resulting in low power output.
- the high water content will easily lead to flooding of the electrode, resulting in high oxygen and fuel. Transmission resistance also causes performance degradation.
- Fuel cells, especially large-sized fuel cells may have an imbalance in current density distribution, affecting power density and durability, due to imbalances in membrane electrode water content, gas relative humidity, and oxygen concentration in different regions of the electrode.
- the air at the inlet of the fuel cell is relatively dry, and the partial pressure of oxygen is high; the air at the outlet is relatively humid, and the partial pressure of oxygen is low.
- This imbalance can be exacerbated at different operating temperatures, such as being easier to dry at high temperatures and flooding at low temperatures.
- a pre-humidification method is generally employed, that is, humidification is performed by a humidifier before the air is introduced into the stack.
- Humidifiers are generally bulky, increasing the size and weight of the system, and the use of humidifiers does not solve the problem of equal distribution of water and oxygen in various regions of fuel cells, especially large-sized batteries.
- Chinese Patent Application No. 201110293005.4 provides a fuel cell electrode having gradient performance and a method of manufacturing the same, first preparing at least two electrode paste mixtures having different compositions, depositing the at least two electrode pastes in Forming at least two electrode layers on the gas diffusion layer substrate, the combination thereof to form a combined electrode such that the average performance level of the combined electrode layer varies along the substrate, the performance being film equivalent, diffusion medium gas permeability , ionomer to carbon ratio, catalyst loading, porosity, or a combination thereof.
- US 8,945,790 provides a microporous layer structure having hydrophilic pores and hydrophobic pores having a complex pore diameter of 0.02 to 0.5 micrometers, and a plurality of pores having a pore diameter of 0.5 to 100 micrometers;
- the hydrophilic pores increase the storage amount of water, Improve the water content of the membrane under dry high temperature conditions, and increase the liquid to gas phase transition point, which is conducive to heat dissipation;
- the hydrophobic pore simulates the second pore in the catalytic layer to facilitate the transfer of reaction gas and water vapor; the drilling is facilitated by capillary force The transport of liquid water.
- the technical problem solved by the present invention is that the fuel cell, especially the large-sized fuel cell, has imbalance problem of water and oxygen distribution in different regions of the electrode, and aims to provide a membrane electrode with better water management property.
- the components which improve the stability of the fuel cell under various humidity conditions, improve durability and reduce the amount of catalyst.
- the total thickness of the microporous layer and the catalytic layer is 20 to 65 ⁇ m.
- the microporous layer has a thickness of 30 to 55 ⁇ m at the air inlet and a thickness of 20 to 40 ⁇ m at the air outlet; the thickness of the catalytic layer at the air inlet is 1 to 10 ⁇ m, and the thickness at the outlet It is 5 to 30 ⁇ m.
- the difference in thickness of the catalytic layer at the outlet and the inlet is 1 to 20 ⁇ m, and the difference in thickness of the microporous layer at the inlet and the outlet is 1 to 20 ⁇ m.
- a diffusion layer coated with a microporous layer and a membrane/electrode assembly coated with a catalytic layer are prepared as a membrane electrode assembly.
- the application also provides a method for preparing a membrane electrode assembly of the fuel cell, comprising the following steps:
- the thickness of the microporous layer is decreased in the direction of the air flow path by controlling the coating process of the microporous layer and the catalytic layer, respectively, and the thickness of the catalytic layer is increased in the direction of the air flow path, the microporous layer and the The total thickness of the catalytic layer is uniform;
- a diffusion layer coated with a microporous layer and a catalytic layer and an electrolyte membrane are prepared as a membrane electrode assembly.
- the microporous layer slurry mixture is composed of a carbon powder, a binder, a dispersant, and a solvent;
- the catalytic layer is composed of a carbon-supported platinum catalyst, an ionomer, a dispersant, and a solvent.
- the coating tool used for the coating process of the microporous layer is a coating machine or a doctor blade having a slit or a head; the coating tool used for the coating process of the catalytic layer is provided with a slit or The applicator or scraper of the nozzle.
- the thickness of the microporous layer is decreased in the direction of the air flow path by changing the height of the both ends of the doctor blade; in the process of preparing the catalytic layer, the inclination angle of the doctor blade is opposite to that of the microporous layer .
- the manner of preparing the membrane electrode assembly is hot pressing or bonding.
- the present application provides a membrane electrode assembly of a fuel cell, comprising a gas diffusion layer, a microporous layer, a catalytic layer and an electrolyte membrane which are sequentially stacked, wherein the thickness of the microporous layer decreases in a direction along the air flow path.
- the thickness of the catalytic layer is increased, and the microporous layer is consistent with the total thickness of the catalytic layer.
- moisture is not easily lost through the microporous layer, increasing the water content at the inlet, reducing the air pre-humidification demand, and the thickness of the catalytic layer is thin due to the oxygen inlet of the air.
- the relatively high concentration can compensate for the performance degradation caused by the decrease in the amount of catalyst; at the air outlet, since the microporous layer is thin, the oxygen transmission resistance is small, and the moisture is relatively easy to be dispersed, which can reduce the flooding phenomenon and the thickness of the catalytic layer.
- the relatively high, high catalyst usage provides more reactive sites, reduces the negative impact of performance due to lower oxygen concentrations, and helps maintain performance at the exit.
- water management and material transport can be improved, which facilitates the balance of water content and oxygen concentration in the entire area of the battery, improves the uniform distribution of current density, and improves the battery under various temperature and humidity conditions. Stability, and can reduce costs to a certain extent, improve durability.
- Figure 1 is a membrane electrode assembly of a fuel cell of the present invention
- FIG 3 is a comparison of high humidity performance of a battery formed by a membrane electrode assembly prepared in accordance with an embodiment of the present invention.
- the present invention provides a membrane electrode assembly comprising a microporous layer and a catalytic layer, a microporous layer and a catalytic layer, which form a gradient distribution in thickness along the direction of the air flow path.
- the total thickness does not change.
- the thickness of the microporous layer is greater than the outlet, and the thickness of the catalytic layer is smaller than the outlet.
- the membrane electrode can balance the water content of the fuel cell gas inlet and outlet regions, thereby improving the current density distribution of the large-sized fuel cell and improving the battery in each Stability under temperature and humidity, and improved durability.
- the membrane electrode assembly of the present application includes: a gas diffusion layer, a microporous layer, a catalytic layer and an electrolyte membrane which are sequentially stacked, and the thickness of the microporous layer decreases in a direction along the air flow path, and the catalysis The thickness of the layer is increased, and the microporous layer is consistent with the total thickness of the catalytic layer.
- the present application provides a membrane electrode assembly having a gradient change comprising sequentially stacking a gas diffusion layer, a microporous layer, a catalytic layer and an electrolyte membrane, wherein the microporous layer and the catalytic layer have a gradient change, ie, along the air flow In the direction of the road, the thickness of the microporous layer is decreased, and the thickness of the catalytic layer is increased. In this case, it is necessary to ensure that the microporous layer and the total thickness of the catalytic layer are consistent, that is, in the direction of the air flow path. The thickness of the microporous layer and the catalytic layer is unchanged. As shown in FIG. 1 , FIG.
- FIG. 1 is a schematic structural view of a membrane electrode assembly according to the present invention.
- the microporous layer and the catalytic layer are interposed between the gas diffusion layer and the electrolyte membrane, and the thickness of the microporous layer is
- the gradient distribution of the present application increasing or decreasing can make the distribution of moisture content along the inlet and outlet more uniform, and the invention effect is better.
- the total thickness of the microporous layer and the catalytic layer is 20 to 65 ⁇ m; more preferably, the total thickness of the microporous layer and the catalytic layer is 45 ⁇ m.
- the microporous layer has a thickness of 30 to 55 ⁇ m at the air inlet. In a specific embodiment, the microporous layer has a thickness of 40 ⁇ m at the air inlet; the microporous layer has a thickness of 20 at the air outlet. ⁇ 40 ⁇ m, in a specific embodiment, the microporous layer has a thickness of 30 ⁇ m at the air outlet.
- the catalytic layer has a thickness of 1 to 10 ⁇ m.
- the catalytic layer has a thickness of 5 ⁇ m; at the air outlet, the catalytic layer has a thickness of 5 to 30 ⁇ m, in one In a specific embodiment, the catalytic layer has a thickness of 15 ⁇ m. In a specific embodiment, the catalytic layer has a thickness difference of 1 to 20 ⁇ m at the outlet and the inlet, and the microporous layer has a thickness difference of 1 to 20 ⁇ m at the inlet and the outlet.
- the invention also provides a method for preparing a membrane electrode assembly of a fuel cell, comprising the following steps:
- a diffusion layer coated with a microporous layer and a membrane/electrode assembly coated with a catalytic layer are prepared as a membrane electrode assembly.
- the invention also provides a method for preparing a membrane electrode assembly of another fuel cell, comprising the following steps:
- the thickness of the microporous layer is decreased in the direction of the air flow path by controlling the coating process of the microporous layer and the catalytic layer, respectively, and the thickness of the catalytic layer is increased in the direction of the air flow path, the microporous layer and the The total thickness of the catalytic layer is uniform;
- a diffusion layer coated with a microporous layer and a catalytic layer and an electrolyte membrane are prepared as a membrane electrode assembly.
- two slurry mixtures are prepared, specifically a microporous layer slurry mixture and a catalytic layer slurry mixture, wherein the microporous layer slurry mixture and the catalytic layer slurry mixture are both a mixture of components well known to those skilled in the art; in particular, the microporous layer slurry mixture is composed of a carbon powder, a binder, a dispersant and a solvent, and the catalyst layer slurry composition is composed of a platinum-supported catalyst
- the composition of the ionomer, the dispersant, and the solvent; as for the proportional relationship of the above components, the present application is not particularly limited, and may be carried out according to a ratio well known to those skilled in the art.
- the microporous layer slurry mixture is then coated on the surface of the hydrophobically treated gas diffusion layer, and a microporous layer is obtained after the heat treatment.
- the above two methods are specifically divided, that is, the catalyst layer slurry mixture can be applied to the surface of the electrolyte membrane, or can be applied to the above prepared
- the surface of the microporous layer is ultimately ensured that the catalytic layer and the microporous layer conform to the above structural definition.
- the coating process is controlled such that the resulting microporous layer and catalytic layer satisfy the above structural requirements.
- a plurality of coating processes may be employed to prepare a microporous layer and a catalytic layer of a thickness gradient distribution; the coating tool coated with the above catalytic layer or microporous layer employs a coating machine or a doctor blade having slits or nozzles. If a doctor blade is used, the thickness of both ends of the blade can be changed to control the thickness gradient; for example, the blade on one side is higher than the other side to coat the microporous layer slurry, and when the catalyst layer slurry is coated, the inclination direction of the blade is changed to The opposite is true when the microporous layer is applied; thus the total thickness of the microporous layer and the catalytic layer remains unchanged.
- a slit it is possible to adjust different slurry coating thickness by adjusting one end slit width to be larger than the other end.
- the combination of the membrane electrode assembly is finally performed, and the membrane electrode assembly can be obtained by hot pressing or by other bonding methods, and the present application is not particularly limited.
- the membrane electrode assembly When the membrane electrode assembly is assembled, it may be carried out outside the battery or inside the battery; for the first method described above, the method of directly pressing the microporous layer and the catalytic layer by hot pressing or bonding is performed outside the battery.
- the internal assembly of the battery is to insert the diffusion layer coated with the microporous layer and the membrane/electrode assembly coated with the catalytic layer into the battery in a direction in which the thickness is uniform and apply a certain pressing force;
- the first method is the same as the first method in the battery.
- microporous layer structure provided by the present invention will be described in detail below with reference to the embodiments, and the scope of the present invention is not limited by the following examples.
- the catalyst layer electrode dispersion is composed of a carbon-supported platinum catalyst, a solvent and an ionomer liquid, and is ultrasonically dispersed and mechanically stirred to form a uniform slurry; the slurry is coated on the surface of the electrolyte membrane, and the coating tool is a scraper.
- the coating machine forms a thickness gradient along the air inlet to the air outlet by changing the height of the two ends of the blade; here, the blade on the air inlet side is lower than the air outlet side, and the thickness of the slurry coated on the inlet side is smaller than the outlet side.
- a membrane/electrode assembly containing a catalytic layer having a thickness gradient along the air inlet to the outlet having a thickness of 5 ⁇ m at the inlet and a thickness of 15 ⁇ m at the outlet was formed.
- the total thickness of the microporous layer and the catalytic layer was kept uniform by 45 ⁇ m by adjusting the opposite of the blade inclination angle and the angle of the coating when the microporous layer and the catalytic layer were coated.
- Microporous layer dispersion composed of carbon powder, polytetrafluoroethylene emulsion, deionized water and surfactant, ultrasonic dispersion and mechanical agitation to form a uniform microporous layer slurry; coating the slurry on gas diffusion
- the coating tool is a coating machine using a doctor blade; here, the blade on the air inlet side is equal to the air outlet side, and after heat treatment, a highly permeable microporous layer having a uniform thickness is formed, and the thickness is 35 ⁇ m;
- the carbon-supported platinum catalyst, the solvent and the ionomer liquid constitute a catalytic layer electrode dispersion, which is ultrasonically dispersed and mechanically stirred to form a uniform slurry; the slurry is coated on the surface of the electrolyte membrane, and the coating tool is a scraper
- the blade on the air inlet side is equal to the air outlet side, and after heat treatment, a catalyst layer having a uniform thickness is formed
- Microporous layer dispersion composed of carbon powder, polytetrafluoroethylene emulsion, deionized water and surfactant, ultrasonic dispersion and mechanical agitation to form a uniform microporous layer slurry; coating the slurry on gas diffusion
- the coating tool is a coating machine using a doctor blade; here, the blade on the air inlet side is equal to the air outlet side, and after heat treatment, a highly permeable microporous layer having a uniform thickness is formed, and the thickness is 30 ⁇ m;
- the carbon-supported platinum catalyst, the solvent and the ionomer liquid constitute a catalytic layer electrode dispersion, which is ultrasonically dispersed and mechanically stirred to form a uniform slurry; the slurry is coated on the surface of the electrolyte membrane, and the coating tool is a scraper
- the blade on the air inlet side is equal in height to the air outlet side, and after heat treatment, a catalyst layer having a uniform thickness
- the film-forming electrode assembly was prepared by hot pressing the diffusion layer coated with the microporous layer prepared in the above Examples 1 to 3 and the film/electrode assembly coated with the catalytic layer, and the prepared membrane electrode assembly was assembled in a fuel cell test fixture. Under certain conditions, the performance of the fuel cell under low humidity and high humidity is respectively detected. The detection results are shown in Fig. 2 and Fig. 3.
- the detection conditions of Figure 2 were a cathode inlet pressure of 200 kPa, an anode and cathode inlet RH of 30% and 42%, respectively, and an anode to cathode stoichiometry of 2.0. As shown in FIG.
- the MEA having the gradient property exhibited higher performance of about 20 mV at 90 ° C and similar performance at 75 ° C; and the catalyst load of Example 1 was lower than that of Example 3. Higher and similar properties were shown at 90 ° C and 75 ° C, respectively.
- the detection conditions of Figure 3 were a cathode inlet pressure of 200 KPa, an anode and cathode inlet RH of 100%, and an anode to cathode stoichiometry of 2.0.
- the MEA having the gradient property exhibits a higher performance of about 20 mV at 55 ° C and a higher performance of about 10 mV at 80 ° C; and Example 1 is more than that of Example 3.
- the catalyst loading was low but showed similar performance.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
本发明提供了一种燃料电池的膜电极组件,包括依次叠加设置的气体扩散层、微孔层、催化层和电解质膜,在沿空气流路方向上,所述微孔层的厚度递减,所述催化层的厚度递增,所述微孔层与所述催化层的总厚度一致。本申请还提供了所述燃料电池的膜电极组件的制备方法。本申请提供的燃料电池膜电极组件可以平衡燃料电池气体入口和出口区域的水含量,最终提高燃料电池在各种温湿度下的稳定性,提高耐久性并降低催化剂载量等功能。
Description
本申请要求于2017年11月6日提交中国专利局、申请号为201711078834.4、发明名称为“燃料电池的膜电极组件及其制备方法”的中国专利申请、以及于2017年11月6日提交中国专利局、申请号为201721466595.5、发明名称为“燃料电池的膜电极组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及燃料电池技术领域,尤其涉及燃料电池的膜电极组件及其制备方法。
燃料电池由于能量转化效率高、低排放无污染等优势,在交通运输、备用电源、分布式电站等领域发展前景广阔。典型的燃料电池单体由电解质膜(一般为质子交换膜)、阴极和阳极的催化电极、气体扩散层以及双极板组成。燃料电池中的气体扩散介质通常由诸如碳纤维纸或碳布的导电多孔基材组成,并在其上附有微孔层。微孔层通常包括碳粉末和疏水性含氟聚合物,起排水通气并增强电子传输能力等功能,微孔层对于燃料电池的水管理具有非常重要的作用。
燃料电池的水管理非常重要,缺水会造成电解质膜的高质子传输阻抗以及电极的低活性,从而导致低的功率输出;而高的水含量容易导致电极的水淹,造成氧气和燃料的高传输阻力,同样会导致性能下降。车用燃料电池由于比较高的功率输出,一般来说电极的面积比较大,可达数百平方厘米。燃料电池尤其是大尺寸燃料电池在电极的不同区域由于膜电极水含量、气体相对湿度和氧气浓度等的不平衡会导致电流密度分布的不均衡,影响功率密度和耐久性。
一般来说,燃料电池入口处的空气比较干燥,氧气分压高;出口处的空气相对湿润,氧气分压低。在不同的工作温度下,这种不均衡可能会加剧,比如高温下更容易干,低温下趋于发生水淹。为了提高入口空气的相对湿度,一般采取预加湿的方法,即空气导入电堆之前通过加湿器进行加湿。加湿器一般体积较大,增加了系统的体积和重量,而且使用加湿器不能解决燃料电池特别是大尺寸电池在各个区域中水和氧气的均衡分配问题。
申请号为201110293005.4的中国专利提供了一种涉及具有梯度化性能的燃料电池电极及其制造方法,首先制备具有不同成分的至少两种电极浆料混合物,将所述至少两种电极浆料沉积在气体扩散层基材上形成至少两个电极层,其组合以形成组合电极使得所述组合电极层的平均性能水平沿所述基材变化而变化,所述性能为膜当量、扩散介质气体渗透率、离聚物和碳之比、催化剂载量、孔隙度或者它们的组合。
US8,945,790提供一种微孔层结构,具有复数孔径在0.02~0.5微米的亲水孔和疏水孔,以及复数孔径在0.5~100微米的钻孔;亲水孔增加了水的储存量,可以提高干燥高温条件下膜的水含量,而且增加了液态到气态的相变点,利于散热;疏水孔模拟催化层中的第二孔利于反应气和水蒸气的传输;钻孔则通过毛细管力便于液态水的传输。
上述方案要么制备工艺复杂,需要控制的参数繁多,不利于批量生产,要么对燃料电池的水管理改善效果不佳,进而影响燃料电池的性能。
发明内容
本发明解决的技术问题在于现有技术中存在的燃料电池尤其是大尺寸燃料电池在电极不同区域中水和氧气的分配不均衡问题,目的在于提供一种具有较好的水管理性的膜电极组件,从而可提高燃料电池在各种湿度下的稳定性,提高持久性,降低催化剂用量。
有鉴于此,本申请提供了一种燃料电池的膜电极组件,包括依次叠加设置的气体扩散层、微孔层、催化层和电解质膜,在沿空气流路方向上,所述微孔层的厚度递减,所述催化层的厚度递增,所述微孔层与所述催化层的总厚度一致。在本文中,催化层有时也称为催化电极层。
优选的,所述微孔层和所述催化层的总厚度为20~65μm。
优选的,所述微孔层在空气入口处的厚度为30~55μm,在空气出口处的厚度为20~40μm;所述催化层在空气入口处的厚度为1~10μm,在出口处的厚度为5~30μm。
优选的,所述催化层在出口和入口处的厚度差为1~20μm,所述微孔层在入口和出口处的厚度差为1~20μm。
本申请还提供了所述的燃料电池的膜电极组件的制备方法,包括以下步骤:
A),制备微孔层浆料混合物和催化层浆料混合物;
B),在经过疏水处理的气体扩散层表面涂覆微孔层浆料混合物,热处理后得到微孔层;将所述催化层浆料混合物涂覆于电解质膜表面,热处理后得到膜/电极结合体;通过分别控制微孔层与膜/电极结合体的涂覆工艺,使微孔层的厚度在空气流路方向上递减,膜/电极结合体中的催化层的厚度在空气流路方向上递增,所述微孔层与所述催化层的总厚度一致;
C),将涂覆有微孔层的扩散层与涂覆有催化层的膜/电极结合体制备成膜电极组件。
本申请还提供了所述的燃料电池的膜电极组件的制备方法,包括以下步骤:
A),制备微孔层浆料混合物和催化层浆料混合物;
B),在经过疏水处理的气体扩散层表面涂覆微孔层浆料混合物,热处理后得到微孔层;将所述催化层浆料混合物涂覆于所述微孔层表面,热处理后得到催化层;通过分别控制微孔层与催化层的涂覆工艺,使微孔层的厚度在空气流路方向上递减,催化层的厚度在空气流路方向上递增,所述微孔层与所述催化层的总厚度一致;
C),将涂覆有微孔层和催化层的扩散层与电解质膜制备成膜电极组件。
优选的,所述微孔层浆料混合物由碳粉体、粘接剂、分散剂和溶剂组成;所述催化层由碳载铂金催化剂、离聚物、分散剂和溶剂组成。
优选的,实施所述微孔层的涂覆工艺所用的涂覆工具为具有狭缝或喷头的涂覆机或刮刀;实施所述催化层的涂覆工艺所用的涂覆工具为具有狭缝或喷头的涂覆机或刮刀。
优选的,在制备微孔层的过程中,通过改变刮刀两端的高度以使微孔层的厚度在空气流路方向上递减;在制备催化层的过程中,刮刀的倾斜角与微孔层相反。
优选的,所述制备膜电极组件的方式为热压或粘合。
本申请提供了一种燃料电池的膜电极组件,包括依次叠加设置的气体扩散层、微孔层、催化层和电解质膜,在沿空气流路方向上,所述微孔层的厚度递减,所述催化层的厚度递增,所述微孔层与所述催化层的总厚度一致。在空气 入口处,由于厚微孔层的保水作用,水分不容易通过微孔层流失,增加了入口处的水含量,减小了空气预加湿需求,催化层的厚度薄,由于空气入口氧气的浓度相对较高,可以补偿由于催化剂用量下降导致的性能下降;在空气出口处,由于微孔层薄,氧气的传输阻力小,而且水分相对容易散出,可以降低水淹现象,催化层的厚度相对较高,高的催化剂用量可以提供更多的反应活性点,降低由于氧气浓度较低带来的性能负面影响,利于保持出口处的性能。如此通过调整微孔层和催化层厚度上的梯度分布可以改善水管理和物质传输,利于电池整个区域的水含量和氧气浓度的平衡,改善电流密度的均匀分布,提高电池在各种温湿度下的稳定性,并且可以在一定程度上降低成本,提高耐久性。
图1为本发明燃料电池的膜电极组件;
图2为本发明实施例制备的膜电极组件形成的电池的低湿度性能对比;
图3为本发明实施例制备的膜电极组件形成的电池的高湿度性能对比。
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
针对现有技术燃料电池水管理不足的问题,本发明提供了一种膜电极组件,其包含沿空气流路方向在厚度上形成梯度分布的微孔层和催化层,微孔层和催化层的总厚度不变。在空气入口处微孔层厚度大于出口处,而催化层厚度小于出口处,该膜电极可以平衡燃料电池气体入口和出口区域的水含量,达到改善大尺寸燃料电池电流密度分布,提高电池在各种温湿度下的稳定性,提高耐久性等功能。具体的,本申请所述膜电极组件包括:依次叠加设置的气体扩散层、微孔层、催化层和电解质膜,在沿空气流路方向上,所述微孔层的厚度递减,所述催化层的厚度递增,所述微孔层与所述催化层的总厚度一致。
本申请提供了具有梯度变化的膜电极组件,该膜电极组件包括依次叠加设置气体扩散层、微孔层、催化层和电解质膜,其中微孔层与催化层具有梯度变化,即在沿空气流路方向上,所述微孔层的厚度递减,所述催化层的厚度递增,此时需要保证所述微孔层与所述催化层的总厚度是一致的,即沿空气流路方向 上,所述微孔层与所述催化层的厚度是没有变化的。如图1所示,图1为本发明膜电极组件的结构示意图,由图1可以清楚地看出,微孔层与催化层介于气体扩散层与电解质膜之间,微孔层的厚度呈梯度变化,催化层的厚度呈梯度变化。本申请递增或递减的梯度分布可以使水分含量沿进出口的分布更加均匀,发明效果更好。
在具体实施方案中,所述微孔层和所述催化层的总厚度为20~65μm;更优选的,所述微孔层和所述催化层的总厚度为45μm。所述微孔层在空气入口处的厚度为30~55μm,在一个具体实施方案中,所述微孔层在空气入口处的厚度为40μm;所述微孔层在空气出口处的厚度为20~40μm,在一个具体实施方案中,所述微孔层在空气出口处的厚度为30μm。在空气入口处,所述催化层的厚度为1~10μm,在一个具体实施方案中,所述催化层的厚度为5μm;在空气出口处,所述催化层的厚度为5~30μm,在一个具体实施方案中,所述催化层的厚度为15μm。在具体实施方案中,所述催化层在出口和入口处的厚度差为1~20μm,所述微孔层在入口和出口处的厚度差为1~20μm。
本发明还提供了燃料电池的膜电极组件的制备方法,包括以下步骤:
A),制备微孔层浆料混合物和催化层浆料混合物;
B),在经过疏水处理的气体扩散层表面涂覆微孔层浆料混合物,热处理后得到微孔层;将所述催化层浆料混合物涂覆于电解质膜表面,热处理后得到膜/电极结合体;通过分别控制微孔层与膜/电极结合体的涂覆工艺,使微孔层的厚度在空气流路方向上递减,膜/电极结合体中的催化层的厚度在空气流路方向上递增,所述微孔层与所述催化层的总厚度一致;
C),将涂覆有微孔层的扩散层与涂覆有催化层的膜/电极结合体制备成膜电极组件。
本发明还提供了另外一种燃料电池的膜电极组件的制备方法,包括以下步骤:
A),制备微孔层浆料混合物和催化层浆料混合物;
B),在经过疏水处理的气体扩散层表面涂覆微孔层浆料混合物,热处理后得到微孔层;将所述催化层浆料混合物涂覆于所述微孔层表面,热处理后得到催化层;通过分别控制微孔层与催化层的涂覆工艺,使微孔层的厚度在空气流 路方向上递减,催化层的厚度在空气流路方向上递增,所述微孔层与所述催化层的总厚度一致;
C),将涂覆有微孔层和催化层的扩散层与电解质膜制备成膜电极组件。
在上述制备膜电极组件的两种方法中,首先制备了两种浆料混合物,具体为微孔层浆料混合物和催化层浆料混合物,其中微孔层浆料混合物与催化层浆料混合物均为本领域技术人员熟知的组分混合物;具体的,所述微孔层浆料混合物由碳粉体、粘接剂、分散剂和溶剂组成,所述催化层浆料组合物由碳载铂金催化剂、离聚物、分散剂和溶剂组成;至于上述组分的比例关系,本申请没有特别的限制,按照本领域技术人员熟知的配比进行即可。
按照本发明,然后在经过疏水处理的气体扩散层表面涂覆微孔层浆料混合物,热处理后得到微孔层。在得到微孔层后,根据催化层浆料混合物涂覆膜层的不同,具体分为了上述两种方法,即催化层浆料混合物可涂覆于电解质膜表面,也可以涂覆于上述制备的微孔层表面,最终均是要保证催化层与微孔层符合上述结构限定。在上述涂覆过程中,通过控制涂覆工艺以使得到的微孔层与催化层满足上述结构要求。具体的,可采用多种涂覆工艺来制备厚度梯度分布的微孔层和催化层;上述催化层或微孔层涂覆的涂覆工具采用具有狭缝或喷头的涂覆机或刮刀。如使用刮刀,可以采用改变刮刀两端的高度来控制厚度梯度;比如一侧的刮刀高于另一侧来涂覆微孔层浆料,涂覆催化层浆料时,改变刮刀的倾斜方向为与涂覆微孔层时相反;由此实现微孔层与催化层的总厚度保持不变。使用狭缝时,可以通过调整一端狭缝宽度大于另外一端来调整不同的浆料涂覆厚度。
在得到催化层与微孔层后,最后进行膜电极组件的组合,可以通过热压的方式也可以通过其它粘合方式得到膜电极组件,对此本申请没有特别的限制。上述组装膜电极组件时,可以在电池之外进行,也可以在电池内部进行;对于上述第一种方法,在电池之外进行就是直接将微孔层与催化层采用热压或粘合的方式组装,在电池内部组装就是将涂覆有微孔层的扩散层与涂覆有催化层的膜/电极结合体按照厚度一致的方向装入电池并施加一定的压紧力;对于第二种方法,在电池之外与第一种方法相同,在电池内部是将涂覆有微孔层和催化层的扩散层与电解质膜按照厚度一致的方向装入电池并施加一定的压紧力。本申请提供了一种具有梯度功能的燃料电池膜电极结构,由此可平衡燃料电池气体 入口和出口区域的水含量,减轻燃料电池特别是大尺寸燃料电池的入口和出口等区域水含量的不均衡问题,达到改善燃料电池电流密度分布,提高高温下电极的保水量,减小气体预加湿程度,降低低温下电极的水淹风险,并可降低会金属催化剂用量,提高耐久性。
为了进一步理解本发明,下面结合实施例对本发明提供的微孔层结构进行详细说明,本发明的保护范围不受以下实施例的限制。
实施例1
采用碳粉、聚四氟乙烯乳液、去离子水及表面活性剂组成的微孔层分散液,进行超声分散和机械搅拌,形成均匀的微孔层浆料;将此浆料涂覆在气体扩散层的一侧,涂覆工具为使用刮刀的涂覆机,通过改变刮刀两端的高度来形成沿空气入口到空气出口的厚度梯度;在此,空气入口侧的刮刀高于空气出口侧,入口侧所涂覆的浆料厚度大于出口侧,经过热处理后形成微孔层,该微孔层具有沿空气入口到出口处的厚度梯度分布,入口处厚度为40μm,出口处厚度为30μm;
采用碳载铂催化剂、溶剂和离聚物液组成催化层电极分散液,进行超声分散和机械搅拌,形成均匀的浆料;将此浆料涂覆在电解质膜的表面,涂覆工具为使用刮刀的涂覆机,通过改变刮刀两端的高度来形成沿空气入口到空气出口的厚度梯度;在此,空气入口侧的刮刀低于空气出口侧,入口侧所涂覆的浆料厚度小于出口侧,经过热处理后形成含有催化层的膜/电极结合体,该催化层具有沿空气入口到出口处的厚度梯度分布,入口处厚度为5μm,出口处厚度15μm。在空气入口到出口处,通过调整涂布微孔层和催化层时刮刀倾斜角的相反和角度的一致,使得微孔层和催化层的总厚度保持一致45μm。
实施例2
采用碳粉、聚四氟乙烯乳液、去离子水及表面活性剂组成的微孔层分散液,进行超声分散和机械搅拌,形成均匀的微孔层浆料;将此浆料涂覆在气体扩散层的一侧,涂覆工具为使用刮刀的涂覆机;在此,空气入口侧的刮刀与空气出口侧等高,经过热处理后形成厚度均匀的高透水性微孔层,厚度为35μm;采用碳载铂催化剂、溶剂和离聚物液组成催化层电极分散液,进行超声分散和机械搅拌,形成均匀的浆料;将此浆料涂覆在电解质膜的表面,涂覆工具为使用刮刀的涂覆机,在此,空气入口侧的刮刀与空气出口侧等高,经过热处理后形成 厚度均匀的催化层,厚度为10μm。
实施例3
采用碳粉、聚四氟乙烯乳液、去离子水及表面活性剂组成的微孔层分散液,进行超声分散和机械搅拌,形成均匀的微孔层浆料;将此浆料涂覆在气体扩散层的一侧,涂覆工具为使用刮刀的涂覆机;在此,空气入口侧的刮刀与空气出口侧等高,经过热处理后形成厚度均匀的高透水性微孔层,厚度为30μm;采用碳载铂催化剂、溶剂和离聚物液组成催化层电极分散液,进行超声分散和机械搅拌,形成均匀的浆料;将此浆料涂覆在电解质膜的表面,涂覆工具为使用刮刀的涂覆机,在此,空气入口侧的刮刀与空气出口侧等高,经过热处理后形成厚度均匀的催化层,厚度为15μm。
将上述实施例1~3制备的涂覆微孔层的扩散层与涂覆催化层的膜/电极结合体通过热压制备成膜电极组件,将制备的膜电极组件装配于燃料电池测试夹具中,在一定条件下分别检测燃料电池在低湿度和高湿度下的性能,检测结果如图2和图3所示。图2的检测条件为阴极入口压力为200kPa,阳极和阴极的入口RH分别为30%和42%,并且阳极和阴极的化学计量比为2.0。如图2所示,具有梯度化性能的MEA,在90℃时显示出大约20mV的更高性能,而在75℃时显示相似的性能;且实施例1比实施例3中的催化剂载量低,在90℃和75℃分别显示了更高和相似的性能。图3的检测条件为阴极入口压力为200KPa,阳极和阴极的入口RH均为100%,并且阳极和阴极的化学计量比为2.0。如图3所示,具有梯度化性能的MEA,在55℃时显示出大约20mV的更高性能,而在80℃时显示出大约10mV的更高性能;且实施例1比实施例3中的催化剂载量低,但显示了相似的性能。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要 符合与本文所公开的原理和新颖特点相一致的最宽的范围。
Claims (10)
- 一种燃料电池的膜电极组件,包括依次叠加设置的气体扩散层、微孔层、催化层和电解质膜,在沿空气流路方向上,所述微孔层的厚度递减,所述催化层的厚度递增,所述微孔层与所述催化层的总厚度一致。
- 根据权利要求1所述的膜电极组件,其特征在于,所述微孔层和所述催化层的总厚度为20~65μm。
- 根据权利要求1所述的膜电极组件,其特征在于,所述微孔层在空气入口处的厚度为30~55μm,在空气出口处的厚度为20~40μm;所述催化层在空气入口处的厚度为1~10μm,在出口处的厚度为5~30μm。
- 根据权利要求1所述的膜电极组件,其特征在于,所述催化层在出口和入口处的厚度差为1~20μm,所述微孔层在入口和出口处的厚度差为1~20μm。
- 权利要求1所述的燃料电池的膜电极组件的制备方法,包括以下步骤:A),制备微孔层浆料混合物和催化层浆料混合物;B),在经过疏水处理的气体扩散层表面涂覆微孔层浆料混合物,热处理后得到微孔层;将所述催化层浆料混合物涂覆于电解质膜表面,热处理后得到膜/电极结合体;通过分别控制微孔层与膜/电极结合体的涂覆工艺,使微孔层的厚度在空气流路方向上递减,膜/电极结合体中的催化层的厚度在空气流路方向上递增,所述微孔层与所述催化层的总厚度一致;C),将涂覆有微孔层的扩散层与涂覆有催化层的膜/电极结合体制备成膜电极组件。
- 权利要求1所述的燃料电池的膜电极组件的制备方法,包括以下步骤:A),制备微孔层浆料混合物和催化层浆料混合物;B),在经过疏水处理的气体扩散层表面涂覆微孔层浆料混合物,热处理后得到微孔层;将所述催化层浆料混合物涂覆于所述微孔层表面,热处理后得到催化层;通过分别控制微孔层与催化层的涂覆工艺,使微孔层的厚度在空气流路方向上递减,催化层的厚度在空气流路方向上递增,所述微孔层与所述催化层的总厚度一致;C),将涂覆有微孔层和催化层的扩散层与电解质膜制备成膜电极组件。
- 根据权利要求5或6所述的制备方法,其特征在于,所述微孔层浆料混合物由碳粉体、粘接剂、分散剂和溶剂组成;所述催化层由碳载铂金催化剂、离聚物、分散剂和溶剂组成。
- 根据权利要求5或6所述的制备方法,其特征在于,实施所述微孔层的涂覆工艺所用的涂覆工具为具有狭缝或喷头的涂覆机或刮刀;实施所述催化层的涂覆工艺所用的涂覆工具为具有狭缝或喷头的涂覆机或刮刀。
- 根据权利要求8所述的制备方法,其特征在于,在制备微孔层的过程中,通过改变刮刀两端的高度以使微孔层的厚度在空气流路方向上递减;在制备催化层的过程中,刮刀的倾斜角与微孔层相反。
- 根据权利要求5或6所述的制备方法,其特征在于,所述制备膜电极组件的方式为热压或粘合。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18874021.1A EP3709417A4 (en) | 2017-11-06 | 2018-11-05 | MEMBRANE ELECTRODE ARRANGEMENT OF A FUEL CELL AND METHOD FOR PRODUCING IT |
US16/755,560 US11302947B2 (en) | 2017-11-06 | 2018-11-05 | Membrane electrode assembly of fuel cell and preparation method therefor |
CA3080008A CA3080008C (en) | 2017-11-06 | 2018-11-05 | Membrane electrode assembly of fuel cell and preparation method therefor |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711078834.4 | 2017-11-06 | ||
CN201721466595.5 | 2017-11-06 | ||
CN201711078834.4A CN107834088A (zh) | 2017-11-06 | 2017-11-06 | 燃料电池的膜电极组件及其制备方法 |
CN201721466595.5U CN207490022U (zh) | 2017-11-06 | 2017-11-06 | 燃料电池的膜电极组件 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019086025A1 true WO2019086025A1 (zh) | 2019-05-09 |
Family
ID=66331340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/113915 WO2019086025A1 (zh) | 2017-11-06 | 2018-11-05 | 燃料电池的膜电极组件及其制备方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11302947B2 (zh) |
EP (1) | EP3709417A4 (zh) |
CA (1) | CA3080008C (zh) |
WO (1) | WO2019086025A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114824311A (zh) * | 2022-03-31 | 2022-07-29 | 东风汽车集团股份有限公司 | 一种气体扩散层的制备方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114204041B (zh) * | 2021-11-12 | 2023-12-05 | 广东泰极动力科技有限公司 | 一种燃料电池催化层结构及其制作工艺 |
CN114243033A (zh) * | 2021-12-09 | 2022-03-25 | 同济大学 | 一种无瑕疵的催化剂直接涂布质子交换膜及其制备方法与应用 |
CN115995657B (zh) * | 2023-03-03 | 2024-04-23 | 江苏正力新能电池技术有限公司 | 一种复合隔膜结构、电极组件及锂电池 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005317492A (ja) * | 2004-03-31 | 2005-11-10 | Dainippon Printing Co Ltd | 燃料電池、電極−電解質膜接合体、触媒層付き電極基材、それらの製造方法及び転写シート |
JP2009076423A (ja) * | 2007-09-25 | 2009-04-09 | Nippon Soken Inc | 燃料電池 |
US20090148752A1 (en) * | 2007-12-04 | 2009-06-11 | Hideyuki Ueda | Direct oxidation fuel cell |
JP2009129667A (ja) * | 2007-11-22 | 2009-06-11 | Toyota Motor Corp | 燃料電池 |
JP2013225398A (ja) * | 2012-04-20 | 2013-10-31 | Panasonic Corp | 燃料電池スタック |
US8945790B2 (en) | 2013-03-15 | 2015-02-03 | Ford Global Technologies, Llc | Microporous layer structures and gas diffusion layer assemblies in proton exchange membrane fuel cells |
CN107834088A (zh) * | 2017-11-06 | 2018-03-23 | 中车青岛四方机车车辆股份有限公司 | 燃料电池的膜电极组件及其制备方法 |
CN207490022U (zh) * | 2017-11-06 | 2018-06-12 | 中车青岛四方机车车辆股份有限公司 | 燃料电池的膜电极组件 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100099005A1 (en) * | 2007-05-15 | 2010-04-22 | Xiaoming Ren | Vapor fed direct hydrocarbon alkaline fuel cells |
US9647274B2 (en) * | 2008-01-11 | 2017-05-09 | GM Global Technology Operations LLC | Method of making a proton exchange membrane using a gas diffusion electrode as a substrate |
JP5188872B2 (ja) * | 2008-05-09 | 2013-04-24 | パナソニック株式会社 | 直接酸化型燃料電池 |
-
2018
- 2018-11-05 EP EP18874021.1A patent/EP3709417A4/en active Pending
- 2018-11-05 CA CA3080008A patent/CA3080008C/en active Active
- 2018-11-05 WO PCT/CN2018/113915 patent/WO2019086025A1/zh unknown
- 2018-11-05 US US16/755,560 patent/US11302947B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005317492A (ja) * | 2004-03-31 | 2005-11-10 | Dainippon Printing Co Ltd | 燃料電池、電極−電解質膜接合体、触媒層付き電極基材、それらの製造方法及び転写シート |
JP2009076423A (ja) * | 2007-09-25 | 2009-04-09 | Nippon Soken Inc | 燃料電池 |
JP2009129667A (ja) * | 2007-11-22 | 2009-06-11 | Toyota Motor Corp | 燃料電池 |
US20090148752A1 (en) * | 2007-12-04 | 2009-06-11 | Hideyuki Ueda | Direct oxidation fuel cell |
JP2013225398A (ja) * | 2012-04-20 | 2013-10-31 | Panasonic Corp | 燃料電池スタック |
US8945790B2 (en) | 2013-03-15 | 2015-02-03 | Ford Global Technologies, Llc | Microporous layer structures and gas diffusion layer assemblies in proton exchange membrane fuel cells |
CN107834088A (zh) * | 2017-11-06 | 2018-03-23 | 中车青岛四方机车车辆股份有限公司 | 燃料电池的膜电极组件及其制备方法 |
CN207490022U (zh) * | 2017-11-06 | 2018-06-12 | 中车青岛四方机车车辆股份有限公司 | 燃料电池的膜电极组件 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3709417A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114824311A (zh) * | 2022-03-31 | 2022-07-29 | 东风汽车集团股份有限公司 | 一种气体扩散层的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3709417A1 (en) | 2020-09-16 |
US11302947B2 (en) | 2022-04-12 |
EP3709417A4 (en) | 2021-08-18 |
CA3080008C (en) | 2023-01-24 |
CA3080008A1 (en) | 2019-05-09 |
EP3709417A9 (en) | 2022-03-16 |
US20210194029A1 (en) | 2021-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107681165B (zh) | 一种燃料电池的微孔层结构、其制备方法与燃料电池阴极组件 | |
WO2019086025A1 (zh) | 燃料电池的膜电极组件及其制备方法 | |
CN106684395B (zh) | 用于燃料电池的具有梯度孔隙率的阴极催化层制造工艺 | |
WO2019086024A1 (zh) | 一种燃料电池的微孔层结构、其制备方法与燃料电池阴极组件 | |
KR100474941B1 (ko) | 가스확산전극 및 이것을 사용한 연료전지 | |
JP7387905B2 (ja) | ガス拡散層、その製造方法、膜電極アセンブリ及び燃料電池 | |
CN110148759A (zh) | 面向高电流密度的质子交换膜燃料电池气体扩散层的制备方法 | |
EP1289036A1 (en) | Fuel cell | |
CN106229533B (zh) | 亲水/疏水复合型多层膜电极及其制备方法 | |
CN107834088A (zh) | 燃料电池的膜电极组件及其制备方法 | |
US20110008706A1 (en) | Polymer coating of pem fuel cell catalyst layers | |
CN109742409A (zh) | 一种氢质子交换膜燃料电池用气体扩散层及其制备方法 | |
CN207490022U (zh) | 燃料电池的膜电极组件 | |
JP7304524B2 (ja) | 燃料電池のカソード触媒層および燃料電池 | |
CN109904469A (zh) | 一种优化阴极催化层结构的膜电极制备方法 | |
CN208000968U (zh) | 一种燃料电池的微孔层结构与燃料电池阴极组件 | |
WO2008096887A1 (ja) | 膜-電極接合体およびそれを備えた燃料電池 | |
JP3813406B2 (ja) | 燃料電池 | |
JP2008262741A (ja) | 微多孔質層(マイクロポーラス層:mpl)、ガス拡散層(gdl)、微多孔質層(マイクロポーラス層:mpl)付き膜電極接合体(mega)及び該膜電極接合体(mega)を備えた固体高分子型燃料電池 | |
KR100689105B1 (ko) | 캐필러리 공정을 이용한 연료전지의 촉매층 제조 방법 | |
US11616247B2 (en) | Multi-interface membrane electrode assembly | |
JP2011238443A (ja) | 燃料電池 | |
CN117954636A (zh) | 阴极催化剂层及其制备方法和应用 | |
CN116722156A (zh) | 一种高温质子交换膜燃料电池阴极及制备方法、膜电极 | |
JP2011029013A (ja) | 燃料電池用電極及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18874021 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3080008 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018874021 Country of ref document: EP Effective date: 20200608 |