WO2019080841A1 - 一种车辆合流的方法及装置 - Google Patents

一种车辆合流的方法及装置

Info

Publication number
WO2019080841A1
WO2019080841A1 PCT/CN2018/111471 CN2018111471W WO2019080841A1 WO 2019080841 A1 WO2019080841 A1 WO 2019080841A1 CN 2018111471 W CN2018111471 W CN 2018111471W WO 2019080841 A1 WO2019080841 A1 WO 2019080841A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
confluence
priority
lane
merge
Prior art date
Application number
PCT/CN2018/111471
Other languages
English (en)
French (fr)
Inventor
周建力
李辉
熊福祥
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18871288.9A priority Critical patent/EP3686861A4/en
Publication of WO2019080841A1 publication Critical patent/WO2019080841A1/zh
Priority to US16/852,806 priority patent/US20200286386A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/075Ramp control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/164Centralised systems, e.g. external to vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18159Traversing an intersection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0027Planning or execution of driving tasks using trajectory prediction for other traffic participants
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/028Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using a RF signal
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0116Measuring and analyzing of parameters relative to traffic conditions based on the source of data from roadside infrastructure, e.g. beacons
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0145Measuring and analyzing of parameters relative to traffic conditions for specific applications for active traffic flow control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096708Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
    • G08G1/096725Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control where the received information generates an automatic action on the vehicle control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096775Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a central station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/65Data transmitted between vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2756/00Output or target parameters relating to data
    • B60W2756/10Involving external transmission of data to or from the vehicle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9316Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles combined with communication equipment with other vehicles or with base stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2205/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S2205/001Transmission of position information to remote stations
    • G01S2205/002Transmission of position information to remote stations for traffic control, mobile tracking, guidance, surveillance or anti-collision
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/04Detecting movement of traffic to be counted or controlled using optical or ultrasonic detectors

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a method and an apparatus for converging a vehicle.
  • Vehicle confluence is a common scene in traffic. For example, at a crossroad intersection, there is a vehicle confluence scene in which two lanes of vehicles are merged into one lane, and for example, there is also a confluence scene in which the vehicles of the auxiliary lane are merged into the main lane. .
  • the traffic sequence and the driving strategy are generally determined by the driver of the vehicle or the intelligent vehicle having the automatic driving function. For example, suppose that the smart vehicle A in lane A and the smart vehicle B in lane B are about to be merged into lane C, and smart vehicle A and smart vehicle B are prone to conflict when determining the traffic order and driving strategy, for example, smart vehicle A judges itself first.
  • intelligent vehicle B When driving into lane C, intelligent vehicle B also judges that it first enters lane C, or both smart vehicles A and B judge that the other party first enters lane C, which may result in the possibility of collision of two vehicles during the confluence of the vehicles, or mutual occurrence
  • the phenomenon of waiting, in the existing vehicle integration process can not balance the efficiency of safety and vehicle convergence.
  • the embodiment of the present application provides a method and an apparatus for merging a vehicle, which can solve the problem that the efficiency of the safety and the convergence of the vehicle cannot be balanced in the prior art vehicle merging process.
  • an embodiment of the present application provides a method of converging a vehicle, the method comprising: acquiring a vehicle in a confluence area when receiving a confluence request from a first vehicle or determining that a first vehicle enters a confluence area Convergence priority, and then determining whether there is a merge priority of the second vehicle in the merged area is higher than the merge priority of the first vehicle, and if it is determined that the merged priority of the second vehicle in the merged area is higher than the merge priority of the first vehicle, Determining the first instruction, and transmitting a first instruction to the first vehicle, the first instruction is used to control the first vehicle to decelerate or stop, so that the second vehicle preferentially performs the confluence driving; if it is determined that the confluence area does not exist in the confluence of the second vehicle The priority is higher than the merge priority of the first vehicle, the second command is determined, and the second command is sent to the first vehicle, and the second command is used to control the first vehicle
  • the traffic control equipment judges the merge priority of each vehicle in the merged area, and then controls the vehicles with the highest merge priority to perform the confluence driving, and controls other vehicles to stop or decelerate, which can reduce the collision of the vehicle due to misjudgment during the confluence process.
  • the possibility, and the traffic control device can control the passage of the vehicle by sending an instruction to the vehicle, so that the vehicle can pass through the merge intersection in an orderly manner, thereby avoiding the phenomenon that the vehicle waits for the passage of the vehicle to determine whether it can pass, and can guarantee Improve the efficiency of vehicle convergence under the premise of safety.
  • the confluence area is an area where the intersection of at least two lanes is merged into one lane, or an area where the roundabout is located, and the size of the confluence area may be preset by the traffic control device or determined by the traffic control device according to the map.
  • the merge priority indicates the order in which the vehicles in the merged area pass through the merge junction. For example, if the merge priority of the vehicle A is higher than the traffic priority of the vehicle B, the vehicle A preferentially passes through the merge intersection.
  • the first vehicle may generate a control parameter according to the second instruction, its own driving information, and the collected road condition information, and then travel according to the control parameter. And the first vehicle can also report the control parameter to the traffic control device.
  • the merged priority of the second vehicle is determined to be higher than the merge priority of the first vehicle.
  • the merge priority of the second vehicle is higher than the merge priority of the first vehicle.
  • the merge priority of the vehicles in the main road is higher than the merge priority of the vehicles in the auxiliary road, so The merge priority of the second vehicle is higher than the merge priority of the first vehicle.
  • the confluence area is an area where the roundabout is located, the first vehicle and the second vehicle are in two different lanes in the confluence area; if the confluence request of the first vehicle is received, the first reception is not received.
  • the merge request of the two vehicles determines that the merge priority of the second vehicle is higher than the merge priority of the first vehicle.
  • vehicles that do not change lanes need to be polite to change lanes.
  • the vehicles in the confluence area need to change lanes, they can send a confluence request to the traffic control equipment, and the traffic control equipment receives the first vehicle.
  • the merge request does not receive the merge request of the second vehicle, indicating that the first vehicle is about to change lanes, and the second vehicle does not change lanes, so the merge priority of the second vehicle is higher than the merge priority of the first vehicle.
  • the traffic control device may determine whether the road right level of the lane where the first vehicle is located and the road right level of the lane where the second vehicle is located are the same, and if the road right level of the lane where the first vehicle is located is determined If the road right level of the lane in which the second vehicle is located is the same, it is determined whether the last vehicle in the merged area is driven out from the lane where the first vehicle is located, and if the vehicle in the merged area is determined to be from the first to be merged When the lane in which the vehicle is located exits, it is determined that the merge priority of the second vehicle is higher than the merge priority of the first vehicle.
  • the vehicles in lane 1 and lane 2 are all merged into lane 3, and the lanes of lane 1 and lane 2 are of the same level.
  • the traffic control equipment can determine the confluence area according to the principle of alternating zippers. The traffic order of the vehicle, if the first vehicle is a vehicle in the lane 1 of the crossroad intersection, there is no vehicle waiting for the confluence ahead in the direction of the first vehicle in the lane 1, and the second vehicle is the vehicle in the lane 2 of the herringbone intersection.
  • the traffic control device determines that the last concomitant vehicle is from the lane 1, then the vehicle in the lane 2 preferentially performs the confluence, so the second The merge priority of the vehicle is greater than the merge priority of the first vehicle.
  • the traffic control device after the traffic control device sends the second instruction to the first vehicle, the feedback information from the first vehicle may also be received, where the feedback information is used to indicate that the first vehicle has completed the confluence driving.
  • the traffic control device determines that the first vehicle has completed the confluence driving, the converged driving can be controlled by sending the command to control the next highest priority vehicle in the confluence area, so that the vehicles in the confluence area can pass through the confluence intersection safely and orderly.
  • an embodiment of the present application provides a method for converging a vehicle, the method comprising: a first vehicle transmitting a confluence request to a traffic control device, and then the first vehicle receiving a first instruction from the traffic control device, and according to the first Commanding, the first command is used to control the first vehicle to decelerate or stop; or the first vehicle receives the second command from the traffic control device and travels according to the second command, and the second command is used to control the first vehicle to perform the confluence driving .
  • the first vehicle does not need to judge the order of its own and other vehicles through the junction, but according to the instruction of the traffic control device, the possibility of collision of the vehicle due to misjudgment during the confluence process can be reduced, and the traffic is
  • the control device controls the passage of the vehicle by sending instructions to the vehicle, so that the vehicle can pass through the junctions in an orderly manner, thereby avoiding the phenomenon of waiting for each other to be determined by the vehicle itself, and improving the confluence of the vehicles under the premise of ensuring safety. s efficiency.
  • the first vehicle may send feedback information to the traffic control device, where the feedback information is used to indicate that the first vehicle has completed the confluence driving.
  • the traffic control device determines that the first vehicle has completed the confluence running, the next highest priority vehicle in the confluence area is controlled to send the confluence driving, so that the vehicles in the confluence area can pass through the confluence intersection safely and orderly.
  • an embodiment of the present application provides a device for converging a vehicle, the device having a function of implementing behavior of a vehicle control device in the design of the above method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the device can be a vehicle control device or can be a chip in a vehicle control device.
  • the device is a vehicle control device, and the vehicle control device includes a processor configured to support the vehicle control device to perform a corresponding function of the above methods. Further, the vehicle control device may further include a communication interface for supporting communication between the vehicle control device and the first vehicle, or any vehicle within the confluence area, and the roadside sensor within the confluence area. Further, the vehicle control device can also include a memory for coupling with the processor that retains program instructions and data necessary for the vehicle control device.
  • an embodiment of the present application provides a device for converging a vehicle, the device having a function of implementing behavior of a first vehicle in the design of the above method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the device can be a first vehicle or can be a chip in a first vehicle.
  • the device is a first vehicle
  • the first vehicle includes a processor configured to support the first vehicle to perform a corresponding function of the above method.
  • the first vehicle may further include a communication interface for supporting communication between the first vehicle and the traffic control device.
  • the first vehicle may further include a memory for coupling with the processor, which stores program instructions and data necessary for the first vehicle.
  • an embodiment of the present application provides a system for converging a vehicle, the system comprising the traffic control device of the above aspect, the first vehicle, the second vehicle, and other vehicles in the confluence area, or the system may include the above The traffic control device, the first vehicle, the second vehicle, and other vehicles in the confluence area of the aspect further include a roadside sensor in the confluence area.
  • an embodiment of the present application provides a computer storage medium for storing the computer software instructions for use in the foregoing vehicle control device, including a program designed to execute the above first aspect.
  • an embodiment of the present application provides a computer storage medium for storing the computer software instructions for use in the first vehicle, including a program designed to execute the second aspect.
  • an embodiment of the present application provides a computer program product comprising instructions that, when run on a computer, cause the computer to perform the method of the first aspect described above.
  • an embodiment of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of the second aspect described above.
  • an embodiment of the present application provides a chip system for use in a traffic control device, the chip system including at least one processor, a memory and an interface circuit, the memory, the transceiver, and the at least one processing
  • the devices are interconnected by wires, and the at least one memory stores instructions; the instructions are executed by the processor to perform the operations of the traffic control device in the method of the first aspect described above.
  • an embodiment of the present application provides a chip system for use in a first vehicle, the chip system including at least one processor, a memory and an interface circuit, the memory, the transceiver, and the at least one
  • the processor is interconnected by a line, the at least one memory storing instructions; the instructions being executed by the processor to perform the operations of the first vehicle of the method of the second aspect above.
  • the order of the confluence intersection is not determined by the driver of the vehicle or the vehicle, but by the traffic.
  • the control device determines the merge priority of each vehicle in the confluence area, and then controls the vehicle with the highest merge priority to perform the confluence driving, and controls other vehicles to stop or decelerate, thereby reducing the possibility of the vehicle colliding due to misjudgment during the confluence process, and
  • the traffic control device controls the passage of the vehicle by sending instructions to the vehicle, so that the vehicle can pass through the junctions in an orderly manner, thereby avoiding the phenomenon of waiting for each other to be determined by the vehicle itself, and the vehicle can be improved under the premise of ensuring safety.
  • the efficiency of confluence is the efficiency of confluence.
  • FIG. 1 is a schematic structural diagram of a system for merging vehicles according to an embodiment of the present application
  • FIG. 2 is an exemplary schematic diagram of a vehicle convergence scenario provided by an embodiment of the present application.
  • FIG. 3 is an exemplary schematic diagram of another vehicle convergence scenario provided by an embodiment of the present application.
  • FIG. 4 is an exemplary schematic diagram of another vehicle convergence scenario provided by an embodiment of the present application.
  • FIG. 5 is an exemplary schematic diagram of another vehicle convergence scenario provided by an embodiment of the present application.
  • FIG. 6 is a flowchart of a method for converging a vehicle according to an embodiment of the present application.
  • FIG. 7 is an exemplary schematic diagram of another vehicle convergence scenario provided by an embodiment of the present application.
  • FIG. 8 is a flowchart of another method for merging vehicles according to an embodiment of the present application.
  • FIG. 9 is a flowchart of another method for converging a vehicle according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an apparatus according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a traffic control device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another apparatus according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a first vehicle according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a possible system for merging a vehicle according to an embodiment of the present application, where the system includes a Traffic Control Unit (TCU), a wireless communication device, and a vehicle, optionally The system also includes a roadside sensor.
  • TCU Traffic Control Unit
  • the traffic control unit may be a dedicated device deployed on the network side for managing traffic, or may be a functional component in a Mobile Edge Computing (MEC) device.
  • the traffic control unit is used to collect, store, and analyze data from vehicles, roadside devices, or other devices, and then generate dynamic traffic state maps based on the data, and can predict the trajectory of the vehicle, determine potential risks, and be the confluence area.
  • the vehicle issues an instruction to enable each vehicle in the confluence area to safely and orderly pass the confluence intersection according to the received command.
  • the traffic control unit may include the following modules:
  • the vehicle information base is used for storing the travel information of the collected traffic participants of the merged area, wherein the traffic participants include vehicles, pedestrians, etc., and the travel information includes the travel state, location, travel speed, driving intention, and the like of the traffic participants.
  • the traffic information library is used for storing traffic information reported by the roadside sensor of the confluence area, and the traffic information includes road conditions, traffic signals, obstacle information, weather, and the like.
  • a geographic information base for storing high-resolution maps.
  • An analysis and prediction module for analyzing data stored in a vehicle information base, a traffic information base, and a geographic information base, and predicting potential dangers between the traffic participants, for example, predicting the probability of collision between the two vehicles by predicting the trajectory of the vehicle And the time and place of the collision.
  • the decision control module is configured to generate an instruction for the vehicle in the confluence area according to the analysis result of the analysis prediction module.
  • a data transceiver module for supporting communication between the traffic control unit and other devices.
  • the vehicle in the system can receive the instruction issued by the traffic control unit, drive according to the received command, or generate a control parameter according to the received command and the information collected by itself, and travel according to the control parameter. It is also used to report its own driving information in real time.
  • the vehicles in the embodiments of the present application are all intelligent vehicles with wireless communication functions, which can realize automatic control of the vehicle, and each vehicle can wirelessly communicate with the traffic control unit through a wireless communication device (for example, a base station), and can receive the traffic control unit.
  • the issued order is driven according to the received command.
  • the on-board unit can be in the form of a car, or it can be a Telematics Box (T-Box) + smartphone.
  • the onboard unit can obtain its own driving information and send the driving information to the traffic control unit in real time.
  • the vehicle unit can receive risk data, alarms, events, signal lights, and signage data, and prompt the driver through voice, video, and the like.
  • the vehicle unit can also receive an instruction issued by the traffic control unit, transmit the command to the vehicle control module, and the vehicle control module performs automatic driving according to the instruction.
  • the environment sensing module is configured to acquire state information of vehicles, pedestrians, and road objects recognized by the roadside sensor and the vehicle sensor.
  • the roadside sensor and the onboard sensor may be a camera, a laser radar, a millimeter wave radar, etc.
  • the data acquired by the environment sensing module may be a originally collected video stream, a radar point cloud data, or an analyzed structured person, a car, or the like.
  • the location, velocity, steering angle, and size data of the object For the original video stream data and radar point cloud data, the environment awareness module can process the data into recognizable structured positions, speeds of people, vehicles, and objects. , steering angle, size and other data.
  • the analysis decision module is configured to analyze the potential risks existing in the driving process of the vehicle according to the driving information of the vehicle itself and/or the instructions issued by the traffic control unit, and generate vehicle control parameters.
  • a vehicle control module for implementing automated/semi-automatic control of the vehicle based on control parameters provided by the driver and/or the analysis decision module.
  • the wireless communication device in the system may be a base station for supporting wireless communication between the vehicle, the roadside sensor, and the traffic control unit.
  • a communication interface for supporting data transmission between a traffic control unit, a wireless communication device, and a roadside sensor is an application layer interface for communication between the vehicle and the traffic control unit.
  • the vehicle can report the driving information to the traffic control unit through the interface 1, and the traffic control unit can issue an instruction to the vehicle through the interface 1.
  • the interface 2 is an interface between the traffic control unit and the wireless communication device. By adapting these interfaces, the communication delay, reliability, and bandwidth between the vehicle, the roadside sensor, and the traffic control unit can be ensured.
  • Wireless air interface is an air interface in mobile communication.
  • a wireless air interface is a wireless transmission specification between a wireless communication device and a vehicle, and is used to define a frequency of use, bandwidth, access timing, coding method, and Zone switching.
  • inventions of the present application provide four possible vehicle confluence scenarios.
  • Scene 1 The confluence area is a herringbone intersection. As shown in FIG. 2, the vehicles in lane 1 and lane 2 are merged into lane 3 through a herringbone intersection, for example, vehicle B, vehicle C, and vehicle B will all be merged into lane 3.
  • Scene 2 The scene where the auxiliary road vehicle is merged into the main road. As shown in FIG. 3, the vehicle B in the auxiliary road is about to be merged into the main road.
  • Scene 3 There are two parallel lanes in the confluence area, and the scene of one lane of the vehicle needs to be merged into the scene of another lane due to obstacles and the like. As shown in FIG. 4, lane 1 and lane 2 are parallel lanes, and the vehicle in lane 1 needs to be merged into lane 2 due to obstacles in front of lane 1.
  • Scene 4 The confluence scene of the vehicle entering the roundabout or the outbound island, as shown in Fig. 5, the confluence scene of the entering island can be the scene of the vehicle B entering the inner lane in the outer lane, and the confluence scene of the outbound island can be the inner side of the vehicle E The scene where the lane enters the outer lane.
  • the merged area is an area where the intersection of at least two lanes is merged into one lane, and the size of the merged area can be preset by the traffic control device or determined by the traffic control device according to the map, which is not limited in this application.
  • the merged area is any of the areas shown in Figures 2 to 5.
  • the confluence area is not limited to the above four scenarios, and may also be an area pre-configured in the traffic control device.
  • the merge priority may indicate the order in which the vehicles in the merged area pass through the merge junction. For example, if the merge priority of the vehicle A is higher than the traffic priority of the vehicle B, the vehicle A preferentially passes through the merge intersection.
  • the road rights level may indicate the order of passage of vehicles in different lanes, and the vehicles in lanes with low road rights levels should greet vehicles in lanes with high road rights levels.
  • the merged area is a herringbone intersection, and the road rights of lane 1 and lane 2 are the same.
  • the vehicle in the lane 1 needs to be merged into the lane 2, and the vehicle in the lane 2 still keeps going straight, so the vehicle traveling in the lane change should be polite to the straight-through vehicle, and the lane 1 and the road right level are lower than the lane right of the lane 2. grade.
  • the lane change vehicle should be polite to the lane change vehicle, but since the vehicle in the inner lane and the vehicle in the outer lane have the possibility of lane change, the road right level of the inner lane and the outer lane is not distinguished. .
  • the embodiment of the present application provides a method for converging a vehicle.
  • the method is described by taking the traffic control unit as a traffic control device as an example. As shown in FIG. 6 , the method includes :
  • Step 601 The first vehicle sends a convergence request to the traffic control device. Accordingly, the traffic control device receives a merge request from the first vehicle.
  • the step is an optional step.
  • the first vehicle may send a convergence request to the traffic control device, or the first vehicle does not send a convergence request to the traffic control device, when the traffic control device determines When the first vehicle enters the merged area, it can be determined that the first vehicle needs to be merged.
  • Step 602 When the traffic control device receives the merge request from the first vehicle or determines that the first vehicle enters the merged area, the merge priority of each vehicle in the merged area is acquired.
  • Step 603 Determine whether the confluence area has a confluence priority of the second vehicle that is higher than a confluence priority of the first vehicle.
  • step 604 to step 606 are performed, and if the determination result is no, step 607 to step 609 are performed.
  • Step 604 If the traffic control device determines that the merge priority of the second vehicle is higher than the merge priority of the first vehicle, the first instruction is determined, where the first instruction is used to control the first vehicle to decelerate or stop, so that The two vehicles are preferentially engaged in confluence.
  • the merged priority of the second vehicle is determined to be higher than the merge priority of the first vehicle.
  • the presence of the second vehicle in front of the first vehicle traveling direction means that the traveling direction of the first vehicle is forward, and the front of the second vehicle is located in front of the front of the first vehicle.
  • both the vehicle C and the vehicle D in FIG. 2 can be used as the first vehicle, and the vehicle D is the first vehicle as an example, and the traffic control device can determine that the vehicle B is in front of the traveling direction of the vehicle D.
  • the vehicle B is engaged in confluence driving, so the confluence priority of the vehicle B is higher than the confluence priority of the vehicle D, and the first command determined by the traffic control device for the vehicle D is deceleration or parking, and the vehicle B preferentially performs confluence driving.
  • the first command determined by the traffic control device for the vehicle C is also deceleration or parking.
  • the traffic control device can again be the vehicle C according to the latest traffic state information. And the vehicle D issues instructions.
  • the road right level of the main road is higher than the road right level of the auxiliary road
  • the merge priority of the vehicles in the main road is higher than the vehicle in the auxiliary road.
  • the merge priority is that the merge priority of the vehicle A in FIG. 3 is higher than the merge priority of the vehicle B.
  • the vehicle in the lane 1 needs to be merged into the scene of the lane 2, the road right level of the lane 2 is higher than the road right level of the lane 1, and the merge priority of the vehicles in the lane 2 is higher than the lane 1
  • the merge priority of the vehicles in the vehicle that is, the traffic priority of the vehicle A in FIG. 4 is higher than the traffic priority of the vehicle B.
  • the merged area is the area where the roundabout is located, and the first vehicle and the second vehicle are in two different lanes within the merged area. If the merge request of the first vehicle is received and the merge request of the second vehicle is not received, it is determined that the merge priority of the second vehicle is higher than the merge priority of the first vehicle.
  • the convergence request is sent to the traffic control device, so the vehicle that sends the convergence request is the vehicle that needs to change lanes, and the vehicle that does not send the convergence request is the vehicle that does not need to change lanes, according to the change.
  • the convergence priority of the vehicles traveling on the road is higher than the convergence priority of the vehicles traveling on the lane change. For vehicles in two different lanes, the convergence priority of the vehicles that have not sent the convergence request is higher than the vehicle that sends the convergence request. Convergence priority.
  • the vehicle B in FIG. 5 is about to enter the roundabout, and needs to enter the inner lane from the outer lane. If there is a vehicle A in the inner lane that does not need to change lanes, the convergence priority of the vehicle A is higher than that.
  • the convergence priority of the vehicle B; the vehicle E in FIG. 5 is about to exit the roundabout, and needs to enter the outer lane from the inner lane, and the vehicle D in the outer lane without lane change, the convergence priority of the vehicle D is higher than that of the vehicle E. Confluence priority.
  • the fourth type is: determining whether the road right level of the lane in which the first vehicle is located and the road right level of the lane in which the second vehicle is located are the same; if it is determined that the road right level of the lane in which the first vehicle is located is the same as the road right level of the lane in which the second vehicle is located , judging whether the last vehicle in the confluence area is driving out of the lane in which the first vehicle is located; if it is determined that the last converged vehicle in the confluence area is driving out of the lane in which the first vehicle is located, determining The merge priority of the two vehicles is higher than the merge priority of the first vehicle.
  • the traffic control device can determine the traffic order of the vehicle C and the vehicle D according to the principle that the zipper alternately passes, FIG. 7
  • the medium vehicle A is the last vehicle that performs the converged driving. If the traffic control device determines that the vehicle A is the lane 3 that enters from the lane where the vehicle D is located, it can be determined that the convergence priority of the vehicle C is higher than the convergence priority of the vehicle D. .
  • Step 605 The traffic control device sends a first instruction to the first vehicle. Accordingly, the first vehicle receives the first instruction.
  • Step 606 The first vehicle runs according to the first instruction.
  • the traffic control device may send a second command to the first vehicle, and the first vehicle performs the confluence running according to the second instruction.
  • Step 607 If the traffic control device determines that the merged priority of the second vehicle is not higher than the merge priority of the first vehicle, the second command is used to control the first vehicle to perform the converged running.
  • the vehicle A in FIG. 7 is the vehicle that performs the confluence driving
  • the traffic control The device determines that the vehicle A is the lane 3 that enters from the lane in which the vehicle C is located, and can determine that the vehicle D is the vehicle with the highest merge priority in the merged region. It can be understood that the case where the merged area does not have the merge priority of the second vehicle is higher than the merge priority of the first vehicle is not limited to the first scenario, and is not exemplified herein.
  • Step 608 The traffic control device sends a second instruction to the first vehicle. Correspondingly. The first vehicle receives the second command.
  • Step 609 The first vehicle runs according to the second instruction.
  • the first vehicle may further generate a control parameter according to the second instruction, its own driving information, and information collected by the environment sensing module of the vehicle, and travel according to the control parameter.
  • the method for merging vehicles provided by the embodiments of the present application is not the driver of the vehicle or the vehicle in the embodiment of the present application, compared with the problem that the efficiency of the safety and the convergence of the vehicle cannot be balanced in the process of merging the vehicle in the prior art.
  • the traffic control device determines the confluence priority of each vehicle in the confluence area, and then controls the vehicles with the highest convergence priority to perform confluence driving, control other vehicles to stop or decelerate, and reduce the vehicles in the confluence process.
  • the traffic control device controls the passage of the vehicle by sending an instruction to the vehicle
  • the vehicle can be passed through the merge intersection in an orderly manner, thereby avoiding waiting for each other to be judged by the vehicle.
  • the phenomenon can improve the efficiency of vehicle convergence under the premise of ensuring safety.
  • the traffic control device can acquire the driving information of each vehicle in real time, and then can accurately determine the traffic order of each vehicle in the confluence area, so the first vehicle can notify the traffic control device after the confluence driving.
  • the method includes: Step 801 to Step 810.
  • the steps 801 to 809 can refer to the related descriptions of the foregoing steps 601 to 609. Of course, the application is not limited thereto.
  • Step 810 The first vehicle sends feedback information to the traffic control device, where the feedback information is used to indicate that the first vehicle has completed the confluence driving. Accordingly, the traffic control device receives the feedback information.
  • the traffic control device may also be fed back whether the first instruction or the second instruction is received, whether the information is executed according to the first instruction or the second instruction. For example, if the first vehicle receives the second command, it does not directly follow the second command to perform the confluence driving, but generates the control parameter according to the second instruction and its own driving information and other information collected by itself, and then according to the control parameter.
  • the first vehicle may report the control parameter to the traffic control device, so that the traffic control device adjusts the traffic strategy of other vehicles in the confluence area in real time.
  • the traffic control device can control the next highest priority vehicle in the confluence area to perform the confluence driving, so that the vehicles in the confluence area can pass the confluence safely and orderly. intersection.
  • the method for merging a vehicle provided by the embodiment of the present application is described below with reference to a specific scenario.
  • the scenario 1 corresponding to FIG. 7 is taken as an example.
  • the method includes:
  • Step 901 The vehicle C sends a confluence request to the traffic control device, and accordingly, the traffic control device receives the confluence request.
  • Step 902 The traffic control device determines whether there is a vehicle in front of the traveling direction of the vehicle C that the converged traveling is being performed.
  • step 903 to step 904 are performed; if it is determined that there is no vehicle in the forward direction of the traveling direction of the vehicle A, step 905 is executed.
  • the traffic control device may determine the real-time traffic state information according to the travel information reported by each vehicle in the merged area, the road condition information reported by the roadside sensor, and the map information of the merged area, and the real-time traffic state information may be a dynamic traffic state.
  • the dynamic traffic state diagram includes traffic signal information in the confluence area, the position of each vehicle, and the travel information of each vehicle.
  • the traffic control device can determine, according to the real-time traffic state information, whether there is a vehicle that is in front of the traveling direction of the vehicle C, and exemplarily, in the front of the vehicle C in FIG. 7, there is only one vehicle A that has completed the confluence driving, and there is no ongoing confluence. Driving vehicle.
  • Step 903 The traffic control device sends a first instruction to the vehicle C, where the first instruction is used to control the vehicle C to decelerate or stop. Accordingly, vehicle C receives the first command.
  • the traffic control device may predict the driving trajectory of each vehicle in the confluence area according to the real-time traffic state information, and determine the possibility of collision between the vehicles, and the geographical location and time at which the collision may occur, and combine these
  • the information and the determined merge priority of each vehicle are vehicle generation commands.
  • step 903 if there is a vehicle B in front of the vehicle C that is undergoing confluence running, the traffic control device can predict the traveling trajectory of the vehicle C and the vehicle B, and determine the possibility of collision between the vehicle C and the vehicle B. And a geographical location and time at which a collision may occur, and then generate a first instruction based on the information, the first instruction may include information such as a traveling speed of the vehicle C, a traveling direction, and the like.
  • Step 904 The vehicle C travels according to the first instruction.
  • Step 905 The traffic control device determines whether a confluence request of the vehicle in the lane 1 is received.
  • step 906 to step 907 are executed, and if it is determined that the merge request of the vehicle in the lane 1 is received, step 908 is executed.
  • the traffic control device receives the merge request of the vehicle D, and further determines the merge priority of the vehicle C and the vehicle D. It should be noted that there are two possible triggering conditions for the traffic control device to determine the traffic sequence for the vehicles in the confluence area. The first is to receive the confluence request of the vehicle, and the second is to determine that the vehicle enters the confluence area, correspondingly in FIG. In the embodiment, the triggering condition is a converged request for receiving the vehicle as an example.
  • Step 906 The traffic control device sends a second command to the vehicle C, where the second command is used to control the vehicle C to perform confluence driving. Accordingly, vehicle C receives the second command.
  • the second instruction may include information such as the traveling speed of the vehicle C, the passage time window, and the like.
  • the transit time window is used to specify that the vehicle C completes the confluence running within a specified time period.
  • Step 907 The vehicle C travels according to the second instruction.
  • Step 908 The traffic control device determines whether the vehicle A is driven out of the lane 2.
  • steps 909 to 910 are performed. If the vehicle A is driven out of the lane 2, steps 911 to 912 are performed.
  • Step 909 The traffic control device sends a second command to the vehicle C, where the second command is used to control the vehicle C to perform confluence driving. Accordingly, vehicle C receives the second command.
  • the traffic control device may send a third command to the vehicle D according to the principle that the zipper alternately passes, and the third command is used to control the vehicle D to decelerate or stop. Therefore, the vehicle C preferentially performs confluence driving.
  • the vehicle C needs to feed back to the traffic control device whether the second command has been received, and whether the vehicle is traveling according to the second command, if the vehicle C is generated according to the second instruction and the driving information of the vehicle.
  • the new control parameter may send control parameters to the traffic control device. For example, if the travel speed in the traffic control parameter is greater than the travel speed in the second command, the traffic control device may adjust the traffic strategy of the vehicle D, such as to the vehicle. D resends a third command to control the vehicle D to speed up.
  • the traffic control device may re-send the command to the vehicle C and the vehicle D, control the vehicle C to stop, terminate the combined running, and control the vehicle D to perform the combined running.
  • Step 910 The vehicle C travels according to the second instruction.
  • Step 911 The traffic control device sends a first command to the vehicle C, where the first command is used to control the vehicle C to decelerate or stop. Accordingly, vehicle C receives the first command.
  • the traffic control device can send a fourth command to the vehicle D, and the fourth command is used to control the vehicle D to perform the confluence driving. .
  • Step 912 The vehicle C travels according to the first instruction.
  • the traffic control device can uniformly control the traffic order and the traffic speed of the vehicles in the confluence area, thereby avoiding the problem of low safety or low integration efficiency caused by the vehicle self-determining the misjudgment of the traffic sequence and the traffic speed.
  • the vehicles in the merged area can pass through the merged area safely, orderly, and efficiently.
  • the solution provided by the embodiment of the present invention is mainly introduced from the perspective of interaction between different network elements.
  • the traffic control device and the vehicle include corresponding hardware structures and/or software modules for performing the respective functions in order to implement the above functions.
  • the embodiments of the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of the technical solutions of the embodiments of the present invention.
  • the embodiment of the present invention may divide the functional unit of the traffic control device, the vehicle, and the like according to the above method example.
  • each functional unit may be divided according to each function, or two or more functions may be integrated into one processing unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit. It should be noted that the division of the unit in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 10 is a block diagram showing the structure of an apparatus provided in an embodiment of the present invention.
  • the device may be in the form of software, a traffic control device, or a chip in a traffic control device.
  • the apparatus 1000 includes a processing unit 1002 and a communication unit 1003.
  • the processing unit 1002 is configured to perform control management on the action of the device 1000.
  • the processing unit 1002 is configured to support the device 1000 to perform steps 602 to 604 and 607 in FIG. 6, step 802 to step 804 and step 807 in FIG. Step 902, step 905 and step 908 in Figure 9, and/or other processes for the techniques described herein.
  • the communication unit 1003 is for supporting communication between the device 1000 and other network elements (e.g., the first vehicle, and other vehicles within the confluence area, roadside sensors, etc.).
  • the communication unit 1003 is configured to support the device 1000 to perform step 605, step 606, step 805 and step 808 in FIG. 8, step 903, step 906, step 909 and step 911 in FIG.
  • the device 1000 may further include a storage unit 1001 for storing program codes and data of the device 1000.
  • the processing unit 1002 may be a processor or a controller, such as a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit (Application-Specific). Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 1003 may be a communication interface, where the communication interface is a collective name.
  • the communication interface may include multiple interfaces, for example, may include: an interface between the traffic control device and the first vehicle, and a traffic control device and Interfaces and/or other interfaces between the roadside sensors.
  • the storage unit 1001 may be a memory.
  • the structure of the device 1000 may be the structure of the traffic control device as shown in FIG.
  • FIG. 11 is a schematic structural diagram of a traffic control device provided by an embodiment of the present application.
  • the traffic control device 1100 includes a processor 1102, a communication interface 1103, and a memory 1101.
  • the traffic control device 1100 can also include a bus 1104.
  • the communication interface 1103, the processor 1102, and the memory 1101 may be connected to each other through a bus 1104.
  • the bus 1104 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (abbreviated). EISA) bus and so on.
  • the bus 1104 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 11, but it does not mean that there is only one bus or one type of bus.
  • FIG. 12 is a block diagram showing the structure of an apparatus provided in an embodiment of the present invention.
  • the device may be in the form of software, or it may be a first vehicle (which may also be any one of the vehicles in the confluence area), or it may be a chip in the first vehicle.
  • the apparatus 1200 includes a processing unit 1202 and a communication unit 1203.
  • the processing unit 1202 is configured to perform control management on the action of the device 1200.
  • the processing unit 1202 is configured to support the device 1200 to perform step 606 and step 609 in FIG. 6, step 801 and step 810 in FIG. 8, and steps in FIG. 901, and/or other processes for the techniques described herein.
  • Communication unit 1203 is used to support communication between device 1200 and other network elements (e.g., traffic control devices, etc.).
  • the communication unit 1203 is configured to support the device 1200 to perform step 601 in FIG. 6, step 801 and step 810 in FIG. 8, step 901 in FIG.
  • the device 1200 can also include a storage unit 1201 for storing program codes and data of the device 1200.
  • the processing unit 1202 may be a processor or a controller, such as a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit (Application-Specific). Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 1203 may be a communication interface, wherein the communication interface is a collective name. In a specific implementation, the communication interface may include multiple interfaces, for example, may include: an interface between the first vehicle and the traffic control device, and/or other interfaces. .
  • the storage unit 1201 may be a memory.
  • the structure of the apparatus 1200 may be the structure of the first vehicle as shown in FIG.
  • FIG. 13 is a schematic diagram showing a possible structure of a first vehicle provided by an embodiment of the present application.
  • the first vehicle 1300 includes a processor 1302, a communication interface 1303, and a memory 1301.
  • the first vehicle 1300 may further include a bus 1304.
  • the communication interface 1303, the processor 1302, and the memory 1301 may be connected to each other through a bus 1304.
  • the bus 1304 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (abbreviated). EISA) bus and so on.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus 1304 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 13, but it does not mean that there is only one bus or one type of bus.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware or may be implemented by a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in a random access memory (RAM), a flash memory, a read only memory (ROM), an erasable programmable read only memory ( Erasable Programmable ROM (EPROM), electrically erasable programmable read only memory (EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in an MME, an AMF node, or a terminal. Of course, the processor and the storage medium may also exist as discrete components in the MME, AMF node or terminal.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network devices. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each functional unit may exist independently, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the present application can be implemented by means of software plus necessary general hardware, and of course, by hardware, but in many cases, the former is a better implementation. .
  • the technical solution of the present application which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer.
  • a hard disk or optical disk, etc. includes instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various embodiments of the present application.

Abstract

一种车辆合流的方法及装置,涉及无线通信技术领域,可以解决现有技术的车辆合流过程中无法兼顾安全和车辆合流的效率的问题。该方法包括:当接收到来自第一车辆的合流请求或确定第一车辆进入合流区域时,获取合流区域内的每个车辆的合流优先级,若判断出合流区域存在第二车辆的合流优先级高于第一车辆的合流优先级,则确定第一指令,并向第一车辆发送第一指令,第一指令用于控制第一车辆减速或停车,以便第二车辆优先进行合流行驶;若判断出合流区域不存在第二车辆的合流优先级高于第一车辆的合流优先级,则确定第二指令,并向第一车辆发送第二指令,第二指令用于控制第一车辆进行合流行驶。

Description

一种车辆合流的方法及装置
本申请要求于2017年10月25日提交中国专利局、申请号为201711009839.1、申请名称为“一种车辆合流的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种车辆合流的方法及装置。
背景技术
车辆合流是交通中常见的一种场景,例如,在人字路口,存在两个车道的车辆并入一个车道的车辆合流场景,再例如,还存在辅道的车辆并入主道的车辆合流场景。目前,在车辆合流的场景中,一般是由车辆的驾驶员或者具有自动驾驶功能的智能车辆来确定通行顺序与行驶策略。例如,假设处于车道A的智能车辆A和处于车道B的智能车辆B即将并入车道C,智能车辆A和智能车辆B在确定通行顺序和行驶策略时容易出现冲突,例如智能车辆A判断自己先驶入车道C,智能车辆B也判断自己先驶入车道C,或者智能车辆A和B均判断对方先驶入车道C,就会导致车辆合流过程中存在两车碰撞的可能性,或者出现互相等待的现象,在现有的车辆合流过程中无法兼顾安全和车辆合流的效率。
发明内容
本申请的实施例提供一种车辆合流的方法及装置,可以解决现有技术的车辆合流过程中无法兼顾安全和车辆合流的效率的问题。
为了达到上述目的,本申请的实施例采用以下技术方案:
第一方面,本申请的实施例提供一种车辆合流的方法,该方法包括:当接收到来自第一车辆的合流请求或确定第一车辆进入合流区域时,获取合流区域内的每个车辆的合流优先级,然后判断合流区域是否存在第二车辆的合流优先级高于第一车辆的合流优先级,若判断出合流区域存在第二车辆的合流优先级高于第一车辆的合流优先级,则确定第一指令,并向第一车辆发送第一指令,第一指令用于控制第一车辆减速或停车,以便第二车辆优先进行合流行驶;若判断出合流区域不存在第二车辆的合流优先级高于第一车辆的合流优先级,则确定第二指令,并向第一车辆发送第二指令,第二指令用于控制第一车辆进行合流行驶。
采用该方法,由交通控制设备来判断合流区域各个车辆的合流优先级,进而控制合流优先级最高的车辆进行合流行驶,控制其他车辆停车或减速,可以降低合流过程中车辆因为误判断而发生碰撞的可能性,且由交通控制设备通过向车辆发送指令来控制车辆的通行,可以使得车辆有序地通过合流路口,避免了由车辆自行判断是否可以通行而出现的互相等待的现象,可以在保证安全的前提下提高车辆合流的效率。
其中,合流区域为至少两条车道合并为一条车道的路口所在的区域,或者为环岛所在的区域,合流区域的大小可由交通控制设备预先设置,或者由交通控制设备根据地图来确定。
合流优先级表示合流区域的车辆通过合流路口的顺序,示例性地,若车辆A的合流优先级高于车辆B的通行优先级,则车辆A优先通过合流路口。
可选地,第一车辆接收到第二指令后,可根据第二指令,自身的行驶信息,以及采集到的路况信息生成控制参数,进而根据控制参数行驶。且第一车辆还可以向交通控制设备上报该控制参数。
在一种可能的实现方式中,若判断出合流区域内,第一车辆行驶方向的前方存在正在进行合流行驶的第二车辆,确定第二车辆的合流优先级高于第一车辆的合流优先级。
其中,若第二车辆比第一车辆更靠近合流路口,或者第二车辆正在根据指令进行合流行驶,则第二车辆的合流优先级高于第一车辆的合流优先级。
在另一种可能的实现方式中,若判断出第二车辆所在的车道的路权等级高于第一车辆所在的车道的路权等级,则确定合流区域存在第二车辆的合流优先级高于第一车辆的合流优先级。
以辅路的车辆并入主路的场景为例,若在合流区域内第一车辆处于辅路,第二车辆处于主路,主路中车辆的合流优先级高于辅路中车辆的合流优先级,所以第二车辆的合流优先级高于第一车辆的合流优先级。
在另一种可能的实现方式中,合流区域为环岛所在的区域,第一车辆和第二车辆处于合流区域内的两个不同的车道;若接收到第一车辆的合流请求,未接收到第二车辆的合流请求,则确定第二车辆的合流优先级高于第一车辆的合流优先级。
其中,在环岛中,不换道行驶的车辆需礼让换道行驶的车辆,当合流区域内的车辆需要换道行驶时,可以向交通控制设备发送合流请求,交通控制设备接收到了第一车辆的合流请求,未接收到第二车辆的合流请求,说明第一车辆即将换道行驶,第二车辆不换道行驶,所以第二车辆的合流优先级高于第一车辆的合流优先级。
在另一种可能的实现方式中,交通控制设备可以判断第一车辆所在车道的路权等级和第二车辆所在车道的路权等级是否相同,若判断出第一车辆所在车道的路权等级和第二车辆所在车道的路权等级相同,则判断合流区域内上一个进行合流行驶的车辆是否从第一车辆所在的车道驶出,若判断出合流区域内上一个进行合流行驶的车辆从第一车辆所在的车道驶出,则确定第二车辆的合流优先级高于第一车辆的合流优先级。
以人字路口的合流场景为例,车道1和车道2中的车辆均并入车道3,车道1和车道2的路权等级相同,交通控制设备可根据拉链交替通行的原则确定合流区域内各车辆的通行顺序,若第一车辆为人字路口的车道1中的车辆,车道1中第一车辆行驶方向的前方不存在等待合流行驶的车辆,第二车辆为人字路口的车道2中的车辆,车道2中第一车辆行驶方向的前方不存在等待合流行驶的车辆,若交通控制设备判断上一个合流行驶的车辆来自车道1,则此时由车道2中的车辆优先进行合流行驶,所以第二车辆的合流优先级大于第一车辆的合流优先级。
在一种可能的实现方式中,在交通控制设备向第一车辆发送第二指令后,还可以接收来自第一车辆的反馈信息,反馈信息用于表示第一车辆已经完成合流行驶。交通控制设备确定第一车辆已经完成合流行驶后,则可通过发送指令控制合流区域内下一个优先级最高的车辆进行合流行驶,使得合流区域内的车辆可以安全有序地通过合流 路口。
第二方面,本申请的实施例提供一种车辆合流的方法,该方法包括:第一车辆向交通控制设备发送合流请求,然后第一车辆接收来自交通控制设备的第一指令,并根据第一指令行驶,第一指令用于控制第一车辆减速或停车;或者,第一车辆接收来自交通控制设备的第二指令,并根据第二指令行驶,第二指令用于控制第一车辆进行合流行驶。
采用该方法,第一车辆无需自己判断自身和其他车辆通过合流路口的顺序,而是根据交通控制设备的指令来行驶,可以降低合流过程中车辆因为误判断而发生碰撞的可能性,且由交通控制设备通过向车辆发送指令来控制车辆的通行,可以使得车辆有序地通过合流路口,避免了由车辆自行判断是否可以通行而出现的互相等待的现象,可以在保证安全的前提下提高车辆合流的效率。
在一种可能的实现方式中,在第一车辆根据第二指令进行合流行驶之后,第一车辆可以向交通控制设备发送反馈信息,反馈信息用于表示第一车辆已经完成合流行驶。以便于交通控制设备确定第一车辆已经完成合流行驶后,通过发送指令控制合流区域内下一个优先级最高的车辆进行合流行驶,使得合流区域内的车辆可以安全有序地通过合流路口。
第三方面,本申请实施例提供一种车辆合流的装置,该装置具有实现上述方法设计中车辆控制设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。例如,该装置可以为车辆控制设备,或者可以为车辆控制设备中的芯片。
在一种可能的设计中,该装置为车辆控制设备,车辆控制设备包括处理器,所述处理器被配置为支持车辆控制设备执行上述方法中相应的功能。进一步的,车辆控制设备还可以包括通信接口,所述通信接口用于支持车辆控制设备与第一车辆,或者合流区域内的任意车辆,和合流区域内的路侧传感器的通信。进一步的,车辆控制设备还可以包括存储器,所述存储器用于与处理器耦合,其保存车辆控制设备必要的程序指令和数据。
第四方面,本申请实施例提供一种车辆合流的装置,该装置具有实现上述方法设计中第一车辆行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。例如,该装置可以为第一车辆,或者可以为第一车辆中的芯片。
在一种可能的设计中,该装置为第一车辆,第一车辆包括处理器,所述处理器被配置为支持第一车辆执行上述方法中相应的功能。进一步的,第一车辆还可以包括通信接口,所述通信接口用于支持第一车辆与交通控制设备之间的通信。进一步的,第一车辆还可以包括存储器,所述存储器用于与处理器耦合,其保存第一车辆必要的程序指令和数据。
第五方面,本申请的实施例提供一种车辆合流的系统,该系统包括上述方面所述的交通控制设备、第一车辆、第二车辆以及合流区域内的其他车辆,或者该系统可以包括上述方面所述的交通控制设备、第一车辆、第二车辆、合流区域内的其他车辆,还包括合流区域内的路侧传感器。
第六方面,本申请实施例提供一种计算机存储介质,用于储存为上述用于车辆控制设备所用的计算机软件指令,其包含用于执行上述第一方面所设计的程序。
第七方面,本申请实施例提供一种计算机存储介质,用于储存为上述用于第一车辆所用的计算机软件指令,其包含用于执行上述第二方面所设计的程序。
第八方面,本申请的实施例提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如上述第一方面所述的方法。
第九方面,本申请的实施例提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如上述第二方面所述的方法。
第十方面,本申请的实施例提供一种芯片系统,应用于交通控制设备中,该芯片系统包括至少一个处理器,存储器和接口电路,所述存储器、所述收发器和所述至少一个处理器通过线路互联,所述至少一个存储器中存储有指令;所述指令被所述处理器执行,以执行上述第一方面所述的方法中交通控制设备的操作。
第十一方面,本申请的实施例提供一种芯片系统,应用于第一车辆中,该芯片系统包括至少一个处理器,存储器和接口电路,所述存储器、所述收发器和所述至少一个处理器通过线路互联,所述至少一个存储器中存储有指令;所述指令被所述处理器执行,以执行上述第二方面所述的方法中第一车辆的操作。
相比于现有技术中车辆合流过程中无法兼顾安全和车辆合流的效率的问题,在本申请的实施例中,不是由车辆或者车辆的驾驶员来确定通过合流路口的顺序,而是由交通控制设备来判断合流区域各个车辆的合流优先级,进而控制合流优先级最高的车辆进行合流行驶,控制其他车辆停车或减速,可以降低合流过程中车辆因为误判断而发生碰撞的可能性,且由交通控制设备通过向车辆发送指令来控制车辆的通行,可以使得车辆有序地通过合流路口,避免了由车辆自行判断是否可以通行而出现的互相等待的现象,可以在保证安全的前提下提高车辆合流的效率。
附图说明
图1为本申请的实施例提供的一种车辆合流的系统的结构示意图;
图2为本申请的实施例提供的一种车辆合流场景的示例性示意图;
图3为本申请的实施例提供的另一种车辆合流场景的示例性示意图;
图4为本申请的实施例提供的另一种车辆合流场景的示例性示意图;
图5为本申请的实施例提供的另一种车辆合流场景的示例性示意图;
图6为本申请的实施例提供的一种车辆合流的方法的流程图;
图7为本申请的实施例提供的另一种车辆合流场景的示例性示意图;
图8为本申请的实施例提供的另一种车辆合流的方法的流程图;
图9为本申请的实施例提供的另一种车辆合流的方法的流程图;
图10为本申请的实施例提供的一种装置的结构示意图;
图11为本申请的实施例提供的一种交通控制设备的结构示意图;
图12为本申请的实施例提供的另一种装置的结构示意图;
图13为本申请的实施例提供的一种第一车辆的结构示意图。
具体实施方式
下面将结合附图对本申请作进一步地详细描,方法实施例中的具体操作方法也可 以应用于装置实施例或系统实施例中。其中,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本申请描述的系统架构及业务场景是为了更加清楚的说明本申请的技术方案,并不构成对于本申请提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
如图1所示,图1为本申请实施例提供的一种可能的车辆合流的系统的示意图,该系统中包括交通控制单元(Transportation Control Unit,TCU),无线通信设备以及车辆,可选地,该系统中还包括路侧传感器。
其中,交通控制单元可以是一台部署在网络侧的用于对交通进行管理的专用设备,也可以为移动边缘计算(Mobile Edge Computing,MEC)设备中的一个功能组件。交通控制单元用于收集、存储、分析来自车辆、路侧设备或其他设备中的数据,然后根据这些数据生成动态交通状态图,且可以预测车辆的行驶轨迹,判断潜在风险,并为合流区域的车辆下发指令,使得合流区域的各车辆能够根据接收到的指令安全有序地通过合流路口。
可选地,交通控制单元可以包括以下几个模块:
车辆信息库,用于存储收集到的合流区域的交通参与者的行驶信息,其中,交通参与者包括车辆、行人等,行驶信息包括交通参与者的行驶状态、位置、行驶速度、行驶意图等。
交通信息库,用于存储合流区域的路侧传感器上报的交通信息,交通信息包括路况、交通信号、障碍物信息、天气等。
地理信息库,用于存储高精度地图。
分析预测模块,用于分析车辆信息库、交通信息库和地理信息库中存储的数据,预测交通参与者之间存在的潜在危险,例如可以通过预测车辆的行驶轨迹来判断两车相撞的概率,以及相撞的时间和地点。
决策控制模块,用于根据分析预测模块的分析结果为合流区域的车辆生成指令。
数据收发模块,用于支持交通控制单元与其他设备之间的通信。
该系统中的车辆,可以接收交通控制单元下发的指令,根据接收到的指令进行行驶,或者根据接收到的指令以及自身采集到的信息生成控制参数,根据控制参数进行行驶。还用于实时上报自身的行驶信息。本申请实施例中的车辆均为具有无线通信功能的智能车辆,能够实现对车辆的自动控制,各车辆可以通过无线通信设备(例如基站)与交通控制单元进行无线通信,且可接收交通控制单元下发的指令,根据接收到的指令进行行驶。
车辆中可以包括以下模块:
车载单元(On-Board Unit,OBU),车载单元可以是车机形态,也可以是也可以是远程信息处理器(Telematics Box,T-Box)+智能手机形态。车载单元可以获取自身 的行驶信息,并实时将行驶信息发送给交通控制单元。车载单元可以接收风险数据,告警、事件、信号灯、标志牌数据,通过语音、视频等方式提示驾驶员。车载单元还可以接收交通控制单元下发的指令,将指令传输至车辆控制模块,由车辆控制模块根据指令进行自动驾驶。
环境感知模块,用于获取路侧传感器与车载传感器识别的车辆、行人、路面物体状态信息。路侧传感器与车载传感器可以是摄像头、激光雷达、毫米波雷达等,环境感知模块获取到的数据可以是原始采集的视频流、雷达的点云数据或者是经过分析的结构化的人、车、物的位置、速度、转向角度、尺寸大小数据,对于原始的视频流数据、雷达的点云数据,环境感知模块可以将这些数据处理成可识别的结构化的人、车、物的位置、速度、转向角度、尺寸大小等数据。
分析决策模块,用于根据车辆自身的行驶信息和/或交通控制单元下发的指令,分析车辆行驶过程中存在的潜在风险,生成车辆控制参数。
车辆控制模块,用于根据驾驶者和/或分析决策模块提供的控制参数,实施车辆的自动化/半自动化控制。
该系统中的无线通信设备,可以为基站,用于支持车辆、路侧传感器和交通控制单元之间的无线通信。
通信接口,用于支持交通控制单元、无线通信设备以及路侧传感器之间的数据传输。其中,接口1为车辆与交通控制单元之间通信的应用层接口。车辆可通过接口1向交通控制单元上报行驶信息,且交通控制单元可通过接口1向车辆下发指令。接口2为交通控制单元与无线通信设备之间的接口,通过适配这些接口,可以保障车辆、路侧传感器和交通控制单元之间的通信时延、可靠性、带宽。无线空口,为移动通信中空中接口,具体来说,无线空口是无线通信设备和车辆之间的无线传输规范,用于定义每个无线信道的使用频率、带宽、接入时机、编码方法以及越区切换。
需要说明的是,图1中示例性地示出了3个无线通信设备、3个车辆和1个路侧传感器,本申请不对图1所示的车辆合流系统中各设备的数量进行限制。
本申请的实施例提供的车辆合流的方法应用于车辆合流的场景中,示例性地,本申请的实施例提供了四种可能的车辆合流场景。
场景一:合流区域为人字路口。如图2所示,车道1和车道2中的车辆通过人字路口并入车道3,例如,车辆B、车辆C以及车辆B都将并入车道3。
场景二:辅道车辆并入主道的场景。如图3所示,辅道中的车辆B即将并入主道。
场景三:合流区域存在两个并行车道,因存在障碍物等原因,其中一个车道的车辆需并入另一个车道的场景。如图4所示,车道1和车道2为并行车道,因车道1前方存在障碍物等原因,车道1中的车辆需并入车道2。
场景四:车辆入环岛或者出环岛的合流场景,如图5所示,入环岛的合流场景可以为外侧车道中的车辆B驶入内侧车道的场景,出环岛的合流场景可以为车辆E由内侧车道驶入外侧车道的场景。
下面对申请中涉及的部分用于进行解释说明,以方便理解:
(1)、合流区域
合流区域为至少两条车道合并为一条车道的路口所在的区域,合流区域的大小可 由交通控制设备预先设置,或者由交通控制设备根据地图来确定,本申请对此不作限制。示例性地,合流区域为图2至图5示出的任一种区域。
可选地,合流区域不限制于上述四种场景,还可以为预先配置在交通控制设备中的区域。
(2)、合流优先级
合流优先级可以表示合流区域的车辆通过合流路口的顺序,示例性地,若车辆A的合流优先级高于车辆B的通行优先级,则车辆A优先通过合流路口。
(3)、路权等级
路权等级可以表示不同车道中的车辆的通行顺序,路权等级低的车道中的车辆应礼让路权等级高的车道中的车辆。
示例性地,在上述场景一中,合流区域为人字路口,车道1和车道2的路权等级相同。
在上述场景二中,由于辅道的车辆需并入主道,而主道的车辆仍保持直行,所以换道行驶的车辆应礼让直行车辆,辅道的路权等级低于主道的路权等级。
在上述场景三中,车道1中的车辆需并入车道2,车道2中的车辆仍保持直行,所以换道行驶的车辆应礼让直行车辆,车道1和路权等级低于车道2的路权等级。
在上述场景四中,换道车辆应礼让不换道车辆,但是由于内侧车道中的车辆和外侧车道中的车辆均存在换道行驶的可能性,所以不区分内侧车道和外侧车道的路权等级。
为了兼顾车辆合流过程中车辆的安全与合流效率,本申请的实施例提供一种车辆合流的方法,该方法以交通控制单元为交通控制设备为例进行说明,如图6所示,该方法包括:
步骤601、第一车辆向交通控制设备发送合流请求。相应地,交通控制设备接收来自第一车辆的合流请求。
需要说明的是,该步骤为可选步骤,在上述场景一至场景三中,第一车辆可以向交通控制设备发送合流请求,或者第一车辆不向交通控制设备发送合流请求,当交通控制设备确定第一车辆进入合流区域时,即可确定第一车辆需要进行合流。
在上述场景四中,进入合流区域的车辆并非全部都是需要进行合流行驶的车辆。第一车辆需要进行变道时,可以向交通控制设备发送合流请求。
步骤602、当交通控制设备接收到来自第一车辆的合流请求或确定第一车辆进入合流区域时,获取合流区域内每个车辆的合流优先级。
步骤603、判断合流区域是否存在第二车辆的合流优先级高于第一车辆的合流优先级。
若判断结果为是,则执行步骤604至步骤606,若判断结果为否,则执行步骤607至步骤609。
步骤604、若交通控制设备判断出合流区域存在第二车辆的合流优先级高于第一车辆的合流优先级,则确定第一指令,第一指令用于控制第一车辆减速或停车,以便第二车辆优先进行合流行驶。
其中,判断出合流区域存在第二车辆的合流优先级高于第一车辆的合流优先级存 在以下几种情形:
第一种:若判断出合流区域内,第一车辆行驶方向的前方存在正在进行合流行驶的第二车辆,确定第二车辆的合流优先级高于第一车辆的合流优先级。
其中,第一车辆行驶方向的前方的存在第二车辆是指,以第一车辆的行驶方向为前方,存在第二车辆的车头处于第一车辆的车头前方。
示例性地,在上述场景一中,图2中的车辆C和车辆D均可作为第一车辆,以车辆D为第一车辆为例,交通控制设备可确定车辆B处于车辆D行驶方向的前方,且车辆B正在进行合流行驶,所以车辆B的合流优先级高于车辆D的合流优先级,交通控制设备为车辆D确定的第一指令为减速或停车,由车辆B优先进行合流行驶。可以理解的是,在图2中,交通控制设备为车辆C确定的第一指令也为减速或停车,在确定车辆B完整合流行驶后,交通控制设备可以根据最新的交通状态信息再次为车辆C和车辆D下发指令。
第二种:若判断出第二车辆所在的车道的路权等级高于第一车辆所在的车道的路权等级,则确定合流区域存在第二车辆的合流优先级高于第一车辆的合流优先级。
示例性地,在上述场景二,辅道车辆并入主道的场景中,主道的路权等级高于辅道的路权等级,则主道中的车辆的合流优先级高于辅道中的车辆的合流优先级,即图3中的车辆A的合流优先级高于车辆B的合流优先级。
再例如,在上述场景三,车道1中的车辆需并入车道2的场景中,车道2的路权等级高于车道1的路权等级,车道2中的车辆的合流优先级高于车道1中的车辆的合流优先级,即图4中的车辆A的通行优先级高于车辆B的通行优先级。
第三种:合流区域为环岛所在的区域,第一车辆和第二车辆处于合流区域内的两个不同的车道。若接收到第一车辆的合流请求,未接收到第二车辆的合流请求,则确定第二车辆的合流优先级高于第一车辆的合流优先级。
其中,车辆需要进行换道行驶时会向交通控制设备发送合流请求,所以发送合流请求的车辆为需要换道行驶的车辆,未发送合流请求的车辆为不需要换道行驶的车辆,根据不换道行驶的车辆的合流优先级高于换道行驶的车辆的合流优先级的原则,对于处于两个不同车道的车辆而言,未发送合流请求的车辆的合流优先级高于发送合流请求的车辆的合流优先级。
示例性地,在上述场景四中,图5中的车辆B即将进入环岛,需要从外侧车道驶入内侧车道,内侧车道中有无需换道行驶的车辆A,则车辆A的合流优先级高于车辆B的合流优先级;图5中的车辆E即将出环岛,需要从内侧车道驶入外侧车道,外侧车道中有无需换道行驶的车辆D,则车辆D的合流优先级高于车辆E的合流优先级。
第四种:判断第一车辆所在车道的路权等级和第二车辆所在车道的路权等级是否相同;若判断出第一车辆所在车道的路权等级和第二车辆所在车道的路权等级相同,则判断合流区域内上一个进行合流行驶的车辆是否从第一车辆所在的车道驶出;若判断出合流区域内上一个进行合流行驶的车辆从第一车辆所在的车道驶出,则确定第二车辆的合流优先级高于第一车辆的合流优先级。
示例性地,在上述场景一中,如图7所示,车道1和车道2的路权等级相同,则交通控制设备可根据拉链交替通行的原则确定车辆C和车辆D的通行顺序,图7中车 辆A为上一个进行合流行驶的车辆,若交通控制设备判断出车辆A是从车辆D所在的车道驶入的车道3,则可确定车辆C的合流优先级高于车辆D的合流优先级。
步骤605、交通控制设备向第一车辆发送第一指令。相应地,第一车辆接收第一指令。
步骤606、第一车辆根据第一指令行驶。
可以理解的是,若第一车辆接收到的是第一指令,则第一车辆根据第一指令减速或停车,由第二车辆优先进行合流行驶,之后交通控制设备会根据实时交通状态信息再次为第一车辆确定指令,当第一车辆为合流区域内合流优先级最高的车辆时,交通控制设备可以向第一车辆发送第二指令,进而第一车辆根据第二指令进行合流行驶。
步骤607、若交通控制设备判断出合流区域不存在第二车辆的合流优先级高于第一车辆的合流优先级,则确定第二指令,第二指令用于控制第一车辆进行合流行驶。
例如,在上述场景一中,如图7所示,若第一车辆为车辆D,车道1和车道2的路权等级相同,图7中车辆A为上一个进行合流行驶的车辆,若交通控制设备判断出车辆A是从车辆C所在的车道驶入的车道3,则可确定车辆D为合流区域内合流优先级最高的车辆。可以理解的是,合流区域不存在第二车辆的合流优先级高于第一车辆的合流优先级的情况不限制于第一场景中,此处不再一一举例。
步骤608、交通控制设备向第一车辆第二指令。相应地。第一车辆接收第二指令。
步骤609、第一车辆根据第二指令行驶。
可选地,第一车辆还可以根据第二指令,自身的行驶信息以及车辆的环境感知模块采集到的信息生成控制参数,根据控制参数进行行驶。
本申请的实施例提供的车辆合流的方法,相比于现有技术中车辆合流过程中无法兼顾安全和车辆合流的效率的问题,在本申请的实施例中,不是由车辆或者车辆的驾驶员来确定通过合流路口的顺序,而是由交通控制设备来判断合流区域各个车辆的合流优先级,进而控制合流优先级最高的车辆进行合流行驶,控制其他车辆停车或减速,可以降低合流过程中车辆因为误判断而发生碰撞的可能性,且由交通控制设备通过向车辆发送指令来控制车辆的通行,可以使得车辆有序地通过合流路口,避免了由车辆自行判断是否可以通行而出现的互相等待的现象,可以在保证安全的前提下提高车辆合流的效率。
可选地,交通控制设备可以实时地获取各车辆的行驶信息,进而才可以准确地确定合流区域内的各个车辆的通行顺序,所以第一车辆完整合流行驶后可以通知交通控制设备。基于此,在本申请的实施例的另一种实现方式中,如图8所示,该方法包括:步骤801至步骤810。
其中,步骤801至步骤809可参考上述步骤601至步骤609的相关描述,当然本申请不限于此。
步骤810、第一车辆向交通控制设备发送反馈信息,反馈信息用于表示第一车辆已经完成合流行驶。相应地,交通控制设备接收反馈信息。
可选地,在第一车辆接收到第一指令或第二指令后也可以向交通控制设备反馈是否接收到第一指令或第二指令,是否按照第一指令或第二指令执行等信息。例如,若第一车辆接收到第二指令后,未直接按照第二指令进行合流行驶,而是根据第二指令 和自身的行驶信息以及自身采集到的其他信息生成了控制参数,进而根据控制参数进行合流行驶,则第一车辆可以向交通控制设备上报该控制参数,以便交通控制设备实时调整合流区域内的其他车辆的通行策略。
采用该方法,交通控制设备确定第一车辆已经完成合流行驶后,则可通过发送指令控制合流区域内下一个优先级最高的车辆进行合流行驶,使得合流区域内的车辆可以安全有序地通过合流路口。
以下结合具体的场景对本申请的实施例提供的车辆合流的方法进行说明,以图7对应的场景一为例,如图9所示,该方法包括:
步骤901、车辆C向交通控制设备发送合流请求,相应地,交通控制设备接收合流请求。
步骤902、交通控制设备判断车辆C行驶方向的前方是否存在正在进行合流行驶的车辆。
若判断出车辆A行驶方向的前方存在正在进行合流行驶的车辆,则执行步骤903至步骤904;若判断出车辆A行驶方向的前方不存在正在进行合流行驶的车辆,则执行步骤905。
需要说明的是,交通控制设备可以根据合流区域中的各个车辆上报的行驶信息,路侧传感器上报的路况信息以及合流区域的地图信息来确定实时交通状态信息,实时交通状态信息可以是动态交通状态图的形式,动态交通状态图中包括合流区域内的交通信号灯信息,各个车辆的位置,各个车辆的行驶信息等。交通控制设备可根据实时交通状态信息判断车辆C行驶方向的前方是否存在正在进行合流行驶的车辆,示例性地,图7中车辆C前方只有一个已完成合流行驶的车辆A,不存在正在进行合流行驶的车辆。
步骤903、交通控制设备向车辆C发送第一指令,所述第一指令用于控制车辆C减速或停车。相应地,车辆C接收第一指令。
可选地,交通控制设备可根据实时交通状态信息预测合流区域内的各车辆的行驶轨迹,并判断出各车辆之间发生碰撞的可能性,以及可能发生碰撞的地理位置和时间,并结合这些信息以及判断出的各车辆的合流优先级为车辆生成指令。示例性地,在步骤903中,若车辆C前方存在正在进行合流行驶的车辆B,则交通控制设备可以预测车辆C与车辆B的行驶轨迹,判断车辆C和车辆B之间发生碰撞的可能性,以及可能发生碰撞的地理位置和时间,进而根据这些信息生成第一指令,第一指令可以包括车辆C的行驶速度,行驶方向等信息。
步骤904、车辆C根据第一指令行驶。
步骤905、交通控制设备判断是否接收到车道1中的车辆的合流请求。
若判断出未接收到车道1中的车辆D的合流请求,则执行步骤906至步骤907,若判断出接收到车道1中的车辆的合流请求,则执行步骤908。
示例性地,在图7中,交通控制设备接收到了车辆D的合流请求,需进一步确定车辆C和车辆D的合流优先级。需要说明的是,交通控制设备为合流区域的车辆确定通行顺序有两种可能的触发条件,第一种是接收到车辆的合流请求,第二种是确定车辆进入合流区域,在图9对应地实施例中,均为触发条件为接收到车辆的合流请求为 例说明。
步骤906、交通控制设备向车辆C发送第二指令,所述第二指令用于控制车辆C进行合流行驶。相应地,车辆C接收第二指令。
可选地,第二指令可以包括车辆C的行驶速度,通行时间窗等信息。通行时间窗用于规定车辆C在指定时间段内完成合流行驶。
步骤907、车辆C根据第二指令行驶。
步骤908、交通控制设备判断车辆A是否由车道2驶出。
若车辆A不是由车道2驶出,则执行步骤909至步骤910。若车辆A由车道2驶出,则执行步骤911至步骤912。
步骤909、交通控制设备向车辆C发送第二指令,所述第二指令用于控制车辆C进行合流行驶。相应地,车辆C接收第二指令。
需要说明的是,以图7为例,若车辆A由车道1驶出,根据拉链交替通行的原则,交通控制设备可向车辆D发送第三指令,第三指令用于控制车辆D减速或停车,以便车辆C优先进行合流行驶。
可选地,车辆C接收到第二指令后,需向交通控制设备反馈是否已经接收到第二指令,以及是否按照第二指令行驶,若车辆C根据第二指令以及自身的行驶信息等生成了新的控制参数,则可以向交通控制设备发送控制参数,例如,若该交通控制参数中的行驶速度大于第二指令中的行驶速度,则交通控制设备可以调整车辆D的通行策略,比如向车辆D重新发送一个第三指令,控制车辆D加快行驶速度。
可选地,若车辆C向交通控制设备反馈故障信息,则交通控制设备可重新向车辆C和车辆D发送指令,控制车辆C停车,终止合流行驶,并控制车辆D进行合流行驶。
步骤910、车辆C根据第二指令行驶。
步骤911、交通控制设备向车辆C发送第一指令,所述第一指令用于控制车辆C减速或停车。相应地,车辆C接收第一指令。
需要说明的是,以图7为例,若车辆A由车道2驶出,根据拉链交替通行的原则,交通控制设备可向车辆D发送第四指令,第四指令用于控制车辆D进行合流行驶。
步骤912、车辆C根据第一指令行驶。
采用该方法,交通控制设备可以统一管控合流区域内的车辆的通行顺序以及通行速度,避免了车辆自行判断通行顺序和通行速度出现误判的时,导致的安全性低或者合流效率低的问题,可以使合流区域的车辆安全、有序、高效地通过合流区域。
上述主要从不同网元之间交互的角度对本发明实施例提供的方案进行了介绍。可以理解的是,交通控制设备、车辆为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本发明中所公开的实施例描述的各示例的单元及算法步骤,本发明实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本发明实施例的技术方案的范围。
本发明实施例可以根据上述方法示例对交通控制设备、车辆等进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集 成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本发明实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图10示出了本发明实施例中提供的一种装置的结构示意图。该装置可以以软件的形式存在,也可以为交通控制设备,还可以为交通控制设备中的芯片。该装置1000包括:处理单元1002和通信单元1003。处理单元1002用于对装置1000的动作进行控制管理,例如,处理单元1002用于支持装置1000执行图6中的步骤602至步骤604和步骤607,图8中的步骤802至步骤804和步骤807,图9中的步骤902、步骤905和步骤908,和/或用于本文所描述的技术的其它过程。通信单元1003用于支持装置1000和其他网元(例如第一车辆,以及合流区域内的其他车辆,路侧传感器等)之间的通信。例如,通信单元1003用于支持装置1000执行图6中的步骤605,步骤606,图8中的步骤805和步骤808,图9中的步骤903,步骤906,步骤909和步骤911。装置1000还可以包括存储单元1001,用于存储装置1000的程序代码和数据。
其中,处理单元1002可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元1003可以是通信接口,其中,该通信接口是统称,在具体实现中,该通信接口可以包括多个接口,例如可以包括:交通控制设备与第一车辆之间的接口、交通控制设备与路侧传感器之间的接口和/或其他接口。存储单元1001可以是存储器。
当处理单元1002为处理器,通信单元1003为通信接口,存储单元1001为存储器时,本申请实施例所涉及的装置1000的结构可以是如图11所示的交通控制设备的结构。
图11示出了本申请实施例提供的交通控制设备的一种可能的结构示意图。
如图11所示,该交通控制设备1100包括:处理器1102、通信接口1103、存储器1101。可选的,交通控制设备1100还可以包括总线1104。其中,通信接口1103、处理器1102以及存储器1101可以通过总线1104相互连接;总线1104可以是外设部件互连标准(Peripheral Component Interconnect,简称PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,简称EISA)总线等。所述总线1104可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图12示出了本发明实施例中提供的一种装置的结构示意图。该装置可以以软件的形式存在,也可以为第一车辆(还可以为合流区域内的任意一个车辆),还可以为第一车辆中的芯片。该装置1200包括:处理单元1202和通信单元1203。处理单元1202用于对装置1200的动作进行控制管理,例如,处理单元1202用于支持装置1200执行图6中的步骤606和步骤609,图8中的步骤801和步骤810,图9中的步骤901,和 /或用于本文所描述的技术的其它过程。通信单元1203用于支持装置1200和其他网元(例如交通控制设备等)之间的通信。例如,通信单元1203用于支持装置1200执行图6中的步骤601,图8中的步骤801和步骤810,图9中的步骤901。装置1200还可以包括存储单元1201,用于存储装置1200的程序代码和数据。
其中,处理单元1202可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元1203可以是通信接口,其中,该通信接口是统称,在具体实现中,该通信接口可以包括多个接口,例如可以包括:第一车辆与交通控制设备之间的接口和/或其他接口。存储单元1201可以是存储器。
当处理单元1202为处理器,通信单元1203为通信接口,存储单元1201为存储器时,本申请实施例所涉及的装置1200的结构可以是如图13所示的第一车辆的结构。
图13示出了本申请实施例提供的第一车辆的一种可能的结构示意图。
如图13所示,该第一车辆1300包括:处理器1302、通信接口1303、存储器1301。可选的,第一车辆1300还可以包括总线1304。其中,通信接口1303、处理器1302以及存储器1301可以通过总线1304相互连接;总线1304可以是外设部件互连标准(Peripheral Component Interconnect,简称PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,简称EISA)总线等。所述总线1304可以分为地址总线、数据总线、控制总线等。为便于表示,图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于MME、AMF节点或终端中。当然,处理器和存储介质也可以作为分立组件存在于MME、AMF节点或终端中。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些 接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络设备上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个功能单元独立存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘,硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种车辆合流的方法,其特征在于,包括:
    当接收到来自第一车辆的合流请求或确定所述第一车辆进入合流区域时,获取所述合流区域内的每个车辆的合流优先级;
    判断所述合流区域是否存在第二车辆的合流优先级高于所述第一车辆的合流优先级;
    若判断出所述合流区域存在第二车辆的合流优先级高于所述第一车辆的合流优先级,则确定第一指令,并向所述第一车辆发送所述第一指令,所述第一指令用于控制所述第一车辆减速或停车,以便所述第二车辆优先进行合流行驶;
    若判断出所述合流区域不存在第二车辆的合流优先级高于所述第一车辆的合流优先级,则确定第二指令,并向所述第一车辆发送所述第二指令,所述第二指令用于控制所述第一车辆进行合流行驶。
  2. 根据权利要求1所述的方法,其特征在于,所述判断出所述合流区域存在第二车辆的合流优先级高于所述第一车辆的合流优先级,包括:
    若判断出所述合流区域内,所述第一车辆行驶方向的前方存在正在进行合流行驶的第二车辆,确定所述第二车辆的合流优先级高于所述第一车辆的合流优先级。
  3. 根据权利要求1所述的方法,其特征在于,所述判断出所述合流区域存在第二车辆的合流优先级高于所述第一车辆的合流优先级,包括:
    若判断出所述第二车辆所在的车道的路权等级高于所述第一车辆所在的车道的路权等级,则确定所述合流区域存在所述第二车辆的合流优先级高于所述第一车辆的合流优先级。
  4. 根据权利要求1所述的方法,其特征在于,所述合流区域为环岛所在的区域,所述第一车辆和所述第二车辆处于所述合流区域内的两个不同的车道;所述判断出所述合流区域存在第二车辆的合流优先级高于所述第一车辆的合流优先级,包括:
    若接收到所述第一车辆的合流请求,未接收到所述第二车辆的合流请求,则确定所述第二车辆的合流优先级高于所述第一车辆的合流优先级。
  5. 根据权利要求1所述的方法,其特征在于,所述判断出所述合流区域存在第二车辆的合流优先级高于所述第一车辆的合流优先级,包括:
    判断所述第一车辆所在车道的路权等级和所述第二车辆所在车道的路权等级是否相同;
    若判断出所述第一车辆所在车道的路权等级和所述第二车辆所在车道的路权等级相同,则判断所述合流区域内上一个进行合流行驶的车辆是否从所述第一车辆所在的车道驶出;
    若判断出所述合流区域内上一个进行合流行驶的车辆从所述第一车辆所在的车道驶出,则确定所述第二车辆的合流优先级高于所述第一车辆的合流优先级。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一车辆的反馈信息,所述反馈信息用于表示所述第一车辆已经完成合流行驶。
  7. 一种车辆合流的方法,其特征在于,包括:
    第一车辆向交通控制设备发送合流请求;
    所述第一车辆接收来自所述交通控制设备的第一指令,并根据所述第一指令行驶,所述第一指令用于控制所述第一车辆减速或停车;或者,
    所述第一车辆接收来自所述交通控制设备的第二指令,并根据所述第二指令行驶, 所述第二指令用于控制所述第一车辆进行合流行驶。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述第一车辆向所述交通控制设备发送反馈信息,所述反馈信息用于表示所述第一车辆已经完成合流行驶。
  9. 一种车辆合流的装置,其特征在于,包括:通信单元和处理单元;
    所述通信单元,用于接收来自第一车辆的合流请求;
    所述处理单元,用于当确定所述通信单元接收到来自所述第一车辆的合流请求或确定所述第一车辆进入合流区域时,获取所述合流区域内的每个车辆的合流优先级;判断所述合流区域是否存在第二车辆的合流优先级高于所述第一车辆的合流优先级;若判断出所述合流区域存在第二车辆的合流优先级高于所述第一车辆的合流优先级,则确定第一指令,所述第一指令用于控制所述第一车辆减速或停车,以便所述第二车辆优先进行合流行驶;
    所述通信单元,还用于向所述第一车辆发送所述处理单元确定的所述第一指令;
    所述处理单元,还用于若判断出所述合流区域不存在第二车辆的合流优先级高于所述第一车辆的合流优先级,则确定第二指令,所述第二指令用于控制所述第一车辆进行合流行驶;
    所述通信单元,还用于向所述第一车辆发送所述处理单元确定的所述第二指令。
  10. 根据权利要求9所述的装置,其特征在于,
    所述处理单元,具体用于若判断出所述合流区域内,所述第一车辆行驶方向的前方存在正在进行合流行驶的第二车辆,确定所述第二车辆的合流优先级高于所述第一车辆的合流优先级。
  11. 根据权利要求9所述的装置,其特征在于,
    所述处理单元,具体用于若判断出所述第二车辆所在的车道的路权等级高于所述第一车辆所在的车道的路权等级,则确定所述合流区域存在所述第二车辆的合流优先级高于所述第一车辆的合流优先级。
  12. 根据权利要求9所述的装置,其特征在于,所述合流区域为环岛所在的区域,所述第一车辆和所述第二车辆处于所述合流区域内的两个不同的车道;
    所述处理单元,具体用于若所述通信单元接收到所述第一车辆的合流请求,所述通信单元未接收到所述第二车辆的合流请求,则确定所述第二车辆的合流优先级高于所述第一车辆的合流优先级。
  13. 根据权利要求9所述的装置,其特征在于,
    所述处理单元,具体用于判断所述第一车辆所在车道的路权等级和所述第二车辆所在车道的路权等级是否相同;若判断出所述第一车辆所在车道的路权等级和所述第二车辆所在车道的路权等级相同,则判断所述合流区域内上一个进行合流行驶的车辆是否从所述第一车辆所在的车道驶出;若判断出所述合流区域内上一个进行合流行驶的车辆从所述第一车辆所在的车道驶出,则确定所述第二车辆的合流优先级高于所述第一车辆的合流优先级。
  14. 根据权利要求9至13中任一项所述的装置,其特征在于,
    所述通信单元,还用于接收来自所述第一车辆的反馈信息,所述反馈信息用于表示所述第一车辆已经完成合流行驶。
  15. 一种车辆合流的装置,其特征在于,包括:通信单元和处理单元;
    所述通信单元,用于向交通控制设备发送合流请求;以及接收来自所述交通控制设备的第一指令,所述第一指令用于控制第一车辆减速或停车;
    所述处理单元,用于控制所述第一车辆根据所述通信单元接收到的所述第一指令 行驶;
    所述通信单元,还用于接收来自交通控制设备的第二指令,所述第二指令用于控制所述第一车辆进行合流行驶;
    所述处理单元,用于控制所述第一车辆根据所述通信单元接收到的所述第二指令行驶。
  16. 根据权利要求15所述的装置,其特征在于,
    所述通信单元,还用于向所述交通控制设备发送反馈信息,所述反馈信息用于表示所述第一车辆已经完成合流行驶。
  17. 一种计算机存储介质,其特征在于,所述计算机存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述权利要求1至6中任一项所述的方法。
  18. 一种芯片系统,其特征在于,所述芯片系统包括至少一个处理器,存储器和接口电路,所述存储器、所述收发器和所述至少一个处理器通过线路互联,所述至少一个存储器中存储有指令;所述指令被所述处理器执行,以执行上述权利要求1至6中任一项所述的方法。
PCT/CN2018/111471 2017-10-25 2018-10-23 一种车辆合流的方法及装置 WO2019080841A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18871288.9A EP3686861A4 (en) 2017-10-25 2018-10-23 METHOD AND DEVICE FOR CONVEYING VEHICLES
US16/852,806 US20200286386A1 (en) 2017-10-25 2020-04-20 Vehicle Merging Method and Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711009839.1A CN107886740A (zh) 2017-10-25 2017-10-25 一种车辆合流的方法及装置
CN201711009839.1 2017-10-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/852,806 Continuation US20200286386A1 (en) 2017-10-25 2020-04-20 Vehicle Merging Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2019080841A1 true WO2019080841A1 (zh) 2019-05-02

Family

ID=61782286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111471 WO2019080841A1 (zh) 2017-10-25 2018-10-23 一种车辆合流的方法及装置

Country Status (4)

Country Link
US (1) US20200286386A1 (zh)
EP (1) EP3686861A4 (zh)
CN (1) CN107886740A (zh)
WO (1) WO2019080841A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021209178A1 (en) * 2020-04-17 2021-10-21 Dromos Technologies AG Autonomous transportation network with junction control method

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107886740A (zh) * 2017-10-25 2018-04-06 华为技术有限公司 一种车辆合流的方法及装置
CN108615371A (zh) * 2018-04-23 2018-10-02 武汉理工大学 一种快速路出入口交通引导系统及方法
DE102018208105B3 (de) * 2018-05-23 2019-03-21 Volkswagen Aktiengesellschaft Verfahren zum Unterstützen eines Führens wenigstens eines Kraftfahrzeugs und Assistenzsystem
CN108710506B (zh) * 2018-05-31 2021-01-22 北京智行者科技有限公司 车辆的指令处理方法
JP2019215779A (ja) * 2018-06-14 2019-12-19 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 車両の走行支援システム
CN109598950B (zh) * 2018-12-04 2021-06-01 东南大学 一种智能网联车辆的匝道协同汇入控制方法及系统
WO2020138516A1 (ko) * 2018-12-24 2020-07-02 엘지전자 주식회사 통신 장치, 그것의 제어 방법 및 그것을 포함하는 통신 시스템
CN110470311A (zh) * 2019-07-08 2019-11-19 浙江吉利汽车研究院有限公司 一种地图生成方法、装置及计算机存储介质
CN112447056A (zh) * 2019-09-05 2021-03-05 华为技术有限公司 控制交通通行的方法和装置
US11210952B2 (en) * 2019-10-17 2021-12-28 Verizon Patent And Licensing Inc. Systems and methods for controlling vehicle traffic
US11511751B2 (en) * 2020-05-29 2022-11-29 Toyota Research Institute, Inc. Merge situation exposure algorithms to maximize exposure time
CN112258864B (zh) * 2020-10-19 2022-03-11 广西大学 基于顺序选择的自动驾驶车辆路口调度方法及系统
KR102417550B1 (ko) * 2020-12-15 2022-07-05 현대오토에버 주식회사 비행체 유도 방법 및 장치
CN114973689B (zh) * 2021-02-27 2024-01-16 华为技术有限公司 一种车辆并道方法及电子设备
CN115206118A (zh) * 2021-04-14 2022-10-18 大唐高鸿智联科技(重庆)有限公司 一种车辆通行控制方法、装置、路侧设备及车载设备
CN114067559B (zh) * 2021-09-27 2022-11-15 北京交通大学 一种自动车专用道并入普通车道的合流优化控制方法
CN113744540A (zh) * 2021-09-29 2021-12-03 中汽创智科技有限公司 一种车辆汇入方法、系统、设备及存储介质
US20230192074A1 (en) * 2021-12-20 2023-06-22 Waymo Llc Systems and Methods to Determine a Lane Change Strategy at a Merge Region
CN116994447A (zh) * 2022-04-25 2023-11-03 中信科智联科技有限公司 一种信息传输方法、装置、车辆及车联网设备
US11491987B1 (en) * 2022-06-22 2022-11-08 Embark Trucks Inc. Merge handling based on merge intentions over time
CN115497300B (zh) * 2022-11-16 2023-01-31 四川省公路规划勘察设计研究院有限公司 一种基于车路协同系统的车辆安全分流调度方法及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157072A (zh) * 2011-03-29 2011-08-17 北京航空航天大学 基于车路协同的交叉口车辆合流诱导装置及其诱导方法
CN104575048A (zh) * 2015-01-13 2015-04-29 北京尚易德科技有限公司 提示进入环岛机动车让环岛内机动车先行的系统和方法
CN105139677A (zh) * 2015-07-28 2015-12-09 苏州大学张家港工业技术研究院 基于车路协同的无控交叉口车辆通行引导系统及其引导方法
JP6206120B2 (ja) * 2013-11-21 2017-10-04 日産自動車株式会社 合流支援システム
CN107886740A (zh) * 2017-10-25 2018-04-06 华为技术有限公司 一种车辆合流的方法及装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8630789B2 (en) * 2010-03-12 2014-01-14 Richard David Speiser Routing to reduce congestion
US8401772B2 (en) * 2010-03-12 2013-03-19 Richard David Speiser Automated routing to reduce congestion
US9536427B2 (en) * 2013-03-15 2017-01-03 Carnegie Mellon University Methods and software for managing vehicle priority in a self-organizing traffic control system
EP3179212A1 (en) * 2015-12-11 2017-06-14 C.R.F. Società Consortile Per Azioni Motor vehicle driver assistance for negotiating a roundabout
GB2549506B (en) * 2016-04-19 2018-09-05 Ford Global Tech Llc A vehicle prioritisation system
CN109643123B (zh) * 2016-08-22 2022-03-22 村田机械株式会社 行驶车系统以及行驶车系统的控制方法
CN106781551B (zh) * 2017-03-08 2019-04-30 东南大学 车联网环境下的高速公路出入口匝道联合控制系统及方法
US10795378B2 (en) * 2017-06-13 2020-10-06 Verizon Patent And Licensing Inc. Remote token-based control of autonomous vehicles
US20190035267A1 (en) * 2017-07-27 2019-01-31 Microsoft Technology Licensing, Llc Automated control of traffic devices with vehicles
US10762788B2 (en) * 2017-08-01 2020-09-01 Swoppz, LLC Method and system for requesting and granting priority between vehicles
CN107909837A (zh) * 2017-10-24 2018-04-13 华为技术有限公司 一种车辆借道通行的方法和控制中心
CN108091155B (zh) * 2017-11-13 2020-04-28 华为技术有限公司 车联网中的交通流控制方法及其装置
US10755565B2 (en) * 2019-01-18 2020-08-25 Ford Global Technologies, Llc Prioritized vehicle messaging

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157072A (zh) * 2011-03-29 2011-08-17 北京航空航天大学 基于车路协同的交叉口车辆合流诱导装置及其诱导方法
JP6206120B2 (ja) * 2013-11-21 2017-10-04 日産自動車株式会社 合流支援システム
CN104575048A (zh) * 2015-01-13 2015-04-29 北京尚易德科技有限公司 提示进入环岛机动车让环岛内机动车先行的系统和方法
CN105139677A (zh) * 2015-07-28 2015-12-09 苏州大学张家港工业技术研究院 基于车路协同的无控交叉口车辆通行引导系统及其引导方法
CN107886740A (zh) * 2017-10-25 2018-04-06 华为技术有限公司 一种车辆合流的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3686861A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021209178A1 (en) * 2020-04-17 2021-10-21 Dromos Technologies AG Autonomous transportation network with junction control method

Also Published As

Publication number Publication date
EP3686861A4 (en) 2020-12-23
EP3686861A1 (en) 2020-07-29
US20200286386A1 (en) 2020-09-10
CN107886740A (zh) 2018-04-06

Similar Documents

Publication Publication Date Title
WO2019080841A1 (zh) 一种车辆合流的方法及装置
RU2674744C1 (ru) Взаимодействие между транспортными средствами для упорядочивания дорожного движения
US10186148B2 (en) Roadside control apparatus, computer program, and information processing method
WO2019080874A1 (zh) 一种车辆借道通行的方法和控制中心
US20180281815A1 (en) Predictive teleassistance system for autonomous vehicles
JP7030573B2 (ja) 車両制御装置、車両制御方法、およびプログラム
WO2019091288A1 (zh) 车联网中的交通流控制方法及其装置
US11335201B2 (en) Passage possibility determination apparatus, passage possibility determination method, and computer program
JPWO2017126250A1 (ja) 運転支援方法及び装置
JP7085371B2 (ja) 車両制御装置、車両制御方法、およびプログラム
WO2022237634A1 (zh) 信息处理方法、设备及计算机存储介质
US11645914B2 (en) Apparatus and method for controlling driving of vehicle
US20180362047A1 (en) Information processing device and recording medium
US11895566B2 (en) Methods of operating a wireless data bus in vehicle platoons
JP2016177638A (ja) 路側制御装置、コンピュータプログラム及び情報処理方法
JP2021024423A (ja) 車両制御装置、車両制御方法、およびプログラム
WO2023066146A1 (zh) 车辆避让控制方法、装置、电子设备及存储介质
CN112614368B (zh) 行车控制方法、系统及相关设备
CN113744540A (zh) 一种车辆汇入方法、系统、设备及存储介质
US20220379884A1 (en) Travel assistance device, travel assistance method, and non-transitory computer readable medium
JP6839642B2 (ja) 車両制御装置、車両制御方法、およびプログラム
CN115641709A (zh) 一种引导车辆变道的方法、装置及存储介质
CN115092126A (zh) 车辆控制装置、车辆控制方法以及计算机可读取存储介质
CN116710985A (zh) 车辆的行驶控制系统、用于该系统的服务器装置及车辆
CN114248793B (zh) 一种车辆控制方法、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871288

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018871288

Country of ref document: EP

Effective date: 20200421

NENP Non-entry into the national phase

Ref country code: DE