JP2009076423A - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP2009076423A
JP2009076423A JP2007246832A JP2007246832A JP2009076423A JP 2009076423 A JP2009076423 A JP 2009076423A JP 2007246832 A JP2007246832 A JP 2007246832A JP 2007246832 A JP2007246832 A JP 2007246832A JP 2009076423 A JP2009076423 A JP 2009076423A
Authority
JP
Japan
Prior art keywords
water
layer
flow path
fuel cell
repellent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007246832A
Other languages
English (en)
Inventor
Kazuya Yamashita
和也 山下
Masanori Uehara
昌徳 上原
Hitoshi Hamada
仁 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2007246832A priority Critical patent/JP2009076423A/ja
Publication of JP2009076423A publication Critical patent/JP2009076423A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

【課題】セル内全体に渡ってMEAを均一に湿潤し、安定した発電特性を示す燃料電池を提供する。
【解決手段】 固体高分子電解質膜100と電極とからなる膜電極接合体MEAと、ガス流路115、124を有するセパレータ114、124とからなる燃料電池1の電極として触媒層110、120と、そのガス流路側に設けた拡散層112、122とを有し、拡散層112、122と触媒層110、120との間には、触媒側撥水層111、121を設けるとともに、触媒側撥水層111、121の膜厚T111、T121を、ガス流路115、125の入口側から出口側に向けて、徐々に又は、段階的に薄くし、拡散層112、122とガス流路114、124との間には、流路側撥水層113、123を設けるとともに、流路側撥水層113、123の膜厚T113、T123を、ガス流路115、125の入口側から出口側に向けて、徐々に又は、段階的に、厚くする。
【選択図】 図1

Description

本発明は、燃料ガスと酸化剤ガスの発電反応を利用して発電する燃料電池に関し、特に、燃料電池内において生成水の分布を均一に維持することができる燃料電池の構造に関するものである。
固体高分子型燃料電池は、複数の燃料電池セルを積層した燃料電池スタックに、酸素を含有する酸化剤ガスと水素を含有する燃料ガスを供給して発電反応させることにより電気エネルギーを発生させている。基本単位となる燃料電池セルは、一般に、固体高分子電解質膜の両面に電極となる触媒層を形成したMEA(Membrane Electrode Assembly)と呼ばれる膜電極接合体を備え、その外側に酸化剤ガスの流れる酸化剤ガス流路を設けた酸化剤側セパレータと燃料ガスの流れる燃料ガス流路を設けた燃料側セパレータとを配設して、更にMEAと各セパレータとの間には、それぞれのガスをMEAの表面上に均一に拡散されるための拡散層が配設された構造となっている。
燃料電極(アノード)では、燃料ガス流路から拡散層を経て供給される水素が触媒層の触媒作用によりイオン化し、固体高分子電解質膜を透過して酸化剤電極(カソード)側に移動する。酸化剤ガス流路からカソードに供給される酸素は、アノードから移動してきた水素イオンと反応し、水を生成する。この発電反応により起電力が発生する。
発電の際に生成された水が過剰に拡散層内に滞留すると、ガスの拡散を阻害するフラディングとよばれる現象を引き起こし、燃料電池の発電性能を下げる虞がある。
又、発電の際に生成された水が拡散層又はガス流路内に残留し、運転停止中に氷点以下の低温環境下となった場合にはこれが凍結して、始動性能を下げる虞もある。
更に、発電時には、水素イオンが固体高分子電解質膜内をアノードからカソードへ移動する際に、固体高分子電解質膜内に存在する水分子の一部と結びつき、固体高分子電解質膜内の水分子を伴ってカソード側に移動し、更にカソードで生成された水分と一体となる。この時、反応熱によって加熱され、カソード表面に存在する水分は蒸発し易い状態となっている。これが酸化剤ガス流路を流れる酸化剤ガスによって蒸発乾燥される。固体高分子電解質膜が過剰に乾燥されると固体高分子電解質膜内におけるイオン伝導性が低下するドライアップといわれる現象を引き起こし、燃料電池の発電性能を下げる虞もある。
従って、燃料電池にとって固体高分子電解質膜を程良い湿潤状態に維持することが重要である。
この様な問題の対策として、運転停止時あるいは運転始動前には、カソード側流路を乾燥空気等の掃気ガスによって、アノード側流路を乾燥水素などの掃気ガスによって掃気して、残留水を掃気ガスとともに外部へ排出することが行われており、発電時には、酸化剤ガス及び燃料ガスを加湿して供給することが行われている。
特許文献1には、固体高分子電解質膜の両側のうち、一の側に燃料電極を備え、他側に酸化剤電極を備えると共に、前記酸化剤電極は、前記固体高分子電解質膜から外側の酸化剤セパレータに向かって順に、酸化剤触媒層、酸化剤ガス拡散層を配置する固体高分子形燃料電池において、前記酸化剤触媒層と前記酸化剤ガス拡散層との間に水蒸発制御用多孔層を設けて、酸化剤ガスの流れ方向に沿い、かつ、その入口側から出口側に向かって固体高分子電解質膜及び酸化剤触媒層内の湿度分布を均一に維持させる技術が開示されている。
又、特許文献2には、カソード側バイポーラプレートに形成されたガス流路を、酸化剤ガスの供給口に連通する上流側ガス流路と、上流側ガス流路よりも下流側に設けられ、酸化剤ガスの排出口に連通する第1の下流側ガス流路と、上流側ガス流路よりも下流側に設けられ、酸化剤ガスの排出口に連通するが第1の下流側ガス流とには連通しない第2の下流側ガス流とで構成して、低加湿運転時における上流側の乾燥過多と下流側のフラディングとを防止する技術が開示されている。
特開2003−92111号公報 特開2004−158369号公報
特許文献1の方法によれば、発電時の燃料電池セル内が高温となった状態においては、固体高分子電解質膜及び酸化剤触媒層内を水素イオン、水酸イオン並びに水分子が移動し易い状態であるので、固体高分子電解質膜及び酸化剤触媒層内の湿度を均一にできる。
ところが、発電停止後にMEA及び拡散層内に液相状態で存在する生成水を乾燥した空気等の掃気ガスの圧力によってガス流路内に排出する掃気を行う場合において、掃気ガス中の水蒸気圧はガス流路の入口側から出口側に向かって徐々に高くなり、一方、掃気ガスの圧力は徐々に低くなるので、ガス流路出口付近においては、ガス流路に排出された水が再び拡散層に侵入してフラディングを起こす虞がある。
又、掃気ガス圧力を出口側での掃気が不完全にならない様に高い圧力で導入した場合には、入口側が過剰に乾燥され、ドライアップを引き起こす虞もある(図9参照)。
又、発電時に生成される水は、専らカソード側で生成されるので、特許文献1にあるように、撥水層はカソード側、即ち酸化剤側拡散層にのみ設けるのが一般的である。しかしながら、停止時には、生成された水が酸化剤側拡散層及びMEA内を移動し、燃料側拡散層に浸透し、更に燃料側ガス流路内にまで浸透し残留する虞もある。従って、発電開始前には燃料側ガス流路及び燃料側拡散層も掃気する必要があり、この時に発生する燃料側の湿度分布の不均一性によって発電性能が低下する虞もある。
一方、特許文献2の方法では、ガス流路が複雑で、氷点下始動時前の掃気によって十分に生成水の排出ができず氷点下始動時に部分的な凍結を引き起こし、ガス流路が閉塞する虞がある。加えて、複雑なガス流路を形成するために製造コストの上昇を招く虞もある。
本発明は上記問題点に鑑みてなされたものであり、簡易な構成で燃料電池全体に渡りMEAの湿潤状態を均一に維持し、特に低温始動時においても、良好な発電性能を発揮できる燃料電池を提供することを目的とする。
請求項1の発明では、酸化剤ガスと燃料ガスの発電反応により発電する燃料電池セルを備える燃料電池であって、上記燃料電池セルは、固体高分子電解質膜の両面に電極を配設した膜電極接合体の一方の面側に、酸化剤ガス流路を形成する酸化剤側セパレータを配設するとともに、他方の面側に燃料ガス流路を形成する燃料側セパレータを配設してなり、
上記電極は、上記固体高分子電解質膜に接する触媒層と、該触媒層の上記ガス流路側に設けられた拡散層とを有して、
上記拡散層と上記触媒層との間には、触媒側撥水層を設けるとともに、該触媒側撥水層の膜厚は、上記ガス流路の入口側から出口側に向けて、徐々に又は、段階的に薄くして、
上記拡散層と上記ガス流路との間には流路側撥水層を設けるとともに、該流路側撥水層の膜厚は、上記ガス流路の入口側から出口側に向けて、徐々に又は、段階的に厚くする。
触媒側撥水層は、掃気時には液相状態の生成水を保持する保水層として機能することが判明し、掃気によって乾燥し易いガス流路入口側の触媒側撥水層を厚くすることによって、固体高分子電解質膜並びに触媒層内の水分を保持し、乾燥し難いガス流路出口側の触媒側撥水層を薄くすることによって、触媒側撥水層に保持される水分を減らしフラディングを予防できる。
又、流路側撥水層は、一旦、ガス流路内に排出された水分が拡散層内に再び侵入するのを防ぐことができる。
即ち、ガス流路出口側においては、掃気ガス中に含まれる水分が多くなっており、流路側撥水層の膜厚を厚くすることによって、掃気ガス中の水分が拡散層へ再侵入するのを防ぐことができる。
一方、ガス流路入口側においては、掃気ガス中に含まれる水分は少なく、流路側撥水層の膜厚は薄くても良い。
従って、請求項1の発明によれば、ガス流路の入口側から出口側に至るまでの膜電極接合体内に含まれる水分を均一に維持することが可能となり、低温始動時においても安定した発電特性を示す信頼性の高い燃料電池を実現できる。
又、請求項2の発明の様に、酸化剤ガスと燃料ガスの発電反応により発電する燃料電池セルを備える燃料電池であって、上記燃料電池セルは、固体高分子電解質膜の両面に電極を配設した膜電極接合体の一方の面側に、酸化剤ガス流路を形成する酸化剤側セパレータを配設するとともに、他方の面側に燃料ガス流路を形成する燃料側セパレータを配設してなり、上記電極は、上記固体高分子電解質膜に接する触媒層と、該触媒層の上記ガス流路側に設けられた拡散層とを有して、上記拡散層と上記触媒層との間には、触媒側撥水層を設けるとともに、該触媒側撥水層中の撥水成分含有率を、上記ガス流路の入口側から出口側に向けて、徐々に又は、段階的に低くして、上記拡散層と上記ガス流路との間には、流路側撥水層を設けるとともに、該流路側撥水層中の撥水成分含有率を、上記ガス流路の入口側から出口側に向けて、徐々に又は、段階的に高くする構成としても良い。
請求項2の発明によれば、掃気時において、触媒側撥水層中の撥水成分含有率の高い部位は、高い保水性を示し、流路側撥水層中の撥水成分含有率の高い部分は、生成水の再侵入を防ぐので、ガス流路の入口側から出口側に至るまでの膜電極接合体内に含まれる水分を均一に維持することが可能となり、低温始動時においても安定した発電特性を示す信頼性の高い燃料電池を実現できる。
具体的には、請求項3の発明の様に、上記撥水層は、上記拡散層を構成する基材、又は、これと同質の基材の表面に撥水性材料を塗布、含浸させることにより形成することができる。
更に、請求項4の発明の様に、上記撥水層は、上記撥水材料の塗布条件によって上記撥水層の膜厚を変化させることができる。従って、極めて容易に、ガス流路の入口側から出口側に至るまでの膜電極接合体内に含まれる水分を均一に維持することが可能な信頼性の高い燃料電池を実現できる。
又、請求項5の発明の様に、上記撥水層は、上記拡散層の表面をプラズマ放電処理して疎水基を付着せしめて形成しても良い。
更に、請求項6の発明の様に、上記撥水層は、上記プラズマ放電処理の処理時間によって上記撥水層の膜厚を変化させることができる。従って、極めて容易に、ガス流路の入口側から出口側に至るまでの膜電極接合体内に含まれる水分を均一に維持することが可能な信頼性の高い燃料電池を実現できる。
更に、請求項7の発明の様に、上記撥水層は、上記拡散層を構成する基材と撥水性材料とを混合して形成しても良い。
以上のように、本発明によれば、加熱手段を設けたり流路構成やシステムを大きく変更したりすることなく、良好な掃気性と適度な保湿性を有して、拡散層内及びガス流路内の残留水が起点となる凍結を防止し、低温始動性に優れ、かつ、MEAの湿潤状態を均一に維持し、発電特性の安定性に優れた燃料電池を実現することができる。
本発明の第1の実施形態における燃料電池1について説明する。図1に燃料電池1を構成する単位燃料電池セル10の概要を示し、(a)は、入口側における断面模式図、(b)は、出口側における断面模式図、(c)は、(a)に示したA−A断面における矢視断面模式図である。
基本単位となる燃料電池セル10は、固体高分子電質膜100の両面に電極となる触媒層110、120を形成したMEA(Membrane Electrode Assembly)と呼ばれる膜電極接合体を備え、その外側に酸化剤ガスOG及び酸化剤側掃気ガスDGOの流れる酸化剤ガス流路115を設けた酸化剤側セパレータ114と燃料ガスFG及び燃料側掃気ガスDGFの流れる燃料ガス流路125を設けた燃料側セパレータ114とを配設して、更にMEAと各セパレータ114、124との間には、それぞれのガスをMEAの表面上に均一に拡散されるための拡散層113、123が配設された構造となっている。
本実施形態においては、本発明の要部である触媒側撥水層111、121が触媒層110、120と拡散層112、122との間に形成され、流路側撥水層113、123が拡散層112、122とセパレータ114、124との間に形成されている。
触媒側撥水層111、121は、ガス流路115、125の入口側EN(OG)、EN(FG)から出口側EX(OG)、EX(FG)に向かって徐々に撥水層の膜厚が薄くなるように傾斜して形成されている。
入口側EN(OG)、EN(FG)における触媒側撥水層111、121の入口側膜厚T111(EN)、T121(EN)は厚く形成され、出口側EX(OG)、EX(FG)における触媒側撥水層の出口側膜厚T111(EX)、T121(EX)は薄く形成されている。
流路側撥水層113、123は、ガス流路115、125の入口側EN(OG)、EN(FG)から出口側EX(OG)、EX(FG)に向かって徐々に撥水層の膜厚が厚くなるように傾斜して形成されている。
入口側EN(OG)、EN(FG)における流路側撥水層113、123の入口側膜厚T113(EN)、T123(EN)は薄く形成され、出口側EX(OG)、EX(FG)における流路側撥水層113、123の出口側膜厚T113(EX)、T123(EX)は薄く形成されている。
尚、本実施形態において酸化剤ガス流路115と燃料ガス流125とは、ガスの流れ方向が同一方向となるように形成されている。
具体的には触媒側撥水層111、121と流路側撥水層113、123とは、拡散層112、122を構成する基材、又は、これと同質の基材の表面に撥水性材料を塗布、含浸させることにより形成することができる。撥水材料の塗布量又は、塗布回数等の塗布条件を変化させることによって撥水層111、121、113、123の膜厚T111、T121、T113、T123を容易に変化させることができる。
拡散層112、122の基材としては、カーボンクロス、カーボンペーパー等と呼ばれる炭素繊維とカーボン粒子との多孔質複合体が用いられる。
撥水材料としては、ポリテトラフルオロエチレン、テトラフルオロエチレン−ペルフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、テトラフルオロエチレン−エチレン共重合体、エチレンテトラフルオロエチレン、ポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート等の水との接触角が140度以上となる撥水性の強い材料を用いることができる。
撥水層111、121、113、123は、サブミクロンオーダーの微粒子状又は液状の撥水材料を単体又は複数を混合して、分散剤と共に溶媒に分散させた撥水材スラリーをスプレー法又はディップ(浸漬)法により拡散層基材の表面に塗布、若しくは、ドクターブレード法によりシート状に形成して拡散層基材に積層することによって形成されている。
触媒層110、120は、カーボン粒子に触媒として白金を担持させたものを固体高分子電解質膜100の両面に塗布することによって形成されている。
固体高分子電解質膜100としては、スルホン酸基(−SOH)等を有するイオン伝導性ポリマーによって形成された固体高分子電解質膜が用いられている。
酸化剤側流路115、酸化剤側拡散層113の掃気には掃気ガスDGOとして乾燥空気が用いられ、燃料側流路125、燃料側拡散層123の掃気には掃気ガスDGFとして乾燥水素が使用される。
尚、本実施形態においては、撥水層の膜厚を傾斜状に徐々に変化させた例を図示したが、階段状に段階的に変化させても同様の効果が得られる。
図2(a)は、本発明の第1の実施形態における燃料電池セル10を複数積層した燃料電池スタック1の概要を示す模式図であり、(b)、(c)、(d)は、入口側から出口側に向かって変化する撥水層111、121、113,123の膜厚と、MEA及び拡散層における含水量とを示す断面模式図であり、本発明を適用した場合の効果を示す。
本実施形態においては、触媒側撥水層111、121の膜厚は、燃料電池スタック1の掃気ガス流路全体に渡って入口側から出口側に向かって徐々に薄くなるように形成され、流路側撥水層113、123の膜厚は、燃料電池スタック1の掃気ガス流路全体に渡って入口側から出口側に向かって徐々に厚くなるように形成されている。
発電時に生成された水は、発電反応の反応熱により高温となっているので、水蒸気又は比較的小さな粒子であるので、接触角の大きい撥水層は濡れ性が低く、触媒側撥水層111、121からガス流路側に容易に排出される。しかし、停止時には、水蒸気は冷却され液水となり、水和によって大きな液相状態となり触媒側撥水層111、121内に取り込まれる。触媒側撥水層111、121に取り込まれた液相状態の水は、乾燥空気の掃気によっても排出し難くなり、触媒側撥水層111、121は、掃気時には保水層として作用し、触媒側撥水層111、121の膜厚が厚いほど、掃気によって乾燥され難くなることが判明した。
又、流路側撥水層113、123は、酸化剤ガスOG、燃料ガスFG、掃気ガスDGO、DGF内に含まれる水分の拡散層112、122への再侵入を防ぐ作用があり、その膜厚が厚いほど拡散層112、122への水分の侵入を防ぐ効果が大きいことが判明した。
(b)に示すように、掃気ガス流路の入口側では、掃気ガスの圧力が高く、掃気ガス中の水分も少ないことから、MEAを乾燥し易いが、触媒側撥水層111、121が保水層として作用し、掃気ガスによる乾燥を押さえるので、MEA内を適度な湿潤状態とし、拡散層112、122内の水分は完全に排出されるのでガスの拡散性が確保される。
又、(d)に示すように、掃気ガス流路の出口側では、掃気ガスの圧力は低くなり、掃気ガス中の水分も多くなっているので、MEAを乾燥し難いが、触媒側撥水層111、121の膜厚が薄く、保水量が少ないのに加えて、流路側撥水層113、123によりガス流路115、125に排出された水分の再侵入が抑制されるので、拡散層112、122は十分に乾燥され、MEA内は適度な湿潤状態を確保される。
従って、(b)、(c)、(d)に示す様に、本発明によれば、燃料電池スタック1を始動前に掃気した後において、MEA内に保持される水分量は、ガス流路の入口側から出口側に渡ってほぼ一定に保つことができる。
図3に本発明効果を比較例とともに示す。
実施例1は、本発明の第1の実施形態における燃料電池スタック1の入口側から出口側に至るMEA層の湿潤状態を電極間のインピーダンスを測定した結果を示す。比較例1として、図9に示す撥水層が触媒側にのみ一定膜厚で設けられた従来構造の燃料電池スタック1xの入口側から出口側に至るMEA層の湿潤状態を電極間のインピーダンスを測定した結果を示す。
図3に示すように、比較例1においては、インピーダンスが入口側では高く、出口側に向かって徐々に低くなっており、MEA内の水分量が入口側では少なく、出口側では多いことが分かる。一方、本発明の実施例1においては、インピーダンスが入口側から出口側に渡って、極僅かに低下しているがほぼ一定であることから、MEA内の水分量が入口側から出口側に渡ってほぼ一定に保たれていることが確認された。
図4、図5に本発明の基礎となったモデル試験の試験方法を示し、図6にその試験結果を示す。
図4(a)に示すように、燃料電池セル10Aは、触媒側撥水層111、121の膜厚を厚く、ガス流路入口側EN(OG/FG)から出口側EX(OG/FG)に向かって一定の膜厚T111a、T121aで形成し、流路側撥水層113、123の膜厚を薄く、ガス流路入口側EN(OG/FG)から出口側EX(OG/FG)に向かって一定の膜厚T113a、T123aで形成してある。 一方、図4(b)に示すように、燃料電池セル10Bは、触媒側撥水層111、121の膜厚を薄く、ガス流路入口側EN(OG/FG)から出口側EX(OG/FG)に向かって一定の膜厚T111b、T121bで形成し、流路側撥水層113、123の膜厚を厚く、ガス流路入口側EN(OG/FG)から出口側EX(OG/FG)に向かって一定の膜厚T113b、T123bで形成してある。尚、本試験において、酸化剤ガス流路115と燃料ガス流路125のガスの流れ方向は互いに対向する方向に形成されている。
実験の準備段階として、図5(a)に示すように、第1のセルとして燃料電池セル10A又は10Bを、第2のセルとして燃料電池セル10Bを、それぞれを独立に発電し、掃気前におけるMEAの電極間のインピーダンス即ち残留水分が燃料電池セル10Aと10Bとで同一となるように揃えた後、掃気ガスをそれぞれに導入して掃気する。その際の掃気条件(表1)と掃気前後におけるセル間の内部抵抗値の差を評価した。
Figure 2009076423
次いで、氷点下始動時を想定して、燃料電池セル10A、10Bを零下数十度で所定時間冷却した後、図5(b)に示すように第1のセルとして燃料電池セル10A又は10Bが掃気ガス流路の上流側となり、第2のセルとして燃料電池セル10Bが下流側となるように、掃気ガス流路を直列に接続し、2つのセルが電気的には並列となるように接続した。この状態において表1と同様の条件で掃気後の各セルの内部抵抗値を評価し、−20℃からの氷点下始動性を、凍結に伴う発電低下が起きるまでの発熱量として評価し、内部抵抗値との関係を評価した。
表2並びに図6に本モデル試験結果を示す。
Figure 2009076423
本試験により、掃気流量の増加によって掃気の前後でセル面内方向の内部抵抗分布が増加することが判明した。
又、掃気流量を増加させても、掃気入口側に燃料電池セル10Aを配設し、下流側に燃料電池セル10Bを配設した場合には、内部抵抗分布の増加が抑制されることが判明した。
具体的には、同一の掃気量(掃気流量×掃気時間)の条件即ち試験No.2と試験No.4と試験No.5とを比較すると、掃気量が増加したことにより試験No.4は試験No.2よりも内部抵抗差が広がり、発熱量が低下(表2参照)している。
一方、試験No.4と同じく掃気量が増加している試験No.5では、内部抵抗分布の増加が抑制され、発熱量は増加している。これは、セル10Aを上流に配設し、セル10Bを下流に配設することにより、触媒層側撥水層111aが厚く形性され、流路側撥水層113aが薄く形成されているセル10Aは、上流側にあっても掃気による過剰な乾燥が抑制され、触媒層側撥水層111bが薄く形成され、流路側撥水層113bが厚く形成されているセル10Bは、下流側にあっても掃気による乾燥が不十分とならない為と推察される。
尚、各セルの内部抵抗を100mΩから200mΩの範囲で内部抵抗を調整すると、氷点下始動性が良好となることが判明しており、この条件を満たす試験No.6において、試験No.5よりも大幅に発熱量が多くなっており、氷点下始動性に優れていることが判明した。
以上の結果から、触媒側撥水層111、121は、掃気時には液相状態の生成水を保持する保水層として機能することが判明し、掃気によって乾燥し易いガス流路入口側ENの触媒側撥水層111(EN)、121(EN)の膜厚T111(EN)、T121(EN)を厚くすることによって、MEA内の水分を保持し、乾燥し難いガス流路出口側の触媒側撥水層111(EX)、121(EX)の膜厚T111(EX)、T121(EX)を薄くすることによって、触媒側撥水層111(EX)、121(EX)に保持される水分を減らし、フラディングを予防できることが判明した。
又、流路側撥水層113、123は、一旦、ガス流路内に排出された水分が拡散層112、122内に再び侵入するのを防ぐことができることが判明した。即ち、ガス流路出口側EXにおいては、掃気ガス中DGO/DGFに含まれる水分が多くなっており、流路側撥水層113、123の膜厚T113、T123を厚くすることによって、掃気ガスDGO/DGF中の水分が拡散層112、122へ再侵入するのを防ぐことができる。一方、ガス流路入口側ENにおいては、掃気ガスDGO/DGF中に含まれる水分は少なく、流路側撥水層113、123の膜厚T113(EN)、T123(EN)は薄くても良い。
本発明の第2の実施形態として、撥水層中に含有するカーボン等の基材成分の濃度と撥水成分の濃度との調整によって変化させても良い。本実施形態においても第1の実施形態と同様の効果が得られる。
触媒側撥水層111、121中の撥水成分の含有率を、ガス流路の入口側から出口側に向けて、徐々に又は、段階的に低くして、流路側撥水層113、113中の撥水成分含有率を、ガス流路の入口側から出口側に向けて、徐々に又は、段階的に高くする構成としても良い。この場合、触媒側撥水層111、121と流路側撥水層113、123とは一定膜厚で形成しても良い。
又、本発明の第3の実施形態として、撥水層111、121、113、123は、拡散層112、122の表面をプラズマ放電処理して、例えばフルオロアルキル基、シラノアルキル基等の疎水基を付着せしめて形成しても良い。
尚、撥水層111、121、113、123は、プラズマ放電処理の処理時間によって撥水層111、121、113、123の膜厚T111、T121、T113、T123を変化させることができる。
上記実施形態と同様、入口側EN(OG)、EN(FG)における流路側撥水層113、123の入口側膜厚T113(EN)、T123(EN)は薄く形成され、出口側EX(OG)、EX(FG)における流路側撥水層113、123の出口側膜厚T113(EX)、T123(EX)は薄く形成されている。
本実施形態においても、極めて容易に、ガス流路の入口側から出口側に至るまでの膜電極接合体内に含まれる水分を均一に維持することが可能な信頼性の高い燃料電池を実現できる。
図7に、本発明の第4の実施形態における燃料電池セル10cの概要を示す。本実施形態においては、上記実施形態と同一の構成については、同じ符号を付したので説明を省略する。本実施形態においては、酸化剤ガス流路115を流れる酸化剤ガスOG又は掃気ガスDGOの流れ方向と燃料ガス流路125を流れる燃料ガスFG又は掃気ガスDGFの流れ方向とを対向せしめた点が、第1の実施形態と相違する。この様な構成とすることによって、第1の実施形態と同様の効果に加え、酸化剤ガスOGと燃料ガスFGとの反応性が高まり、より安定した発電特性が期待できる。また、対向流にすることにより、MEA面内に供給されるガスの均一性が向上するので発電分布の均一性も向上する。また、固体電解質膜の面内における湿潤状態の均一化を図ることができるので、発電の均一化に貢献できる。
図8に、本発明の第5の実施形態における燃料電池セル10dの概要を示す。本実施形態においては、上記実施形態と同一の構成については、同じ符号を付したので説明を省略する。本実施形態においては、酸化剤ガス流路115を流れる酸化剤ガスOG又は掃気ガスDGOの流れ方向と燃料ガス流路125を流れる燃料ガスFG又は掃気ガスDGFの流れ方向とを直交せしめた点が、第1の実施形態と相違する。この様な構成とすることによって、第1の実施形態と同様の効果に加え、酸化剤ガスOGと燃料ガスFGとの反応性が高まり、より安定した発電特性が期待できる。
以上、本発明の好ましい実施形態について説明したが、本発明が適用される燃料電池は、上記実施形態に限定されるものではなく、燃料電池の各部構成その他を適宜変更することも可能である。
また、撥水層の膜厚は撥水材料の塗布量、塗布回数の他に塗布圧力、塗布クリアランスなどの塗布条件を種々変更することにより対応することが可能である。
は、本発明の第1の実施形態における単位燃料電池セルの概要を示し、(a)は、入口側断面模式図、(b)は、出口側断面模式図、(c)は、本図A−Aに沿った矢視断面模式図。 本発明の第1の実施形態における燃料電池スタック1の概要図、(b)、(c)、(d)は本発明の効果を示す要部断面図。 本発明の効果を比較例とともに示す特性図。 (a)は、燃料電池セル10Aの概要を示す模式図、(b)は、燃料電位セル10Bの概要を示す模式図。 モデル試験の試験方法を示し、(a)は事前準備における構成図を示し、(b)は、低温始動性試験における構成図。 モデル試験の結果を示す特性図。 本発明の第4の実施形態における単位セルの概要を示し、(a)は、入口側断面模式図、(b)は、出口側断面模式図、(c)は、本図A−Aに沿った矢視断面模式図。 本発明の第5の実施形態における単位セルの概要を示し、(a)は、入口側断面模式図、(b)は、出口側断面模式図、(c)は、本図A−Aに沿った矢視断面模式図。 従来の燃料電池スタック1xの概要図、(b)、(c)、(d)は従来の問題点を示す要部断面図。
符号の説明
1 燃料電池スタック
10 燃料電池セル
MEA 膜電極接合体
100 固体高分子電解質膜
110 触媒層(酸化剤側)
111 触媒側撥水層(酸化剤側)
112 拡散層(酸化剤側)
113 流路側撥水層(酸化剤側)
114 酸化剤側セパレータ
115 酸化剤ガス流路
120 電極(燃料側)
120 触媒層(燃料側)
121 触媒側撥水層(燃料側)
122 拡散層(燃料側)
123 流路側撥水層(燃料側)
124 燃料側セパレータ
125 燃料ガス流路
OG 酸化剤ガス
FG 燃料ガス
DGO 酸化剤側掃気ガス
DGF 燃料側掃気ガス

Claims (7)

  1. 酸化剤ガスと燃料ガスの発電反応により発電する燃料電池セルを備える燃料電池であって、
    上記燃料電池セルは固体高分子電解質膜の両面に電極を配設した膜電極接合体の一方の面側に、酸化剤ガス流路を形成する酸化剤側セパレータを配設して、他方の面側に燃料ガス流路を形成する燃料側セパレータを配設して、
    上記電極は、上記固体高分子電解質膜に接する触媒層と、該触媒層の上記ガス流路側に設けた拡散層とを有して、上記拡散層と上記触媒層との間に触媒側撥水層を設けるとともに、
    該触媒側撥水層の膜厚を上記ガス流路の入口側から出口側に向けて、徐々に、又は、段階的に薄くして、
    上記拡散層と上記ガス流路との間に流路側撥水層を設けるとともに、
    該流路側撥水層の膜厚を上記ガス流路の入口側から出口側に向けて、徐々に、又は、段階的に厚くしたことを特徴とする燃料電池。
  2. 酸化剤ガスと燃料ガスの発電反応により発電する燃料電池セルを備える燃料電池であって、
    上記燃料電池セルは、固体高分子電解質膜の両面に電極を配設した膜電極接合体の一方の面側に、酸化剤ガス流路を形成する酸化剤側セパレータを配設するとともに、他方の面側に燃料ガス流路を形成する燃料側セパレータを配設して、
    上記電極は、上記固体高分子電解質膜に接する触媒層と、該触媒層の上記ガス流路側に設けられた拡散層とを有して、
    上記拡散層と上記触媒層との間に触媒側撥水層を設けるとともに、該触媒側撥水層中の撥水成分含有率を上記ガス流路の入口側から出口側に向けて、徐々に、又は、段階的に低くして、
    上記拡散層と上記ガス流路との間には、流路側撥水層を設けるとともに、該流路側撥水層中の撥水成分含有率を上記ガス流路の入口側から出口側に向けて、徐々に、又は、段階的に高くしたことを特徴とする燃料電池。
  3. 上記撥水層は、上記拡散層を構成する基材、又は、これと同質の基材の表面に撥水性材料を塗布、含浸させることにより形成した請求項1に記載の燃料電池。
  4. 上記撥水層は、上記撥水材料の塗布条件によって上記撥水層の膜厚を変化させた請求項3に記載の燃料電池。
  5. 上記撥水層は、上記拡散層の表面をプラズマ放電処理して疎水基を付着せしめて形成した請求項1に記載の燃料電池。
  6. 上記撥水層は、上記プラズマ放電処理の処理時間によって上記撥水層の膜厚を変化させた請求項5に記載の燃料電池。
  7. 上記撥水層は、上記拡散層を構成する基材と撥水性材料とを混合して形成した請求項2に記載の燃料電池。
JP2007246832A 2007-09-25 2007-09-25 燃料電池 Pending JP2009076423A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007246832A JP2009076423A (ja) 2007-09-25 2007-09-25 燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007246832A JP2009076423A (ja) 2007-09-25 2007-09-25 燃料電池

Publications (1)

Publication Number Publication Date
JP2009076423A true JP2009076423A (ja) 2009-04-09

Family

ID=40611193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007246832A Pending JP2009076423A (ja) 2007-09-25 2007-09-25 燃料電池

Country Status (1)

Country Link
JP (1) JP2009076423A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216310A (ja) * 2010-03-31 2011-10-27 Eneos Celltech Co Ltd 燃料電池、セパレータ及び燃料電池システム
CN107681165A (zh) * 2017-11-06 2018-02-09 中车青岛四方机车车辆股份有限公司 一种燃料电池的微孔层结构、其制备方法与燃料电池阴极组件
CN107834088A (zh) * 2017-11-06 2018-03-23 中车青岛四方机车车辆股份有限公司 燃料电池的膜电极组件及其制备方法
WO2019086025A1 (zh) * 2017-11-06 2019-05-09 中车青岛四方机车车辆股份有限公司 燃料电池的膜电极组件及其制备方法
WO2019086024A1 (zh) * 2017-11-06 2019-05-09 中车青岛四方机车车辆股份有限公司 一种燃料电池的微孔层结构、其制备方法与燃料电池阴极组件

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245800A (ja) * 1996-03-08 1997-09-19 Toyota Motor Corp 燃料電池および燃料電池用電極
JP2001135326A (ja) * 1999-11-05 2001-05-18 Fuji Electric Co Ltd 固体高分子電解質型燃料電池および同スタック
JP2001283875A (ja) * 2000-03-31 2001-10-12 Equos Research Co Ltd 燃料電池および燃料電池装置
JP2002298859A (ja) * 2001-04-02 2002-10-11 Nippon Soken Inc 燃料電池
JP2003092112A (ja) * 2001-09-14 2003-03-28 Toshiba International Fuel Cells Corp 固体高分子形燃料電池
JP2004140001A (ja) * 2003-12-26 2004-05-13 Nec Corp 液体燃料供給型燃料電池、燃料電池用電極、およびそれらの製造方法
JP2004158369A (ja) * 2002-11-08 2004-06-03 Nissan Motor Co Ltd 燃料電池
JP2005174607A (ja) * 2003-12-08 2005-06-30 Aisin Seiki Co Ltd 固体高分子電解質形燃料電池、固体高分子電解質形燃料電池用ガス拡散電極
JP2007299712A (ja) * 2006-05-08 2007-11-15 Sony Corp 燃料電池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245800A (ja) * 1996-03-08 1997-09-19 Toyota Motor Corp 燃料電池および燃料電池用電極
JP2001135326A (ja) * 1999-11-05 2001-05-18 Fuji Electric Co Ltd 固体高分子電解質型燃料電池および同スタック
JP2001283875A (ja) * 2000-03-31 2001-10-12 Equos Research Co Ltd 燃料電池および燃料電池装置
JP2002298859A (ja) * 2001-04-02 2002-10-11 Nippon Soken Inc 燃料電池
JP2003092112A (ja) * 2001-09-14 2003-03-28 Toshiba International Fuel Cells Corp 固体高分子形燃料電池
JP2004158369A (ja) * 2002-11-08 2004-06-03 Nissan Motor Co Ltd 燃料電池
JP2005174607A (ja) * 2003-12-08 2005-06-30 Aisin Seiki Co Ltd 固体高分子電解質形燃料電池、固体高分子電解質形燃料電池用ガス拡散電極
JP2004140001A (ja) * 2003-12-26 2004-05-13 Nec Corp 液体燃料供給型燃料電池、燃料電池用電極、およびそれらの製造方法
JP2007299712A (ja) * 2006-05-08 2007-11-15 Sony Corp 燃料電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216310A (ja) * 2010-03-31 2011-10-27 Eneos Celltech Co Ltd 燃料電池、セパレータ及び燃料電池システム
CN107681165A (zh) * 2017-11-06 2018-02-09 中车青岛四方机车车辆股份有限公司 一种燃料电池的微孔层结构、其制备方法与燃料电池阴极组件
CN107834088A (zh) * 2017-11-06 2018-03-23 中车青岛四方机车车辆股份有限公司 燃料电池的膜电极组件及其制备方法
WO2019086025A1 (zh) * 2017-11-06 2019-05-09 中车青岛四方机车车辆股份有限公司 燃料电池的膜电极组件及其制备方法
WO2019086024A1 (zh) * 2017-11-06 2019-05-09 中车青岛四方机车车辆股份有限公司 一种燃料电池的微孔层结构、其制备方法与燃料电池阴极组件
US11302947B2 (en) 2017-11-06 2022-04-12 Crrc Qingdao Sifang Co., Ltd. Membrane electrode assembly of fuel cell and preparation method therefor

Similar Documents

Publication Publication Date Title
WO2001017047A9 (fr) Cellule electrochimique de type a electrolyte polymerique
JP4233208B2 (ja) 燃料電池
WO2005124903A1 (ja) ガス拡散電極及び固体高分子電解質型燃料電池
WO2002073721A1 (en) Gas diffusion electrode and fuel cell using this
JP2009076423A (ja) 燃料電池
US7857935B2 (en) Process for producing membrane-electrode assembly for polymer electrolyte fuel cells
JP2003178780A (ja) 高分子電解質型燃料電池システム、および高分子電解質型燃料電池の運転方法
JPH11135133A (ja) 固体高分子電解質型燃料電池
JP5601779B2 (ja) ガス拡散層、膜−電極接合体及び燃料電池
JP3813406B2 (ja) 燃料電池
JP5694638B2 (ja) ガス拡散層、膜−電極接合体及び燃料電池
JP3843838B2 (ja) 燃料電池
JP2001102059A (ja) 固体高分子型燃料電池システム
JP2013225398A (ja) 燃料電池スタック
US7060383B2 (en) Fuel cell
JP5870643B2 (ja) 固体高分子形燃料電池用膜電極接合体の製造方法
JP2008282620A (ja) 燃料電池およびその製造方法
JP2009129599A (ja) 膜電極積層体および膜電極積層体を備える燃料電池
JP7113312B2 (ja) 水素生成システム
JP2009043688A (ja) 燃料電池
JP2008234941A (ja) 多孔質触媒層の製造方法、膜電極接合体の製造方法および固体高分子型燃料電池の製造方法
JP2002329501A (ja) ガス拡散電極およびそれを用いた高分子電解質型燃料電池
KR20150059867A (ko) 연료 전지
JP2004079457A (ja) 固体高分子型燃料電池
JP2004349180A (ja) 膜電極接合体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130312