WO2019086024A1 - 一种燃料电池的微孔层结构、其制备方法与燃料电池阴极组件 - Google Patents

一种燃料电池的微孔层结构、其制备方法与燃料电池阴极组件 Download PDF

Info

Publication number
WO2019086024A1
WO2019086024A1 PCT/CN2018/113914 CN2018113914W WO2019086024A1 WO 2019086024 A1 WO2019086024 A1 WO 2019086024A1 CN 2018113914 W CN2018113914 W CN 2018113914W WO 2019086024 A1 WO2019086024 A1 WO 2019086024A1
Authority
WO
WIPO (PCT)
Prior art keywords
microporous layer
water vapor
thickness
fuel cell
slurry mixture
Prior art date
Application number
PCT/CN2018/113914
Other languages
English (en)
French (fr)
Inventor
万年坊
梁建英
李克雷
张文超
张旭
Original Assignee
中车青岛四方机车车辆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711078816.6A external-priority patent/CN107681165B/zh
Priority claimed from CN201721467506.9U external-priority patent/CN208000968U/zh
Application filed by 中车青岛四方机车车辆股份有限公司 filed Critical 中车青岛四方机车车辆股份有限公司
Priority to EP18874897.4A priority Critical patent/EP3709409A4/en
Priority to CA3080007A priority patent/CA3080007C/en
Priority to US16/755,558 priority patent/US20210194028A1/en
Publication of WO2019086024A1 publication Critical patent/WO2019086024A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8636Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0243Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the technical field of fuel cells, and in particular to a microporous layer structure of a fuel cell, a preparation method thereof and a fuel cell cathode assembly.
  • Fuel cells have broad prospects in the fields of transportation, backup power, distributed power stations, etc. due to their high energy conversion efficiency, low emissions and no pollution.
  • a typical fuel cell monomer consists of an electrolyte membrane (typically a proton exchange membrane), a cathode and anode catalytic electrode, a gas diffusion layer, and a bipolar plate.
  • Gas diffusion media in fuel cells typically consist of a conductive porous substrate such as carbon fiber paper or carbon cloth with a microporous layer attached thereto.
  • the microporous layer usually includes carbon powder and a hydrophobic fluoropolymer, which functions as a drainage ventilator and enhances electron transport capability, and the microporous layer plays a very important role in water management of the fuel cell.
  • the water management of fuel cells is very important.
  • the lack of water will cause the high proton transport impedance of the electrolyte membrane and the low activity of the electrode, resulting in low power output.
  • the high water content will easily lead to flooding of the electrode, resulting in high oxygen and fuel. Transmission resistance also causes performance degradation.
  • Fuel cells, especially large-sized fuel cells may have an imbalance in current density distribution, affecting power density and durability, due to imbalances in membrane electrode water content, gas relative humidity, and oxygen concentration in different regions of the electrode.
  • the air at the inlet of the fuel cell is relatively dry, and the partial pressure of oxygen is high; the air at the outlet is relatively humid, and the partial pressure of oxygen is low.
  • This imbalance can be exacerbated at different operating temperatures, such as being easier to dry at high temperatures and flooding at low temperatures.
  • a pre-humidification method is generally employed, that is, humidification is performed by a humidifier before the air is introduced into the stack.
  • Humidifiers are generally bulky, increasing the size and weight of the system, and the use of humidifiers does not solve the problem of equal distribution of water and oxygen in various regions of fuel cells, especially large-sized batteries.
  • Chinese Patent Application No. 201110293005.4 provides a fuel cell electrode having gradient performance and a method of manufacturing the same, first preparing at least two electrode paste mixtures having different compositions, depositing the at least two electrode pastes in Forming at least two electrode layers on the gas diffusion layer substrate, the combination thereof to form a combined electrode such that the average performance level of the combined electrode layer varies along the substrate, the performance being film equivalent, diffusion medium gas permeability , ionomer to carbon ratio, catalyst loading, porosity, or a combination thereof.
  • US 8,945,790 provides a microporous layer structure having hydrophilic pores and hydrophobic pores having a complex pore diameter of 0.02 to 0.5 micrometers, and a plurality of pores having a pore diameter of 0.5 to 100 micrometers;
  • the hydrophilic pores increase the storage amount of water, Improve the water content of the membrane under dry high temperature conditions, and increase the liquid to gas phase transition point, which is conducive to heat dissipation;
  • the hydrophobic pore simulates the second pore in the catalytic layer to facilitate the transfer of reaction gas and water vapor; the drilling is facilitated by capillary force The transport of liquid water.
  • the above scheme is complicated in the preparation process, and has many parameters to be controlled, which is not conducive to mass production, or the water management improvement effect of the fuel cell is not good, thereby affecting the performance of the fuel cell.
  • the technical problem solved by the present invention is that the fuel cell, especially the large-sized fuel cell, has a problem of uneven distribution of water and oxygen in different regions of the electrode, and aims to provide a microporous with good water management property.
  • the layer structure can improve the stability of the battery under various humidity conditions and improve the durability.
  • the present application provides a microporous layer structure of a fuel cell, comprising a high water vapor permeable microporous layer and a low water vapor permeable microporous layer which are sequentially stacked; in the direction of the air flow path, The thickness of the high water vapor permeable microporous layer is increased, the thickness of the low water vapor permeable microporous layer is decreased, and the total thickness of the microporous layer structure is kept uniform; at the air inlet, the high water vapor permeable microporous layer The thickness is smaller than the thickness of the low water vapor permeability microporous layer, and the thickness of the high water vapor permeability microporous layer at the air outlet is greater than the thickness of the low water vapor permeability microporous layer.
  • the microporous layer structure has a thickness of 30 to 60 ⁇ m.
  • the high water vapor permeable microporous layer has a thickness of 0 to 30 ⁇ m at the air inlet and a thickness of 30 to 60 ⁇ m at the outlet; the low water vapor permeability microporous layer is at the air inlet.
  • the thickness is 30 to 60 ⁇ m, and the thickness at the air outlet is 0 to 30 ⁇ m.
  • the high water vapor permeability microporous layer has a porosity of 40 to 55%, preferably 45 to 55%; and the low water vapor permeability microporous layer has a porosity of 30 to 45%, preferably 30-40%.
  • the present application also provides a method for preparing a microporous layer structure of the fuel cell, comprising the following steps:
  • the second slurry mixture is coated on the surface of the hydrophobically treated gas diffusion layer, and after heat treatment, a low water vapor permeability microporous layer is obtained, and then the first slurry mixture is applied to obtain a high water vapor permeability microporous layer.
  • Floor
  • the thickness of the high water vapor permeable microporous layer is increased in the direction of the air flow path, and the thickness of the low water vapor permeable microporous layer is decreased in the direction of the air flow path, and the total pore structure is The thickness remains the same; at the air inlet, the thickness of the high moisture permeability microporous layer is smaller than the thickness of the low water vapor permeability microporous layer, and the thickness of the high water vapor permeability microporous layer is greater than the low water at the air outlet The thickness of the gas permeable microporous layer.
  • the carbon powder in the first slurry mixture is a large particle carbon powder having a particle diameter of 30 to 60 nm, preferably 40 to 60 nm, more preferably 45 to 60 nm; and the carbon powder in the second slurry mixture
  • the body is a small particle powder having a particle diameter of 20 to 50 nm, preferably 20 to 45 nm, more preferably 20 to 40 nm.
  • the coating tool of the coating process employs a coater or doctor blade having slits or spray heads.
  • the present application also provides a fuel cell membrane electrode assembly comprising an electrolyte membrane, a catalytic electrode layer, a microporous layer and a gas diffusion layer which are sequentially stacked, the microporous layer being as described in the above scheme or the above-mentioned scheme
  • the microporous layer structure prepared by the preparation method.
  • a high water vapor permeability microporous layer in the microporous layer structure is disposed at the end of the gas diffusion layer.
  • the microporous layer is at least 1 layer.
  • the present application provides a microporous layer structure comprising a high water vapor permeable microporous layer and a low water vapor permeable microporous layer which are sequentially stacked, and a high water vapor permeability along the air flow path.
  • the thickness of the microporous layer is increased, the thickness of the low water vapor permeable microporous layer is decreased, and the total thickness of the microporous layer structure is kept consistent; at the air inlet, the thickness of the high water vapor permeable microporous layer is less than that of the low water vapor permeability.
  • the thickness of the excessive microporous layer is greater at the air outlet than the thickness of the low water vapor permeable microporous layer.
  • 1 is a microporous layer structure of a fuel cell of the present invention
  • FIG 3 is a comparison of high humidity performance of a battery formed by a microporous layer structure prepared in accordance with an embodiment of the present invention.
  • the present invention provides a microporous layer structure of a fuel cell, which comprises a microporous layer having different water vapor permeability, each composition in the direction of the air flow path.
  • the single layer of the microporous layer forms a gradient distribution in thickness, and the thickness of the total microporous layer is constant; the thickness of the low water vapor permeability microporous layer at the air inlet is greater than the thickness of the microporous layer having high water vapor permeability, and the outlet on the contrary.
  • the microporous layer structure provided by the present application can balance the water content of the fuel cell gas inlet and outlet regions, improve the current density distribution of the large-sized fuel cell, improve the stability of the battery under various temperature and humidity, and improve the durability.
  • the embodiment of the present application discloses a microporous layer structure of a fuel cell, comprising a high water vapor permeability microporous layer and a low water vapor permeability microporous layer which are sequentially stacked and arranged; in the direction of the air flow path The thickness of the high water vapor permeable microporous layer is increased, the thickness of the low water vapor permeable microporous layer is decreased, and the total thickness of the microporous layer structure is kept uniform; at the air inlet, the high water vapor permeable microporous layer The thickness is smaller than the thickness of the low water vapor permeability microporous layer, and the thickness of the high water vapor permeability microporous layer at the air outlet is greater than the thickness of the
  • the present application provides a fuel cell microporous layer structure having a gradient change, which is composed of a high water vapor permeable microporous layer and a low water vapor permeable microporous layer.
  • high water The gas permeable microporous layer and the low water vapor permeable microporous layer are a combination, which may be one or more groups, and the present application is not particularly limited.
  • the thickness of the high water vapor permeable microporous layer increases in a gradient, and the thickness of the low water vapor permeable microporous layer decreases.
  • the gradient is decreasing.
  • the thickness of the high water vapor permeable microporous layer and the thickness of the low water vapor permeable microporous layer both vary in gradient, the total thickness of the microporous layer structure is uniform in the direction of the air flow path.
  • the gradient distribution of the above microporous layer increasing or decreasing can make the distribution of moisture content along the inlet and outlet more uniform and the effect is better.
  • the microporous layer has a thickness of 30 to 60 ⁇ m; specifically, the high water vapor permeability microporous layer has a thickness of 0 to 30 ⁇ m at the air inlet and a thickness of 30 at the outlet. ⁇ 60 ⁇ m, in a specific embodiment, the high water vapor permeable microporous layer has a thickness of 10 to 20 ⁇ m at the air inlet and a thickness of 30 to 50 ⁇ m at the outlet; the low water vapor permeability is micro The thickness of the pore layer is 30 to 60 ⁇ m at the air inlet and 0 to 30 ⁇ m at the outlet. In a specific embodiment, the thickness of the low water vapor permeability microporous layer at the air inlet is 30. ⁇ 50 ⁇ m, the thickness at the exit is 10-20 ⁇ m.
  • the high water vapor permeability microporous layer described in the present application is relative to the low water vapor permeability microporous layer, and the high water vapor permeability microporous layer means that water is easily lost, and low water vapor permeability The moisture of the excessive microporous layer is not easily lost.
  • the water vapor permeability can be adjusted by adjusting the porosity and density of the high water vapor permeable microporous layer and the low water vapor permeable microporous layer.
  • the porosity of the high water vapor permeability microporous layer is 40 to 55%, preferably 45 to 55%; and the porosity of the low water vapor permeability microporous layer is 30 to 45%, preferably 30-40%.
  • the invention also provides a preparation method of a microporous layer structure of a fuel cell, comprising the following steps:
  • the thickness of the high water vapor permeable microporous layer is increased in the direction of the air flow path, and the thickness of the low water vapor permeable microporous layer is decreased in the direction of the air flow path, and the total pore structure is The thickness remains the same; at the air inlet, the thickness of the high moisture permeability microporous layer is smaller than the thickness of the low water vapor permeability microporous layer, and the thickness of the high water vapor permeability microporous layer is greater than the low water at the air outlet The thickness of the gas permeable microporous layer.
  • two slurry mixtures are first prepared, which can be distinguished as a first slurry mixture and a second slurry mixture.
  • the first slurry mixture and the second slurry mixture may each be composed of a carbon powder, a binder, a dispersant, and a solvent; the carbon powder, a binder, a dispersant, and a solvent are all in the field. It is well known to the skilled person that no particular limitation is imposed on this application.
  • the first slurry mixture has a higher water vapor permeability than the second slurry mixture.
  • the carbon powder of the first slurry mixture may be a large particle carbon powder.
  • the diameter is 30 to 60 nm, preferably 40 to 60 nm, more preferably 45 to 60 nm; in some embodiments, the particle diameter is 40 to 50 nm, which makes the high water vapor permeability microporous layer have high porosity and low density;
  • the carbon powder of the second slurry mixture may be a small particle carbon powder having a particle diameter of 20 to 50 nm, preferably 20 to 45 nm, more preferably 20 to 40 nm, and in some embodiments, a particle diameter of 30 to 40 nm.
  • the low water vapor permeability microporous layer has low porosity and high density; the adhesive in the first slurry mixture can also be reduced to change the contact angle of the microporous layer pores to increase water permeability.
  • the content of the binder in the second slurry mixture is increased to reduce the water permeability.
  • the present application then applies a first slurry mixture on the surface of the hydrophobically treated gas diffusion layer, and after heat treatment, a high water vapor permeability microporous layer is obtained, and then the second slurry mixture is applied to obtain a low water vapor permeability micro.
  • the present application controls the coating process to make the high water vapor permeable microporous layer and the low water vapor permeable microporous layer satisfy the requirements of the above microporous layer structure.
  • the coating tool may use a coater of a doctor blade or a slit, or a spray coater using a spray head. If a doctor blade is used, the height gradient can be controlled by changing the height of the two ends of the blade.
  • the blade on one side is higher than the other side to coat the high water vapor permeability microporous layer, and when the second slurry mixture is applied, the change is made.
  • the direction of inclination of the blade is the opposite of when the first layer is applied.
  • the total thickness of the prepared two-layer microporous layer was thus kept constant.
  • the coating thickness of the different pastes can be adjusted by adjusting the slit width at one end to be larger than the other end.
  • the present application also provides a fuel cell membrane electrode assembly comprising an electrolyte membrane, a catalytic electrode layer, a microporous layer and a gas diffusion layer which are sequentially stacked, the microporous layer being the microporous layer structure described in the above scheme, A high water vapor permeability microporous layer in the microporous layer structure is disposed at the end of the gas diffusion layer.
  • Fig. 1 is a fuel cell cathode assembly, and the structure and microporous layer structure of the fuel cell cathode can be clearly seen from Fig. 1.
  • the high water vapor permeable microporous layer may be disposed at the end of the gas diffusion layer, and the low water vapor permeable microporous layer may also be disposed at the end of the gas diffusion layer.
  • the high water vapor permeability The excessive microporous layer is disposed at the end of the gas diffusion layer.
  • the microporous layer may be provided with a plurality of layers according to actual needs, and the present application is not particularly limited.
  • microporous layer structure provided by the present invention will be described in detail below with reference to the embodiments, and the scope of the present invention is not limited by the following examples.
  • the first dispersion liquid is composed of toner A, polytetrafluoroethylene emulsion, deionized water and surfactant, and ultrasonic dispersion and mechanical stirring are performed to form a uniform slurry; the slurry is coated on one side of the gas diffusion layer.
  • the coating tool is a coating machine using a doctor blade, and a thickness gradient along the air inlet to the air outlet is formed by changing the height of the both ends of the blade, where the blade on the air inlet side is lower than the air outlet side, and the inlet side is coated
  • the thickness of the slurry is smaller than the outlet side, and after heat treatment, a first layer of high water permeability microporous layer is formed, the microporous layer has a thickness gradient distribution along the air inlet to the outlet, and the thickness at the inlet is 10 ⁇ m, which is smaller than the thickness of the outlet at 30 ⁇ m. ;
  • a second dispersion composed of carbon powder B a polytetrafluoroethylene emulsion, deionized water and a surfactant, ultrasonic dispersion and mechanical agitation are performed to form a uniform microporous layer slurry; the slurry is coated first
  • the surface of the microporous layer, the coating tool is a coating machine using a doctor blade, and the thickness gradient along the air inlet to the air outlet is formed by changing the height of the both ends of the blade, where the blade on the air inlet side is higher than the air outlet side, the inlet
  • the side coated slurry has a thickness greater than the outlet side, and after heat treatment, forms a second layer of low water permeability microporous layer having a thickness gradient along the air inlet to the outlet, the inlet having a thickness of 30 ⁇ m.
  • the average particle diameter of the carbon powder A used above is 50 nm larger than the average particle diameter of the carbon powder B of 30 nm.
  • the first dispersion liquid is composed of toner A, polytetrafluoroethylene emulsion, deionized water and surfactant, and ultrasonic dispersion and mechanical stirring are performed to form a uniform microporous layer slurry; the slurry is coated on the gas diffusion layer.
  • the coating tool is a coating machine using a doctor blade.
  • the blade on the air inlet side is equal to the air outlet side, and after heat treatment, a highly water-permeable microporous layer having a uniform thickness is formed.
  • the thickness of the microporous layer was equal to the total thickness of the two microporous layers in Example 1 of 40 ⁇ m.
  • a second dispersion composed of carbon powder B, a polytetrafluoroethylene emulsion, deionized water and a surfactant is subjected to ultrasonic dispersion and mechanical agitation to form a uniform microporous layer slurry; the slurry is coated on the gas diffusion
  • the coating tool is a coating machine using a doctor blade, where the blade on the air inlet side is equal in height to the air outlet side, and after heat treatment, a low-permeability microporous layer having a uniform thickness is formed.
  • the thickness of the microporous layer was equal to the total thickness of the two microporous layers in Example 1 of 40 ⁇ m.
  • Example 2 The two kinds of carbon powders of Examples 2 and 3 were used in Example 1 to prepare composite microporous layers of different thicknesses.
  • the particle size of the toner A is larger than the particle diameter of the carbon powder B, so that the microporous layers prepared by the carbon powders A and B have different pore distributions and porosity.
  • the microporous layer prepared from the large particle carbon powder has a large porosity and a large average pore diameter, thereby having a large water vapor transmission rate.
  • the microporous layers prepared in Examples 1 to 3 were assembled into the cathode of the fuel cell, and the performance of the obtained battery was examined.
  • the detection environment of the data of FIG. 2 was: the cathode inlet pressure was 200 KPa, and the anode and cathode inlet RH were 30% and 42%, and the stoichiometric ratio of the anode to the cathode is 2.0; as shown in Figure 2, the MEA with gradient properties in the microporous layer exhibits a higher performance of about 30 mV at 90 ° C, while at 75 ° C Show similar performance.
  • the detection environment of the data in Figure 3 is: the cathode inlet pressure is 200KPa, the anode and cathode inlet RH are both 100%, and the anode and cathode stoichiometry is 2.0; as shown in Figure 3, there is gradient in the microporous layer.
  • the performance of the MEA showed a higher performance of about 20 mV at 55 °C and a higher performance of about 10 mV at 80 °C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明提供了一种燃料电池的微孔层结构,其包括:依次叠加设置的高水气透过性微孔层与低水气透过性微孔层;沿空气流路方向上,高水气透过性微孔层的厚度递增,低水气透过性微孔层的厚度递减,微孔层结构的总厚度保持一致;在空气入口,高水气透过性微孔层的厚度小于低水气透过性微孔层的厚度,在空气出口,高水气透过性微孔层的厚度大于低水气透过性微孔层的厚度。本申请还提供了所述微孔层结构的制备方法与燃料电池的膜电极组件。本申请提供的燃料电池微孔层结构可以平衡燃料电池气体入口和出口区域的水含量,最终提高燃料电池在各种温湿度下的稳定性,提高耐久性等功能。

Description

一种燃料电池的微孔层结构、其制备方法与燃料电池阴极组件
本申请要求于2017年11月6日提交中国专利局、申请号为201711078816.6、发明名称为“一种燃料电池的微孔层结构、其制备方法与燃料电池阴极组件”的中国专利申请,以及于2017年11月6日提交中国专利局、申请号为201721467506.9、发明名称为“一种燃料电池的微孔层结构与燃料电池阴极组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及燃料电池技术领域,尤其涉及一种燃料电池的微孔层结构、其制备方法与燃料电池阴极组件。
背景技术
燃料电池由于能量转化效率高、低排放无污染等优势,在交通运输、备用电源、分布式电站等领域发展前景广阔。典型的燃料电池单体由电解质膜(一般为质子交换膜)、阴极和阳极的催化电极、气体扩散层以及双极板组成。燃料电池中的气体扩散介质通常由诸如碳纤维纸或碳布的导电多孔基材组成,并在其上附有微孔层。微孔层通常包括碳粉末和疏水性含氟聚合物,起排水通气并增强电子传输能力等功能,微孔层对于燃料电池的水管理具有非常重要的作用。
燃料电池的水管理非常重要,缺水会造成电解质膜的高质子传输阻抗以及电极的低活性,从而导致低的功率输出;而高的水含量容易导致电极的水淹,造成氧气和燃料的高传输阻力,同样会导致性能下降。车用燃料电池由于比较高的功率输出,一般来说电极的面积比较大,可达数百平方厘米。燃料电池尤其是大尺寸燃料电池在电极的不同区域由于膜电极水含量、气体相对湿度和氧气浓度等的不平衡会导致电流密度分布的不均衡,影响功率密度和耐久性。
一般来说,燃料电池入口处的空气比较干燥,氧气分压高;出口处的空气相对湿润,氧气分压低。在不同的工作温度下,这种不均衡可能会加剧,比如高温下更容易干,低温下趋于发生水淹。为了提高入口空气的相对湿度,一般采取预加湿的方法,即空气导入电堆之前通过加湿器进行加湿。加湿器一般体积较大,增加了系统的体积和重量,而且使用加湿器不能解决燃料电池特别是大尺寸电池在各个区域中水和氧气的均衡分配问题。
申请号为201110293005.4的中国专利提供了一种涉及具有梯度化性能的燃料电池电极及其制造方法,首先制备具有不同成分的至少两种电极浆料混合物, 将所述至少两种电极浆料沉积在气体扩散层基材上形成至少两个电极层,其组合以形成组合电极使得所述组合电极层的平均性能水平沿所述基材变化而变化,所述性能为膜当量、扩散介质气体渗透率、离聚物和碳之比、催化剂载量、孔隙度或者它们的组合。
US8,945,790提供一种微孔层结构,具有复数孔径在0.02~0.5微米的亲水孔和疏水孔,以及复数孔径在0.5~100微米的钻孔;亲水孔增加了水的储存量,可以提高干燥高温条件下膜的水含量,而且增加了液态到气态的相变点,利于散热;疏水孔模拟催化层中的第二孔利于反应气和水蒸气的传输;钻孔则通过毛细管力便于液态水的传输。
上述方案要么制备工艺复杂,需要控制的参数繁多,不利于批量生产,要么对燃料电池的水管理改善效果不佳,进而影响燃料电池的性能。
发明内容
本发明解决的技术问题在于现有技术中存在的燃料电池尤其是大尺寸燃料电池在电极不同区域中水和氧气的分配不均衡问题,目的在于提供一种具有较好的水管理性的微孔层结构,从而可提高电池在各种湿度下的稳定性,提高持久性。
有鉴于此,本申请提供了一种燃料电池的微孔层结构,包括依次叠加设置的高水气透过性微孔层与低水气透过性微孔层;沿空气流路方向上,高水气透过性微孔层的厚度递增,低水气透过性微孔层的厚度递减,微孔层结构的总厚度保持一致;在空气入口,高水气透过性微孔层的厚度小于低水气透过性微孔层的厚度,在空气出口,高水气透过性微孔层的厚度大于低水气透过性微孔层的厚度。
优选的,所述微孔层结构的厚度为30~60μm。
优选的,所述高水气透过性微孔层在空气入口处的厚度为0~30μm,在出口处的厚度为30~60μm;所述低水气透过性微孔层在空气入口处的厚度为30~60μm,在空气出口处的厚度为0~30μm。
优选的,所述高水气透过性微孔层的孔隙率为40~55%,优选45-55%;所述低水气透过性微孔层的孔隙率为30~45%,优选30-40%。
本申请还提供了所述的燃料电池的微孔层结构的制备方法,包括以下步骤:
A),制备第一浆料混合物与第二浆料混合物,所述第一浆料混合物与所述第二浆料混合物均由碳粉体、粘接剂、分散剂与溶剂组成,所述第一浆料混合 物的水气透过性高于第二浆料混合物;
B),在经过疏水处理的气体扩散层表面涂覆第一浆料混合物,热处理后得到高水气透过性微孔层,再涂覆第二浆料混合物,得到低水气透过性微孔层;
或者,在经过疏水处理的气体扩散层表面涂覆第二浆料混合物,热处理后得到低水气透过性微孔层,再涂覆第一浆料混合物,得到高水气透过性微孔层;
通过控制涂覆工艺使高水气透过性微孔层的厚度在空气流路方向上递增,低水气透过性微孔层的厚度在空气流路方向上递减,微孔层结构的总厚度保持一致;在空气入口,高水气透过性微孔层的厚度小于低水气透过性微孔层的厚度,在空气出口,高水气透过性微孔层的厚度大于低水气透过性微孔层的厚度。
优选的,所述第一浆料混合物中的碳粉体为大颗粒碳粉,粒径为30~60nm,优选40-60nm,更优选45-60nm;所述第二浆料混合物中的碳粉体为小颗粒粉体,粒径为20~50nm,优选20-45nm,更优选20-40nm。
优选的,所述涂覆工艺的涂覆工具采用具有狭缝或喷头的涂覆机或刮刀。
本申请还提供了一种燃料电池膜电极组件,包括依次叠加设置的电解质膜、催化电极层、微孔层和气体扩散层,所述微孔层为上述方案所述的或上述方案所述的制备方法所制备的微孔层结构。
优选的,所述微孔层结构中的高水气透过性微孔层设置于所述气体扩散层端。
优选的,所述微孔层至少为1层。
本申请提供了一种微孔层结构,其包括依次叠加设置的高水气透过性微孔层与低水气透过性微孔层;沿空气流路方向上,高水气透过性微孔层的厚度递增,低水气透过性微孔层的厚度递减,微孔层结构的总厚度保持一致;在空气入口,高水气透过性微孔层的厚度小于低水气透过性微孔层的厚度,在空气出口,高水气透过性微孔层的厚度大于低水气透过性微孔层的厚度。在空气入口处,由于低水气透过性微孔层的保水作用,水分不容易通过微孔层流失,增加了入口处的水含量,减小了空气预加湿需求;在空气出口处,由于高水气透过性微孔层占比高,水分相对容易散出,可以降低水淹现象,保证氧气的传输,这样通过调整微孔层的梯度分布可以达到改善水管理的功能,利于电流密度的均匀分布,提高电池在各种温湿度下的稳定性,并且可以提高耐久性。
附图说明
图1为本发明燃料电池的微孔层结构;
图2为本发明实施例制备的微孔层结构形成的电池的低湿度性能对比;
图3为本发明实施例制备的微孔层结构形成的电池的高湿度性能对比。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
针对现有技术燃料电池水管理不足的问题,本发明提供了一种燃料电池的微孔层结构,该结构包含具有不同水气透过性的微孔层,沿空气流路方向上每个组成微孔层的单层在厚度上形成梯度分布,总微孔层的厚度不变;在空气入口处低水气透过性微孔层厚度大于高水气透过性的微孔层厚度,出口反之。本申请提供的微孔层结构可以平衡燃料电池气体入口和出口区域的水含量,达到改善大尺寸燃料电池电流密度分布,提高电池在各种温湿度下的稳定性,提高耐久性。具体的,本申请实施例公开了一种燃料电池的微孔层结构,包括依次叠加设置的高水气透过性微孔层与低水气透过性微孔层;沿空气流路方向上,高水气透过性微孔层的厚度递增,低水气透过性微孔层的厚度递减,微孔层结构的总厚度保持一致;在空气入口,高水气透过性微孔层的厚度小于低水气透过性微孔层的厚度,在空气出口,高水气透过性微孔层的厚度大于低水气透过性微孔层的厚度。
本申请提供了具有梯度变化的燃料电池微孔层结构,该微孔层结构是由高水气透过性微孔层与低水气透过性微孔层组成,在实际应用中,高水气透过性微孔层与低水气透过性微孔层为一个组合,其可以为一组或多组,对此本申请没有特别的限制。在沿空气流路方向上,即在空气的入口至空气的出口,高水气透过性微孔层的厚度递增,呈梯度递增,而低水气透过性微孔层的厚度递减,呈梯度递减。虽然高水气透过性微孔层的厚度与低水气透过性微孔层的厚度均呈梯度变化,但是微孔层结构的总厚度在空气流路方向上是一致的。上述微孔层递增或递减的梯度分布可以使水分含量沿进出口的分布更加均匀,效果更好。
在具体实施例中,所述微孔层的厚度为30~60μm;具体的,所述高水气透过性微孔层在空气入口处的厚度为0~30μm,在出口处的厚度为30~60μm,在具体实施例中,所述高水气透过性微孔层在空气入口处的厚度为10~20μm,在出口处的厚度为30~50μm;所述低水气透过性微孔层的厚度在空气入口处的厚度为30~60μm,在出口处的厚度为0~30μm,在具体实施例中,所述低水气透过性微孔层在空气入口处的厚度为30~50μm,在出口处的厚度为10~20μm。
本申请所述高水气透过性微孔层是相对于低水气透过性微孔层而言的,高水气透过性微孔层是指水分较容易流失,而低水气透过性微孔层的水分不易流失。具体的,本申请可通过调整高水气透过性微孔层与低水气透过性微孔层的孔隙率与密度而调整水气透过性。具体的,所述高水气透过性微孔层的孔隙率为40~55%,优选45-55%;所述低水气透过性微孔层的孔隙率为30~45%,优选30-40%。
本发明还提供了燃料电池的微孔层结构的制备方法,包括以下步骤:
A),制备第一浆料混合物与第二浆料混合物,所述第一浆料混合物与所述第二浆料混合物均由碳粉体、粘接剂、分散剂与溶剂组成,所述第一浆料混合物的水气透过性高于第二浆料混合物;
B),在经过疏水处理的气体扩散层表面涂覆第一浆料混合物,热处理后得到高水气透过性微孔层,再涂覆第二浆料混合物,得到低水气透过性微孔层;
或者在经过疏水处理的气体扩散层表面涂覆第二浆料混合物,热处理后得到低水气透过性微孔层,再涂覆第一浆料混合物,得到高水气透过性微孔层;
通过控制涂覆工艺使高水气透过性微孔层的厚度在空气流路方向上递增,低水气透过性微孔层的厚度在空气流路方向上递减,微孔层结构的总厚度保持一致;在空气入口,高水气透过性微孔层的厚度小于低水气透过性微孔层的厚度,在空气出口,高水气透过性微孔层的厚度大于低水气透过性微孔层的厚度。
在制备微孔层结构的过程中,首先制备了两种浆料混合物,可区分为第一浆料混合物与第二浆料混合物。所述第一浆料混合物与所述第二浆料混合物可均由碳粉体、粘接剂、分散剂和溶剂组成;所述碳粉体、粘接剂、分散剂和溶剂均为本领域技术人员熟知的,对此本申请不进行特别的限制。在本申请中,所述第一浆料混合物的水气透过性高于第二浆料混合物,为了实现此目的,所述第一浆料混合物的碳粉体可以为大颗粒碳粉,粒径为30~60nm,优选40-60nm,更优选45-60nm;在一些具体实施方案中,粒径为40~50nm,其使高水气透过性微孔层的孔隙率高、密度低;所述第二浆料混合物的碳粉体可以材料小颗粒碳粉,粒径为20~50nm,优选20-45nm,更优选20-40nm,在一些具体实施方案中,粒径为30~40nm,其使低水气透过性微孔层的孔隙率低、密度高;同样也可以使第一浆料混合物中的粘接剂减少以改变微孔层孔的接触角而增加水的透过性,使第二浆料混合物中粘接剂的含量增加来降低水的透过性。
本申请然后在经过疏水处理的气体扩散层表面涂覆第一浆料混合物,热处理后得到高水气透过性微孔层,再涂覆第二浆料混合物,得到低水气透过性微 孔层;或者在经过疏水处理的气体扩散层表面涂覆第二浆料混合物,热处理后得到低水气透过性微孔层,再涂覆第一浆料混合物,得到高水气透过性微孔层,本申请通过控制涂覆工艺来使高水气透过性微孔层与低水气透过性微孔层满足上述微孔层结构的要求。具体的,在涂覆过程中,涂覆工具可以使用刮刀或狭缝的涂覆机,或使用喷头的喷涂机。如使用刮刀,可以采用改变刮刀两端的高度来控制厚度梯度,比如一侧的刮刀高于另外一侧来涂覆高水气透过性微孔层,在涂覆第二浆料混合物时,改变刮刀的倾斜方向,与涂覆第一层时相反。如此使所制备的两层微孔层的总厚度保持不变。在使用狭缝的涂覆机时,可通过调节一端狭缝宽度大于另外一端来调整不同浆料的涂覆厚度。
本申请还提供了一种燃料电池膜电极组件,其包括依次叠加设置的电解质膜、催化电极层、微孔层和气体扩散层,所述微孔层为上述方案所述的微孔层结构,所述微孔层结构中的高水气透过性微孔层设置于所述气体扩散层端。如图1所示,图1为燃料电池阴极组件,由图1可清楚的看出燃料电池阴极的结构与微孔层结构。本申请中高水气透过性微孔层可以设置于气体扩散层端,同样低水气透过性微孔层也可以设置于气体扩散层端,在具体实施例中,所述高水气透过性微孔层设置于气体扩散层端。
在本申请中,所述微孔层可根据实际需要设置多层,对此本申请没有特别的限制。
为了进一步理解本发明,下面结合实施例对本发明提供的微孔层结构进行详细说明,本发明的保护范围不受以下实施例的限制。
实施例1
采用碳粉A、聚四氟乙烯乳液、去离子水及表面活性剂组成第一分散液,进行超声分散和机械搅拌,形成均匀的浆料;将上述浆料涂覆在气体扩散层的一侧,涂覆工具为使用刮刀的涂覆机,通过改变刮刀两端的高度来形成沿空气入口到空气出口的厚度梯度,在此,空气入口侧的刮刀低于空气出口侧,入口侧所涂覆的浆料厚度小于出口侧,经过热处理后形成第一层高水透过性微孔层,该微孔层具有沿空气入口到出口处的厚度梯度分布,入口处厚度为10μm,小于出口处厚度30μm;
采用碳粉B、聚四氟乙烯乳液、去离子水及表面活性剂组成的第二分散液,进行超声分散和机械搅拌,形成均匀的微孔层浆料;将上述浆料涂覆在第一微孔层的表面,涂覆工具为使用刮刀的涂覆机,通过改变刮刀两端的高度来形成沿空气入口到空气出口的厚度梯度,在此,空气入口侧的刮刀高于空气出口侧, 入口侧所涂覆的浆料厚度大于出口侧,经过热处理后形成第二层低水透过性微孔层,该微孔层具有沿空气入口到出口处的厚度梯度分布,入口处厚度为30μm,大于出口处厚度10μm;在空气入口到出口处,通过调整涂布第一和第二微孔层时刮刀倾斜角的相反和角度的一致,使得第一和第二微孔层的总厚度保持一致40μm。上述所用碳粉A的平均粒径50nm大于碳粉B的平均粒径30nm。
实施例2
采用碳粉A、聚四氟乙烯乳液、去离子水及表面活性剂组成第一分散液,进行超声分散和机械搅拌,形成均匀的微孔层浆料;将此浆料涂覆在气体扩散层的一侧,涂覆工具为使用刮刀的涂覆机。在此,空气入口侧的刮刀与空气出口侧等高,经过热处理后形成厚度均匀的高透水性微孔层。该微孔层厚度等于实施例1中的两层微孔层总厚度40μm。
实施例3
采用碳粉B、聚四氟乙烯乳液、去离子水及表面活性剂组成的第二分散液,进行超声分散和机械搅拌,形成均匀的微孔层浆料;将此浆料涂覆在气体扩散层的一侧,涂覆工具为使用刮刀的涂覆机,在此,空气入口侧的刮刀与空气出口侧等高,经过热处理后形成厚度均匀的低透水性微孔层。该微孔层厚度等于实施例1中的两层微孔层总厚度40μm。
实施例1中采用实施例2和3中的两种碳粉来制备不同厚度的复合微孔层。碳粉A的粒径要大于碳粉B的粒径,从而导致由碳粉A和B做制备的微孔层具有不同的孔隙分布和孔隙率。
水气透过性K跟孔隙率、平均孔径大小d pore以及孔的曲折度ε有关:d pore=(K/ηε) 0.5。另外,微孔层内细孔的毛细管力P c跟气体和液体压力差有关,P c=(P l-P g)∝σ/d pore,σ为表面能,孔径d pore越小,细孔的静水压越高,液体水越难以流入,水的透过性就越小。根据上面的公式和理论分析,由大颗粒碳粉制备的微孔层具有较大孔隙率和大的平均孔径,从而具有较大的水气透过率。
将实施例1~3制备的微孔层组装成燃料电池的阴极,检测得到的电池的性能,图2数据的检测环境为:阴极入口压力为200KPa,阳极和阴极的入口RH分别为30%和42%,并且阳极和阴极的化学计量比为2.0;如图2所示,在微孔层中具有梯度化性能的MEA,在90℃时显示出大约30mV的更高性能,而在75℃时显示相似的性能。图3数据的检测环境为:阴极入口压力为200KPa,阳极和阴极的入口RH均为100%,并且阳极和阴极的化学计量比为2.0;如图3所示,在微孔层中具有梯度化性能的MEA,在55℃时显示出大约20mV的更高 性能,而在80℃时显示出大约10mV的更高性能。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种燃料电池的微孔层结构,包括依次叠加设置的高水气透过性微孔层与低水气透过性微孔层;沿空气流路方向上,高水气透过性微孔层的厚度递增,低水气透过性微孔层的厚度递减,微孔层结构的总厚度保持一致;在空气入口,高水气透过性微孔层的厚度小于低水气透过性微孔层的厚度,在空气出口,高水气透过性微孔层的厚度大于低水气透过性微孔层的厚度。
  2. 根据权利要求1所述的微孔层结构,其特征在于,所述微孔层结构的厚度为30~60μm。
  3. 根据权利要求1所述的微孔层结构,其特征在于,所述高水气透过性微孔层在空气入口处的厚度为0~30μm,在出口处的厚度为30~60μm;所述低水气透过性微孔层在空气入口处的厚度为30~60μm,在空气出口处的厚度为0~30μm。
  4. 根据权利要求1所述的微孔层结构,其特征在于,所述高水气透过性微孔层的孔隙率为40~55%;所述低水气透过性微孔层的孔隙率为30~45%。
  5. 权利要求1所述的燃料电池的微孔层结构的制备方法,包括以下步骤:
    A),制备第一浆料混合物与第二浆料混合物,所述第一浆料混合物与所述第二浆料混合物均由碳粉体、粘接剂、分散剂与溶剂组成,所述第一浆料混合物的水气透过性高于第二浆料混合物;
    B),在经过疏水处理的气体扩散层表面涂覆第一浆料混合物,热处理后得到高水气透过性微孔层,再涂覆第二浆料混合物,得到低水气透过性微孔层;
    或者,在经过疏水处理的气体扩散层表面涂覆第二浆料混合物,热处理后得到低水气透过性微孔层,再涂覆第一浆料混合物,得到高水气透过性微孔层;
    通过控制涂覆工艺使高水气透过性微孔层的厚度在空气流路方向上递增,低水气透过性微孔层的厚度在空气流路方向上递减,微孔层结构的总厚度保持一致;在空气入口,高水气透过性微孔层的厚度小于低水气透过性微孔层的厚度,在空气出口,高水气透过性微孔层的厚度大于低水气透过性微孔层的厚度。
  6. 根据权利要求5所述的制备方法,其特征在于,所述第一浆料混合物中的碳粉体为大颗粒碳粉,粒径为30~60nm;所述第二浆料混合物中的碳粉体为 小颗粒粉体,粒径为20~50nm。
  7. 根据权利要求5所述的制备方法,其特征在于,实施所述涂覆工艺所用的涂覆工具为具有狭缝或喷头的涂覆机或刮刀。
  8. 一种燃料电池膜电极组件,包括依次叠加设置的电解质膜、催化电极层、微孔层和气体扩散层,其特征在于,所述微孔层为权利要求1~4任一项所述的或权利要求5~7任一项所述的制备方法所制备的微孔层结构。
  9. 根据权利要求8所述的燃料电池膜电极组件,其特征在于,所述微孔层结构中的高水气透过性微孔层设置于所述气体扩散层端。
  10. 根据权利要求8所述的燃料电池膜电极组件,其特征在于,所述微孔层至少为1层。
PCT/CN2018/113914 2017-11-06 2018-11-05 一种燃料电池的微孔层结构、其制备方法与燃料电池阴极组件 WO2019086024A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18874897.4A EP3709409A4 (en) 2017-11-06 2018-11-05 MICROPOROUS LAYER STRUCTURE OF A FUEL CELL AND MANUFACTURING METHOD FOR IT, AS WELL AS FUEL CELL CATHODE ARRANGEMENT
CA3080007A CA3080007C (en) 2017-11-06 2018-11-05 Microporous layer structure of fuel cell and preparation method therefor, and fuel cell cathode assembly
US16/755,558 US20210194028A1 (en) 2017-11-06 2018-11-05 Microporous layer structure of fuel cell and preparation method therefor, and fuel cell cathode assembly

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201721467506.9 2017-11-06
CN201711078816.6A CN107681165B (zh) 2017-11-06 2017-11-06 一种燃料电池的微孔层结构、其制备方法与燃料电池阴极组件
CN201711078816.6 2017-11-06
CN201721467506.9U CN208000968U (zh) 2017-11-06 2017-11-06 一种燃料电池的微孔层结构与燃料电池阴极组件

Publications (1)

Publication Number Publication Date
WO2019086024A1 true WO2019086024A1 (zh) 2019-05-09

Family

ID=66332812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113914 WO2019086024A1 (zh) 2017-11-06 2018-11-05 一种燃料电池的微孔层结构、其制备方法与燃料电池阴极组件

Country Status (4)

Country Link
US (1) US20210194028A1 (zh)
EP (1) EP3709409A4 (zh)
CA (1) CA3080007C (zh)
WO (1) WO2019086024A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113488662B (zh) * 2021-06-22 2024-03-29 浙江唐锋能源科技有限公司 一种均衡燃料电池内部水平衡的气体扩散层及制备方法
DE102021209217A1 (de) * 2021-08-23 2023-02-23 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung einer Gasdiffusionsschicht
CN114744215B (zh) * 2022-03-15 2023-10-10 上海碳际实业集团有限公司 一种具有新型结构的燃料电池气体扩散层及制备方法
CN114899417B (zh) * 2022-04-28 2023-12-29 一汽解放汽车有限公司 一种燃料电池气体扩散层及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1658422A (zh) * 2005-03-23 2005-08-24 武汉理工大学 一种燃料电池用气体扩散层及其制备方法
JP2009076423A (ja) * 2007-09-25 2009-04-09 Nippon Soken Inc 燃料電池
CN102024961A (zh) * 2010-11-29 2011-04-20 新源动力股份有限公司 一种质子交换膜燃料电池的气体扩散层及其制备方法
JP2013225398A (ja) * 2012-04-20 2013-10-31 Panasonic Corp 燃料電池スタック
US8945790B2 (en) 2013-03-15 2015-02-03 Ford Global Technologies, Llc Microporous layer structures and gas diffusion layer assemblies in proton exchange membrane fuel cells
CN107681165A (zh) * 2017-11-06 2018-02-09 中车青岛四方机车车辆股份有限公司 一种燃料电池的微孔层结构、其制备方法与燃料电池阴极组件
CN208000968U (zh) * 2017-11-06 2018-10-23 中车青岛四方机车车辆股份有限公司 一种燃料电池的微孔层结构与燃料电池阴极组件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4880131B2 (ja) * 2001-04-23 2012-02-22 パナソニック株式会社 ガス拡散電極およびこれを用いた燃料電池
JP4610815B2 (ja) * 2001-09-14 2011-01-12 東芝燃料電池システム株式会社 固体高分子形燃料電池
JP5339261B2 (ja) * 2006-05-31 2013-11-13 Jx日鉱日石エネルギー株式会社 燃料電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1658422A (zh) * 2005-03-23 2005-08-24 武汉理工大学 一种燃料电池用气体扩散层及其制备方法
JP2009076423A (ja) * 2007-09-25 2009-04-09 Nippon Soken Inc 燃料電池
CN102024961A (zh) * 2010-11-29 2011-04-20 新源动力股份有限公司 一种质子交换膜燃料电池的气体扩散层及其制备方法
JP2013225398A (ja) * 2012-04-20 2013-10-31 Panasonic Corp 燃料電池スタック
US8945790B2 (en) 2013-03-15 2015-02-03 Ford Global Technologies, Llc Microporous layer structures and gas diffusion layer assemblies in proton exchange membrane fuel cells
CN107681165A (zh) * 2017-11-06 2018-02-09 中车青岛四方机车车辆股份有限公司 一种燃料电池的微孔层结构、其制备方法与燃料电池阴极组件
CN208000968U (zh) * 2017-11-06 2018-10-23 中车青岛四方机车车辆股份有限公司 一种燃料电池的微孔层结构与燃料电池阴极组件

Also Published As

Publication number Publication date
CA3080007C (en) 2023-09-05
US20210194028A1 (en) 2021-06-24
EP3709409A4 (en) 2021-08-25
EP3709409A1 (en) 2020-09-16
CA3080007A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
CN107681165B (zh) 一种燃料电池的微孔层结构、其制备方法与燃料电池阴极组件
WO2019086024A1 (zh) 一种燃料电池的微孔层结构、其制备方法与燃料电池阴极组件
JP3594533B2 (ja) 燃料電池
JP7387905B2 (ja) ガス拡散層、その製造方法、膜電極アセンブリ及び燃料電池
KR100474941B1 (ko) 가스확산전극 및 이것을 사용한 연료전지
CN107834088A (zh) 燃料电池的膜电极组件及其制备方法
US20110008706A1 (en) Polymer coating of pem fuel cell catalyst layers
JP2008204945A (ja) ガス拡散電極用基材、ガス拡散電極及びその製造方法、並びに燃料電池
CN109742409A (zh) 一种氢质子交换膜燃料电池用气体扩散层及其制备方法
WO2019086025A1 (zh) 燃料电池的膜电极组件及其制备方法
CN207490022U (zh) 燃料电池的膜电极组件
CN208000968U (zh) 一种燃料电池的微孔层结构与燃料电池阴极组件
JP2010129310A (ja) 燃料電池用ガス拡散層及びその製造方法
WO2008096887A1 (ja) 膜-電極接合体およびそれを備えた燃料電池
JP3813406B2 (ja) 燃料電池
JP2010129309A (ja) 燃料電池用ガス拡散層及びその製造方法
US11616247B2 (en) Multi-interface membrane electrode assembly
CN103762372B (zh) 催化剂层水淹的解决方法和超薄催化剂层及其制备方法
KR100689105B1 (ko) 캐필러리 공정을 이용한 연료전지의 촉매층 제조 방법
JP2008262741A (ja) 微多孔質層(マイクロポーラス層:mpl)、ガス拡散層(gdl)、微多孔質層(マイクロポーラス層:mpl)付き膜電極接合体(mega)及び該膜電極接合体(mega)を備えた固体高分子型燃料電池
JP5885007B2 (ja) 燃料電池用電極シートの製造方法
KR20110035123A (ko) 연료전지용 막전극 접합체 및 이의 제조방법
JP2024013436A (ja) 燃料電池用膜電極接合体及び固体高分子形燃料電池
KR20150029586A (ko) 연료전지용 전극, 이를 포함하는 막전극접합체 및 연료전지
JP2011029013A (ja) 燃料電池用電極及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18874897

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3080007

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018874897

Country of ref document: EP

Effective date: 20200608